МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

На правах рукописи

ПОПОВА МАРИНА БОРИСОВНА

ОСОБЕННОСТИ ПОВЕДЕНИЯ ¹³⁷Cs В ПОЧВЕННО-РАСТИТЕЛЬНОМ ПОКРОВЕ СЕВЕРО-ТАЁЖНЫХ ЭКОСИСТЕМ (НА ПРИМЕРЕ ЗОНЫ ВЛИЯНИЯ КОЛЬСКОЙ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ)

Специальность: 1.5.15 Экология (биологические науки)

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре радиоэкологии и экотоксикологии факультета почвоведения ФГБОУ ВО «Московский государственный университет имени М.В.Ломоносова»

Научные Щеглов Алексей Иванович,

руководители: доктор биологических наук, доцент/с.н.с.

Новиков Александр Павлович,

доктор химических наук

Официальные Переволоцкий Александр Николаевич,

оппоненты: доктор биологических наук, ведущий научный сотрудник

лаборатории математического моделирования и

программно-информационного обеспечения, ФГБНУ

ВНИИРАЭ

Ладонин Дмитрий Вадимович,

доктор биологических наук, доцент/с.н.с., профессор кафедры химии почв факультета почвоведения, МГУ

имени М.В.Ломоносова

Богатырев Лев Георгиевич,

кандидат биологических наук, доцент, доцент по кафедре

общего почвоведения факультета почвоведения МГУ

имени М.В.Ломоносова

Защита диссертации состоится 23 мая 2023 года в 15:00 на заседании диссертационного совета МГУ.015.3 Московского государственного университета имени М.В. Ломоносова по адресу: 119234, Москва, Ленинские горы, МГУ, д.1, стр.12, биологический факультет, аудитория М-2.

Тел: 8(495)–939-24-67, электронная почта: paramonovata@my.msu.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на портале: https://dissovet.msu.ru/dissertation/015.3/2468

Автореферат разослан «18» апреля 2023 года.

Ученый секретарь диссертационного совета, кандидат биологических наук

Парамонова Т.А.

Актуальность проблемы

В научной литературе опубликован ряд работ, посвященных содержанию радионуклидов в растениях и почвах в зоне размещения радиационно опасных объектов Кольского полуострова — различным предприятий Военно-морского флота РФ, а также центров по хранению и переработке РАО. Однако данные о содержании и распределении наиболее долгоживущего радионуклида, присутствующего в составе глобальных выпадений и штатных выбросов КоАЭС — ¹³⁷Cs — в последние годы не публиковались, хотя исследование ее радиационного воздействия на окружающие экосистемы и оценка этого влияния на фоне большого количества других радиационно опасных объектов представляется важными.

Цель работы: изучить особенности поведения ¹³⁷Cs в почвеннорастительном покрове северотаежных экосистем на примере района расположения KoAЭC.

Для достижения цели были поставлены следующие задачи:

- 1) Определить уровни накопления ¹³⁷Cs в почвах и доминантных видах растений, расположенных на разном удалении от АЭС (в санитарно-защитной зоне, в зоне наблюдения КоАЭС и на фоновой территории);
- 2) Рассчитать запасы ¹³⁷Cs в корнеобитаемой 0–30 см толще иллювиально-железистых подзолов в северотаежных экосистемах на заложенных контрольных участках;
- 3) Изучить формы соединений ¹³⁷Cs и ряда других техногенных радионуклидов в исследуемых подзолах путём проведения модельного эксперимента;
- 4) Установить закономерности влияния основных физико-химических свойств почв на накопление ¹³⁷Cs в почвенном профиле и в органах растений доминантных видов;

5) Оценить степень влияния KoAЭC на поступление ¹³⁷Cs в почвеннорастительный покров прилегающих территорий.

Объектом исследования выступили хвойные биогеоценозы, расположенные в районе КоАЭС; а **предметом исследования** — поведение ¹³⁷Сs в почвенно-растительном покрове северотаежных экосистем на примере этих хвойных биогеоценозов.

Научная новизна

Впервые в хвойных биогеоценозах на иллювиально-железистых подзолах района расположения КоАЭС дана детальная характеристика распределения ¹³⁷Сs в почвенном профиле и показано его содержание в различных органах растений доминантных видов. В модельных экспериментах с внесением техногенных радионуклидов (которые ранее не проводились) получены данные о распределении ¹³⁷Cs, ⁹⁰Sr, ²³⁷Np и ^{239,240}Pu по формам их соединений в иллювиально-железистых подзолах Кольского полуострова.

Теоретическая и практическая значимость

¹³⁷Cs Полученные закономерностях поведения данные 0 северотаежных экосистемах на иллювиально-железистых подзолах позволят повысить точность прогностических моделей поведения этого радионуклида бореальных лесах. Результаты исследования также ΜΟΓΥΤ использованы при разработке рекомендаций по улучшению системы экологического мониторинга радиационно объектов, опасных расположенных в северо-таежной зоне, в частности КоАЭС.

Методология и методы исследования

Методология исследования базируется на принципах диалектики, системном и целостном подходе к познанию предмета; методы — общенаучные (анализ, абстрагирование, формализация, эксперимент,

индукция, дедукция). Измерение удельных активностей ¹³⁷Cs во всех образцах осуществлялось методом гамма-спектрометрии, расчет влияния различных факторов на поведение ¹³⁷Cs был выполнен с помощью статистических методов.

