Отзыв научного руководителя

на диссертационную работу Лю Вэньсюэ

«Исследование молекулярных свойств D-аминокислотной оксидазы», представленную на соискание ученой степени кандидата биологических наук по специальности 1.5.2. Биофизика (биологические науки)

Известно, что фермент, D-аминокислотная оксидаза (DAAO) представляет собой FAD-содержащий флавопротеин, катализирующий стереоспецифическое окислительное дезаминирование D-аминокислот (D-AA) до альфа-кетокислот и аммиака. DAAO выполняют важные функции в клетках и находят широкое практическое применение в биотехнологии. В клетках организма человека DAAO участвуют в синтезе нейромедиаторов, а изменения активности DAAO и концентрации D-AA сопровождает патогенез ряда заболеваний (шизофрения, болезни Альцгеймера и Паркинсона). У низших эукариот ферменту отводится важная функция: клетки грибов и дрожжей используют D-AA в качестве источника углерода и азота. Ферменты DAAO, из разных источников, характеризуются различной чувствительностью к рН, температуре, а также величиной К_М и удельной активностью фермента по отношению к различным субстратам.

В связи с этим, в своей работе Лю Вэньсюэ исследовала молекулярные свойства фермента с помощью нокаута генов, кодирующих оксидазы D-аминокислот в сочетании с биофизическим анализом конформации белка и активного цента фермента. В связи с этим, целью работы было исследовать физиологическую роль ферментов DAAO у дрожжей *H. polymorpha* DL1, кодируемых разными генами и физико-химические свойства белка при активации фермента.

В ходе проведения научно-исследовательской работы по теме диссертации, Лю Вэньсюэ, освоила ряд оригинальных методов генетической инактивации генов оксидаз D-аминокислот у дрожжей *Н. Polymorpha*, получила нокауты генов DAAO/DDO и провела их генетическую и биофизическую характеристику. Автором сконструирован оригинальный вектор для генетической инактивации гена оксидазы D-аминокислот, получена коллекция нокаутов генов DAAO/DDO и проведена их генетическая и физиологическая характеристика. Установлено, что D-аланин в сочетании с 1% глицерином и 1% метанолом способен индуцировать активность всех трех основных DAAO *Н. Роlутогрha*, а глюкоза и L-аланин подавляют

активность оксидазы. Установлено, что использование наноструктур серебра позволяет увеличить КР сигнал в 10⁵-10⁶ раз (разбавление образца до 10⁻⁹ моль/л). Доказана возможность эффективного использования КР для исследования конформационных изменений флавина DAAO. Установлено, что в ходе окислительно-восстановительной реакции взаимодействия флавина с субстратом происходит изменение его конформации, что, вероятно, связано с процессами координации активного центра DAAO по отношению к молекуле аминокислоты. С помощью ИК-спектроскопии выявлено изменение конформации DAAO не только во флавине, но и в молекуле белка. Методом однофотонного счета со временем обнаружено уменьшение амплитуды флуоресценции триптофана при активации DAAO, которое происходит быстрее в рк DAAO, чем в Н.р. DAAO. Результаты работы опубликованы в рецензируемых научных изданиях по специальности. Диссертационная работа соответствует критериям, определенным в Положении о присуждении ученых степеней в МГУ имени М.В. Ломоносова.

В связи с этим считаю, что диссертационная работа Лю Вэньсюэ на соискание ученой степени кандидата биологических наук по специальности 1.5.2 Биофизика (биологические науки) может быть рекомендована к защите в диссертационном совете МГУ имени М.В. Ломоносова.

Георгий Владимирович Максимов, доктор биологических наук, профессор кафедры биофизики биологического факультета МГУ имени М.В. Ломоносова /Г.В. Максимов/

4.09.2024