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Общая характеристика работы 

Актуальность темы исследования 

Лигноцеллюлозная биомасса является возобновляемым углеродсодержащим сырьём, при 

переработке которой в бионефть в процессе пиролиза образуются низкомолекулярные соединения, 

служащие основой для синтеза компонентов топлив и продуктов нефтехимии. В процессе 

превращения целлюлозы и гемицеллюлозы образуются фурфурол, 5-гидроксиметилфурфурол и 

левулиновая кислота, обладающие большим синтетическим потенциалом. Каталитическое 

гидрирование этих соединений позволяет получать продукты с высокой добавленной стоимостью. 

Например, из левулиновой кислоты синтезируют γ-валеролактон – экологически чистый 

растворитель, а на основе фурановых соединений возможно получение широкого спектра спиртов, 

диолов и карбонильных соединений. 

Благодаря наличию кислородсодержащих функциональных групп и короткой углеродной 

цепи данные субстраты могут выступать в качестве реагентов в реакциях образования C–C связей 

(альдольная конденсация, алкилирование) с получением оксигенатов с удлиненной углеродной 

цепью. Последующие процессы гидрирования или гидродеоксигенации таких промежуточных 

соединений приводят к образованию алканов или потенциальных топливных добавок с низким 

соотношением O/C. Перспективной стратегией является целенаправленное получение в данных 

процессах кислородсодержащих соединений (потенциальные гибридные топлива, смазочные 

материалы). Такой подход позволяет избежать полной гидродеоксигенации, что снижает затраты 

ресурсов в каталитических процессах. 

Гидрирование осуществляется на гетерогенных катализаторах на основе металлов, 

нанесенных на различные носители. Наиболее активными в гидрировании компонентов бионефти 

являются благородные металлы (Ru, Pt, Pd), при этом селективность и стабильность катализатора 

во многом определяются свойствами носителя. Для получения соединений с удлиненной 

углеродной цепью особый интерес представляют тандемные процессы, позволяющие проводить 

одновременно алкилирование/конденсацию и гидрирование/гидродеоксигенацию на одном 

катализаторе, что позволяет значительно снизить расходы времени и энергии при конверсии 

компонентов биомассы. Для реализации таких процессов необходимо конструирование 

бифункциональных катализаторов, сочетающих кислотные или основные центры носителя 

(цеолиты, оксиды металлов, функционализированные полимеры) для катализа реакций 

конденсации/алкилирования и металлические центры, обеспечивающие активность в 

гидрировании/гидродеоксигенации. 

В качестве носителей катализаторов перспективным является использование пористых 

ароматических каркасов (ПАК, PAF), нового типа органических полимеров с регулируемой 

структурой, состоящих из бензольных колец, соединенных C–C связями. ПАК обладают высокой 

химической и термической стабильностью, развитой поверхностью, а их ароматическая природа 
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позволяет проводить направленную функционализацию органическими лигандами для создания 

кислотных центров или оптимизации закрепления активного металла на носителе. Высокая 

стабильность ПАК в широком диапазоне условий, включая водные среды, открывает возможности 

для создания эффективных катализаторов для процессов гидрирования и тандемных процессов 

алкилирования-гидрирования соединений биомассы, где традиционные носители (например, оксид 

алюминия) часто подвергаются дезактивации. 

Степень разработанности темы диссертации 

Анализ литературных данных показывает, что использование органических полимеров в 

качестве носителей для катализаторов гидрирования открывает новые возможности для 

селективного получения ценных продуктов нефтехимии. Это достигается за счёт уникального 

взаимодействия металл-носитель, а также возможности модификации структуры полимера 

функциональными группами, что обеспечивает целенаправленное регулирование свойств 

катализатора. 

Вместе с тем, систематические исследования влияния свойств и модификаций пористых 

ароматических каркасов на селективность и активность катализаторов на их основе в гидрировании 

левулиновой кислоты, фурфурола и его производных в настоящее время отсутствуют. 

Отмечается также ограниченное количество работ, посвящённых изучению 

бифункциональных металл-кислотных катализаторов на основе органических полимерных 

носителей для конверсии компонентов бионефти в тандемных процессах. Недостаточно изучено 

синергетическое взаимодействие кислотных и металлических активных центров в таких системах. 

Цель работы – установление взаимосвязей между строением катализаторов на основе пористых 

органических полимеров и их каталитическими свойствами (активностью и селективностью) в 

реакциях гидрирования компонентов бионефти (левулиновой кислоты, фурфурола и его 

производных) и в тандемных процессах алкилирования-гидрирования с участием фенольных и 

фурановых соединений-компонентов бионефти. 

В рамках работы были поставлены следующие задачи: 

• Провести синтез пористых органических полимеров и катализаторов на их основе, 

оптимизировать известные методики синтеза носителей и нанесения металлов; 

• Изучить структуру и свойства носителей и катализаторов с помощью комплекса физико-

химических методов (ПЭМ, ИСП-АЭС, РФЭС, ИК, низкотемпературная адсорбция-десорбция 

азота, элементный анализ); 

• Установить влияние состава полученных материалов и условий реакции на активность, 

селективность и стабильность катализаторов в гидрировании левулиновой кислоты и её эфиров, 

фурфурола, 5-гидроксиметилфурфурола и 5-метилфурфурола; 

• Исследовать тандемный процесс алкилирования-гидрирования между фенольными 

соединениями (фенол, м-крезол, гваякол) и фурановыми соединениями (фурфурол, фурфуриловый 
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спирт, 5-гидроксиметилфурфурол) в присутствии синтезированных бифункциональных металл-

кислотных катализаторов; 

Объект и предмет исследования 

Объект исследования – гидрирование левулиновой кислоты и её эфиров, фурфурола, 5-

гидроксиметилфурфурола, 5-метилфурфурола и алкилирование-гидрирование производных фурана 

и фенола в присутствии катализаторов на основе пористых органических полимеров. Предмет 

исследования – корреляция между составом катализаторов на основе органических полимеров и их 

активностью, селективностью и стабильностью в реакциях гидрирования и образования C-C связей. 