Основные положения, выносимые на защиту:

- 1. В хвойных биогеоценозах на иллювиально-железистых подзолах ¹³⁷Cs характеризуется значительно большей миграционной подвижностью в системе почва-растение, чем в хвойных биогеоценозах средней полосы России.
- 2. Накопление 137 Cs в почвенно-растительном покрове 30-км зоны вокруг КоАЭС определяется почвенными свойствами такими как содержание органического вещества, физической глины, подвижного K^+ , обменных Ca^{2+} и Mg^{2+} .
- 3. Штатные выбросы КоАЭС не приводят к значимому увеличению содержания ¹³⁷Сs в почвенно-растительном покрове относительно существующего уровня, обусловленного глобальным радиоактивным загрязнением.

Личный вклад автора

Выбор направления исследования, изучение литературных источников, организация полевых выездов, отбор почвенных и растительных проб, проведение измерений и лабораторных анализов, участие в проведении модельного эксперимента по внесению изотопов техногенных радионуклидов в почву, статистическая обработка полученных результатов. В работе [1] вклад автора составил 0,7 печатных листа (п.л.) из 1,0 п.л., в работе [2] 0,7 п.л. из 1,1 п.л., в работе [3] 0,9 п.л. из 1,4 п.л.

Публикации

По материалам диссертации опубликовано 5 научных работ, из них 3 работы — в рецензируемых научных журналах, входящих в международные базы WoS и Scopus, а также РИНЦ.

Объем и структура диссертации

Диссертация включает введение, 6 глав, заключение, выводы, список литературы и приложения. Материалы диссертации изложены на 190 страницах, она содержит 31 таблицу и 18 рисунков. Список литературы включает 156 наименований, в том числе 66 на английском языке.

Благодарности

Автор выражает признательность сотрудникам группы SoilText ФИЦ Почвенного института им. В.В. Докучаева Юдиной А.В. и Фомину Д.С. за помощь в определении гранулометрического состава почв, сотрудникам лаборатории радиохимии окружающей среды Горяченковой Т.А., Казинской И.Е., Лавринович Е.А., Кузовкиной Е.В. и Мясникову И.Ю. - за помощь в организации модельного эксперимента по внесению изотопов в почву и ценные советы. Автор также выражает благодарность Кизееву А.Н., Ушамовой С.Ф., Прохорову В.А. и Мышонкову А.Ю. за помощь в полевых работах, составлении геоботанических описаний, отборе почвенных и растительных образцов и их транспортировке. Глубокую благодарность автор выражает научным руководителям Щеглову А.И. и Новикову А.П., а также старшему преподавателю кафедры радиоэкологии и экотоксикологии и всех опубликованных автором статей Манахову Д.В. соавтору за неоценимую помощь и поддержку на всех этапах работы.

Исследование выполнено при поддержке гранта РФФИ № 20–34–90103 «Аспиранты».

Степень достоверности и апробация результатов

Полученные в диссертации результаты являются оригинальными, их достоверность определяется большим объемом полученных данных, использованием традиционных и современных методов и подходов, корректным использованием статистических методов. Основные положения данной диссертации были доложены и обсуждены на заседаниях кафедры

радиоэкологии и экотоксикологии факультета почвоведения МГУ, а также представлены на конференциях: на Третьей молодежной конференции Почвенного института им. В.В. Докучаева «Почвоведение: Горизонты будущего 2019» (Москва, 2019), международной конференции ENVIRA-2019 (Прага, 2019), XII Международной биогеохимической школе-конференции «Фундаментальные основы биогеохимических технологий и перспективы их применения в охране природы, сельском хозяйстве и медицине» (Тула, 2021) и Пятой конференции молодых ученых Почвенного института им. В.В. Докучаева с международным участием «Почвоведение: Горизонты будущего. 2021» (Москва, 2021).

СОДЕРЖАНИЕ РАБОТЫ

ГЛАВА 1. Обзор литературы

Первая глава состоит из 6 разделов и обобщает имеющиеся литературные данные о поведении ¹³⁷Cs в почве, его биогеохимических свойствах и накоплении в растениях основных ярусов северной тайги. Также рассмотрено радиационное воздействие КоАЭС на окружающую среду, дан обзор радиоэкологических исследований, проводившихся в районе ее расположения.

Обзор литературы подтвердил, что поведение ¹³⁷Сѕ в системе почварастение в экосистемах северной тайги остается крайне мало изученным. Информация о накоплении этого радионуклида в доминантных видах растений и почвах немногочисленна (Горячкин и др., 1995; Семенихина, 2006; Евсеев, 2020; Радиационная обстановка на территории России и сопредельных государств в 2020 году, 2021; Отчет об экологической безопасности за 2021 год. Кольская АЭС, 2022). Информация о формах соединений ¹³⁷Сѕ в иллювиально-железистых подзолах в литературе отсутствует.

