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Введение

Актуальность темы

Современная медицина активно использует методы визуализации для диа-

гностики,мониторинга заболеваний и планирования лечения.Однако рост объёма

и сложности медицинских изображений требует более эффективных методов

математического моделирования и проблемно-ориентированных комплексов про-

грамм для их анализа и обработки с применением современных компьютерных

технологий. Создание таких методов и эффективных алгоритмов их реализации,

является актуальной научно-технической проблемой в области математического

моделирования, решение которой позволит повысить точность, интерпретируе-

мость и надежность систем компьютерной диагностики. Ключевой задачей при

этом является синтез методологий, позволяющий интегрировать классические ма-

тематические модели с подходами глубокого обучения, извлекающими знания из

данных.

Актуальность темы обусловлена необходимостью повышения точности

диагностики. Традиционные методы обработки изображений (например, поро-

говая сегментация, фильтрация) часто недостаточно эффективны при работе с

зашумлёнными или низкоконтрастными медицинскими снимками. Гибридные

методы, сочетающие классические математические модели с моделями машинно-

го обучения (свёрточные нейронные сети, трансформеры), позволяют улучшить

качество распознавания патологий, например, объединяя аппарат дифференци-

альных уравнений и анализ и обработку больших данных [1].

Более того, классические численные методы хорошо справляются лишь

с определёнными типами искажений, часто требуя ручной настройки парамет-

ров [2] и не всегда адаптируясь к сложным случаям.Методымашинного обучения,

напротив, демонстрируют высокую обобщающую способность и эффективность

в задачах шумоподавления [3], повышения разрешения и улучшения контра-

ста [4], но могут быть чрезмерно сложными или требовать больших вычис-

лительных ресурсов [5], затрудняя проведение вычислительных экспериментов.

Гибридный подход, сочетающий преимущества классических моделей (интер-

претируемость, низкие вычислительные затраты) и методов машинного обучения

(адаптивность, высокая точность), позволяет преодолеть эти ограничения.
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Внедрение гибридных методов анализа и обработки изображений ведёт к

автоматизации и ускорению медицинской диагностики. Ручная обработка изобра-

жений трудоёмка и подвержена субъективным ошибкам. Комбинация алгоритмов

предварительной обработки и нейросетевой классификации сокращает время диа-

гностики и снижает нагрузку на врачей. Появление новых архитектур нейронных

сетей (например, vision transformers [6]) и методов объяснимого ИИ (XAI) [7]

открывает возможности для создания интерпретируемых гибридных методов,

критически важных в медицине.

Таким образом, разработка и совершенствование методов анализа и

обработки медицинских изображений представляет собой актуальную научно-

практическую задачу, решение которой способствует повышению качества

диагностики, снижению временных затрат и улучшению интерпретируемости.

Принципиально значимым является взаимное обогащение между клас-

сическим математическим аппаратом, включающим математические модели и

численные методы, и технологиями искусственного интеллекта. Так, методы ис-

кусственного интеллекта не просто добавляются к традиционным подходам, но

и сами развиваются под влиянием фундаментальной математики [8]. Классиче-

ские методы, в свою очередь, вносят вклад в повышение надёжности решений,

полученных с помощью нейронных сетей, а также стимулируют появление новых

подходов в глубоком машинном обучении. Иллюстрацией такого синтеза служит

эволюция многосеточных алгоритмов, концепции которых легли в основу постро-

ения иерархических архитектур нейронных сетей [9]. Это взаимодействие ярко

проявляется в гибридных методах анализа и повышения качества медицинских

изображений.

Объектом исследования в данной диссертационной работе является процесс

компьютерного анализа медицинских изображений различных модальностей.

Предметом исследования – гибридные методы повышения качества, классифи-

кации и сегментации медицинских изображений.

Цель работы

Основная цель диссертационной работы заключается в разработке новых

гибридных методов для обработки и анализа медицинских изображений различ-

ных модальностей, таких как изображения магнитно-резонансной томографии,

ультразвуковые изображения, гистологические полнослайдовые изображения и

колоноскопические изображения, а также в реализации соответствующего ком-

плекса программ для проведения вычислительных экспериментов.
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Научная новизна

В данной диссертационной работе разработаны:

– метод повышения качества изображений магнитно-резонансной томогра-

фии,

– масштабно-инвариантный метод подавления осцилляций Гиббса и

уменьшения аддитивного гауссовского шума на изображениях магнитно-

резонансной томографии,

– проекционный метод сегментации опухолей на ультразвуковых, гистоло-

гических и колоноскопических изображениях,

– метод выбора масштаба классификации полнослайдовых изображений.

Теоретическая и практическая ценность

Комбинирование классических методов математического моделирования и

современных методов машинного обучения расширяет теоретическую базу для

создания более эффективных гибридных методов. Разработка новых гибридных

методов способствует интеграции подходов из разных областей и позволяет на-

ходить баланс между точностью и сложностью модели, например, применяя

нейросетевые аппроксимации трудоёмких классических моделей. Предлагаемые

гибридные методы более интерпретируемы и устойчивы, чем чёрные ящики глу-

бокого обучения, что важно для врачебного принятия решений.

Разработанные в диссертационной работе методы обработки и анализа

медицинских изображений могут применяться как независимо при проведении

медицинских исследований, так и могут быть реализованы в виде связных моду-

лей системы медицинской компьютерной диагностики.

Применение разработанных методов обработки и анализа медицинских

изображений имеет существенную практическую значимость. Внедрение разра-

ботанных решений повышения качества медицинских данных способно привести

к уменьшению количества повторных исследований. Улучшение качества визуа-

лизации способствует более точному обнаружению патологий, включая ранние

стадии опухолей. Сокращение времени диагностики ускоряет постановку диа-

гноза и начало лечения, что критично для онкологических и острых состояний,

а снижение нагрузки на врачей за счёт автоматизации рутинных задач (например,

разметки полипов на колоноскопических снимках) позволяет перераспределить

ресурсы на сложные случаи. Таким образом, результаты могут быть востребо-

ваны в клиниках и диагностических центрах, в разработке медицинского ПО, а

также в научных исследованиях.
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Степень разработанности темы

Проблема анализа и обработки медицинских изображений является меж-

дисциплинарной и находится на стыке математики, компьютерных наук и ме-

дицины. Степень её разработанности характеризуется наличием двух крупных

исторически сложившихся направлений: классических методов, основанных на

математическом моделировании и численных методах, и методов машинного

(глубокого) обучения. В последние годы наблюдается устойчивая тенденция к их

конвергенции в рамках гибридных подходов [10].

Классические методы математического моделирования и численные

методы обработки изображений, такие как методы фильтрации [11], вейвлет-

преобразования [12], вариационные методы [13] и методы решения обратных

задач [14], имеют солидную теоретическую базу и хорошо изучены. Эти мето-

ды отличаются высокой интерпретируемостью, предсказуемостью поведения

и относительно низкими вычислительными затратами. Однако, как отмечено в

актуальности, их эффективность часто ограничивается специфическими типа-

ми искажений и необходимостью ручной настройки параметров для каждого

конкретного случая, что затрудняет их применение для обработки разнородных

медицинских данных с комплексными артефактами.

Методы машинного и глубокого обучения совершили революцию в области

компьютерного зрения, в том числе и в медицинской визуализации. Свёрточные

нейронные сети, в частности архитектуры U-Net [15], SegNet [16], DeepLab [17]

и их модификации, продемонстрировали выдающиеся результаты в задачах сег-

ментации, классификации и повышения качества изображений. Более поздние

архитектуры, такие как трансформеры [6] и диффузионные сети [18], расшири-

ли возможности подхода. Исследования в этой области показывают, что данные

методы обладают высокой адаптивностью и способностью извлекать сложные

признаки непосредственно из данных. Тем не менее, им присущи недостатки:

они часто рассматриваются как чёрные ящики, требуют больших объёмов разме-

ченных данных и значительных вычислительных ресурсов, а также могут быть

неустойчивы к изменению распределения входных данных.

Таким образом, в научном сообществе сформировалось направление ги-

бридных методов, которое активно развивается в последнее десятилетие. Данное

направление можно условно разделить на несколько потоков.
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Первый поток предполагает использование классических методов для пре-

добработки данных для нейронных сетей. Этот подход хорошо изучен, но часто

носит характер простой композиции [19], без глубокой интеграции методов.

Более глубокий уровень синтеза демонстрирует второй поток, связанный

с прямым встраиванием знаний предметной области (англ. domain knowledge) в

архитектуры нейронных сетей. Сюда относятся такие техники, как применение

физически информированных нейронных сетей [20; 21] и интеграция известных

преобразований (например, Фурье) в виде специальных слоёв.

Третий поток направлен на использование нейронных сетей для аппрок-

симации трудоёмких этапов классических алгоритмов. Этот подход позволяет

сохранить интерпретируемость классической модели, значительно ускорив её

работу. Исследования в этой области, например, работы по нейронным опера-

торам [22; 23], показывают перспективность интеграции, но их применение к

анализу и повышению качества медицинских изображений остаётся недостаточ-

но развитым.

Проведённый анализ степени разработанности темы подтверждает актуаль-

ность и научную новизну диссертационного исследования. Существующий зазор

между классическими методами математического моделирования и современны-

ми методами глубокого обучения создаёт пространство для разработки новых,

более эффективных гибридных подходов, предлагаемых в данной работе. Ком-

бинация строгости математического моделирования и адаптивности машинного

обучения позволяет сформулировать новые научные решения для актуальных за-

дач медицинской диагностики.

Методология и методы исследования

Методологической основой исследования являются методы математическо-

го моделирования. Практическая реализация включает вычислительные экспе-

рименты с использованием искусственных и реальных данных в рамках задач

машинного обучения и анализа изображений. Для решения поставленных задач

применяется гибридный подход, интегрирующий классические математические

модели с архитектурами глубокого обучения.

Степень достоверности результатов

Достоверность результатов проведённых исследований обеспечивается

опорой на теоретическую базу, воспроизводимыми вычислительными экспери-

ментами и тестированием алгоритмов на искусственных и реальных данных.
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Апробация работы

Основные результаты работы докладывались на:

1. 32-ой международной конференции по компьютерной графике и зрению

«ГрафиКон’2022», (Москва, 2022);

2. 8-ой международной конференции по биомедицинской визуализации и

обработке сигналов «ICBSP’2023», (Сингапур, 2023);

3. 34-ой международной конференции по компьютерной графике и зрению

«ГрафиКон’2024», (Омск, 2024);

4. 9-ой международной конференции по биомедицинской визуализации и

обработке сигналов «ICBSP’2024», (Гонконг, 2024);

5. 1-ой международной школе-конференции по тензорным методам в мате-

матике и задачах искусственного интеллекта «SMBU’2024», (Шэньчжэ-

нь, 2024).

Публикации

По теме исследования опубликовано 7 работ, из них 3 работы в рецензируе-

мых научных изданиях, рекомендованных для защиты в диссертационном совете

МГУ по специальности и отрасли наук. Список опубликованных работ приведён

в конце диссертационной работы.

Личный вклад

Все результаты работы получены автором лично под научным руководством

д.ф.-м.н., проф.А.С.Крылова.В работах, написанных в соавторстве, вклад автора

диссертационной работы в полученные результаты является определяющим.

Основные положения, выносимые на защиту

1. Метод, объединяющий классический математический метод поиска оп-

тимальных субпиксельных сдвигов и свёрточную нейронную сеть, поз-

волил осуществить подавление осцилляций Гиббса на изображениях

магнитно-резонансной томографии головного мозга.

2. Нейронный оператор Фурье, обученный на результатах численных рас-

чётов классическими математическими методами, показал эффектив-

ность для масштабно-инвариантного уменьшения осцилляций Гиббса и

аддитивного гауссовского шума на изображениях магнитно-резонансной

томографии головного мозга.

3. Проекционные сети Колмогорова-Арнольда, используемые в качестве

основы метода сегментации, позволили получить устойчивый метод сег-

ментации опухолей на ультразвуковых изображениях молочной железы,
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гистологических изображениях слизистых желёз и колоноскопических

изображениях.

4. Автоматический метод выбора масштаба гистологических полнослайдо-

вых изображений показал эффективность в классификации изображений

стенок желудка предобученными нейронными сетями.

5. Разработанный программный комплекс по обучению гибридных методов

обработки и анализа медицинских изображений ориентирован на прове-

дение вычислительных экспериментов.

Структура и объём работы

Диссертация состоит из введения, четырёх глав, заключения, списков лите-

ратуры, публикаций автора по теме исследования, рисунков и таблиц. Полный

объём диссертации составляет 103 страницы, включая 32 рисунка и 6 таблиц.

Список литературы содержит 111 наименований.



11

Глава 1.Методы повышения качества изображений магнитно-резонансной
томографии

Качество изображений магнитно-резонансной томографии (МРТ) может

снижаться из-за шумов, движения, низкого разрешения или недостаточной

контрастности. Для улучшения их качества применяют классические методы

математического моделирования, современные методы машинного обучения и

гибридные подходы.

Рисунок 1.1 –– Проявление артефактов Гиббса на изображениях магнитно-

резонансной томографии. (а) – T1-взвешенное изображение МРТ мозга в низком

разрешении (64 × 64) c осцилляциями Гиббса в виде ярких и тёмных линий,

параллельных краям резких изменений интенсивности, (б) – T1-взвешенное изоб-

ражение МРТ мозга в высоком разрешении (128× 128), (в) – пример осцилляций

Гиббса на ступенчатой функции, моделирующей резкий контур на изображении.

Типичным дефектом на изображениях магнитно-резонансной томографии

являются осцилляции Гиббса [24] (см. Рис. 1.1). Осцилляции Гиббса пред-

ставляют собой волны возле контрастных перепадов яркости на изображениях,

например, на границах головного мозга и спинномозговой жидкости в желу-

дочках мозга и субарахноидальном пространстве. Данный артефакт возникает

вследствие усечения ряда Фурье при реконструкции изображения. Наличие этих

осцилляций существенно затрудняет анализ тканей и снижает диагностическую

ценность изображений.