Методология и методы исследования 

Состав и структуру синтезированных пористых органических полимеров подтверждали 

методами ИК-спектроскопии, низкотемпературной адсорбции-десорбции азота и элементного 

анализа. Состав и структуру рутениевых, платиновых и палладиевых катализаторов на основе 

полученных материалов изучали методами просвечивающей электронной микроскопии (ПЭМ), 

атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИСП-АЭС) и рентгеновской 

фотоэлектронной спектроскопии (РФЭС). 

Каталитические эксперименты проводили в стальных автоклавах (реакторах периодического 

действия); количественный анализ продуктов реакции осуществляли методом газовой 

хроматографии; качественный состав продуктов реакции определяли методом ГХ-МС. 

Теоретические расчёты проводились в программе ORCA. 

Научная новизна 

1) Впервые показана взаимосвязь между строением пористых органических полимеров, 

методом синтеза на их основе рутениевых катализаторов и их активностью, селективностью и 

стабильностью в реакции гидрирования левулиновой кислоты. 

2) Впервые установлена корреляция между селективностью катализаторов на основе 

органических полимеров в гидрировании фурфурола, их составом и природой растворителя. 

3) Впервые синтезированы и изучены бифункциональные катализаторы на основе пористых 

органических полимеров с кислотными функциональными группами для тандемного процесса 

алкилирования-гидрирования соединений целлюлозной и лигнинной части бионефти. Показана 

возможность получения смеси оксигенатных соединений – потенциальных топливных добавок. 

Теоретическая и практическая значимость 

Показано, что структура полимерного органического носителя и распределение наночастиц 

металла влияют на свойства катализаторов в гидрировании левулиновой кислоты, фурфурола, 5-

гидроксиметилфурфурола и 5-метилфурфурола. Бифункциональные металл-кислотные 

катализаторы на основе полимерных носителей, содержащих кислотные функциональные группы, 

проявляют высокую активность в тандемной реакции алкилирования-гидрирования и позволяют 
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преобразовывать фурановые и фенольные соединения, полученные из биосырья, в смесь 

оксигенатных длинноцепочечных соединений – потенциальных добавок к топливам. 

Результаты работы могут быть использованы в учебных заведениях и научно-

исследовательских организациях, занимающихся исследованиями в области изучения физико-

химических и каталитических характеристик гетерогенных катализаторов: Институте 

нефтехимического синтеза имени А.В. Топчиева РАН, Российском государственном университете 

нефти и газа имени И.М. Губкина, Институте органической химии имени Н.Д. Зелинского РАН. 

Положения, выносимые на защиту: 

• Проведение модификации пористых органических полимеров и выбор способа нанесения 

металла влияют на активность и селективность рутениевых катализаторов в гидрировании и 

конденсации левулиновой кислоты. 

• Селективность платиновых, палладиевых и рутениевых катализаторов в гидрировании 

фурфурола зависит как от состава и структуры катализатора и полимерного носителя, так и от 

условий проведения реакции, в частности, от выбранного растворителя. 

• Бифункциональные металл-кислотные катализаторы на основе пористых органических 

полимеров активны в тандемном процессе алкилирования-гидрирования ароматических (гваякол, 

фенол, м-крезол) и фурановых (фурфуриловый спирт, 5-гидроксиметилфурфурол, фурфурол) 

субстратов. 

Личный вклад автора 

В работах [1, 2] списка статей, опубликованных по теме диссертации, автор лично 

осуществлял синтез носителей и катализаторов, проводил каталитические эксперименты и 

обработку полученных результатов, проводил теоретические расчеты методом DFT, обрабатывал и 

интерпретировал данные физико-химических методов исследования, занимался подготовкой текста 

статей и ответов на вопросы рецензентов. В работе [3] автор лично осуществлял проведение 

каталитических экспериментов и устанавливал состав и структуру продуктов реакции совместно с 

научным руководителем, принимал участие в постановке задач и планировании эксперимента, в 

анализе данных физико-химических методов исследования, осуществлял анализ результатов ГХ-

МС в специальном ПО, лично участвовал в обсуждении результатов, также автор лично занимался 

подготовкой текста статьи и ответов на вопросы рецензентов, занимался взаимодействием с 

редакцией журнала. В работе [4] вклад состоял в проведении каталитических экспериментов по 

гидрированию левулиновой кислоты. Во всех опубликованных в соавторстве работах по теме 

диссертации вклад автора (Дубиняка А.М.) является основополагающим. 

Публикации 

По материалам работы опубликовано 4 статьи в рецензируемых научных изданиях, 

индексируемых в базе ядра РИНЦ «eLibrary Science Index», международными базами данных (Web 
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of Science, Scopus, RSCI) и рекомендованных для защиты в диссертационном совете МГУ по 

специальности 1.4.12. Нефтехимия. 

Апробация работы 

Основные результаты работы были представлены на XXVIII Международной научной 

конференции студентов, аспирантов и молодых ученых «Ломоносов-2021», 12-23 апреля 2021 г., г. 