ГЛАВА 2. Объекты и методы исследования

Объектами исследования послужили хвойные биогеоценозы района расположения КоАЭС. Их изучение проводилось в 2014 году на сети мониторинговых площадок в виде радиально-концентрической системы, состоящей из 12 пробных площадок в пределах санитарно-защитной зоны (СЗЗ) атомной станции; в зоне наблюдения (ЗН), на расстоянии 10 км от станции; на границе ЗН на расстоянии 15 км; одна фоновая площадка — на расстоянии 30 км от станции — Ф-30. Для детального изучения накопления ¹³⁷Сѕ в почвенно-растительном покрове по направлению господствующих ветров в 2019 году был произведен дополнительный отбор проб на пяти пробных площадках, заложенных по северо-восточному румбу — и на новой фоновой площадке (Ф-60), которая располагалась в 60 километрах от КоАЭС (рис 1).

В период с 2014 по 2019 годы на каждой площадке было заложено по одному полнопрофильному почвенному разрезу и несколько прикопок. Почвенные свойства определялись по стандартным методикам.

Рис. 1. Схема расположения пробных площадок

Для изучения форм соединений ¹³⁷Cs и некоторых других техногенных радионуклидов (239 Pu, 90 Sr и 237 Np) в исследуемых почвах был проведен модельный эксперимент. Радионуклиды ¹³⁷Cs и ²³⁹Pu вносили в одну воздушно-сухую навеску почв, 90 Sr и 237 Np — в отдельные навески. Масса каждой навески составляла 20 г. Азотнокислые растворы, содержащие радионуклиды, внесены В минимальных объемах В следующих концентрациях (в скобках указаны активности внесенных меток): 137 Cs — 0,1 мл (6000 Бк), 90 Sr — 0,5 мл (2000 Бк), 239 Pu — 0,03 мл (1500 Бк), 237 Np — 0,3 мл $(3.3 \times 10^{-5} \text{ г/мл})$. В почвы с внесенными радионуклидами регулярно добавляли дистиллированную воду в количестве около 4 мл, добиваясь влажной консистенции, и тщательно перемешивали. По мере высыхания воду добавляли снова. Перемешивание длилось 4 месяца. Последовательная экстракция форм соединений проводилась по методу Павлоцкой однократно из навески 2 г, соотношение твердой и жидкой фаз 1:10, время контакта — 1 час при комнатной температуре.

Растительные сообщества площадок были представлены преимущественно сосняками лишайниково-черничными. С каждой площадки были отобраны образцы сосны обыкновенной (*Pinus sylvéstris* L.), черники миртолистной (Vaccinium myrtillus L.) и лишайников рода Cladonia (рис. 2). Отбирались образцы и других растительных видов, если они произрастали на площадке в количестве, достаточном для отбора проб — березы повислой (Bétula pendula Roth), ели обыкновенной (Pícea ábies L.), голубики обыкновенной (Vaccinium uliginósum L.) и плевроциума Шребера (Pleurozium schreberi). Ветви деревьев с листьями или хвоей 2-4-летнего возраста срезались секатором на высоте человеческого роста. У кустарничков срезалась полностью надземная часть растения. Лишайники отбирались целиком. В дальнейшем образцы растений (кроме мха) были разделены на ветви и хвою, либо на ветви и листья, а образцы лишайников - на нижнюю, среднюю и верхнюю части подеция.

Удельные активности ¹³⁷Cs в образцах были измерены на спектрометрическом комплексе "Мультирад" с гамма-детектором NaI(Tl) 63×63 с программным обеспечением "Прогресс"(ООО "НТЦ Амплитуда", Россия) в пятикратной повторности с экспозицией 10800 с. Энергетическое разрешение по линии 662 кэВ составляет 9%. Минимальная детектируемая активность при экспозиции 3600 с составляет 3 Бк. Неопределенность измерения рассчитывалась как среднеквадратическое отклонение скорости счета; неопределенность косвенных измерений – как комбинированная стандартная неопределенность от всей индивидуальной неопределенности составных частей (JCGM 100:2008).

Для оценки аккумуляции 137 Cs растениями были рассчитаны коэффициенты накопления и коэффициенты перехода 137 Cs. Коэффициент накопления (КН) 137 Cs представляет собой отношение удельной активности 137 Cs в растении или его части к средневзвешенной удельной активности 137 Cs в корнеобитаемой толще, которой на изученной территории являлся слой почвы 0-30 см. Коэффициент перехода (КП) — это отношение удельной активности 137 Cs в растении или его части к плотности загрязнения почвы 137 Cs слоя 0-30 см, имеющий размерность 137 Cr.

Средние уровни изучаемых показателей на различных площадках сравнивали с помощью одновыборочного t-критерия. Зона наблюдения в данном случае рассматривалась как единая выборка, средние величины в которой сравнивались со значениями в СЗЗ АЭС и на фоновой площадке как с постоянными величинами.

Удельные активности ¹³⁷Cs в компонентах одного растения сравнивались по t-критерию как зависимые переменные, в компонентах растений разных видов — по t-критерию как независимые переменные. В случае, когда распределение выборок было отличным от нормального, применялся H-критерий. Для поиска взаимосвязей между показателями аккумуляции ¹³⁷Cs в почве и растительных компонентах и факторами,

которые могут оказывать на них влияние, были рассчитаны коэффициенты ранговой корреляции Спирмана r_s . С целью изучения закономерностей вертикального распределения удельных активностей 137 Cs в подециях лишайников и в сопряженных с ними почвенных профилях проводился кластерный анализ данных с итеративной процедурой разбиения на три кластера.