В магнитно-резонансной томографии осцилляции Гиббса возникают из-за

ограниченного числа высокочастотных компонент в разложении сигнала. В про-

цессе МРТ-сканирования измеряются интегральные величины, определяющие
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коэффициенты Фурье, таким образом, пространственное изображение формиру-

ется посредством применения обратного преобразования Фурье к полученным

данным. В результате, получается изображение с ограниченным разрешением и

характерными осцилляциями Гиббса возле резких контуров. Число осцилляций

Гиббса является бесконечным, тем не менее, на реальных изображениях обычно

заметно не более 1-2 осцилляций. Незначительное искажение изображений че-

ловек может не заметить, тогда как при больших потерях информации артефакт

приводит к видимым окаймлениям (см. Рис. 1.1).

Феномен Гиббса, впервые описанный Генри Уилбрахамом в 1848 году и

позднее переоткрытый Дж. Уиллардом Гиббсом в 1898 году, длительное время не

привлекал значительного внимания математического сообщества. Интенсивное

изучение связанных с ним осцилляций началось лишь в конце 1970-х годов [25].

Последующее увеличение числа публикаций по данной теме [26; 27] было во

многом обусловлено развитием смежных технологических областей. В частно-

сти, импульс исследованиям могли придать достижения в области магнитно-

резонансной томографии, методологическая основа которой была заложена П.

Лотербургом в 1973 году и впоследствии усовершенствована П.Мэнсфилдом, что

в 2003 году было отмечено Нобелевской премией. Примечательно, что как фено-

мен Гиббса, так и метод МРТ характеризуются множественным авторством, а их

признание сопровождалось дискуссиями о приоритете. Эта ситуация иллюстри-

рует распространённый в истории науки феномен одновременных и независимых

открытий, который подробно анализировал социолог Роберт Мертон. Класси-

ческими примерами служат: создание математического анализа Ньютоном и

Лейбницем (XVII в.), формулировка закона Бойля–Мариотта (XVII в.), откры-

тие кислорода Шееле, Пристли и Лавуазье (XVIII в.), построение неевклидовой

геометрии Лобачевским, Бойяи и Гауссом (XIX в.), а также разработка теории эво-

люции Дарвином и Уоллесом (XIX в.).

Для демонстрации причин осцилляций Гиббса с математической точки зре-

ния рассмотрим следующую вещественную периодическую функцию:

ξ(t) =







a, t ∈ [−τ/2, τ/2]

0, t ∈ [−T/2, T/2] \ [−τ/2, τ/2]
, (1.1)

ξ(t) = ξ(t+ T ),

где a – величина скачка; T – период функции; τ – ширина импульса.
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Используя преобразование Фурье в комплексной форме и предполагая T =

2τ, (1.1) может быть записано в виде:

ξ(t) =
+∞
�

k=−∞

dke
iωkt, (1.2)

где dk = 1
T

�
T
2

−T
2

ξ(t)e−iωktdt, ωk = Ωk, Ω = 2π/T .

ξ(t) = 2 ·
a

2

+∞
�

k=0

(−1)k ·
1

(2k + 1)π
· cos (2k + 1) ·

2π

T
t

=
a

π
(cosΩt−

1

3
cos 3Ωt+ ...).

(1.3)

На практике часто используется не полный Фурье-спектр сигнала, а лишь

его часть для минимизации времени сбора данных, что, как было отмечено

выше, приводит к осцилляциям Гиббса, характерным для аппроксимации триго-

нометрическим рядом функций с разрывами (см. Рис. 1.2). Важно заметить, что

Рисунок 1.2 –– Осцилляции Гиббса на примере конечного разрыва. (а) – ступен-

чатая функция ξ(t), (б) – результат восстановления сигнала ξ(t) по усечённому

ряду Фурье, демонстрирующий осцилляции в окрестностях точек разрыва.

максимальная амплитуда осцилляций Гиббса постоянна и не зависит от выбран-

ной частоты обрезки ряда [12].

Задачу уменьшения осцилляций Гиббса на изображениях можно решать,

например, вариационным путём [28], оптимизируя целевой функционал (1.4) на

выбранном компакте соответствующего функционального пространства.

J(I) =
1

2

�

�I − I0
�

�

2
+ λ

�

D

|∇I(x)|dx → min
I
, (1.4)
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где I0 – входное изображение с осцилляциями Гиббса; I – искомое изображение

среди изображений, принадлежащих выбранному компакту; D – область задания

изображений; x = (x, y) – пространственные координаты; λ – параметр регуля-

ризации.

В работе [29] предложен подход, основанный на теории разреженных пред-

ставлений – математическом аппарате, который позволяет эффективно описывать

сигналы с помощью ограниченного числа значимых коэффициентов в оптималь-

но подобранном базовом наборе функций.Данная методика особенно эффективна

для обработки медицинских изображений, где важные диагностические признаки

часто могут быть представлены в виде небольшого числа информативных ком-

понент.

Среди классических методов наиболее эффективным алгоритмом является

алгоритм Кельнера [30], в котором осцилляции Гиббса уменьшаются методом по-

иска оптимальных субпиксельных сдвигов.

В настоящее время большую популярность приобрели методы глубокого

обучения в области математических методов обработки медицинских изобра-

жений. Так, свёрточные нейронные сети успешно решают массу прикладных

задач обработки медицинских изображений, таких как сегментация [15; 31––33],

уменьшение уровня шума [34; 35], и, конечно, подавление осцилляций Гиббса на

изображениях магнитно-резонансной томографии головного мозга [36]. Более то-

го, свёрточные нейронные сети успешно осуществляют локальную обработку по

построению, устойчивы к сдвигам по построению, эффективны на малых данных

благодаря предобучению и интерпретируемы (например, с помощью алгоритма

GradCAM [37]). К недостаткам свёрточных сетей относят низкую устойчивость

к изменению масштаба входных данных [38] и фиксированный размер рецептив-

ного поля, определяемый архитектурой сети.

Трансформерные сети приобрели взрывную популярность [39––41], главное

преимущество которых заключается в наличии глобального контекста (англ. self-

attention), отсутствии зацикленности на локальных паттернах и в масштабируе-

мости на изображения высокого разрешения. Тем не менее, трансформерные сети

требуют огромного количества данных для обучения, в то время как медицинские

наборы данных обычно достаточно ограничены в объёме и вариативности.

Улучшать качество результатов нейронных сетей можно различными спо-

собами. Наращивание ансамбля слоёв является одним из часто используемых

подходов в машинном обучении [42].Однако, увеличивая число слоёв в ансамбле,
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резко растёт и число параметров, требующих оптимизации, увеличивается трудо-

ёмкость вычисления и оптимизации модели, более того, появляется значительный

риск переобучения нейронной сети под тренировочную выборку. В качестве аль-

тернативы выступает гибридный подход [43; 44].

Гибридные методы представляют сочетание методов глубокого обучения

с классическими математическими моделями обработки изображений. Цель ги-

бридных методов заключается в уменьшении числа обучаемых параметров, упро-

щении архитектуры, уменьшая тем самым риск переобучения, в сохранении

обобщающей способности модели и в синергии и эмерджентности полученной

системы. Известным примером гибридного метода является метод сегментации

опухолей мозга [45] с помощью комбинации U-Net [15] и методов активных кон-

туров [46]. Синергия гибридного алгоритма в данном случае достигается тем,

что U-Net быстро находит область интереса (англ. region of interest, ROI), а ме-

тод активных контуров уточняет границы. Классическая модель компенсирует

недостатки нейронной сети (неточности в мелких деталях), а нейронная сеть

избавляется от ручной инициализации контура. Эмерджентность заключается в

возникновении у системы способности точно сегментировать опухоли даже при

слабых границах (например, при глиомах на МРТ), чего не может сделать ни одна

модель по отдельности. В результате, повышается точность, уменьшается время

обработки и повышается интерпретируемость, так как врачи видят не только чёр-

ный ящик нейронной сети, но и физически обоснованную обработку.

В данной главе будет представлен разработанный гибридный метод подав-

ления артефактов Гиббса на изображениях МРТ головного мозга, объединяющий

классическую математическую модель Кельнера поиска оптимальных субпик-

сельных сдвигов и обучаемую свёрточную нейронную сеть.
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1.1 Классический математический метод поиска оптимальных
субпиксельных сдвигов для подавления осцилляций Гиббса на изображениях

головного мозга

В современной обработке медицинских изображений особое место занима-

ет неитеративный математический метод Кельнера [30], разработанная для подав-

ления осцилляций Гиббса в том числе на изображениях магнитно-резонансной

томографии головного мозга.

Алгоритм Кельнера основан на численном поиске оптимальных субпик-

сельных сдвигов с целью минимизации функционала, оценивающего величину

осцилляций. В качестве такого функционала используется полная вариация [47],

находящая своё применение в задачах регуляризации и восстановления изображе-

ний. В непрерывном случае полная вариация изображения I(x), x = (x, y) ∈ D

определяется как:

TV (I;D) =

�

D

|∇I(x)|dx. (1.5)

Метод Кельнера характеризуется двумя ключевыми параметрами Δ1 и Δ2,

которые определяют размер окна для локальной оптимизации. В рамках данного

подхода реализована двухэтапная процедура минимизации полной вариации: на

первом этапе выполняется численная оптимизация субпиксельных сдвигов в ор-

тогональных направлениях, на втором этапе осуществляется синтез полученных

результатов по следующей формуле:

IK = F
−1{F (IKx) ·Gx + F (IKy) ·Gy}, (1.6)

где IK – итоговый результат алгоритма Кельнера; IKx – результат одномерно-

го алгоритма Кельнера вдоль оси OX; IKy – результат одномерного алгоритма

Кельнера вдоль оси OY ; F – прямое дискретное преобразование Фурье; F−1 –

обратное дискретное преобразование Фурье; Gx, Gy – весовые функции:

Gx(tx, ty) =
1 + cos ty

(1 + cos tx) + (1 + cos ty)
, (1.7)

Gy(tx, ty) =
1 + cos tx

(1 + cos tx) + (1 + cos ty)
, (1.8)

где tx ∈ [−π, π], ty ∈ [−π, π].
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Рассмотрим подробнее одномерный алгоритм Кельнера с математической

точки зрения.Пусть I – исходный сигнал иCk – k-я комплексная амплитуда. Тогда

исходный сигнал можно представить, разложив его в дискретный ряд Фурье:

I(x) =
1

N

N−1
�

k=0

Ck · e
i2π k

N
x. (1.9)

С помощью теоремы о сдвиге получим 2M копий сигнала для дальнейшего

выбора оптимальных субпиксельных сдвигов:

Is(x) =
1

N

N−1
�

k=0

(Ck · e
−i2π k

N
· s
2M ) · ei2π

k
N
x, (1.10)

где s ∈ [−M,M − 1], s ∈ Z.

Алгоритм Кельнера проводит поиск оптимальных сдвигов вдоль положи-

тельного и отрицательного направлений независимо:

TV ±(Is) =

Δ2
�

δ=Δ1

|Is(x± δ)− Is(x± (δ− 1))|, (1.11)

r±(x) = argmin
s

TV ±(Is). (1.12)

Из сдвигов r+(x), r−(x) выбирается r(x), обеспечивающий наименьшую полную

вариацию.

В заключение, значения в соответствующих субпикселях x − r(x)/(2M)

вычисляются с помощью линейной интерполяции. Для большинства рассматри-

ваемых прикладных случаев (см. Рис. 1.3) оптимальными параметрами метода

являются: Δ1 = 1,Δ2 = 3.

Рисунок 1.3 –– Пример улучшения качества изображения МРТ головного мозга

алгоритмом Кельнера. (а) – референсное изображение без артефактов, (б) – изоб-

ражение с осцилляциями Гиббса, (в) – результат алгоритма Кельнера.
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1.2 Нейросетевой свёрточный метод повышения качества изображений
головного мозга

Одной из актуальных свёрточных нейронных сетей для подавления ос-

цилляций Гиббса на изображениях МРТ головного мозга является нейронная

сеть GAS-CNN (англ. Gibbs-ringing artifact suppression convolutional neural

network) [36]. Она реализована в виде трёх последовательных модулей: модуль

извлечения признаков, нелинейного отображения и реконструкции.

Основными отличительными особенностями GAS-CNN являются:

– отказ от слоёв уменьшения пространственной размерности, например,

свёртки с шагом 2 или слоя субдискретизации с функцией максимума

(англ. max pooling), в силу локальности осцилляций Гиббса,

– уменьшение размерности признакового пространства,

– добавление пространственных связей (англ. skip connection), подобных

используемым в U-Net [15] между кодировщиком и декодировщиком.

С помощью модуля извлечения признаков GAS-CNN отображает входное

изображение в признаковое пространство размерности 64, в котором затем осу-

ществляется фильтрация с помощью 32-ух свёрточных остаточных блоков (англ.

residual block) [48], составляющих модуль нелинейного отображения:

xl = xl−1 + Φl(xl−1), l = 1, 2, ..., L, (1.13)

гдеL – число остаточных блоков, аΦl(xl−1) = max[xl−1∗wl,1+bl,1, 0]∗wl,2+bl,2 –

l-й свёрточный блок, обрабатывающий тензор признаков xl−1. Архитектура сети

завершается модулем реконструкции, который преобразует признаковое описание

в изображение целевого цветового пространства.

В качестве функции потерь используется взвешенная комбинация MAE

(англ. mean average error) и SSIM (англ. structural similarity index measure) [49]:

L(θ) =
1

N

N
�

i=1

(
�

�F(I0i ; θ)− I1i
�

�

1
+ λ · SSIM(F(I0i ; θ), I

1
i )) → min

θ∈Θ
, (1.14)

где I0i – входное изображение с осцилляциями Гиббса; I1i – референсное изобра-

жение без артефактов;F – нейронная сетьGAS-CNN с совокупностью обучаемых

параметров θ, оптимизация которых ведётся модифицированным численным ме-

тодом стохастического градиентного спуска [50] Adam [51] (β1 = 0.9, β2 = 0.999,

ε = 10−8), по набору данных D = {(I0i , I
1
i )}

N
i=1.
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Визуально и численно, по метрикам PSNR и SSIM оценки качества изобра-

жений [52], оценить результаты применения обученнойGAS-CNN для улучшения

качества изображений МРТ мозга можно на Рис. 1.4.

Пиковое отношение сигнала к шуму (англ. peak signal-to-noise ratio, PSNR)

является показателем для количественной оценки качества реконструкции изоб-

ражений. Данная величина широко применяется в задачах обработки медицин-

ских изображений, включая восстановление, сжатие и подавление артефактов.