Москва; XII Российской конференции «Актуальные проблемы нефтехимии» (с международным 

участием), 5–9 октября 2021 г., г. Грозный; XXXI Международной научной конференции студентов, 

аспирантов и молодых ученых «Ломоносов-2024», 12-26 апреля 2024 г., г. Москва; V Научно-

технологическом симпозиуме «Гидропроцессы в катализе», 3-6 октября 2024 г., г. Сочи. 

Работа выполнена с использованием оборудования, приобретенного за счет средств 

Программы развития Московского университета, оборудования ЦКП «Аналитический центр 

проблем глубокой переработки нефти и нефтехимии» ИНХС РАН, а также оборудования ЦКП 

«Материаловедение и металлургия» НИТУ «МИСиС». Работа частично выполнена при финансовой 

поддержке РНФ (грант № 20-19-00380), а также Министерства науки и высшего образования РФ 

(соглашение № 075-15-2024-547 от 24 апреля 2024). 

Объем и структура диссертации 

Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, 

обсуждения результатов, заключения, списка сокращений и списка цитируемой литературы. Работа 

изложена на 157 страницах машинописного текста, содержит 66 рисунков и 27 таблиц. Список 

литературы включает 224 наименования. 
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Основное содержание работы 

Синтез пористых ароматических каркасов 

Пористый ароматический каркас PAF-30 был синтезирован из тетракис-(4-бромфенил)метана 

и 4,4’-бифенилдиборной кислоты по реакции кросс-сочетания Сузуки. Модификацию материала 

аминогруппами проводили путем нитрования материала смесью азотной и трифторуксусной кислот 

с последующим восстановлением хлорида олова (II) в ТГФ, а сульфогруппами – обработкой PAF-30 

хлорсульфоновой кислотой в хлороформе (Рисунок 1). 
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Рисунок 1. Схема синтеза и модификации пористых ароматических каркасов. 

 

Результаты низкотемпературной адсорбции-десорбции азота и элементного анализа для 

материалов PAF-30, PAF-30-NH2, PAF-30-SO3H-3 и PAF-30-SO3H-5 представлены в таблице 1. 

Внедрение функциональных групп в структуру каркаса приводит к снижению удельной площади 

поверхности и объема пор. По результатам элементного анализа содержание азота в материале PAF-

30-NH2 равно 6.2%, что выше теоретического значения – 5.0%, также содержание серы выше 

теоретического (5.0%) в случае материала PAF-30-SO3H-5 – 6.3%. 

 

Таблица 1. Результаты низкотемпературной адсорбции-десорбции азота и элементного анализа. 

Материал SBET, м2/г Vпор, см3/г ωгет,% 

PAF-30 483 0.37 - 

PAF-30-NH2 346 0.35 6.2 

PAF-30-SO3H-3 261 0.26 3.0 

PAF-30-SO3H-5 281 0.16 6.3 

 

Материалы PAF-30, PAF-30-NH2, PAF-30-SO3H-3 и PAF-30-SO3H-5 были охарактеризованы 

методом ИК-спектроскопии (Рисунок 2). Полосы поглощения, характерные для связи C-Br (1076 см-

1) отсутствуют на спектрах каркасов, что указывает на полноту протекания реакции кросс-

сочетания. Полоса поглощения с максимумом на 1600 см–1, относящаяся к деформационным 

колебания аминогруппы, появляется в спектре материала PAF-30-NH2, также стоит отметить, что 

полосы поглощения с максимумами 1390 и 1510 см-1, относящиеся к симметричным и 

ассиметричным колебания нитрогруппы, не наблюдаются на спектре, следовательно, 
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восстановление прошло полностью. На спектрах материалов PAF-30-SO3H-3 и PAF-30-SO3H-5 

присутствуют полосы поглощения, относящиеся к сульфогруппам с максимумами 1031 см-1 

(валентные колебания S-O), 1190 и 1240 см-1 (O=S=O симметричные и ассиметричные колебания 

соответственно), что указывает на успешную функционализацию каркасов. 

 

Рисунок 2. ИК-спектры пористых ароматических каркасов PAF-30, PAF-30-NH2, PAF-30-SO3H-3 и 

PAF-30-SO3H-5. 

 

Синтез катализаторов на основе пористых ароматических каркасов 

В настоящей работе рутениевые катализаторы были синтезированы методом пропитки 

носителя раствором RuCl3 в этаноле с последующим восстановлением металла NaBH4. 

Катализаторы Ru-PAF-30(COD), Ru-PAF-30-NH2(COD) и Ru-PAF-30-SO3H(COD) синтезированы с 

использованием 1,5-циклооктадиена, который способен образовывать олеофильные комплексы с 

RuCl3, таким образом облегчая диффузию металла в поры носителя. Тот же подход был применен 

при синтезе Ru-PAF-30-SO3H(NH3), но вместо COD использовался аммиак. Также был 

синтезирован катализатор Ru-PAF-30-NH2 без использования 1,5-циклооктадиена/аммиака на 

стадии пропитки. По данным ПЭМ, катализаторы Ru-PAF-30(COD) и Ru-PAF-30-SO3H(COD) 

(Рисунок 3(А, Б, В, Г)) характеризуются равномерным распределением наночастиц металла в 

объеме носителя. Распределение частиц по размерам близко к нормальному с максимумом ~1.7 нм 

для обоих катализаторов, агломератов наночастиц не обнаружено. В то же время на поверхности 

материала Ru-PAF-30-SO3H(NH3) наблюдалось присутствие агломератов размером до 11 нм 

(Рисунок 3(Д, Е)). Агломерация наночастиц наблюдалась также в случае Ru-PAF-30-NH2(COD) 

(Рисунок 3(Ж, З)). На ПЭМ-микрографиях Ru-PAF-30-NH2 не наблюдалось образования 

агломератов, а распределение наночастиц по размерам для этой каталитической системы было 

близким к нормальному с максимумом 2.3 нм (Рисунок 3(И, К)). 