ГЛАВА 3. Характеристика свойств почв и почвенного покрова в районе расположения КоАЭС

Все исследованные почвы относятся к иллювиально-железистым подзолам. Ниже приведен пример формулы и названия по основным почвенным классификациям для наиболее часто встречающихся подзолов иллювиально-железистых мелкоподзолистых песчаных на морене:

- Классификация и диагностика почв СССР, 1977: О(4)-AO(5)-E(9/10)-B1f(20)-B2f(42)-BC(76/80)-C(107)
 - Подзол иллювиально-железистый мелкоподзолистый песчаный на морене.
- 2) Классификация и диагностика почв России, 2004: Oh(5)-E(9/10)-BF1(20)-BF2(42)-BC(76/80)-C(107) Подзол перегнойный иллювиально-железистый неглубокоосветленный песчаный на морене.
- 3) WRB: Albic Podzol (Arenic)

Исследованные иллювиально-железистые подзолы — сильно кислые, супесчаные или песчаные почвы с высоким содержанием органического вещества в подстилке и низким содержанием гумуса в минеральной толще. Почти во всех почвенных разрезах наблюдается элювиально-иллювиальная дифференциация органического вещества, ила, калия и обменных катионов (рис. 3).

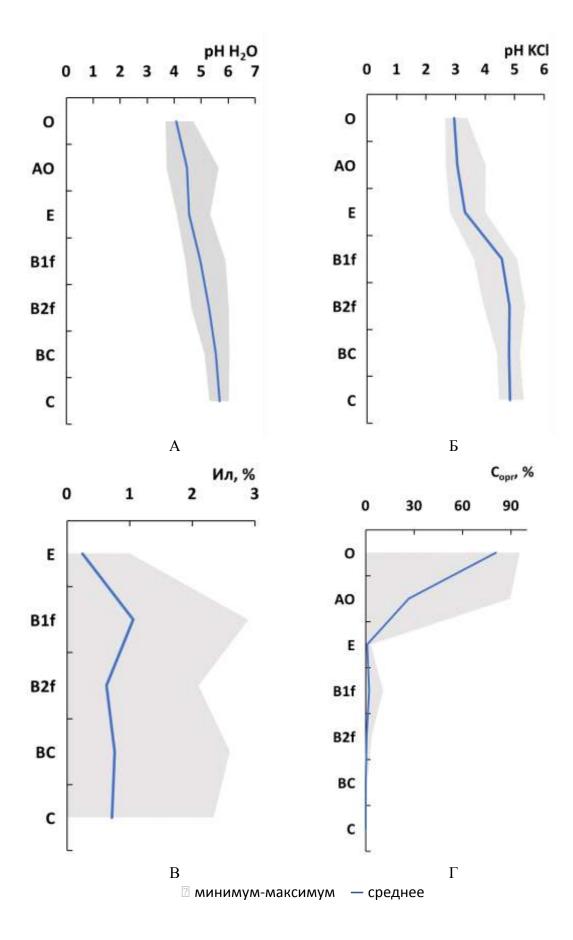


Рис. 3. Области изменения почвенных свойств в почвенном профиле для выборки из 37 почвенных разрезов и прикопок.

ГЛАВА 4. Содержание и распределение ¹³⁷Сs в почвах в районе расположения КоАЭС

Закономерности вертикального распределения 137 Cs сходны для всех исследованных почв. Они характеризуются аккумулятивным типом с четко выраженным регрессивно-аккумулятивным подтипом распределения 137 Cs в профиле (Рис. 4). Максимальные значения удельных активностей 137 Cs наблюдаются в подстилке и составляют 30,1-103,5 Бк/кг. Разброс этих значений среди почв различных площадок, вероятно, связан с количеством органического вещества: чем больше его в подстилке, тем выше в ней удельная активность 137 Cs (r_s =0,67; p=0,05).

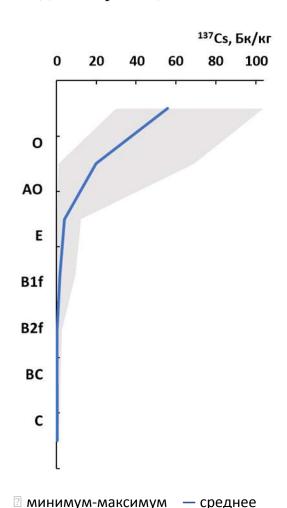


Рис. 4. Область изменения профильного распределения ¹³⁷Cs для выборки из 37 почвенных разрезов и прикопок.

В нижележащих горизонтах удельная активность ¹³⁷Cs многократно снижается (Глава 4, текст диссертации). Вместе с тем вертикальное

распределение запасов ¹³⁷Cs по генетическим почвенным горизонтам имеет несколько иной характер. Наибольшие запасы ¹³⁷Cs отмечены в горизонтах E, а также B1f. Следовательно, плотность загрязнения (запас) ¹³⁷Cs в органогенных горизонтах оказалась существенно меньше, чем в минеральных. В горизонтах О и АО исследованных подзолов сосредоточено лишь 10–40% от запаса ¹³⁷Cs в слое 0–30 см, тогда как, к примеру, в северотаежной зоне Западной Сибири запас ¹³⁷Cs в подстилке составляет 40% и более его запасов в ландшафте (Усачева и др., 2016).