PSNR определяется как:

PSNR = 10 · log10
MAX2

MSE
, (1.15)

где MAX – максимально возможное значение пикселя;MSE – среднеквадрати-

ческая ошибка между референсным и восстановленным изображениями.

Индекс структурного сходства (англ. structural similarity index measure,

SSIM) был разработан для преодоления ограничений PSNR через моделирова-

ние человеческого восприятия изображений. SSIM оценивает три компоненты:

яркость (l), контраст (c) и структуру (s).

SSIM(x,y) = l(x, y) · c(x, y) · s(x, y), (1.16)

где l(x, y) =
2µxµy+c1
µ2
x+µ2

y+c1
, c(x, y) =

2σxσy+c2
σ2
x+σ2

y+c2
, s(x, y) =

σxy+c3
σxσy+c3

.

Хотя PSNR, вычисляемый через среднеквадратическую ошибку [53] и вы-

ражаемый в децибелах, остаётся стандартным инструментом количественной

оценки различий между изображениями, его главным ограничением является сла-

бая корреляция с перцептивным качеством.Поэтому в задаче повышения качества

изображений МРТ этот показатель обычно дополняют индексом SSIM или ве-

личиной полной вариации TV. В отличие от PSNR, индекс SSIM демонстрирует

лучшую согласованность с субъективной оценкой экспертов, что особенно важно

при анализе медицинских изображений, где критическое значение имеет сохра-

нение морфологических деталей и чёткости границ между тканями. Контроль

полной вариации позволяет отслеживать амплитуду остаточных колебаний Гибб-

са и предотвращать избыточное сглаживание значимых деталей. Таким образом,

комбинированный анализ PSNR, SSIM и TV обеспечивает наиболее полную оцен-

ку качества обработки, учитывая как глобальные, так и локальные особенности,

критически важные для медицинской диагностики.
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Рисунок 1.4 –– Примеры улучшения качества изображений МРТ головного мозга

нейронной сетьюGAS-CNN. (а) – референсные изображения без артефактов, (б) –

изображения с осцилляциями Гиббса, (в) – результаты нейронной сетиGAS-CNN.
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1.3 Гибридный метод подавления осцилляций Гиббса на изображениях
головного мозга

В данном разделе описывается разработанный гибридный метод подав-

ления осцилляций Гиббса на изображениях магнитно-резонансной томографии

головного мозга, объединяющий обучаемую нейронную сеть и классический

математический метод. В качестве нейронной сети используется облегчённая мо-

дификация свёрточной сети GAS-CNN [36], исходная глубина которой оказалась

избыточной, а в качестве классического метода выступает рассмотренный ранее

алгоритм Кельнера [30] поиска оптимальных субпиксельных сдвигов.

Обучаемая часть предлагаемого гибридного метода состоит всего из 9

остаточных свёрточных блоков, вместо 32-ух у GAS-CNN, однако, благодаря

использованию вспомогательных признаков от предварительно обработанных

алгоритмом Кельнера входных изображений, разработанный метод сохраняет

обобщающую способность на тестовом наборе данных IXI1.

Рисунок 1.5 –– Архитектура разработанного гибридного метода DGAS9-CNN по-

давления осцилляций Гиббса на изображениях МРТ головного мозга.

Схема разработанного метода, обозначаемого как DGAS9-CNN (англ. dual

Gibbs-ringing artifact suppression convolutional neural network), представлена на

Рис. 1.5.
1http://brain-development.org/ixi-dataset/
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Предлагаемый гибридный метод имеет следующую структуру:

1. Вход: центральная (1/9) часть частотного спектра Фурье.

2. Изображение I0 (256 × 256): результат обратного преобразования

Фурье к входному спектру, дополненному нулями по периметру

(англ. zero padding).

3. Изображение IK (85× 85): результат алгоритма Кельнера.

4. Изображение IK↑ (256×256): интерполированный методом ближайшего

соседа результат алгоритма Кельнера до соответствия размерам рефе-

ренсного изображения I1.

5. Модуль извлечения признаков из изображения I0

(признаковое пространство размерности 64).

6. Модуль извлечения признаков из изображения IK↑

(признаковое пространство размерности 64).

7. Модуль кодирования признаков изображения I0.

8. Модуль кодирования признаков изображения IK↑.

9. Модуль декодирования признаков восстанавливаемого изображения с

агрегацией признаков изображений I0 и IK↑.

10. Модуль реконструкции восстанавливаемого изображения.

Итого, предлагаемый гибридный метод включает в себя модули извлече-

ния признаков, кодировщики, параллельно кодирующие признаки изображений

I0, IK↑ в шести свёрточных остаточных блоках, декодировщик, агрегирующий

соответствующие признаковые описания в трёх свёрточных остаточных блоках,

и модуль реконструкции.

Модули извлечения признаковых описаний изображений I0 и IK↑ состоят

из свёртки с ядром 3 × 3 с последующей пакетной нормализацией (англ. batch

normalization) [54] и активацией ReLU.

В отличие от GAS-CNN используемый остаточный блок в модуле нели-

нейной фильтрации использует пред-активацию [55] (см. Рис. 1.5) и содержит

слои пакетной нормализации, позволяющие более эффективно вести обучение

глубоких нейронных сетей, выступая в роли регуляризатора [56; 57]. Особенно-

стью модуля декодирования является блок агрегации признаковых описаний (см.

Рис. 1.5), реализованный свёрткой с ядром 3×3 предварительно конкатенирован-

ных и нормализованных признаковых описаний изображений I0 и IK↑.

Заключительный модуль реконструкции воплощён в виде двух последо-

вательных свёрточных слоёв с ядрами 3 × 3, первый из которых осуществляет
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промежуточное проецирование признаковых описаний размерности 64 на под-

пространство размерности 16, а второй отображает полученный тензор в целевое

цветовое пространство.

Обучение предлагаемого гибридного метода осуществлялось с приме-

нением численного метода итеративной оптимизации Adam, предложенного

в работе [51]. Данный алгоритм представляет собой подход стохастической

оптимизации, который сочетает преимущества методов моментов и адаптив-

ного изменения темпа обучения (англ. learning rate). Алгоритм осуществляет

адаптацию величины шага обучения каждого параметра модели индивидуаль-

но посредством использования оценок первых и вторых моментов градиентов

целевой функции с коэффициентами, соответственно, β1=0.9, β2=0.999.

Гибридный метод был обучен на графическом ускорителе GPU NVIDIA

GeForce RTX 2080 Ti по пакету (англ. batch) из 20 случайно вырезанных и ауг-

ментированных вращениями, на углы кратные 90°, и отражениями фрагментов

(англ. patch) размера 48 × 48 с полиномиальным уменьшением темпа обучения,

начиная с 10−4.

В качестве функции потерь использовалась устойчивая к выбросам MAE

(англ. mean average error) [58] с l2 регуляризацией весов (λ = 10−4):

L(θ) =
1

N

N
�

i=1

�

�F(I0i ; θ)− I1i
�

�

1
+ λ · ∥θ∥22 → min

θ∈Θ
, (1.17)

где I0i – входное изображение с осцилляциями Гиббса; I1i – референсное изобра-

жение без артефактов; F – гибридный метод с параметрами θ; λ – коэффициент

регуляризации.

Таблица 1 –– Средние значения PSNR, полной вариации и времени выполнения

методов улучшения качества изображений МРТ головного мозга на тестовом на-

боре данных из 2617 изображений.
Метод PSNR (дБ) ↑ TV Время (с) ↓
I0 20.70 659.68 –
I1 – 601.75 –
Алгоритм Кельнера 21.68 540.18 0.23
GAS-CNN 29.46 620.09 1.03
DGAS9-CNN 29.57 611.25 0.68

Объединение метода глубокого обучения и классического математическо-

го метода в разработанном гибридном методе проявляется в улучшении каче-

ства обработки как визуально в более точном восстановлении деталей снимка
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Рисунок 1.6 –– Сравнение разработанного гибридного метода DGAS9-CNN улуч-

шения качества изображенийМРТ головного мозга с нейронной сетьюGAS-CNN.

(а) – референсные изображения без артефактов, (б) – изображения с осцилля-

циями Гиббса, (в) – результаты нейронной сети GAS-CNN, (г) – результаты

гибридного метода DGAS9-CNN.

(см. Рис. 1.6), так и по метрике оценки качества изображений PSNR (см. Таб-

лицу 1) и величине полной вариации TV, оценивающей степень оставшихся

осцилляций. Для численного сравнения (см. Таблицу 1) разработанного метода

с алгоритмом Кельнера изображения были приведены к размеру изображений

IK . Полная вариация изображений, обработанных гибридным методом, наиболее

близка к полной вариации референсных изображений I1, в то время как алгоритм

Кельнера, являясь самым быстрым, существенно размывает изображения, зани-

жая значение полной вариации. Наконец, время выполнения гибридного метода

DGAS9-CNN на центральном процессоре Intel(R) Core(TM) i7-8700 в полтора раза

меньше времени выполнения свёрточной нейронной сетиGAS-CNN при сопоста-

вимом и даже лучшем качестве.
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1.4 Эксперименты и результаты

Предлагаемый гибридный метод подавления осцилляций Гиббса на изоб-

ражениях магнитно-резонансной томографии головного мозга был обучен и

протестирован на наборе данных IXI [36].

Датасет IXI представляет собой общедоступный мультимодальный меди-

цинский набор данных, содержащий около 600 высококачественных МРТ-сканов

здоровых пациентов, полученных на томографах Philips и GE Healthcare с маг-

нитной индукцией 1.5Т и 3Т. В состав датасета входит 581 объём (англ. volume)

T1-взвешенных изображений, 578 объёмов T2-взвешенных изображений и 578

объёмов PD-изображений, сохранённых в формате NIFTI.

При формировании набора данных были выполнены следующие шаги:

1. Определено пересечение всех модальностей, в результате чего отобрано

577 объёмов, содержащих все три модальности (T1, T2 и PD).

2. Произведено разделение на три выборки:

– первые 400 объёмов для создания обучающей выборки,

– следующие 100 объёмов составили тестовую выборку,

– оставшиеся данные вошли в валидационную выборку.

Подготовка изображений к обработке включала в себя следующие шаги:

1. Конверсия NIFTI в NumPy массивы.

2. Удаление 25 крайних срезов с каждого конца объёмов.

3. Отбор каждого десятого среза для формирования пар изображений

(с артефактами и без артефактов).

4. Нормализация интенсивностей.

5. В результате сформированы:

– обучающая выборка из 10473 пар изображений,

– валидационная выборка из 2016 пар изображений,

– тестовая выборка из 2617 пар изображений.

Протокол генерации изображений с артефактами Гиббса:

1. Загрузка очередного изображения.

2. Применение прямого преобразования Фурье.

3. Обрезка центральной 1/9 области частотного спектра.

4. Применение обратного преобразования Фурье.
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Рисунок 1.7 –– Динамика средних значений PSNR на валидационном наборе

данных из 2016 изображений в зависимости от эпохи. Оценка влияния вспомога-

тельных признаковых описаний алгоритма Кельнера на качество предлагаемого

гибридного метода DGAS9-CNN.

Рисунок 1.8 –– Средние значения PSNR по тестовому набору данных из 2617

изображений. Оценка влияния вспомогательных признаковых описаний алгорит-

ма Кельнера на качество предлагаемого гибридного метода DGAS9-CNN.

Для доказательства того, что вспомогательные признаки от предварительно

обработанного алгоритмом Кельнера входного изображения оказывают положи-

тельное влияние на обобщающую способность предлагаемого гибридного метода

DGAS9-CNN, были дополнительно обучены следующие вариации предлагаемой

архитектуры:

– GAS6-CNN – архитектура, полностью повторяющая предлагаемую,

однако без использования признаковых описаний IK↑;

– DGAS9-CNN – архитектура, полностью повторяющая предлагаемую, но

с пропущенной обработкой изображения алгоритмом Кельнера.
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Анализ результатов обучения выше указанных методов (см. Рис. 1.7 и Рис. 1.8) де-

монстрирует, что нейронная сеть GAS6-CNN теряет обобщающую способность

на тестовом наборе данных на 0.5 дБ по сравнению с базовой GAS-CNN. В то

же время добавление к GAS6-CNN дополнительных признаков, от обработан-

ных алгоритмом Кельнера изображений, приводит к предлагаемой гибридной

сети DGAS9-CNN и возвращает обобщающую способность на уровень нейрон-

ной сети GAS-CNN и даже превосходит её на 0.2 дБ, причём последняя имеет

в 3.5 раза большее число свёрточных остаточных блоков в нелинейном отобра-

жении. Важно также заметить, что сама по себе обработка алгоритмом Кельнера

существенна, так как метод DGAS9-CNN, в котором алгоритм Кельнера пропу-

щен, демонстрирует схожие сGAS6-CNN результаты.Представленная столбчатая

диаграмма свидетельствует, что гибридный метод DGAS9-CNN показывает наи-

высшее качество реконструкции со значением PSNR 32.27 дБ.

1.5 Выводы

Проведенное исследование методов повышения качества изображений

магнитно-резонансной томографии позволяет заключить, что гибридный метод

DGAS9-CNN демонстрирует наилучшую эффективность в подавлении арте-

фактов.

Действительно, DGAS9-CNN в полтора раза быстрее базовой нейронной се-

ти GAS-CNN и при этом обеспечивает лучшие показатели используемых метрик

оценки качества изображений (см. Таблицу 1). Таблица 1 показывает, что клас-

сический метод Кельнера, существенно подавляя осцилляции Гиббса, приводит к

чрезмерно низкому среднему значению полной вариации (меньше референсного

значения) и, соответственно, к потере диагностически значимых деталей сним-

ков, а также к низкому среднему значению PSNR. В то же время, разработанный

гибридный метод DGAS9-CNN, объединяющий классический метод поиска оп-

тимальных субпиксельных сдвигов и свёрточную нейронную сеть GAS-CNN,

предлагает полную вариацию наиболее близкую к референсным изображениям и

наибольшую среднюю величину PSNR на тестовом наборе данных IXI из 2617

изображений.
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Глава 2. Нейронные операторы в обработке медицинских изображений

Нейронные операторы – это класс глубоких нейронных сетей, обучаемых по

результатам численных расчётов классическими математическими методами и,

соответственно, способные аппроксимировать нелинейные отображения между

пространствами A → U , в том числе между функциональными:

F : A×Θ → U , (2.1)

или, в эквивалентной записи:

Fθ : A → U , (2.2)

где A – входное пространство; U – целевое пространство; Θ – параметры.