Исследование рутениевых катализаторов методом РФЭ-спектроскопии показало, что в 

каждом спектре присутствует два набора пиков, относящихся к RuO2 и Ru(OH)x, также присутствует 

сателлит RuO2. На спектрах синтезированных катализаторов отсутствовали сигналы, 
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соответствующие Ru0, что согласуется с представленными в литературе данными для наночастиц 

рутения малого размера (<5 нм). 

 

Рисунок 3. ПЭМ микрографии и распределение частиц по размерам для:  

(А, Б) Ru-PAF-30(COD); (В, Г) Ru-PAF-30-SO3H(COD); (Д, Е) Ru-PAF-30-SO3H(NH3);  

(Ж, З) Ru-PAF-30-NH2(COD); (И, К) Ru-PAF-30-NH2. 

 

Катализаторы Pt-PAF-30, Pt-PAF-30-NH2, Pd-PAF-30 и Pd-PAF-30-NH2 были синтезированы 

путем иммобилизации наночастиц металлов на поверхности соответствующих пористых 

ароматических каркасов PAF-30 и PAF-30-NH2. PAF пропитывали раствором соответствующих 

солей [Pt(NH3)4]Cl2 и Pd(OAc)2 с дальнейшим восстановлением металлов боргидридом натрия. По 

микрографиям катализатора Pt-PAF-30 (Рисунок 4(А)) видно, что наночастицы металла равномерно 

распределены по поверхности носителя. Распределение наночастиц по размерам близко к 

нормальному (Рисунок 4(Б)) со средним размером частиц 4.9 нм. Катализатор Pt-PAF-30-NH2 

характеризуется гамма-распределением частиц по размерам (Рисунок 4(В, Г)), со средним размером 

наночастиц 4.6 нм. Следует отметить, что на поверхности материала наблюдается присутствие 

агломератов наночастиц. 
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Рисунок 4. ПЭМ микрографии, распределение частиц по размерам и содержание металла для: (А, 

Б) Pt-PAF-30; (В, Г) Pt-PAF-30-NH2; (Д, Е) Pd-PAF-30; (Ж, З) Pd-PAF-30-NH2. 

 

Катализатор Pd-PAF-30 характеризуется средним размером наночастиц палладия 9.5 нм, 

распределение частиц по размерам близко к бимодальному (Рисунок 4(Д, Е)). Стоит отметить, что 

на поверхности пористого каркаса присутствуют крупные частицы металла размером до 16 нм. 

Содержание металла несколько ниже теоретического и составляет 4.6 масс.%. Для Pd-PAF-30-NH2 

наблюдается распределение частиц по размерам, которое можно отнести либо к гамма-

распределению, либо к распределению Вейбулла, средний размер частиц составляет 6.1 нм, 

содержание палладия составляет 6.8 масс.% (Рисунок 4(Ж, З)). По микрографиям видно, что металл 

инкапсулирован в порах носителя, однако некоторые наночастицы расположены на поверхности 

материала и имеют размер до 10 нм. 

РФЭ-спектр материала Pt-PAF-30 содержит два набора пиков, принадлежащих Pt0 (энергии 

связи 71.0 эВ и 74.4 эВ) и Pt2+ (энергии связи 72.0 эВ и 75.4 эВ). Катализатор Pt-PAF-30-NH2 

характеризуется сдвигом пиков в сторону более низких энергий связи по сравнению с Pt-PAF-30 

(для Pt0 энергии связи 70.9 эВ и 74.3 эВ; для Pt2+ энергии связи 71.8 эВ и 75.2 эВ). Палладиевый 

катализатор на основе каркаса PAF-30 также характеризуется двумя наборами пиков: Pd0 (энергии 

связи 336.0 и 341.3 эВ) и Pd2+ (энергии связи 337.4 и 342.7 эВ). Pd-PAF-30-NH2 характеризуется 

сдвигом пиков в сторону более низких энергий связи по сравнению с Pd-PAF-30: Pd0 (энергии связи 

335.7 и 341.0 эВ) и Pd2+ (энергии связи 337.1 и 342.4 эВ). 

Бифункциональные катализаторы алкилирования-гидрирования были синтезированы путем 

пропитки пористых ароматических каркасов PAF-30-SO3H-3 и PAF-30-SO3H-5 с кислотными 

функциональными группами растворами [Pt(NH3)4]Cl2 с последующим восстановлением 

боргидридом натрия. Согласно результатам ПЭМ, катализатор Pt-PAF-30-SO3H-5 демонстрирует 

нормальное распределение наночастиц со средним размером 3.6 нм (Рисунок 5(A, Б)). Несмотря на 
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наличие агломератов на поверхности материала, основная часть металла равномерно распределена 

в порах PAF-30-SO3H-5. Катализатор Pt-PAF-30-SO3H-3 имеет аналогичное распределение 

наночастиц, но с незначительным увеличением среднего диаметра до 3.8 нм (Рисунок 5(В, Г)). 