Плотность загрязнения (запас) ¹³⁷Сs в корнеобитаемой толще (0–30 см) исследованных почв составляет 0,53–2,46 кБк/м², что и не превышает типичный для европейской части РФ уровень глобальных радиоактивных выпадений. Эти значения существенно ниже установленного допустимого уровня удовлетворительной экологической обстановки в 37 кБк/м² (1 Ки/км²) и позволяет отнести исследованные участки к незагрязненным территориям.

Средняя плотность загрязнения ¹³⁷Сѕ в слое 0–30 см почв ЗН КоАЭС не имеет статистически значимых отличий (p < 0.05) от уровня 1.03 кБк/м², зафиксированного на фоновой площадке. Значения плотностей загрязнения слоя 0–30 см и органогенных горизонтов для СЗЗ КоАЭС, наиболее близко расположенной к атомной станции площадки, статистически значимо (р<0,05) меньше, чем средняя плотность загрязнения в ЗН КоАЭС. Для наиболее удаленной от АЭС фоновой площадки плотность загрязнения подстилки значимо (p<0,05) меньше, чем среднее по ЗН КоАЭС. Однако полученный результат, по-видимому, обусловлен локальным уменьшением запаса подстилки на фоновой площадке (r_s=0,67). При этом между величинами мощности органогенной толщи в СЗЗ КоАЭС, на фоновой площадке и в ЗН статистически достоверных (р<0,05) различий не особенности варьирования обнаружено. Такие мощности и подстилки в различных биогеоценотических условиях необходимо учитывать при сравнении значений плотности загрязнения этого горизонта на различных площадках. Таким образом, при анализе всей верхней почвенной толщи 0–30 см не выявлено статистически значимого (p<0,05) увеличения средней плотности загрязнения ¹³⁷Сѕ в ЗН КоАЭС по сравнению с фоновым уровнем. Следовательно, плотность загрязнения ¹³⁷Сѕ в ЗН обусловлена преимущественно глобальными выпадениями, а дополнительное поступление этого радионуклида вследствие штатных выбросов КоАЭС не значимо.

Для оценки возможного влияния атомной станции на накопление ¹³⁷Cs корреляционных связей В почве проведен анализ между радиоэкологическими показателями И географическими, почвенными характеристиками. Статистически метеорологическими и достоверных (p<0,05) связей между содержанием ¹³⁷Cs в почвах площадок и расстоянием от объекта воздействия, скоростью и повторяемостью ветров в этом районе, высотой над уровнем моря не обнаружено. По-видимому, зафиксированные значения содержания ¹³⁷Cs в почвах на различных площадках вокруг КоАЭС связаны с неравномерностью глобальных радиоактивных выпадений ¹³⁷Cs, а также с физическими и химическими свойствами почвенных горизонтов. Дополнительное исследование почв на пяти площадках северо-западного румба также не выявило значимого влияния атомной станции на накопление ¹³⁷Cs в почвах прилегающих территорий.

ГЛАВА 5. Формы соединений ¹³⁷Cs и других техногенных радионуклидов в иллювиально-железистом подзоле зоны влияния КоАЭС

На рис. 5 представлены усредненные значения концентраций радионуклидов в формах соединений, доступных для поглощения растениям. В составе малоподвижных и неподвижных (кислоторастворимая и остаток) форм доля радионуклидов в подзолах изменяется в следующем порядке: 137 Cs (45–77%) > 239 Pu (37–51%) > 237 Np (25–29%) > 90 Sr (10–13%), что ниже, чем в других типах почв.

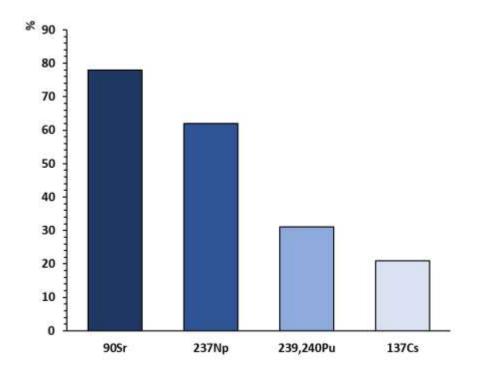


Рис. 5. Суммарные доли доступных форм нахождения радионуклидов (водорастворимая и обменная).

Поведение радионуклидов в иллювиально-железистых подзолах определяется физико-химическими особенностями этих почв - кислой реакцией среды, повышающей подвижность радионуклидов, а также низким содержанием органического вещества и илистых частиц, в составе которых в основном сосредоточены глинистые минералы с высокой поглотительной способностью. Наиболее прочно сорбируются иллювиально-железистыми

подзолами 137 Cs и 239 Pu. Напротив, 237 Np и 90 Sr, характеризуются большой подвижностью.