В конечномерных пространствах нейронные операторы обобщают по по-

строению нейросетевые модели в смысле инвариантности к различным дискре-

тизациям входных данных, сохраняя идею параметризации сложных нелинейных

отображений. Так, полносвязные сети можно рассматривать как частный слу-

чай нейронных операторов на арифметических пространствах, а свёрточные сети

– как дискретный аналог интегральных операторов с разностными ядрами. Эта

обобщающая концепция позволяет создавать новые методы, устойчивые к пере-

дискретизации, что является фундаментальным требованием при решении ряда

задач обработки изображений.

Архитектура нейронного оператора обычно имеет вид ансамбля из нейрон-

ных модулей:

F : Q ◦ ΦL ◦ ΦL−1 ◦ ... ◦ Φ1 ◦ P, (2.3)

где P – модуль извлечения признаков (кодировщик); Q – модуль реконструкции

(декодировщик); Φl – очередной блок модуля нелинейной фильтрации.

Различные архитектуры блоков Φl задают ключевые архитектуры нейрон-

ных операторов:

– нейронный оператор Фурье [22],

– сети Колмогорова-Арнольда [59; 60],

– DeepONet [61],

– сети неявного представления [62; 63].
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Пусть, например, нас интересует отображение, определяющее некоторый

рентгеновский снимок грудной клетки в оттенках серого, иными словами отоб-

ражение компакта D арифметического пространства R2 в компакт цветового

пространства (в качестве D ⊂ R2 обычно выступает двумерный единичный куб

[0, 1]2). Зададим и сравним три конечномерных нейронных оператора в форме

(2.3), аппроксимирующих это отображение, выбрав в качестве P : R2 → R128 и

Q: R128 → R линейные преобразования, а в качестве Φl: R128 → R128 – три вари-

анта нелинейных преобразований, отличающихся только функциями активации,

а именно: ReLU, функции Габора, синусы.

Проведём обучение заданных нейронных операторов:

– FReLU
θ : R2 → R,

– FWIRE
θ [63]: R2 → R,

– FSIREN
θ [62]: R2 → R, –

на наборе данных D = {(xi, I(xi))}
N
i=1, где I(xi) ∈ R – значение интенсивности

пикселя в оттенках серого, отвечающего очередной координате xi ∈ R2 на изоб-

ражении I , заданном в области D. Тогда функция потерь примет вид:

L(θ) =
1

N

N
�

i=1

∥Fθ(xi)− I(xi)∥
2 → min

θ∈Θ
. (2.4)

Минимизация рассматриваемого функционала осуществляется с применением

стандартных численных методов оптимизации первого порядка. В качестве базо-

вого подхода используется стохастический градиентный спуск [50]. Для ускоре-

ния сходимости и повышения устойчивости процесса оптимизации применяются

современные модификации метода, в частности, алгоритм Adam [51], сочета-

ющий преимущества адаптивной оценки моментов градиента и инерционности

обновления параметров.

Динамика обучения трёх заданных конечномерных нейронных операторов

приведена на Рис. 2.1. Архитектуры нейронных операторов отличаются только

выбранной нелинейностью. Используется 2 блока в модуле нелинейного отобра-

жения. Набор данных D состоит из 2048 пар, в которых точки xi получены из

равномерного целочисленного распределения.

Визуально качество реконструкции рентгеновского снимка грудной клет-

ки нейронными операторами с различными нелинейностями можно оценить на

Рис. 2.2. Важно, что рассматриваемые нейронные операторы по построению спо-

собны параллельно обрабатывать произвольное число точек, варьируя размер
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пакета (англ. batch size). Так, в данном случае (см. Рис. 2.2), для восстановления

изображения размера 224 × 224, не ограничивая общности, пакет точек состо-

ял из равномерной пиксельной сетки из 50176 точек, однако вывод доступен на

произвольной дискретизации, а также градиент и лапласиан такого отображения,

применяя аппарат автоматического дифференцирования.

Рисунок 2.1 ––Мониторинг качества реконструкции изображения рентгеновского

снимка грудной клетки размера 224 × 224 тремя сравниваемыми нейронны-

ми операторами, отличающимися видом нелинейности: ReLU, функции Габора

(WIRE [63]), синусы (SIREN [62]).

Результаты демонстрируют, что выбор нелинейности оказывает критиче-

ское влияние на качество реконструкции. Периодические функции активации

намного лучше подходят для представления сложных естественных сигналов в

медицинской визуализации. Количественные оценки подтверждают, что исполь-

зование периодических активаций позволяет достичь улучшения PSNR на 2-3 дБ.

Эти результаты имеют важное мотивирующее значение для разработки новых ме-

тодов на основе нейронных операторов.

Недостатком конечномерных нейронных операторов является их переобу-

чение под конкретное изображение. Этот же недостаток свойственен подходу

физически-информированных нейронных сетей (англ. physics-informed neural

networks, PINNs) [64], где для каждого уравнения конкретное решение u(x) ищет-

ся, обучая нейронную сеть отображению из координат x в значения решения

u(x). Так, например, если в уравнении Пуассона мы изменим правую часть или

начальное условие, то процесс обучения придётся начинать сначала. Частично

разрешить этот недостаток возможно с помощью добавления дополнительного
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Рисунок 2.2 –– Примеры восстановления изображения рентгеновского снимка

грудной клетки размера 224 × 224 тремя нейронными операторами, отлича-

ющимися видом нелинейности: ReLU, функции Габора (WIRE [63]), синусы

(SIREN [62]). I – референсное изображение из набора данных PneumoniaMNIST

[https://medmnist.com/].

кодировщика [65], предоставляющего алгоритму признаки с информацией о ре-

конструируемом изображении, однако более комплексное решение заключается

в построении нейронных операторов, действующих непосредственно в функцио-

нальных пространствах [22]. Для перехода в функциональные пространства нам

понадобятся некоторые факты анализа [66].

Рассмотрим изображение I как функцию, заданную на пиксельной сетке

(равномерной дискретизации двумерного единичного куба [0, 1]2) и принимаю-

щую конечное число значений. Действительно, если значения пикселей изобра-

жения закодированы восемью битами, то они принимают конечный набор целых

значений от 0 до 255, если шестнадцатью, то от 0 до 65535 и так далее. Иными

словами, перед нами оказывается линейная комбинация индикаторов.Множество

функций, принимающих лишь конечное число значений, как известно, всюду
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плотно в банаховом пространстве суммируемых функций L1. То есть, с одной

стороны, изображение – этофункция из пространстваL1(D;RdI), заданная на ком-

пакте D ⊂ Rd и принимающая значения из RdI . С другой стороны, часто бывает

удобно рассматривать изображение как функцию с интегрируемым квадратом из

гильбертова пространства L2(D;RdI) ⊆ L1(D;RdI). Таким образом, в общем слу-

чае, нейронные операторы в бесконечномерных функциональных пространствах

аппроксимируют нелинейные отображения между банаховыми пространствами:

Fθ : Lp → Lq.

Используя фундаментальное свойство всюду плотной вложенности непре-

рывных функцийC в пространствах Lp, мы получаем доступ к широкому спектру

теорем аппроксимации, позволяющих рассматривать различные полные систе-

мы функций в C (а значит, и в Lp) в качестве потенциальных архитектурных

решений блока модуля нелинейной фильтрации. В частности, из данной теоре-

тической базы следует возможность использования ортогональных полиномов

(Лежандра, Чебышева), применимость тригонометрических систем Фурье для

аппроксимации периодических компонент сигнала и эффективность вейвлет-

разложений при работе с локальными особенностями медицинских изображений.

Самым известным примером полной системы функций в Lp является совокуп-

ность: 1, x, x2, .... Полнота этой системы следует из теоремы Вейерштрасса о

равномерном приближении непрерывной функции I(x) на сегменте последова-

тельностью многочленов Pn(x) и из всюду плотности C в Lp. Причём в качестве

таких многочленов выступают свёртки целевой функции I(x) с дельта-образной

функциональной последовательностью ядер Qn(x):
� 1

0 I(t)Qn(t− x)dt, где Qn(x)

задаётся, например, как cn(1 − x2)n, n ∈ N.

Данная глава посвящена исследованию нейронных операторов улучше-

ния качества изображений магнитно-резонансной томографии головного мозга,

а также сегментации опухолей на ультразвуковых, гистологических и колоноско-

пических изображениях.
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2.1 Нейронный оператор Фурье аппроксимации математических методов,
используемых для повышения качества изображений магнитно-резонансной

томографии на произвольном разрешении

Нейронный оператор Фурье (англ. Fourier neural operator, FNO) [22] – это

модель глубокого обучения, предназначенная для аппроксимации нелинейных

операторов в бесконечномерных функциональных пространствах и обучаемая

по результатам численных расчётов классическими математическими методами.

Данный подход обеспечивает устойчивость к изменению разрешения входных

данных по построению. В основе FNO (см. Рис. 2.3) лежит сочетание спектраль-

ных и линейных преобразований.

Рисунок 2.3 –– Архитектура нейронного оператора Фурье. I0 – входное изображе-

ние, требующее улучшения качества, Î – изображение, обработанное нейронным

оператором Фурье,F – прямое преобразование Фурье,F−1 – обратное преобра-

зованиеФурье,Rθ – параметризованный ядром оператор обрезки высоких частот,

W – линейное преобразование, встроенное в пространственную связь (англ. skip

connection), σ – нелинейность (например, ReLU).

Блок Φl модуля нелинейной фильтрации FNO имеет следующий вид:

Φl(vl−1)(x) = σ(Wlvl−1(x) + F
−1(Rθl · F (vl−1))(x)), (2.5)

где F – прямое преобразование Фурье; F−1 – обратное преобразование Фурье;

Rθl – параметризованный ядром оператор обрезки высоких частот, сохраняющий

лишь низкие частоты |r| < rmax; Wl – линейное преобразование; σ – нелиней-

ность (например, ReLU).
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Нейронный оператор Фурье был предложен для решения уравнений в част-

ных производных на равномерной сетке произвольного масштаба, где в сравнении

с традиционными свёрточными нейронными сетями продемонстрировал боль-

шую эффективность. Так, нейронный оператор Фурье успешно применяется для

решения задачи переноса тепла и задач машинного обучения [67].

Архитектура нейронного оператора Фурье во многом мотивирована общим

видом решения краевой задачи для линейного обыкновенного дифференциально-

го уравнения второго порядка. Рассмотрим такую краевую задачу, предполагая,

что выполнена редукция к однородным краевым условиям:

a0(x)u
′′(x) + a1(x)u

′(x) + a2(x)u(x) = f1(x), 0 ⩽ x ⩽ 1, (2.6)

α1u
′(0) + β1u(0) = 0,α2u

′(1) + β2u(1) = 0, (2.7)

где функции ai(x) ∈ C[0, 1], i = 0,1,2, f1(x) ∈ C[0, 1] и постоянные α1,α2,β1,β2

заданы, причём a0(x) ̸= 0, а постоянные такие, что α2
i + β2

i > 0. Почленно разде-

лим уравнение (2.6) на a0(x), а затем умножим на p(x) = exp(
� x

0
a1(s)
a0(s)

ds). Выделяя

полную производную, уравнение (2.6) сводится к операторному виду:

L u = f, 0 ⩽ x ⩽ 1, (2.8)

L =
d

dx
(p(x)

d

dx
)− q(x), (2.9)

где p(x) > 0; q(x) = −p(x)a2(x)
a0(x)

; f(x) = p(x)f1(x)
a0(x)

;L – оператор Штурма-Лиувилля.

Известно [68], что если однородная краевая задача имеет только нулевое

решение, то решение краевой задачи (2.8) с граничными условиями (2.7) суще-

ствует и единственно и задаётся формулой:

u(x) =

� 1

0

G(x, ξ)f(ξ)dξ, 0 ⩽ x ⩽ 1, (2.10)

где G(x, ξ) – функция Грина, то есть функция, определённая и непрерывная в

квадрате [0, 1]×[0, 1], удовлетворяющая однородному уравнениюLG = 0 и одно-

родным краевым условиям по x, а также дважды непрерывно дифференцируемая

по переменной x на множестве [0, ξ)∪(ξ, 0] для ∀ξ ∈ (0, 1) с частной производной

при x = ξ такой, что Gx(ξ + 0, ξ) − Gx(ξ − 0, ξ) = 1
p(x) . В физике G(x, ξ) опи-

сывает поле в точке x, созданное точечным источником в ξ, например, потенциал

точечного заряда в электростатике.
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Можно показать [68], что формула (2.10) даёт решение также и в случае

нелинейной краевой задачи:

u′′(x) + a2u(x) = F (x, u(x)), 0 ⩽ x ⩽ 1, (2.11)

u(0) = u(1) = 0, (2.12)

принимая вид:

u(x) =

� 1

0

G(x, ξ)F (ξ, u(ξ))dξ, 0 ⩽ x ⩽ 1. (2.13)

Рассматривая уравнение (2.13) как интегральное уравнение в паре банаховых про-

странств, например, C[0, 1], применим метод последовательных приближений:

vl(x) =

� 1

0

G(x, ξ)F (ξ, vl−1(ξ))dξ, 0 ⩽ x ⩽ 1, (2.14)

который даст в пределе {vl(x)}∞l=1 единственное решение (неподвижную точку),

если интегральный оператор есть сжимающее отображение.

Общий вид поиска решения методом последовательных приближений

(2.14) является ключом к последовательной архитектуре нейронного оператора

(2.3), а вид интегрального преобразования (2.14) – к архитектуре блока (2.5)

модуля нелинейной фильтрации. Действительно, предположив, что функция

Грина имеет вид разностного ядра, то есть G(x, ξ) = G(x − ξ), интеграл (2.14)

определяет ни что иное как свёртку, которая сводится к перемножению соответ-

ствующих Фурье-образов признакового описания и ядра оператораRθl, оставляя

лишь несколько низких частот. Обрезкой высоких частот достигается устойчи-

вость, во-первых, к входному разрешению, во-вторых, к шуму в признаковом

пространстве, а также учёт глобальных закономерностей через низкочастот-

ные моды. Пространственная связь, с линейным преобразованием Wl, снижает

риск затухания градиента [55] в ходе обучения. Остаётся заметить, что если

оператор L трансляционно инвариантен, то есть если L имеет постоянные

коэффициенты, то функция Грина, действительно, может быть выбрана в виде

конволюционного оператора.