Содержание платины в обоих катализаторах составляет 0.8 масс.%, что близко к теоретическому 

значению. По данным РФЭ-спектроскопии оба платиновых катализатора Pt-PAF-30-SO3H-3 и Pt-

PAF-30-SO3H-5 характеризуются наличием только металлической фазы Pt0 (два пика с энергиями 

связи 71.9 эВ для Pt0 4f7/2 и 75.2 эВ для Pt0 4f5/2). Примечательно, что количество -SO3H групп не 

оказывает существенного влияния на электронную плотность на поверхности платины. 

 

Рисунок 5. ПЭМ микрографии, распределение частиц по размерам и содержание металла для: (А, 

Б) Pt-PAF-30-SO3H-5; (В, Г) Pt-PAF-30-SO3H-3. 

 

Гидрирование левулиновой кислоты на рутениевых катализаторах 

Первым из процессов, протекание которых изучено в настоящей работе в присутствии 

синтезированных катализаторов, является гидрирование левулиновой кислоты (ЛК). В качестве 

катализаторов применяли Ru-PAF-30(COD), Ru-PAF-30-SO3H(COD), Ru-PAF-30-NH2(COD), Ru-

PAF-30-NH2 и Ru-PAF-30-SO3H(NH3) а цель исследования состояла в определении основных 

закономерностей между строением катализаторов и условий протекания гидрирования левулиновой 

кислоты и составом продуктов данной реакции. Все синтезированные рутениевые катализаторы 

были исследованы в гидрировании левулиновой кислоты в интервале температур 80–250℃ 

(Рисунок 6). 
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Рисунок 6. Гидрирование левулиновой кислоты в диапазоне температур 80–250℃. Условия 

реакции: левулиновая кислота (57 мкл, 0.58 ммоль), H2O (1.3 мл), катализатор (3 мг), соотношение 

субстрат:металл = 1800:1 (моль/моль), 1 МПа H2, 1 час. 

 

Для всех катализаторов, кроме Ru-PAF-30-NH2(COD), наблюдалось увеличение конверсии с 

повышением температуры до 200℃. Однако затем конверсия снижалась при 250℃, что можно 

объяснить дезактивацией катализаторов из-за спекания частиц металла. Для катализатора Ru-PAF-

30-SO3H(COD) наблюдалось образование 1-оксо-6-метилспиро[4,4]нонанона-2 – продукта 

последовательной димеризации, гидрирования и циклизации ЛК (Рисунок 7). Следует отметить, что 

в случае Ru-PAF-30-SO3H(NH3) подобные процессы не наблюдаются: этот факт указывает на 

решающую роль близкого расположения кислотных центров носителя и активных центров на 

поверхности металла в образовании продукта димеризации. 
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Рисунок 7. Предполагаемая схема димеризации левулиновой кислоты. 

 

Результаты экспериментов по повторному использованию показали, что Ru-PAF-30-

SO3H(COD) оказался наиболее стабильным катализатором (Рисунок 8). Для Ru-PAF-30-SO3H(NH3), 

наблюдалось быстрое снижение активности, связанное, по-видимому, с вымыванием частиц 

металла, расположенных преимущественно на поверхности материала. Ru-PAF-30-NH2(COD) 

также демонстрировал быстрое снижение активности, тогда как для Ru-PAF-30-NH2 с 

наночастицами, равномерно распределенными в структуре каркаса, воспроизводимые значения 
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конверсии ЛК были достигнуты в течение пяти экспериментов по повторному использованию. Для 

катализатора Ru-PAF-30(COD) конверсия ЛК после первого цикла упала вдвое. 

 

Рисунок 8. Повторное использование катализаторов в гидрировании левулиновой кислоты. 

Условия реакции: левулиновая кислота (57 мкл, 0.58 ммоль), H2O (1.3 мл), катализатор (3 мг), 

соотношение субстрат:металл = 1800:1 (моль/моль), 1 МПа H2, 90℃, 1 час. 

 

Таким образом, синтезированные рутениевые катализаторы на основе пористых 

ароматических каркасов были испытаны в гидрировании левулиновой кислоты до γ-валеролактона. 

Ru-PAF-30(COD) оказался наиболее активным катализатором гидрирования ЛК благодаря 

сочетанию двух факторов: наибольшей удельной поверхности среди всех носителей (из-за 

отсутствия функциональных групп) и высокой дисперсности частиц рутения. Это делает его 

перспективным катализатором и для других гидропроцессов, например, гидрирования СО2. 

Катализаторы Ru-PAF-30-SO3H(COD) и Ru-PAF-30-NH2 оказались наиболее стабильными, 

предположительно, за счет стабилизации наночастиц функциональными группами носителя. 

Комбинация наночастиц рутения с кислотными центрами Бренстеда в Ru-PAF-30-SO3H(COD) 

привела к высокому выходу димера левулиновой кислоты (22%) при 200℃. 

 

Гидрирование фурфурола на рутениевых, платиновых и палладиевых катализаторах 

Следующим процессом, в котором были испытаны катализаторы на основе пористых 

ароматических каркасов, стало гидрирование фурфурола и его производных. При гидрировании 

фурфурола образуется множество продуктов реакции: фурфуриловый спирт (ФОЛ), 

тетрагидрофурфуриловый спирт (ТГФОЛ), тетрагидрофурфурол (ТГФАЛЬ), 2-метилфуран (2-

МФ) и 2-метилтетрагидрофуран (2-МТГФ), циклопентанон (ЦПОН), циклопентанол (ЦПОЛ), 

пентандиолы, ЛК и ГВЛ (Рисунок 9). Цель текущего раздела исследования заключается в изучении 
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особенностей протекания реакций гидрирования фурфурола и его производных, и оценке их 

зависимости от состава и структуры катализаторов. В данных реакциях применяли рутениевые 

катализаторы Ru-PAF-30(COD), Ru-PAF-30-SO3H(COD), Ru-PAF-30-NH2, выбранные как 

наилучшие по совокупности характеристик, а также палладиевые и платиновые катализаторы Pt-

PAF-30, Pt-PAF-30-NH2, Pd-PAF-30 и Pt-PAF-30-NH2. 