ГЛАВА 6. Накопление ¹³⁷Cs в растительном покрове в районе расположения КоАЭС

Удельные активности 137 Cs в ветвях сосны обыкновенной составляли 9,0—26,2, а в хвое - 7,2—34,5 Бк/кг, в хвое они были значимо выше. КН в ветвях сосны составил 1,72-17,08, а в хвое 1,31-22,48. КП в ветвях сосны находился в пределах (5—49)×10⁻³ м²/кг, в хвое варьировал от 4×10⁻³ до 65×10⁻³ м²/кг.

Сравнение с литературными данными показало, что КП ¹³⁷Сѕ в ветвях и хвое сосны на изученной территории могут превосходить аналогичные показатели, полученные при изучении сосняков Брянской и Гомельской области, загрязненных в результате аварии на ЧАЭС (табл. 1).

Таблица 1. Сравнение КП 137 Сs в компонентах сосны с литературными данными.

Ветви сосны обыкновенной				
Объект	КП, ×10 ⁻³ м ² /кг			
Район КоАЭС	5-49			
автоморфные ландшафты на подзолистых почвах, Брянская область (Щеглов, 2000)	6,1			
Сосняки, Гомельская область (Thiry et al., 2002)	3,5-4,7			
гидроморфные позиции на торфяно-глеевых почвах, Брянская область (Щеглов, 2000)	17,5			
Хвоя сосны обыкновенной				
Район КоАЭС	4-65			
Бруснично-черничные сосняки, Брянская область (Бордзыко, Маркелова, 2009) 2,31				
Гидроморфные ландшафты, Брянская область (Щеглов, 2000)	т область 14,5			

Удельные активности 137 Cs в ветвях черники миртолистной составили 25,9–90,3; в листьях — 13,0–164,8 Бк/кг. В листьях черники накапливается значимо большее количество этого радионуклида, чем в ее ветвях. КН в ветвях черники составил 4,72-52,22, а в листьях 5,14-75,16. КП в ветвях черники находился в пределах $(16–87)\times10^{-3}$ м²/кг, в листьях варьировал от 17×10^{-3} до 218×10^{-3} м²/кг.

Сравнение с литературными данными показало, что интенсивность накопления ¹³⁷Cs черникой миртолистной в северотаежных экосистемах Кольского полуострова на 1–2 порядка превосходит интенсивность его накопления этим растением в лесах Средней полосы (табл. 2).

Таблица 2. Сравнение КП 137 Сs в чернике с литературными данными*.

Объект	КП, ×10 ⁻³ м ² /кг		
Район КоАЭС	16–87 в ветвях, 17-218 в листьях		
Белорусское полесье (Переволоцкий, Переволоцкая, 2010)	1,25–13,4		
Леса, Брянская область (Fesenko et al., 2001)	4,1–24,1		
Леса, Гомельская область (Bulko et al., 2014)	3,2-5,98		
Леса, Германия (Zibold et al., 2009)	50		

^{*} в литературе как правило указываются КП для побегов черники без разделения на ветви и листья

Показатели аккумуляции $^{137}{\rm Cs}$ в других растениях приведены в Главе 6 диссертационной работы.

При проведении корреляционного анализа с расчетом коэффициентов ранговой корреляции Спирмана наибольшее количество значимых взаимосвязей было обнаружено между показателями биоаккумуляции ¹³⁷Сѕ — удельными активностями, КН и КП ¹³⁷Сѕ в хвое и ветвях - и такими почвенными свойствами как содержание в почве калия, биофильных элементов (кальция и магния) и ее богатство органическим веществом (запасы гумуса и подстилки). Все эти взаимосвязи имели отрицательный характер, т.е. чем выше были содержание органического вещества и элементов питания, тем ниже были удельные активности, КН и КП ¹³⁷Сѕ в хвое и ветвях (табл. 3).

Значения удельных активностей ¹³⁷Сѕ в различных частях подециев лишайников рода *Cladonia* варьировали на исследованных площадках от 14,8 до 139,4 Бк/кг. Они сопоставимы с диапазоном 5–90 Бк/кг, который зафиксирован для ягеля на фоновых территориях Скандинавии и Кольского полуострова в ряде лихенологических исследований (Семенихина, 2006; Кузьменкова, 2010; Кизеев, 2016; Воробьева и др., 2017; Коіvurova et al.,

2015). Средняя удельная активность 137 Cs в верхней части подециев оказалось значимо больше, чем его удельная активность в средней (t=3,48, p<0,05) и нижней (t=3,84, p<0,05) частях. При этом уровни накопления 137 Cs, зафиксированные в средней и нижней частях, между собой значимо не различались.

Таблица 3. Коэффициенты ранговой корреляции Спирмана между коэффициентами аккумуляции ¹³⁷Cs в растительных компонентах и некоторыми почвенными свойствами.