Решая аналитически дифференциальные уравнения в частных производ-

ных второго порядка, например, параболические (уравнение теплопроводности)

или гиперболические (волновое уравнение), используется метод Фурье (метод

разделения переменных), применяя который задача сводится вновь к решению
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обыкновенных дифференциальных уравнений второго порядка, в частности к ре-

шению задачи на собственные значения с оператором Штурма-Лиувилля (2.9).

Таким образом, нейронный оператор Фурье параметризует функцию Гри-

на в неявном, спектральном, виде в ядрах операторов {Rθl}
L
l=1. Архитектура

нейронного оператора Фурье мотивирована общим видом решения линейной кра-

евой задачи для дифференциального уравнения второго порядка, однако ввиду

обобщающей способности методов машинного обучения и будучи обучаемым ис-

ключительно на данных (англ. data-driven) численных расчётов классическими

математическими методами, FNO позволяет искать решения также и нелинейных

дифференциальных уравнений со сложными граничными условиями в привыч-

ном виде (2.10).Так, сильными сторонами нейронного оператораФурье являются:

универсальность, вычислительная эффективность и обобщаемость на произволь-

ные разрешения без необходимости повторного обучения или тонкой настройки.

Применим нейронный оператор Фурье для улучшения качества изображе-

ний магнитно-резонансной томографии головного мозга на произвольном разре-

шении. МРТ является одним из наиболее распространённых и информативных

методов, позволяющих получить детализированные изображения внутренних

структур организма. Однако качество изображений МРТ может варьироваться в

зависимости от множества факторов, таких как параметры сканирования, движе-

ние пациента и шумы, возникающие в процессе получения данных. Типичными

дефектами на таких изображениях являются осцилляции Гиббса и шум. В ка-

честве аппроксимируемой классической модели, используемой для улучшения

качества изображений, выберем модель анизотропной (нелинейной) диффузии

Перона-Малика [69], которая сглаживает слабые градиенты (шум, мелкие осцил-

ляции), сохраняя сильные (резкие контуры):

∂I

∂t
= div(c(x, t) ·∇I), (2.15)

I(x, 0) = I0(x),
∂I(x, t)

∂n

�

�

�

�

x∈∂Ω

= 0, (2.16)

где I(x, t) – изображение на итерации t; c(x, t) – коэффициент диффузии; ∇I –

градиент изображения; div – оператор дивергенции; ∂Ω – контуры изображения; n

– нормаль. Коэффициент диффузии выбирается так, чтобы уменьшать диффузию

в областях с большим градиентом:

c(|∇I|) =
1

1 + (∇I
k
)2

(2.17)
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или альтернативный вариант, используемый в исследовании:

c(|∇I|) = e−(∇I
k
)2, (2.18)

где k – параметр, управляющий чувствительностью к контурам.

Для генерации набора данных воспользуемся моделью аддитивного гаус-

совского шума. В рамках данной модели наблюдаемое изображение I0 форми-

руется как сумма референсного изображения I1 и статистически независимой

случайной помехи η:

I0(x) = η(x) + F
−1(R · F (I1))(x), (2.19)

где I1 – референсное изображение высокого разрешения 255× 255 из набора дан-

ных IXI1; I0 – изображение с артефактами Гиббса низкого разрешения 145× 145

и аддитивным гауссовским шумом η ∼ N (0,σ2) с σ = 0.01; F – прямое

преобразование Фурье;F−1 – обратное преобразование Фурье;R – оператор об-

резки высоких частот, сохраняющий лишь центральные 25 % низких частот, см.

Рис. 2.4.

Рисунок 2.4 –– Генерация изображения магнитно-резонансной томографии го-

ловного мозга с осцилляциями Гиббса и аддитивным гауссовским шумом. (а) –

референсное изображение I1 высокого разрешения 255× 255, (б) –Фурье-спектр

изображения I1, (в) – результат обрезки высоких частот операторомR, (г) – изоб-

ражение I0 низкого разрешения 145× 145, требующее улучшения качества, (д) –

остаточный кадр |I0 − I1|, демонстрирующий артефакты на снимке.

1http://brain-development.org/ixi-dataset/
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Нейронный оператор Фурье в данном случае аппроксимирует нелинейное

отображение в функциональном пространстве L2([0, 1]
2;R) в себя, соответствен-

но, начального условия I0 в результат трёх итераций дифференциальной модели

анизотропной диффузии (2.15) с временным шагом Δt = 0.1 и параметром чув-

ствительности к контурам k = 0.1. Используется 4 блока Φl в модуле нелинейной

фильтрации (см. Рис. 2.3). Размерность признакового пространства равна 64. Па-

раметризованные ядрами операторы обрезки высоких частот {Rθl}
4
l=1 сохраняют

низкие частоты в окне 32 × 32, отбрасывая остальные.

Обучение велось на графическом ускорителе GPU NVIDIA RTX A6000

на случайных пакетах (англ. batch) из 20 изображений, минимизируя среднюю

квадратичную ошибку численным методом оптимизацииAdam [51] с темпом обу-

чения (англ. learning rate) 10−3 в течение 100 эпох. Adam, будучи адаптивным

численным методом оптимизации, автоматически адаптирует темп обучения для

каждого параметра модели, что важно для устойчивого обучения методов, опери-

рующих спектральными представлениями, например, FNO, градиенты которого

могут иметь разный порядок в разных частотных компонентах.

Качество обработки изображений МРТ головного мозга нейронным опе-

ратором Фурье можно проанализировать на Рис. 2.5 и визуально, и численно.

Заметим, что полная вариация в данном случае не используется в качестве ре-

гуляризирующей компоненты функции потерь, а применяется как показатель

присутствия осцилляций Гиббса на изображениях. Осцилляции Гиббса, проявля-

ющиеся в виде высокочастотных колебаний вблизи резких контуров, приводят к

локальному росту градиентов, что повышает TV. Полная вариация чувствительна

и к другим факторам, поэтому интерпретация требует осторожности и дополни-

тельного контроля метриками оценки качества изображений, например, PSNR и

SSIM. Так, в сравнении с классическим алгоритмом Кельнера [30], существенно

размывающим изображение, что численно отражается в низком значении полной

вариации, нейронный оператор Фурье повышает качество реконструкции тонких

деталей снимка (см. Рис. 2.5), приближая значение TV к референсному, одновре-

менно демонстрируя рост показателей PSNR и SSIM (см. Рис. 2.6).

Нейронный оператор Фурье по построению, благодаря операторуRθ, обоб-

щаем на равномерные сетки произвольного масштаба. Так, будучи обученным

на масштабе ×1.0, FNO демонстрирует лучшую обобщающую способность на

прочие масштабы, чем другие алгоритмы (см. Рис. 2.6). Более того, нейрон-

ный оператор Фурье проявляет регуляризирующее свойство, приближая значения
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полной вариации на всех рассматриваемых разрешениях к референсным, при этом

повторяя значения PSNR и SSIMмодели анизотропной диффузииПерона-Малика

(см. Рис. 2.6), на численных расчётах которой он обучался.

Рисунок 2.5 –– Обработка изображения МРТ головного мозга нейронным опе-

ратором Фурье и классическим методом Кельнера. (а) – входное изображение с

осцилляциями Гиббса (отмечены жёлтыми стрелками) и шумом, (б) – результат

обработки алгоритмом Кельнера, (в) – результат обработки нейронным опера-

тором Фурье, аппроксимирующим решение уравнения анизотропной диффузии,

использованном в модели Перона-Малика.

Рисунок 2.6 –– Средние значения TV, PSNR, SSIM методов улучшения качества

изображений МРТ головного мозга по тестовому набору данных IXI из 2617

изображений. Оценка устойчивости методов к изменению входного разреше-

ния и регуляризирующей способности нейронного оператора Фурье, обученного

аппроксимации решения уравнения анизотропной диффузии, использованном в

модели Перона-Малика на масштабе ×1.0. Масштаб ×1.0 соответствует равно-

мерной пиксельной сетке 145 × 145. Остальные масштабы получены линейной

интерполяцией.
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2.2 Проекционные сети Колмогорова-Арнольда для повышения качества
изображений магнитно-резонансной томографии и сегментации

ультразвуковых, гистологических и колоноскопических изображений

В данном разделе главы рассматривается разработанный гибридный ме-

тод анализа и обработки медицинских изображений, объединяющий свёрточную

нейронную сеть с недавно предложенными сетями Колмогорова-Арнольда (англ.

Kolmogorov-Arnold networks, KANs) [59], адаптированными в диссертационной

работе для задач обработки изображений.

Сети Колмогорова-Арнольда представляют перспективную альтернативу

многослойным персептронам (англ. multi-layer perceptrons, MLPs) и мотивиро-

ваны одноимённой теоремой [70] из анализа действительного переменного и

теории приближений, которая утверждает, что многомерную непрерывную функ-

цию можно записать в виде конечной композиции одномерных непрерывных

функций и бинарной операции сложения:

f(x) = f(x1, ..., xn) =
2n+1
�

j=1

ζj(
n

�

i=1

φji(xi)), (2.20)

где φji: [0, 1] → R и ζj:R → R – одномерные непрерывные функцииКолмогорова-

Арнольда.

Подобно теоремеЦыбенко [71], утверждающей всюду плотность множества

искусственных нейронных сетей с одним скрытым слоем и сигмоидной функцией

активации в пространстве непрерывных функций:

∀ε > 0 ∃M > 0 : ∃{αj,wj, bj}
M
j=1 : |

M
�

j=1

αjφ(w
T
j x+ bj)− f(x)| < ε, (2.21)

φ(x) =
1

1 + e−x
, (2.22)

теорема Колмогорова-Арнольда (2.20) утверждает, что нейронные сети с 2n + 1

нейронами в скрытом слое и одномерными непрерывными функциями актива-

ции, сколь угодно точно аппроксимируют непрерывные функции n-переменных

на компакте. Важно заметить, что в теореме Цыбенко ничего не сказано о числе

нейронов в скрытом слое, а сигмоидная функция активации является глобальной

для всех нейронов, в то время как теорема Колмогорова-Арнольда задаёт кон-

кретное число нейронов в скрытом слое, равное 2n + 1, а функции активации
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определяются индивидуально для каждого нейрона. В каком-то смысле, Колмого-

ров иАрнольд показали, что единственная истинная функция многих переменных

– это сложение, поскольку все другие функции можно записать с использованием

функций одной переменной и сложения.

Оборотной стороной теоремы Колмогорова-Арнольда является отсутствие

эффективного алгоритма для нахождения одномерных функций φji и ζj , а так-

же отсутствие гарантий их гладкости. Действительно, на практике функции

Колмогорова-Арнольда могут оказаться, например, фрактальными и, соответ-

ственно, не обучаемыми стандартными алгоритмами [50]. Так, известным приме-

ром непрерывной функции, нигде не имеющей производной, является функция

Вейерштрасса, заданная на всей вещественной прямой единым выражением:

φ(x) =
∞
�

k=0

bkcos(akπx), (2.23)

где a – произвольное нечётное число, не равное единице, а b – положительное чис-

ло, меньшее единицы. Функция была предложена Карлом Вейерштрассом в 1872

году как контрпример к интуитивному представлению о том, что непрерывные

функции должны быть дифференцируемыми «почти везде». Этот функциональ-

ный ряд мажорируется сходящимся числовым рядом
�∞

k=0 b
k, поэтому функция

φ(x) определена и непрерывна при всех вещественных x. Тем не менее, эта функ-

ция не имеет производной по крайней мере при ab > 3
2π + 1. Это связано

с сильными осцилляциями на всех масштабах. График функции Вейерштрасса

обладает самоподобием и является фракталом. Функция Вейерштрасса сыграла

ключевую роль в развитии анализа, показав, что непрерывность не гаранти-

рует гладкость. Позже были построены другие примеры, например, функция

Ван дер Вардена.

Из-за подобной возможной патологической природы одномерных функций

φji и ζj теорема Колмогорова-Арнольда не использовалась в машинном обу-

чении, считаясь теоретически обоснованной, но практически бесполезной [72]

вплоть до 2024-го года [59]. В работе [59] была предложена глубокая нейронная

сеть (2.24), состоящая из слоёв Колмогорова-Арнольда (2.26). Гладкость функ-

ций Колмогорова-Арнольда была обеспечена их представлением в виде линейных

комбинаций дифференцируемых базисных функций – B-сплайнов, при этом, по-

добно многослойным персептронам, глубина сети была обобщена с исходных

двух слоёв до L, а ширина с исходных 2n+ 1 нейронов в скрытом слое до произ-

вольных m, где L и m – гиперпараметры сети, требующие настройки.
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Итак, сеть Колмогорова-Арнольда задаётся следующим образом:

KAN(x) = (ΦL ◦ ΦL−1 ◦ ... ◦ Φ1)(x), (2.24)

где {Φl}
L
l=1 – слои Колмогорова-Арнольда, вычисляющие значение очередного

нейрона как:

xl,j =
n

�

i=1

φl,ji(xl−1,i) (2.25)
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, (2.26)

где φl,ji – функции Колмогорова-Арнольда (2.20) (см. Рис. 2.7).

Рисунок 2.7 –– Схема вычисления очередного нейрона xl,j слоем Φl сети

Колмогорова-Арнольда.

Определение сети KAN схоже с многослойным персептроном:

MLP (x) = (WL ◦ σ ◦WL−1 ◦ ... ◦ σ ◦W1)(x), (2.27)

где {Wl}
L
l=1 – линейные слои, вычисляющие значение очередного нейрона как:

xl,j =
n

�

i=1

ωl,jixl−1,i (2.28)
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, (2.29)

где ωl,ji – веса (2.21), связывающие нейроны на l-ом и (l − 1)-ом слоях.
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Рисунок 2.8 –– Схема вычисления очередного нейрона xl,j слоем Φl сети

Колмогорова-Арнольда через представление функций Колмогорова-Арнольда в

виде линейных комбинаций дифференцируемых базисных функций {ψk}
r
k=1 с ко-

эффициентами θl,jik, формирующими матрицу Θl ∈ Rm×n×r весов l-го слоя, где

m – число нейронов в l-ом слое, n – число нейронов в (l − 1)-ом слое, r – число

базисных функций.