 

Рисунок 9. Упрощенная схема образования ряда продуктов гидрирования фурфола. 

 

Рутениевые катализаторы были испытаны в гидрировании фурфурола в водной среде при 

температурах 90–250°C и давлении водорода 3 МПа (Рисунок 10). При 90°С наиболее активным 

катализатором был Ru-PAF-30(COD), конверсия фурфурола на котором составила 47%. Основным 

продуктом являлся ФОЛ (выход 31%), с меньшими выходами образовывались ТГФОЛ и 

гидроксициклопентанон (7 и 6% соответственно). 

 

Рисунок 10. Гидрирование фурфурола в среде воды на катализаторах на основе PAF. Условия 

реакции: катализатор – 3 мг, фурфурол – 60 мкл, вода – 600 мкл, Н2 – 3 МПа, 1 ч. 
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Необходимо отметить, что с увеличением температуры реакции до 150°С активность всех 

катализаторов возрастала, а в продуктах реакции содержалось больше циклопентанона. Наиболее 

селективным по фурфуриловому спирту является катализатор Ru-PAF-30-NH2 (91% селективность, 

конверсия 23%), наиболее активным остается рутениевый катализатор на немодифицированном 

носителе, конверсия – 69%. При изменении температуры до 200°С основным продуктом реакции 

становился циклопентанон, селективность по которому достигала 89% на катализаторе Ru-PAF-

30(COD). При температуре 250°С в ходе реакции образовывался с выходом до 35% продукт, точную 

структуру которого не удалось идентифицировать при помощи ГХ-МС. Предположительно, данное 

соединение содержит три и более атомов кислорода в структуре, соответственно, это может быть 

1,5-дигидроксипентанон-2 (1,5-ДГПОН-2) или продукт его циклизации, 2-

гидрокситетрагидрофурфуриловый спирт (2-ГТГФОЛ). Наибольшая конверсия фурфурола (96%) 

достигнута при его гидрировании в среде воды при 250°С на катализаторе Ru-PAF-30(COD). 

Растворитель может существенно влиять на активность и селективность гидрирования 

фурфурола. Катализаторы Pt-PAF-30, Pt-PAF-30-NH2, Pd-PAF-30, Pd-PAF-30-NH2 были испытаны в 

средах этанола, изопропанола и ТГФ (Рисунок 11). 

 

Рисунок 11. Влияние растворителя на гидрирование фурфурола. Условия реакции: фурфурол (60 

мкл, 0.725 ммоль), растворитель (600 мкл), катализатор (3 мг), 3 МПа H2, 2 часа, 40℃. 

 

В случае катализатора Pt-PAF-30 во всех используемых растворителях конверсия фурфурола 

составляла 100%, причём основным продуктом реакции был ТГФОЛ. Наибольшая селективность 

образования ТГФОЛ наблюдалась при проведении реакции в изопропаноле (83%), а наименьшая – 

при проведении реакции в ТГФ (45%). Высокая селективность образования ТГФОЛ в изопропаноле 

может объясняться отсутствием в реакционной среде воды, которая участвует в реакции раскрытия 

цикла ФОЛ и образования 1,2-ПДОЛ и 5- ГПОН-2. Катализатор Pt-PAF-30-NH2 был менее 

активным, чем катализатор Pt-PAF-30, но основным продуктом гидрирования фурфурола для него 

был ФОЛ в случае всех растворителей. В случае катализаторов Pd-PAF-30 и Pd-PAF-30-NH2 
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изменение растворителя более существенно влияет на распределение продуктов гидрирования. Так, 

при проведении реакции в воде в продуктах преобладал тетрагидрофурфуриловый спирт, однако 

гидрирование фурфурола в среде i-PrOH приводило к увеличению селективности по отношению к 

тетрагидрофурфуролу. Так, выход ТГФАЛЬ увеличивался с 29 до 52% на Pd-PAF-30 и с 42 до 77% 

на Pd-PAF-30-NH2. 

Стабильность катализаторов была исследована в экспериментах по повторному 

использованию (Рисунок 12). Катализатор Pt-PAF-30 демонстрирует высокую стабильность в 

течение 5 циклов, при этом на 4 и 5 циклах в продуктах реакции содержание ФОЛ увеличилось с 

1% до 17–20%. Для катализатора Pd-PAF-30 конверсия фурфурола оставалась равной ≈100% в 

течение 3 циклов, после чего она снизилась на 20%, что может быть связано с образованием 

олигомеров и блокировкой активных центров катализатора. Катализатор Pt-PAF-30-NH2 

демонстрировал незначительную потерю активности, выражающуюся в снижении конверсии с 28% 

до 17% за 5 циклов без изменения состава продуктов реакции. В случае катализатора Pd-PAF-30-

NH2 конверсия фурфурола снизилась со 100% до 19%, после 5 циклов образовывались 

преимущественно продукты неполного гидрирования, ФОЛ и ТГФАЛЬ. 