			CDONCIBUMI.
K ₂ O			Запас гумуса
(мг/100 г)	(ммоль+/100г)	(ммоль+/100г)	$(\kappa\Gamma/M^2)$
-0.76	-0.87	-0.64	-0,55
0,70	0,07	3,0 :	
-0,67	-0.80	-0.75	-0,58
	0,00	0,75	
-0,71	-0.61	-0.29	-0,68
	-0,01	-0,27	-0,00
-0,57	-0.70	-0.03	-0,89
	-0,79	-0,23	-0,09
-0,43	0.61	0.67	-0,50
	-0,01	-0,07	-0,50
-0,60	-0.63	0.47	-0,65
	-0,03	-0,47	-0,03
-0,58	-0.74	-0.44	-0,42
	-0,74	-0,44	-0,42
-0,57	-0.64	-0.50	-0,26
	-0,04	-0,50	-0,20
-0.70	-0.79	-0.56	-0,85
-0,70	-0,77	-0,50	-0,05
-0.62	-0.66	-0.56	-0,73
-0,02	-0,00	-0,50	-0,73
-0.60	-0.78	0.50	-0,47
-0,03	-0,76	-0,50	-0,47
	К ₂ О (мг/100 г) -0,76 -0,67 -0,57 -0,43 -0,60 -0,58	K2O (мг/100 г) Ca²+ (ммоль+/100г) -0,76 -0,87 -0,67 -0,80 -0,71 -0,61 -0,57 -0,79 -0,43 -0,61 -0,60 -0,63 -0,58 -0,74 -0,57 -0,64 -0,70 -0,79 -0,62 -0,66	(мг/100 г) (ммоль+/100г) (ммоль+/100г) -0,76 -0,87 -0,64 -0,67 -0,80 -0,75 -0,71 -0,61 -0,29 -0,57 -0,79 -0,93 -0,43 -0,61 -0,67 -0,60 -0,63 -0,47 -0,58 -0,74 -0,44 -0,57 -0,64 -0,50 -0,70 -0,79 -0,56 -0,62 -0,66 -0,56

^{*} Примечание: полужирным выделены значения r_s , свидетельствующие о значимых взаимосвязях. Для n=12 и p=0.05 значимым является значение $|r_s|>0.58$.

Результаты кластерного анализа позволили выделить три типа вертикального распределения ¹³⁷Сѕ в подециях лишайников и верхних почвенных горизонтах на исследованной территории. Для большинства площадок (8), объединенных в первый кластер, характерно накопление ¹³⁷Сѕ в верхней части подециев лишайников, выступающих главным биологическим геохимическим барьером. В ельнике на площадке П-4 и в одном из сосняков на площадке К-III, включенных во второй кластер,

значения удельных активностей ¹³⁷Cs в подециях лишайников и подстилке снижены, указывая на их слабую аккумулирующую способность по сравнению с остальными исследованными биогеоценозами. Вместе с тем, в отдельных сосняках на площадках П-3 и К-I, включенных в третий кластер, наибольшие уровни удельной активности ¹³⁷Cs приурочены к подстилочным почвы, как подециях лишайников горизонтам тогда В накопление радионуклида не выражено (рис. 6). Аккумулирующая способность ягеля может объясняться тем, что на пути аэральных выпадений ¹³⁷Cs плотный лишайниковый ковер становится эффективным механическим геохимическим барьером, препятствующим вертикальной миграции ¹³⁷Cs в нижележащие слои (Бязров, Пельгунова, 2016). Кроме того, верхняя часть подециев является наиболее молодой и активно растущей, что способствует более интенсивному поглощению биофильного элемента калия одновременно ¹³⁷Cs, схожего с ним по химическим свойствам.

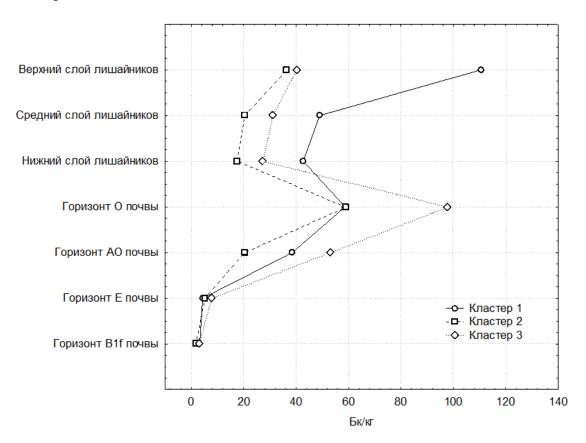


Рис. 6. Вертикальное распределение средних значений удельной активности ¹³⁷Cs в слоях подециев лишайников и горизонтах почвы для выделенных кластеров 1, 2, 3

Влияние КоАЭС на накопление ¹³⁷Сѕ в растительном покрове выявлено не было. Удельные активности этого радионуклида в растительных компонентах в СЗЗ не имели значимо более высокие значения, чем в зоне наблюдения и на фоновой площадке. Также не были обнаружены значимые взаимосвязи между ними и факторами, которые позволяют учесть влияние АЭС: расстоянием от нее, частотой и повторяемостью ветров, идущих в направлении от нее к площадкам.

В то же время практически для всех изученных растений удалось обнаружить значимые отрицательные взаимосвязи между показателями аккумуляции ¹³⁷Сѕ в них и содержанием в почве органического вещества, подвижного калия и обменных кальция и магния. Из этого следует вывод, что в условиях бедности иллювиально-железистых подзолов органическим веществом, элементами питания и биофильными элементами, а также глинистыми минералами ¹³⁷Сѕ проявляет значительную подвижность в почвах и активно накапливается в растительном покрове. Значения показателей биоаккумуляции (КН и КП) этого радионуклида в компонентах растительного покрова северотаежных экосистем превосходили значения этих показателей, характерные для фоновых и загрязненных ландшафтов средней полосы России, в том числе гидроморфных, и оказались сопоставимыми с такими показателями для северотаежных экосистем скандинавских стран.