Необходимость применения градиентного спуска при обучении метода

накладывает ограничение дифференцируемости на представление функций

Колмогорова-Арнольда, так что на практике они строятся в виде линейной ком-

бинации B-сплайнов [59] или других дифференцируемых базисных функций [73]

{ψk}
r
k=1 (см. Рис. 2.8):

xl,j =
n

�

i=1

r
�

k=1

θl,jikψk(xl−1,i), (2.30)

где коэффициенты θl,jik образуют матрицу весов Θl ∈ Rm×n×r очередного слоя.

В качестве {ψk}
r
k=1 обычно выбирают первые r функций некоторой полной

системы в пространстве непрерывных функций, например, первые r полино-
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мов Чебышева [74] или r функций Эрмита. Причём выбор функций Эрмита

для анализа сигналов не случаен [75]. При исследовании и решении оператор-

ных уравнений математической физики (запишем формально такое уравнение

как Az = u), большую информацию, соответствующую физике изучаемых яв-

лений, содержат собственные функции оператора A (или оператора A∗A в случае

несамосопряжённости оператора) для рассматриваемого функционального про-

странства. Это и обуславливает использование функций Эрмита, являющихся

собственными функциями преобразования Фурье в L2, в методах обработки и

анализа сигналов, во многих случаях основанных на использовании аппарата пре-

образования Фурье.

Несмотря на аппроксимационные свойства сетей Колмогорова-Арнольда в

задачах многомерной аппроксимации, их прямое применение к обработке изоб-

ражений имеет фундаментальные ограничения. Ключевая проблема заключается

в том, что сети Колмогорова-Арнольда рассматривают входные данные как ска-

лярные величины, игнорируя двумерную геометрическую структуру, присущую

визуальным данным.

Рисунок 2.9 –– Признаковое описание изображения МРТ головного мозга, состо-

ящее из n функций, значения каждой из которых известны на сетке h× w.

Адаптировать сети Колмогорова-Арнольда под задачи обработки изоб-

ражений возможно разными способами: во-первых, выпрямляя (англ. flatten)

признаковые тензора перед их подачей вKAN [76]; во-вторых, используя свёрточ-

ные версииKAN [77; 78]; в-третьих, и это тот путь, который мы выберем, обобщая

сети Колмогорова-Арнольда на бесконечномерные функциональные простран-

ства. Теорема Колмогорова-Арнольда формулируется (2.20) для непрерывных

функций многих переменных f(x1, ..., xn), xi ∈ R. В этом разделе выдвигается

гипотеза об обобщении исходной теоремы на случай непрерывных функциона-

лов f(χ1, ...,χn), заданных наHn, где каждый χi является элементом гильбертова

пространства H . Хотя на данный момент это обобщение не имеет математиче-

ского доказательства, оно проверено экспериментально на медицинских данных
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различных модальностей, демонстрируя наилучшие результаты на сегодняшний

день. Потенциальная теоретическая справедливость открывает перспективы но-

вым гибридным методам на основе сетей Колмогорова-Арнольда.

Предположим, что если f – непрерывный функционал на Hn, тогда он мо-

жет быть представлен в виде композиции линейных непрерывных функционалов,

непрерывных функций одной переменной и операции сложения:

f(χ1, ...,χn) ⇝
�

j

ζj(
�

i

ϕji(χi)), (2.31)

где H – гильбертово пространство; χi ∈ H; ϕji ∈ H∗ и ζj: R → R.

В отличие от оригинальной сети KAN [59], предлагаемый подход обладает

естественной совместимостью со свёрточными нейронными сетями по построе-

нию, рассматривая каждую двумерную карту признаков как элемент гильбертова

пространства, дискретизированный на пространственной сетке размера h × w

(см. Рис. 2.9). Формирование карты признаков χl,j очередного слоя осуществля-

ется посредством выражения:

χl,j =
n

�

i=1

ϕl,ji(χl−1,i), (2.32)

где ϕl,ji ∈ H∗.

Для построения вычислительно эффективного метода воспользуемся тео-

ремой Рисса о представлении [66]. Устанавливаемый ею изоморфизм между

гильбертовым пространством H и его сопряжённым H∗ позволяет перейти от

элементов сопряжённого пространства ϕl,ji к их представителям ϕl,j(χl−1,i) в

самом пространстве H . Далее эти внутренние функции параметризуются диф-

ференцируемым способом посредством разложения в ряд Фурье по первым r

функциям Эрмита {ψk}
r
k=1. Поскольку функции Эрмита являются собственными

функциями интегрального преобразования Фурье в L2(R), применяемая стра-

тегия спектрального усечения позволяет сохранить наиболее информативные

моды, что соответствует принципу частотной фильтрации в нейронных операто-

рахФурье [22].Таким образом, карта признаков χl,j очередного слоя определяется

следующим выражением:

χl,j =
n

�

i=1

r
�

k=1

⟨ϕl,j(χl−1,i),ψk⟩ψk. (2.33)
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Путём вынесения индекса j за пределы внутренней суммы предложенное

представление естественным образом приводит к свёртке 1 × 1, параметризо-

ванной весами Wl = {ωl,j}
m
j=1, ωl,j ∈ R1×1×n. Такая факторизация позво-

ляет получить итоговую вычислительную формулу слоя функциональной сети

Колмогорова-Арнольда (англ. functional Kolmogorov-Arnold network, FunKAN)

(см. Рис. 2.10):

χl,j =
n

�

i=1

ωl,j

�

r
�

k=1

⟨ϕl(χl−1,i),ψl,k(χl−1,i)⟩ψl,k(χl−1,i)

�

. (2.34)

Рисунок 2.10 –– Cхема слоя функциональной сети Колмогорова-Арнольда.

Рисунок 2.11 –– Архитектура модуля деформации сетки, иллюстрирующая поле

смещений { Δql,x, Δql,y }, сгенерированное обученным остаточным свёрточным

блоком. Предсказанные смещения аддитивно комбинируются с равномерной сет-

кой {qx, qy}, чтобы создать деформированную сетку для вычисления базисных

функций Эрмита.

Вдохновившись современными неявными нейронными сетями [79], вы-

числение базисных функций Эрмита реализовано (2.34) на адаптивной сетке
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с динамической коррекцией координат. Ключевым модулем подхода является

модуль деформации (см. Рис. 2.11). Пространственные координаты модифици-

руются через обучаемое векторное поле смещений Δql = {Δql,x,Δql,y}. Поле

генерируется остаточным блоком [48]. Деформированная сетка вычисляется как

q + Δql, где q = {qx, qy} равномерная сетка.

Таким образом, структура очередного слоя FunKAN (см. Рис. 2.10) опре-

деляется тремя компонентами: тензором обучаемых внутренних функций ϕl ∈

Rn×h×w, множеством базисных функций Эрмита ψl ∈ Rn×r×h×w и матрицей свёр-

точных весов Wl ∈ R1×1×n×m.

Рисунок 2.12 –– FunKAN как многоцелевой метод обработки и анализа медицин-

ских изображений.Обучение обработке входных изображений I0 контролируется

функцией потерь L(I∗, I1) и референсными изображениями I1.

Функциональная сеть Колмогорова-Арнольда применяется в составе архи-

тектуры (см. Рис. 2.12), во-первых, для задач улучшения качества изображений

магнитно-резонансной томографии, во-вторых, для задач сегментации опухолей

на ультразвуковых, гистологических и колоноскопических изображениях.

Для задачи подавления осцилляций Гиббса и аддитивного гауссовского шу-

ма на изображениях МРТ головного мозга (см. Рис. 2.13) была использована

следующая конфигурация:

1. Проецирование: Свёртка 5 × 5, преобразующая входное изображение в

16-мерное пространство признаков.

2. Модуль кодирования: Свёртка 3 × 3, отображающая предварительно

активированные через ReLU признаки в 32-мерное пространство с со-

хранением пространственного разрешения.

3. Модуль нелинейной фильтрации: Последовательность из трёх блоков

FunKAN с пространственными связями в 32-мерном пространстве при-

знаков (n = 32), где каждый блок кодирует спектральное представление

внутренних функций через первые шесть базисных функций Эрмита

(r = 6).
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4. Модуль декодирования: Свёртка 3 × 3, преобразующая предварительно

активированные через ReLU признаки в 16-мерное пространство с со-

хранением пространственного разрешения.

5. Восстановление: Свёртка 1× 1, отображающая предварительно активи-

рованные через ReLU признаки в целевое цветовое пространство.

Метод обучался с учителем с функцией потерь среднеквадратической ошибки:

Lenh =
1

N

N
�

i=1

�

�I∗i − I1i
�

�

2

2
, (2.35)

где N – размер пакета, равный 8.

Рисунок 2.13 –– Обработка изображения МРТ головного мозга гибридным и

классическими методами. (а) – входное изображение с осцилляциями Гиббса

(отмечены жёлтыми стрелками) и шумом, (б) – результат алгоритма Кельнера, (в)

– результат модели Перона-Малика, (г) – результат гибридного метода, осуществ-

ляющего фильтрацию глубоких признаковых описаний функциональной сетью

Колмогорова-Арнольда по первым шести функциям Эрмита.

Для задачи медицинской сегментации опухолей FunKAN была интегриро-

вана в U-образную сегментационную архитектуру:

1. Проецирование: Свёртка 3 × 3, преобразующая входное изображение в

16-мерное пространство признаков.

2. Модуль кодирования: Четыре последовательных остаточных блока в

стиле U-Net [15] с прогрессивным увеличением количества фильтров:

32 (C1)→ 64 (C2)→ 128 (C3)→ 128, где каждый блок уменьшает про-

странственное разрешение вдвое с помощью свёртки 3 × 3 с шагом 2

(англ. strided convolution).
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3. Модуль нелинейной фильтрации: Последовательность из трёх блоков

FunKAN с пространственными связями в 128-мерном пространстве при-

знаков (n = 128), реализующих спектральное кодирование каждой

внутренней функции через первые шесть базисных функций Эрмита

(r = 6).

4. Модуль декодирования: Четыре последовательных остаточных бло-

ка в стиле U-Net с постепенным уменьшением количества фильтров:

128 (C3)→ 64 (C2)→ 32 (C1)→ 16, где каждый блок выполняет ×2

повышение разрешения методом ближайшего соседа с последующей

свёрткой 3 × 3 для уточнения признаков и пространственной связью с

соответствующим блоком кодировщика.

5. Восстановление: Свёртка 1× 1, преобразующая предварительно активи-

рованные через ReLU признаки в вероятности.

Метод также обучался с учителем с помощью взвешенной комбинации

бинарной перекрестной энтропии (англ. binary cross-entropy) и коэффициента Сё-

ренсена (англ. Dice):

Lsegm =
1

N

N
�

i=1

0.1 · CE(I∗i , I
1
i ) +Dice(I∗i , I

1
i ), (2.36)

где N – размер пакета, равный 8.

Использование базисных функций Эрмита обусловлено их свойством

вычислительной локализации, которое следует из их фундаментальной роли

собственных функций интегрального преобразования Фурье [80]. Это свойство

обеспечивает одновременную локализацию в пространственной и частотной

областях, естественное описание локальных особенностей изображений и эф-

фективное представление граничных структур. Количество функций (r = 6)

определено экспериментально, а также проведён сравнительный анализ трёх

базисов: B-сплайны, полиномы Чебышева и функции Эрмита.
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2.3 Эксперименты и результаты

Апробация предложенного проекционного метода с использованием сетей

Колмогорова-Арнольда была проведена на четырёх наборах медицинских изоб-

ражений: один набор данных (IXI) повышения качества изображений магнитно-

резонансной томографии и три набора данных (BUSI, GlaS, CVC-ClinicDB)

сегментации опухолей. Подбор данных осуществлялся с целью проверки устой-

чивости метода к различным типам анатомических структур (неврологическим,

онкологическим, гистологическим и эндоскопическим) и модальностям визуали-

зации (МРТ, ультразвук, гистопатология и колоноскопия).

Экспериментальная платформа была реализована на Python 3.12 с ис-

пользованием фреймворка PyTorch 2.5. Все вычисления выполнялись с полной

точностью (англ. floating-point arithmetic) на графическом ускорителе NVIDIA

RTX A6000. Программный стек включал PyTorch Lightning 2.5.1, CUDA 11.8 и

cuDNN 9. Для обеспечения полной воспроизводимости результатов была реали-

зована фиксация начальных значений генераторов случайных чисел (англ. seed)

и система управления параметрами экспериментов через YAML-конфигурации.

Процесс обучения рассматриваемых методов с нуля (англ. from scratch) до сходи-

мости осуществлялся с применением численного метода стохастической оптими-

зации Adam [51] (β1 = 0.9, β2 = 0.999, ε = 10−8) с ручным планированием темпа

обучения (англ. learning rate) по схеме: 10−4, 5·10−5, 10−5.Для улучшения обобща-

ющей способности использовались следующие методы аугментации: добавление

гауссовского шума (σ = 0.01) для данныхМРТ и случайные отражения, повороты

и транспозиции (вероятность 0.5) для наборов сегментации.

Оценка повышения качества изображений МРТ проводилась по метри-

кам оценки качества изображений PSNR (пиковое отношение сигнал/шум) и TV

(полная вариация). Метрика PSNR количественно оценивает близость восста-

новленного изображения к эталону в среднеквадратичном смысле. Функционал

полной вариации косвенно оценивает наличие артефактов, таких как осцилляции

Гиббса, контролируя гладкость изображения. Для задач сегментации опухолей

применялись IoU, вычисляющий отношение площади пересечения к площади

объединения, и F1, оценивающий баланс между точностью и полнотой метода.

IoU чувствительнее к перекрытию в пикселях, а F1 – к ошибкам классификации.
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Таблица 2 –– Сравнительный анализ модулей нелинейной фильтрации в рамках

одной свёрточной нейронной сети для повышения качества изображений МРТ.

Результаты отражают среднее пиковое отношение сигнал/шум и полную вариа-

цию для 2617 тестовых изображений (145 × 145) из набора данных IXI. I0, I1

обозначают изображения с артефактами и без артефактов соответственно.