Катализаторы были испытаны в гидрировании 5-гидроксиметилфурфурола (5-ГМФ) и 5-

метилфурфурола (5-МФ). Продуктами гидрирования на катализаторе Pd-PAF-30 являются 2,5-

бис(гидроксиметил)тетрагидрофуран (БГМТГФ), 5-гидроксиметилтетрагидрофурфурол 

(ГМТГФ) и 2,5-фурандиметанол (ДГМФ), выход которых составляет 23–32%. Также продуктами 

реакции являются 1-гидрокси-4-гексен-2-он (ГЕКСЕНОН) и олигомеры. При гидрировании 5-

ГМФ на катализаторе Pd-PAF-30-NH2 основными продуктами являются БГМТГФ (выход 57%) и 

ГМТГФ (выход 38%). В гидрировании 5-ГМФ на катализаторе Pt-PAF-30 основным продуктом 

реакции является 2,5-фурандиметанол (ДГМФ) с выходом 55%. Основным продуктом 

гидрирования 5-ГМФ на Pt-PAF-30-NH2 также был ДГМФ, однако конверсия ниже, чем в случае Pt-

PAF-30 (45 и 94% соответственно). 

В гидрировании 5-МФ в присутствии катализатора Pt-PAF-30 выход МГМФ составил 40%, а 

выход ГЕКСЕНОНА 17%. В свою очередь, на катализаторе Pt-PAF-30-NH2 образуется 12% МГМФ 

и 6% ГЕКСЕНОНА. Основными продуктами гидрирования на катализаторе Pd-PAF-30 являются 5-

метилтетрагидрофурфурол (5-МТГФ) с выходом 18% и ДМТГФ с выходом 18%. В случае 

катализатора Pd-PAF-30-NH2 в продуктах реакции не обнаружено МГМФ, а выход 5-МТГФ 

наибольший среди всех исследованных систем (34%). 
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Рисунок 12. Повторное использование платиновых и палладиевых катализаторов. Условия 

реакции: фурфурол (60 мкл, 0.725 ммоль), H2O (600 мкл), катализатор (3 мг), 3 МПа H2, 2 часа, 

40℃. 

 

Таким образом, в результате изучения гидрирования фурфурола и его производных было 

установлено, что состав продуктов реакции зависит от условий реакции, природы металла и 

характеристик носителя. При проведении реакции в воде помимо гидрирования фуранового кольца 

и альдегидной группы протекают реакции раскрытия фуранового цикла и перегруппировки 

Пианкателли. Рутениевые катализаторы проявили наименьшую активность в гидрировании 

фурфурола, а основными продуктами гидрирования фурфурола для них были фурфуриловый спирт 

при температурах реакции менее 150°С и циклопентанон при температурах более 150°С. Природа 

носителя влияет на свойства катализаторов: наличие аминогрупп в носителе приводило к 

уменьшению их активности, но изменяло их селективность по определённым продуктам реакции. 

Наличие сульфогрупп в носителе, по всей видимости, способствует протеканию кислотно-

катализируемых побочных реакций конденсации фурфурола и продуктов его гидрирования. Тем не 

менее, наличие кислотных центров в структуре носителя является необходимым для тандемного 

процесса алкилирования-гидрирования соединений целлюлозной и лигнинной части бионефти. 

 

Бифункциональные катализаторы на основе пористых ароматических каркасов для 

тандемного процесса алкилирования-гидрирования 

В данном разделе изучено протекание тандемного алкилирования-гидрирования (АЛК-

ГИД) соединений целлюлозной и лигнинной части бионефти в присутствии бифункциональных 

катализаторов на основе пористых ароматических каркасов типа PAF-30-SO3H. Среди 

ароматических (гваякол, фенол, м-крезол) и фурановых (фурфуриловый спирт, 5-

гидроксиметилфурфурол, фурфурол) субстратов оптимальными реагентами в тандемном процессе 

являются фурфуриловый спирт и гваякол. При их алкилировании-гидрировании достигается 
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высокая степень гидрирования целевых длинноцепочечных продуктов. Среди катализаторов Me- 

PAF-30-SO3H (Me = Pt, Pd, Ru) наиболее активными оказались катализаторы Pt-PAF-30-SO3H-3 и 

Pt-PAF-30-SO3H-5, в связи с чем протекание процесса АЛК-ГИД на них было изучено наиболее 

подробно. Для описания продуктов побочной гидродеоксигенации гваякола были введены 

сокращенные обозначения: ЦГАН – циклогексан, ЦГЕН – циклогексен, ЦГОН – циклогексанон, 

МЦГОЛ – метилциклогексанол, МЕОКСЦГОЛ – 2-метоксициклогексанол, ЦГОЛ – 

циклогексанол, ГИЦГОН – 2-гидроксициклогексанон, МГВА – метилгваякол. 

На рисунке 13 показана зависимость конверсии субстратов и выхода продуктов АЛК-ГИД от 

времени. В присутствии катализатора Pt-PAF-30-SO3H-3 за 2 часа реакции конверсия 

фурфурилового спирта составила всего 38%, тогда как выход продуктов АЛК-ГИД составил 29%. 

Основным продуктом являлся (2-тетрагидрофуранилметил)-гваякол. В присутствии катализатора 

Pt-PAF-30-SO3H-5 конверсия ФОЛ и выход продуктов АЛК-ГИД достигали 95% и 30% 

соответственно в течение двух часов. После 6 часов реакции выход продуктов АЛК-ГИД снижался 

для обоих катализаторов из-за протекания побочных реакций. Таким образом, увеличение времени 

реакции приводит к росту выходов продуктов АЛК-ГИД только до 4 часов реакции. 