Выводы

- 1. На всей исследуемой территории Кольского полуострова, включая зону влияния КоАЭС, плотность загрязнения ¹³⁷Cs 0–30 см слоя почв существенно ниже установленного контрольного уровня в 37000 Бк/м² (1 Ки/км²). Распределение ¹³⁷Cs в почвенных профилях в основном имеет регрессивно-аккумулятивный характер, и лишь в редких случаях для него наблюдается элювиально-иллювиальная дифференциация. Здесь большая часть его запаса сосредоточена в минеральной толще почв, а не в лесной подстилке
- 2. В экосистемах северной тайги на иллювиально-железистых подзолах $^{137}\mathrm{Cs}$ характеризуется значительно большей миграционной подвижностью в системе почва-растение, чем в других почвах России. По присутствию суммарно в водорастворимой и обменной формах соединений, доступных для поглощения растениями, техногенные радионуклиды располагаются в следующий убывающий ряд $^{137}\mathrm{Cs} > ^{239}\mathrm{Pu} > ^{237}\mathrm{Np} > ^{90}\mathrm{Sr}$.
- 3. Коэффициенты накопления ¹³⁷Cs в растения хвойных биогеоценозов Кольского полуострова достигают 75. Коэффициенты перехода ¹³⁷Cs в эти растения достигают 218×10⁻³ м²/кг. Полученные значения превосходят значения этих показателей, установленные для аналогичных растительных видов в хвойных и смешанных лесах средней полосы, в несколько раз, в отдельных случаях на 2 порядка. Это может свидетельствовать о высоком риске миграции ¹³⁷Cs по звеньям пищевой цепи в таежных экосистемах Заполярья.
- 4. В растительном покрове интенсивность накопления ¹³⁷Сѕ в древесном ярусе нарастает в ряду береза <сосна <ель, а среди их компонентов ветви <листья <хвоя; в травяно-кустарничковом ярусе черника< голубика, а среди их компонентов ветви <листья; в мохово-

лишайниковом покрове - плевроциум <ягель (нижняя \le средняя < верхняя части ягеля). Биоиндикаторами загрязнения почвеннорастительного покрова 137 Cs являются представители семейства Вересковые (*Ericaceae*) и лишайники рода *Cladonia*.

- 5. В экосистемах северной тайги влияние запаса подстилки, содержания в почвах органического вещества, физической глины, подвижного калия, кальция и магния на накопление ¹³⁷Сѕ в почвеннорастительном покрове проявляется в большей степени, чем в чем лесах средней полосы России: значения коэффициента Спирмана между почвенными свойствами и запасами ¹³⁷Сѕ в почве здесь достигают 0,84; значения коэффициента Спирмана между почвенными свойствами и коэффициентами аккумуляции ¹³⁷Сѕ в растительных компонентах достигают 0,93.
- 6. Технологические выбросы ¹³⁷Cs КоАЭС не оказывают значимого влияния на его запасы в почвенно-растительном покрове зоны возможного загрязнения. Запасы ¹³⁷Cs в 0–30 см слое почв независимо от расположения от АЭС меньше установленного контрольного уровня в 1 Ки/км² и (37000 Бк/м²) и позволяют отнести исследуемую местность к относительно незагрязненным территориям.

Научные статьи, опубликованные в журналах Scopus, WoS, RSCI.

- 1. **Попова М.Б.**, Липатов Д.Н., Манахов Д.В., Кизеев А.Н., Ушамова С.Ф. Накопление ¹³⁷Сѕ лишайниками рода Cladonia в зоне влияния Кольской атомной электростанции // *Радиационная биология*. *Радиоэкология*. 2022. т. 62. –№ 5. с. 543–554. DOI: 10.31857/S0869803122050125. ИФ по РИНЦ (2022) 0,685. 1,4 п.л., 0,9 п.л.
- 2. **Popova M.B.**, Goryachenkova T.A., Borisov A.P., Kazinskaya E.I., Lavrinovich E.A., Manakhov D.V. Modes of Occurrence of Artificial Radionuclides in Soils in the Area of the Kola Nuclear Power Plant // *Geochemistry International.* 2021. V. 59. № 10. Р. 983–990. DOI: 10.1134/S0016702921100062. IF Scopus 0,881, 1,0 п.л., личный вклад 0,7 п.л.
- 3. **Popova M.B.**, Manakhov D.V., Kizeev A.N., Ushamova S.F., Lipatov D.N., Chirkov A.Yu., Orlov P.S., Mamikhin S.V. Contents and Distribution of ¹³⁷Cs in Podzols in the Area of the Kola Nuclear Power Plant // *Eurasian Soil Science*. − 2020. − V. 53. − № 7. − P. 986–994. − DOI: 10.1134/S106422932007011X. IF Scopus 1,575. 1,1 п.л.; 0,7 п.л.

Полный список опубликованных работ имеется на странице соискателя в ИАС «ИСТИНА»: https://istina.msu.ru/profile/tarantinka/