Метод
IXI

PSNR (дБ) ↑ TV Gflops ↓ Params (M) ↓

I
0 31.33 1476.55 – –

I
1 – 1255.40 – –

Kellner 31.09 1120.05 – –

MLP 37.96 1145.57 0.19 0.01

KAN 38.10 1161.63 0.12 0.04

ChebyKAN 38.01 1156.56 0.12 0.03

HermiteKAN 38.04 1161.31 0.12 0.03

FunKAN 39.05 1174.86 3.11 2.2

Набор данных IXI [36] представляет собой общедоступную мультимодаль-

ную коллекцию нейровизуализационных данных, включающую примерно 600

высококачественных МРТ сканов здоровых людей, полученных на томографах

Philips и GE Healthcare. Датасет содержит 581 объём T1-взвешенных изображе-

ний, 578 объёмов T2-взвешенных изображений и 578 объёмов PD-изображений,

сохранённых в формате NIFTI – стандартный формат файлов, широко использу-

емый для хранения и обмена данными.

В ходе подготовки данных, для обеспечения согласованности, сначала было

выделено пересечение всех модальностей, в результате чего получено 577 объё-

мов, содержащих полный набор модальностей (T1, T2 и PD). Затем данные были

разделены на три подвыборки: обучающую (первые 400 объёмов), тестовую (сле-

дующие 100 объёмов) и валидационную (оставшиеся 77 объёмов). В итоге были

получены обучающая (10473), валидационная (2016) и тестовая (2617) выборки.

Проведённое количественное сравнение различных архитектур модуля

нелинейной фильтрации (см. Таблицу 2) в рамках единой свёрточной структуры

для улучшения изображений МРТ на наборе данных IXI выявило следующие за-

кономерности. Замена традиционного многослойного перцептрона (MLP) на сеть

Колмогорова-Арнольда (KAN) с последующим переобучением всей сети даёт

незначительное улучшение качества – всего 0.1 дБ по метрике PSNR. Напротив,

предложенная функциональная сеть Колмогорова-Арнольда (FunKAN) демон-

стрирует существенно более высокий прирост качества, превосходя стандартные

сети KAN на 1 дБ. Это преимущество обусловлено способностью FunKAN учи-

тывать геометрические взаимосвязи в визуальных данных по построению.
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Рисунок 2.14 –– Качественное сравнениеKAN и FunKAN в рамках одной свёрточ-

ной нейронной сети. Выделены тонкие анатомические структуры.

Особое значение имеет способность FunKAN сохранять диагностически

важные детали изображений при одновременном эффективном подавлении арте-

фактов, что подтверждается как количественными метриками, так и визуальной

оценкой результатов реконструкции (см. Рис. 2.14). Проведённое качественное

сравнение выявило, что стандартные сети Колмогорова-Арнольда размывают

мелкие структуры, в то время как предложенная функциональная версия се-

тей Колмогорова-Арнольда сохраняет резкие контуры и высокочастотные детали

изображения. Клиническая значимость этих результатов заключается в том, что

размытое изображение может маскировать диагностически важные особенности,

такие как ранние стадии патологических изменений, микроструктурные ано-

малии и тонкие морфологические особенности. Таким образом, предложенный

подход вносит вклад в развитие методов вычислительной диагностики, предлагая

математически обоснованный инструмент для построения точных и интерпрети-

руемых методов повышения качества изображений.

Набор данных BUSI [81] представляет собой общедоступную коллекцию

ультразвуковых изображений молочной железы, предназначенную для задач сег-

ментации опухолей. Он включает 780 двумерных изображений в формате PNG,

полученных от 600 пациенток в возрасте от 25 до 75 лет. Данные разделе-

ны на три категории: 133 изображения без видимых опухолей (нормальные),

437 изображений с доброкачественными образованиями, 210 изображений со

злокачественными опухолями (подтвержденными гистологически). Для экспери-

ментов были отобраны 647 изображений (доброкачественные и злокачественные

случаи), масштабированные до размера 256 × 256 пикселей.
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Таблица 3 –– Сравнение качества методов сегментации в трёх клинически различ-

ных медицинских сценариях. Результаты включают средние значения IoU и F1 со

стандартным отклонением для трёх случайных запусков обучений.

Метод
BUSI GlaS CVC

IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑

U-Net [15] 57.22±4.74 71.91±3.54 86.66±0.91 92.79±0.56 83.79±0.77 91.06±0.47

Att-Unet [31] 55.18±3.61 70.22±2.88 86.84±1.19 92.89±0.65 84.52±0.51 91.46±0.25

U-Net++ [32] 57.41±4.77 72.11±3.90 87.07±0.76 92.96±0.44 84.61±1.47 91.53±0.88

U-NeXt [84] 59.06±1.03 73.08±1.32 84.51±0.37 91.55±0.23 74.83±0.24 85.36±0.17

Rolling-UNet [85] 61.00±0.64 74.67±1.24 86.42±0.96 92.63±0.62 82.87±1.42 90.48±0.83

U-Mamba [86] 61.81±3.24 75.55±3.01 87.01±0.39 93.02±0.24 84.79±0.58 91.63±0.39

UKAGNet [78] 63.45 77.64 87.31 93.23 76.85 86.91

U-KAN [76] 63.38±2.83 76.40±2.90 87.64±0.32 93.37±0.16 85.05±0.53 91.88±0.29

U-FunKAN 68.49±0.62 77.37±0.58 88.02±0.24 93.50±0.12 85.93±0.72 91.42±0.61

Таблица 4 –– Сравнение вычислительной эффективности методов сегментации.

Результаты получены с помощью инструмента THOP Python для профилирования

моделей PyTorch.
Метод Gflops ↓ Params (M) ↓

U-Net [15] 524.2 34.53

Att-Unet [31] 533.1 34.9

U-Net++ [32] 1109 36.6

U-NeXt [84] 4.58 1.47

Rolling-UNet [85] 16.82 1.78

U-Mamba [86] 2087 86.3

U-KAN [76] 14.02 6.35

U-FunKAN 4.35 3.6

Набор данных GlaS [82] является широко используемым специализирован-

ным ресурсом для задач сегментации желёз на гистологических изображениях.

Он включает 165 RGB изображений гистологических препаратов, окрашенных

гематоксилином и эозином (H&E). Все изображения были масштабированы до

разрешения 512×512 пикселей. Снимки в данном наборе данных были получены

с помощью аппаратов Olympus Q160AL и Q165L, в комплекте с видеообрабаты-

вающим устройством Extra II.

Набор данных CVC-ClinicDB [83] предназначен для задач сегментации

полипов на колоноскопических изображениях. Он включает 612 высококаче-

ственных RGB кадров, полученных из 29 видео-последовательностей, которые

характеризуются различными условиями освещения, наличием зеркальных бли-

ков, разнообразием текстур слизистой оболочки. Все изображения были мас-

штабированы до разрешения 256 × 256 пикселей для обеспечения единообразия

обработки.
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Проведённые эксперименты (см. Таблицу 3) демонстрируют, что разрабо-

танный гибридный метод U-FunKAN устанавливает новый стандарт точности

сегментации медицинских изображений различных типов, включая ультразвуко-

вые, гистологические и колоноскопические изображения, обеспечивая также и

вычислительную эффективность (см. Таблицу 4).Особое внимание было уделено

надёжности оценок – все метрики рассчитывались на основе трёх независимых за-

пусков с различными значениями генераторов случайных чисел (50, 100, 150), что

обеспечило воспроизводимость и статистическую достоверность результатов.

Действительно, на трёх медицинских наборах данных метод показал наи-

высшие показатели по метрике IoU, подтверждённые статистически значимыми

результатами, усреднёнными по последним 50 эпохам обучения. По показате-

лю F1 разработанный метод продемонстрировал наилучший результат на набо-

ре данных GlaS, предназначенном для сегментации желёз на гистологических

изображениях, при этом незначительно уступив методу UKAGNet на ультра-

звуковых данных BUSI. В задачах колоноскопической сегментации на данных

CVC-ClinicDB предложенный метод показал несколько меньшие значения F1 по

сравнению с U-KAN.

Наиболее значительный прирост точности продемонстрирован на наборе

данных BUSI. Значение метрики IoU для метода U-FunKAN составило 68.49 %,

что на 5.04–13.31 процентных пункта выше результатов всех сравниваемых

методов. По метрике F1, учитывающей баланс между точностью и полнотой,

U-FunKAN показал результат, сравнимый с наилучшим 77.64 %, и уверенно пре-

взошёл классические и современные аналоги.

На наборе данных GlaS предложенный метод также показал наивысшую

точность, достигнув значения IoU, равного 88.02 %, и значения F1, равного

93.50 %. Преимущество над ближайшими конкурентами U-KAN и UKAGNet яв-

ляется значимым, хотя и менее выраженным, чем на BUSI, что указывает на

высокую эффективность сравниваемых методов на данном типе изображений.

На наборе данных CVC-ClinicDB наблюдается схожая картина: U-FunKAN

демонстрирует наилучший показатель IoU, равный 85.93 %, опережая U-KAN на

0.88 процентных пункта и U-Mamba на 1.14 процентных пункта. По метрике F1

результатU-FunKAN оказался несколько ниже наилучшего значения, показанного

методом U-KAN, однако разница находится в пределах возможной статистиче-

ской погрешности.
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Таблица 5 –– Исследование влияния масштабирования каналов в U-FunKAN на

качество сегментации и эффективность. Приведены наилучшие значения метрик

IoU и F1.
U-FunKAN BUSI

C1 C2 C3 IoU ↑ F1 ↑ Gflops ↓ Params (M) ↓

32 64 128 69.11 77.95 4.35 3.6

64 96 128 69.94 78.42 10.84 4.1

128 160 256 69.49 78.39 40.42 15.7

256 320 512 70.62 79.31 161.43 62.4

Наблюдаемый профиль метрик IoU и F1, сочетающий высокий IoU на

всех трёх наборах данных с относительно сниженной F1-мерой, свидетельству-

ет о специфическом балансе ошибок. Такое соотношение метрик указывает на

минимизацию ложноположительных детекций (что непосредственно отражает-

ся в IoU) в ущерб некоторому росту ложноотрицательных (что учитывается

F1-мерой). Более глубокие версии U-FunKAN позволяют ослабить данный ком-

промисс, демонстрируя лучшие результаты как по IoU, так и по F1 одновременно,

например, на ультразвуковых данных BUSI (см. Таблицу 5).

Ключевое преимущество проекционных сетей Колмогорова-Арнольда

проявляется при анализе вычислительной эффективности (см. Таблицу 4):

U-FunKAN требует в 3 раза меньше операций с плавающей точкой и содержит

на 43 % меньше обучаемых параметров по сравнению с аналогами. Это делает

U-FunKAN практически применимым методом, потенциально адаптируемым для

развертывания на оборудовании с ограниченными ресурсами.

На Рис. 2.15 представлены результаты исследования, оценивающего влия-

ние количества базисных функций Эрмита на качество сегментации. Для обеспе-

чения корректного сравнения все методы обучались с нуля со скоростью обучения

10−4 до сходимости на наборе ультразвуковых данных BUSI. Результаты показы-

вают, что обе метрики, IoU и F1, растут при увеличении числа базисных функций

со значения по умолчанию, равного 6, до 8 и 10.Однако это дополнительное улуч-

шение точности достигается за счёт увеличения времени вывода, что детально

показано на Рис. 2.16. На Рис. 2.16 представлен график, количественно харак-

теризующий вычислительную сложность предложенного метода сегментации в

зависимости от размера используемого функционального базиса. По оси абсцисс

отложено количество базисных функций Эрмита, по оси ординат – медианное

время вывода (англ. inference) на процессоре Intel Core i7-14700HX для одного

изображения из набора данных BUSI, измеренное в миллисекундах.
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Рисунок 2.15 –– Исследование влияния количества базисных функций Эрмита в

U-FunKAN на качество сегментации рака молочной железы на ультразвуковом

наборе данных BUSI. Для каждого эксперимента приведены усреднённые значе-

ния метрик IoU и F1 за последние 50 эпох обучения.

Рисунок 2.16 –– Исследование влияния количества базисных функций Эрмита

в U-FunKAN на скорость вывода (эффективность). Для каждого эксперимента

приведено медианное время вывода на процессоре Intel Core i7-14700HX, усред-

нённое по 100 запускам для входного изображения размером 256× 256 пикселей.
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Рисунок 2.17 –– Качественные результаты работы U-FunKAN для трёх разно-

родных медицинских сценариев. (а) – входные изображения, (б) – референсные

маски, (в) – результаты предлагаемого метода.

Наблюдается нелинейный рост времени обработки с увеличением числа

базисных функций. При переходе от 6 к 8 базисным функциям время вывода

увеличивается в 1.7 раза, а от 8 к 10 – более чем в 2 раза. Начальный уча-

сток графика демонстрирует нетипичное поведение: время вывода при четырёх

функциях Эрмита немного меньше, чем при двух. Данный эффект может быть

объяснён особенностями оптимизации вычислительных процессов в используе-

мых библиотеках. График показывает ключевой компромисс между точностью

метода и его вычислительной эффективностью. Выбор шести функций Эрмита,

принятый по умолчанию, представляет собой точку разумного баланса: время

вывода (43.4 мс, что соответствует частоте обработки 23 кадра в секунду) яв-

ляется приемлемым для задач, не требующих строго реального времени вывода

(англ. real-time inference), при этом обеспечивается удовлетворительное качество

сегментации. Использование десяти функций Эрмита, хотя и дает наивысшую

точность, приводит к почти четырёхкратному увеличению времени вывода, что

может быть неприемлемо для систем, работающих с большими объёмами данных.

Полученная зависимость является критически важной для практической реализа-

ции алгоритма. Она позволяет оценить требования к вычислительным ресурсам

(производительности CPU/GPU) в зависимости от требуемой точности.
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Рисунок 2.18 –– Интерпретируемость слоя FunKAN, обученного на наборе дан-

ных IXI для улучшения качества изображений МРТ. (а) – агрегированный вклад

базисных функций Эрмита по всем обученным внутренним функциям слоя, (б) –

характеристика важности признаков, вычисленная как спектральная энергия, (в)

– визуализация одной из обученных внутренних функций.

На Рис. 2.17 представлены качественные результаты сегментации, полу-

ченные предложенной проекционной сетью, для трёх разнородных медицинских

сценариев: обнаружения рака молочной железы на ультразвуковых снимках, сег-

ментации желёз на гистологических изображениях и сегментации полипов на

изображениях колоноскопии.

