Warning: Undefined property: Dissovet\Models\Dissertation::$performed_in_place2 in /var/www/application/Models/Dissertation.php on line 354
Диссертация

Диссертация

Арутюнян Лаврентин Мартунович

Кандидат наук

Статус диссертации

25.04.2019 
Диплом Кандидат наук
22.04.2019 
Решение о выдаче диплома
15.02.2019 
Положительное заключение АК
17.12.2018 
На рассмотрении в АК
23.11.2018 
Положительная защита
20.10.2018 
Объявление опубликовано
21.09.2018 
Принят к защите
20.09.2018 
Заключение комиссии
06.09.2018 
Документы приняты
ФИО соискателя
Арутюнян Лаврентин Мартунович
Степень на присвоение
Кандидат наук
Приказ о выдаче диплома
№ 489 от 25.04.2019
Дата и время защиты
23.11.2018 16:00
Научный руководитель
Богачев Владимир Игоревич
Доктор наук Профессор
Оппоненты
Колесников Александр Викторович
Доктор наук
Ульянов Владимир Васильевич
Доктор наук Профессор
Шавгулидзе Евгений Тенгизович
Доктор наук Профессор
Место выполнения работы
Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теории функций и функционального анализа
Специальность
01.01.01 Вещественный, комплексный и функциональный анализ
физико-математические науки
Диссертационный совет
Телефон совета
+7 495 939-14-70

Объект исследования. В диссертации изучаются функционалы на бесконечномерных пространствах, как правило линейные или полиномиальные. Кроме того, рассматриваются меры и их образы под действием данных функционалов. Цель работы. Развить теорию измеримых многочленов на бесконечномерных пространствах: изучить общие свойства, вытекающие из алгебраического определения, изучить особые свойства в гауссовской ситуации, изучить образы логарифмически вогнутых мер, а также равномерных распределений на выпуклых телах. Методы исследования. Основные методы лежат в русле теории меры и функционального анализа. Используется техника выпуклого анализа, а также ряд разработанных автором конструкций. Полученные результаты. 1. Доказано, что пределы измеримых многочленов являются измеримыми многочленами, т.е. обладают версиями, которые являются алгебраическими многочленами. 2. Изучены вопросы измеримости однородных компонент измеримого многочлена, а также свойства сужений этих многочленов на пространство Камерона–Мартина для гауссовской меры. 3. Получено изопериметрическое неравенство в форме Чигера для полиномиальных образов мер, являющихся равномерными распределениями на выпуклых телах в R^n, причем с константой, которая зависит лишь от среднего значения модуля многочлена на выпуклом теле, а также от размерности n и степени многочлена d. Как следствие, получено неравенство Пуанкаре с аналогичной константой. 4. Доказана абсолютная непрерывность образов логарифмически вогнутых мер под действием непостоянных многочленов, а также функций из других широких классов. Для полиномиальных отображений доказаны законы 0-1 для мер подпространств, а также множеств сходимости последовательностей таких отображений. Получены условия абсолютной непрерывности распределений норм, взятых от полиномиальных отображений, измеримых относительно логарифмически вогнутых мер. Для произвольных измеримых многочленов фиксированной степени доказана эквивалентность L^1-нормы по логарифмически вогнутой мере и L^1-нормы по сужению этой меры на всякое множество положительной меры.

# Название Размер