 

Рисунок 13. Распределение продуктов тандемного процесса АЛК-ГИД на катализаторах Pt-PAF-

30-SO3H-3 и Pt-PAF-30-SO3H-5 при разных временах реакции. Условия реакции: ФОЛ:ГВА = 1:8 

моль/моль, катализатор (10 мг), 130℃, 2 МПа H2. 

 

Для оценки возможности повторного использования платиновых катализаторов были 

проведены четыре цикла реакции (Рисунок 14). После 1-го цикла реакции на катализаторе Pt-PAF-

30-SO3H-3 конверсия ФОЛ увеличивалась до 96%, однако выход продуктов АЛК-ГИД снижался, но 

увеличивалась селективность образования (2-фуранилметил)-гваякола. Это может быть следствием 
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дезактивации катализатора из-за полимеризации субстратов и продуктов реакции. Однако 

кислотные группы оставались активными, и, таким образом, процесс алкилирования преобладал 

над гидрированием от цикла к циклу. При повторном использовании катализатора Pt-PAF-30-SO3H-

5 не наблюдалось существенных изменений в конверсии ФОЛ, также распределение продуктов 

практически не менялось. Интересно, что на 2-м цикле выход продуктов АЛК-ГИД возрастал до 

79%, а затем падал до исходных значений (30-35%). Этот эффект можно объяснить дезактивацией 

кислотных центров, что приводило к меньшему количеству побочных реакций полимеризации и 

олигомеризации. Подводя итог экспериментов по повторному использованию катализаторов, 

можно сказать, что они теряют свою активность, причём дезактивация металлических активных 

центров происходит значительно быстрее, чем дезактивация кислотных центров -SO3H. 

 

Рисунок 14. Повторное использование катализаторов Pt-PAF-30-SO3H-3 и Pt-PAF-30-SO3H-5. 

Условия реакции: ФОЛ:ГВА = 1:8 моль/моль, катализатор (10 мг), 130℃, 2 МПа H2, 2 часа. 
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использование других соединений, полученных из биомассы, таких как 5-метилфурфурол (который 

менее склонен к полимеризации, чем ФОЛ) и других молекул семейства гваякола. 

 

Заключение 

1) Исследована зависимость активности, селективности и стабильности рутениевых катализаторов 

гидрирования левулиновой кислоты на основе пористых ароматических каркасов от наличия в 

носителе сульфо- и аминогрупп, и использования добавок (1,5-циклооктадиен, аммиак) при 

нанесении металла. Установлено, что использование 1,5-циклооктадиена при синтезе Ru-PAF-30 

обеспечивает максимальную дисперсность наночастиц рутения и высокую каталитическую 

активность (выход 100% за 3 часа), тогда как наличие сульфо- или аминогрупп в структуре каркаса 

повышает устойчивость катализаторов к вымыванию металла. Показано, что наиболее стабильными 

в повторном использовании являлись системы на основе функционализированных носителей. 

2) Установлено, что катализатор гидрирования левулиновой кислоты Ru-PAF-30-SO3H(COD) 

обладал двумя типами каталитических центров: металлическими центрами, активными в 

гидрировании, и кислотными центрами, активными в реакции образования С-С связей. Благодаря 

этому гидрирование левулиновой кислоты при 200°C на данном катализаторе приводило к 

образованию димера левулиновой кислоты с выходом 22%. 

3) Показана зависимость между природой активного металла и носителя и селективностью 

платиновых, палладиевых и рутениевых катализаторов на основе пористых органических 

полимеров в гидрировании фурфурола и его производных. Рутениевые катализаторы проявили 

наименьшую активность в гидрировании фурфурола, а основными продуктами гидрирования 

фурфурола для них были фурфуриловый спирт при температурах реакции менее 150°С и 

циклопентанон при температурах более 150°С. Наличие аминогрупп в носителе приводило к 

уменьшению активности платиновых катализаторов, но изменяло их селективность по 

определённым продуктам реакции. Катализатор Pt-PAF-30-NH2 был селективнее в гидрировании 

фурфурола и его производных до соответствующих спиртов, чем катализатор Pt-PAF-30, в случае 

которого происходило гидрирование до тетрагидрофурфуриловых спиртов. В случае палладиевых 

катализаторов наличие аминогрупп в носителе приводило к уменьшению селективности 

образования олигомеров, но снижало стабильность катализатора Pd-PAF-30-NH2. 

4) Установлена зависимость между природой растворителя и селективностью платиновых и 

палладиевых катализаторов на основе пористых органических полимеров в гидрировании 

фурфурола. При проведении реакции в воде помимо гидрирования фуранового кольца и 

альдегидной группы протекают реакции раскрытия фуранового цикла и перегруппировки 

Пианкателли, из-за чего состав продуктов реакции оказывается более разнообразным. 

Использование изопропанола в качестве растворителя позволило существенно повысить 

селективность образования продуктов гидрирования фурфурола. 
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5) Впервые изучено протекание тандемного процесса алкилирования-гидрирования фурановых и 

фенольных компонентов бионефти в присутствии бифункциональных катализаторов на основе 

благородных металлов (Pt, Pd, Ru) и полимерных носителей, содержащих кислотные 

функциональные группы. Максимальный выход целевых продуктов – смеси оксигенатных 

соединений, являющихся потенциальными топливными добавками – получен при проведении 

процесса в течение 4 часов при 130°C и 2 МПа H2 с системой фурфуриловый спирт/гваякол на 

катализаторе Pt-PAF-30-SO3H-3. Установлено, что дезактивация кислотных групп протекает 

медленнее, чем дезактивация металлических центров. Показано, что основными продуктами 

алкилирования являются наиболее выгодные с точки зрения термодинамики соединения.  
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