С точки зрения интерпретируемости (см. Рис. 2.18), разложение признако-

вых описаний по базису Эрмита по своей сути даёт спектральную характеристику

их сложности. Концентрация спектральной энергии в коэффициентах низкого

порядка Эрмита указывает на гладкость внутренних функций, что, как показы-

вают эксперименты, коррелирует с устойчивыми и обобщаемыми признаками. И

наоборот, значительная энергия в коэффициентах высокого порядка свидетель-

ствует о склонности к переобучению и повышенной уязвимости к атакам [87].
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2.4 Выводы

Результаты демонстрируют, что нейронные операторы, в частности, ней-

ронный операторФурье и проекционные сети Колмогорова-Арнольда, устанавли-

вают новый стандарт в обработке медицинских изображений, обеспечивая баланс

между подавлением артефактов, сохранением диагностически ценной информа-

ции и точностью распознавания анатомических структур. Такие характеристики

делают предложенные гибридные методы особенно ценными для клинической

практики, где точность визуализации напрямую влияет на качество диагности-

ки. Важно, что достижение конкурентоспособных показателей сопровождается

существенным снижением требований к аппаратному обеспечению. Это делает

нейронные операторы перспективным решением для интеграции в системы ме-

дицинской диагностики.



60

Глава 3.Методы выбора масштаба анализа гистологических изображений
предобученными нейронными сетями

Значительные технологические достижения привели к появлению иннова-

ционных методов цифровой визуализации в гистопатологии – разделе патологи-

ческой анатомии, изучающем структурные и функциональные изменения тканей

при различных заболеваниях под микроскопом для диагностики, классификации

и понимания природы заболеваний.

Поиск решений известных проблем световой микроскопии таких как:

затраты на подготовку и хранение препаратов, потеря качества препаратов со

временем, сложность организации дистанционной работы, – вызвал стремитель-

ную эволюцию взаимодействия с гистологическими препаратами, и за последние

100 лет был осуществлён переход от световой микроскопии к цифровой [88; 89].

Рисунок 3.1 –– Полнослайдовое гистологическое изобра-

жение стенки желудка из набора данных PATH-DT-MSU

[https://imaging.cs.msu.ru/en/research/histology/path-dt-msu]. Снимок сделан

на оптическом увеличении ×40 с разрешением 65809× 99600 пикселей.
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На данный момент одним из передовых решений является сбор и анализ

гистологических данных в виде полнослайдовых изображений (англ. whole slide

imaging, WSI) [90; 91] (см. Рис. 3.1), представляющих цифровую копию всего

гистологического или цитологического стекла, полученную с помощью специ-

альных сканеров. В отличие от традиционной микроскопии, где врач изучает

препарат через окуляр, технологияWSI позволяет анализировать весь образец на

компьютере с возможностью масштабирования и автоматизации обработки.

Рисунок 3.2 ––Визуализация многомасштабной структуры полнослайдового изоб-

ражения, включающего несколько уровней оптического увеличения.

В большинстве случаев полнослайдовое изображение – это многомасштаб-

ная пирамида из нескольких уровней (см. Рис. 3.2). Нижний уровень содержит

изображение образца в максимальном оптическом увеличении. Очередной уро-

вень пирамиды хранит последовательно уменьшенную копию нулевого уровня,

вплоть до небольшого обзорного снимка. Каждый уровень, включая нулевой,

представляет собой композицию, составленную из небольших фрагментов квад-

ратной формы, видимые границы между которыми отсутствуют. Такая структура

представления обеспечивает высокую скорость доступа к любому участку пол-

нослайдового изображения на желаемом оптическом увеличении (масштабе).

Хранятся [92] полнослайдовые изображения в различных форматах, например,

в форматах SVS и BigTIFF.

Несмотря на перспективность технологииWSI, её внедрение в гистопатоло-

гическую практику сталкивается с рядом ограничений и проблем [93]. Основным

недостатком WSI по сравнению со световой микроскопией является критиче-

ская необходимость в компьютерной автоматизированной обработке, без которой

практическое использование полнослайдовых изображений в ручном режиме

может оказаться неэффективным, дорогостоящим и требующим неприемлемо

больших временных затрат. По сравнению с традиционной микроскопией мо-

гут также возникать артефакты сканирования, такие как размытие, нерезкость и
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блики (особенно при автоматическом фокусировании). В некоторых странах, в

частности в США, полнослайдовые цифровые микроскопические исследования

ограничены в использовании для первичной диагностики онкологии и применя-

ются лишь для вторичного подтверждения диагноза. Тем не менее, технология

WSI продолжает набирать популярность [94] среди патологоанатомов в диагно-

стических, образовательных и исследовательских целях.

В настоящее время в области компьютерной обработки гистологических

изображений большое распространение приобрели нейронные сети [95]. Так,

примером успешного применения свёрточных сетей для классификации полно-

слайдовых изображений мозга является работа [96], в которой точность клас-

сификации нейронными сетями ResNet50 [97] и VGG19 [98] достигла 90 %.

Эффективность таких методов во многом зависит от выбора масштаба обработки

гистологических срезов, по построению характеризующихся высокой вариатив-

ностью размеров структур и разрешений. Слишком мелкий масштаб может

привести к потере контекстной информации, а слишком крупный – к избыточ-

ной детализации и повышению шума. В то же время, свёрточные нейронные сети

известны низкой устойчивостью к изменению масштаба входных данных [38].

Рисунок 3.3 ––Участок полнослайдового гистологического изображения в различ-

ных оптических увеличениях (масштабах).

Таким образом, задача выбора масштаба (см. Рис. 3.3) анализа и обработ-

ки гистологических изображений, оптимального для выбранной предобученной

нейронной сети, важна как для автоматизации анализа полнослайдовых изобра-

жений, так и для разработки комплексных систем [99].
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3.1 Нейронная классификация полнослайдовых изображений стенок
желудка

Классификация полнослайдовых изображений стенок желудка проводится

с учётом гистологических, патологических и молекулярных особенностей тканей.

На практике решаются следующие задачи классификации стенок желудка.

1. По гистологическим признакам.

– Нормальная ткань:

– слизистая оболочка (эпителий, железы, ямки),

– подслизистая основа,

– мышечный слой,

– серозная оболочка.

– Воспалительные изменения:

– хронический гастрит,

– острый гастрит,

– лимфоцитарный/эозинофильный гастрит.

– Предраковые изменения:

– атрофия слизистой,

– кишечная метаплазия (полная/неполная),

– дисплазия (низкая/высокая степень).

2. По онкологическим патологиям.

– Аденокарцинома желудка:

– кишечный тип,

– диффузный тип,

– смешанный тип.

– Редкие опухоли:

– нейроэндокринные (карциноиды),

– лимфомы (MALT-лимфома),

– мезенхимальные опухоли (GIST).

– Предраковые изменения:

– атрофия слизистой,

– кишечная метаплазия (полная/неполная),

– дисплазия (низкая/высокая степень).
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Высокое разрешение полнослайдовых изображений затрудняет примене-

ние методов глубокого обучения напрямую, подобно классификации обычных

изображений, к примеру, нейронными сетями ResNet50 [97], VGG19 [98],

InceptionNet [100], DenseNet121 [101]. Поэтому типичный нейросетевой клас-

сификатор опухолей желудка осуществляет так называемую по-патчевую

классификацию, в ходе которой очередное полнослайдовое изображение раз-

деляется на небольшие квадратные фрагменты, каждому из которых нейронный

классификатор присваивает метку соответствующего класса. Затем полученный

набор классифицированных фрагментов склеивается в единое изображение (см.

Рис. 3.4). С вычислительной точки зрения, эта процедура представляет собой

алгоритм скользящего окна. Таким образом, получается грубая карта сегмента-

ции, точность которой можно увеличить, уменьшая сдвиг окна (англ. stride) и

усредняя предсказания. Данная методика, по сути, решает задачу семантической

сегментации опосредованно, через классификацию отдельных участков.

Рисунок 3.4 –– Результат классификации полнослайдового гистологического изоб-

ражения стенки желудка свёрточной нейронной сетьюDenseNet121.Увеличенной

яркостью выделены области, размеченные специалистами.
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В данном разделе будет представлен разработанный метод автоматиче-

ского выбора масштаба классификации полнослайдовых изображений стенок

желудка предобученным нейронным классификатором. В качестве такого ней-

ронного классификатора выбрана свёрточная нейронная сеть DenseNet121 [101],

предобученная классификации пяти типов тканей, имеющихся в наборе данных

PATH-DT-MSU (WSS1, WSS2):

– участки подслизистой основы (АТ),

– фон изображения (BG),

– неизменённые участки собственной пластинки слизистой оболочки (LP),

– неизменённые участки мышечной пластинки слизистой оболочки (MM),

– участки аденокарциномы желудка (TUM).

Обучающая и валидационная выборки для предобучения нейронного классифи-

катора были сформированы из фрагментов (224 × 224) полнослайдовых изобра-

жений на масштабе ×20.

В Таблице 6 приведены значения точности классификации на оптическом

увеличении ×20, на котором велось обучение, на меньшем увеличении – ×10 и

на большем увеличении – ×40. При выборе масштаба ×10, отличного от опти-

мального для выбранного метода, наблюдается значительное снижение точности

распознавания класса LP (на 20.7 %) и, как следствие, падение общей точности

классификации (на 3 %). А при выборе масштаба ×40, отличного от оптимально-

го, падение точности классификации ещё более существенно и наблюдается уже

на четырёх классах: AT (на 5.6%), LP (на 67.4%),MM (на 8.4%) иTUM (на 3.5%),

– что приводит к падению общей точности классификации на 17 %.

Таблица 6 –– Точность (%) классификации фрагментов (224×224) полнослайдово-

го изображения стенки желудка в зависимости от выбранного масштаба входных

данных. Acc – общая точность, Acc@AT – точность распознавания участков под-

слизистой основы, Acc@BG – точность распознавания фона, Acc@LP – точность

распознавания неизменённых участков собственной пластинки слизистой обо-

лочки, Acc@MM – точность распознавания неизменённых участков мышечной

пластинки слизистой оболочки, Acc@TUM – точность распознавания участков

аденокарциномы.
Оптическое увеличение Acc ↑ Acc@AT ↑ Acc@BG ↑ Acc@LP ↑ Acc@MM ↑ Acc@TUM ↑

× 10 73.01 87.80 99.84 61.74 17.47 98.19

× 20 76.04 84.42 99.58 82.41 15.74 98.04

× 40 59.04 78.85 99.46 15.01 7.35 94.52
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3.2 Метод автоматического определения масштаба обработки
полнослайдовых изображений на основе уверенности нейронного

классификатора

На практике, в отличие от рассмотренного примера, информация об опти-

мальном масштабе классификации для выбранной нейронной сети может быть

недоступна, или же может быть утеряна информация об оптическом увеличении,

на котором было получено анализируемое полнослайдовое изображение.

Нейронный классификатор можно разделить на два структурных модуля:

– модуль нелинейного отображения Φ фрагментов ε× ε,

– модуль разделяющих гиперплоскостейW ∈ Rd×C .

Решение о выборе масштаба обработки полнослайдового изображения

предлагается принимать, анализируя расстояния до разделяющих гиперплоско-

стей нейронного классификатора при различных масштабах входных данных

(см. Алгоритм 1). Метод позволяет количественно оценить уверенность метода

в классификации при разных уровнях увеличения и выбрать масштаб, обеспечи-

вающий наиболее достоверное предсказание.

На вход предлагаемому методу подаются полнослайдовое изображение,

предобученный нейронный классификатор, предназначенный для анализа фраг-

ментов гистологических изображений, а также набор масштабов S = {s1, ..., sN},

среди которых осуществляется выбор масштаба обработки, где s1 соответствует

наименьшему оптическому увеличению, обеспечивающему обзор на уровне тка-

ни, а sN – наибольшему, позволяющему детально анализировать структуры.

На полнослайдовом изображении IWSI случайным образом выбирается P

точек X = {x1, ..., xP}. Вокруг очередной точки xk на каждом рассматрива-

емом масштабе si вырезается квадратный фрагмент U ε(xk(si)) формы ε × ε.

Соответствующие признаковые описания {Φ(U ε(xk(si)); θ)}
N
i=1 многомасштаб-

ной окрестности точки xk образуют матрицу объектов-признаков Fk ∈ RN×d.

Обработка очередной точки xk завершается вычислением матрицы расстояний

Dk ∈ RN×C от многомасштабных фрагментов до каждой из C разделяющих ги-

перплоскостей нейронного классификатора.Масштаб, отвечающий наибольшему

расстоянию, сохраняется в множество предлагаемых масштабов Ŝ , и алгоритм

переходит к анализу многомасштабных фрагментов вокруг следующей точки

множества X .
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Вход : IWSI – полнослайдовое изображение.

Φ(·; θ) – модуль нелинейного отображения.

W ∈ Rd×C – матрица разделяющих гиперплоскостей.

1 X ← {xk}
P
k=1: xk ∈ IWSI

2 S ← {si}
N
i=1: si ∈ Q+

3 Ŝ ← {}

4 for k ← 1 to P do

5 Fk ← {}

6 for i ← 1 to N do

7 Fk ← Fk ∪ Φ(U ε(xk(si)); θ)

8 Fk ∈ RN×d ← Concat(Fk)

9 Dk ∈ RN×C ← Fk·W
∥W∥

10 Ŝ ← Ŝ∪ argmax(max(Dk, axis=-1))

11 ŝ ← Mo[Ŝ]

Выход: ŝ – предлагаемый масштаб обработки изображения IWSI .
Алгоритм 1 — Определение масштаба обработки полнослайдового гистоло-

гического изображения.

Решение о масштабе обработки полнослайдового изображения IWSI прини-

мается по моде, то есть голосованием, по множеству предлагаемых масштабов Ŝ .

Разработанный метод мотивирован геометрическим смыслом линейного

классификатора ⟨ω, x⟩. Геометрически линейный классификатор соответствует

гиперплоскости с вектором нормали ω. Величина скалярного произведения

⟨ω, x⟩ пропорциональна расстоянию от гиперплоскости до точки x, а его знак

показывает, с какой стороны от гиперплоскости находится данная точка. Таким

образом, линейный классификатор разделяет пространство на две части, и при

этом одно полупространство он относит к положительному классу, а другое – к

отрицательному. Нетрудно показать [102], что расстояние от точки x до разделя-

ющей гиперплоскости ω вычисляется как |⟨ω,x⟩|
∥ω∥ . В нейронные классификаторы

встроены C разделяющих гиперплоскостей, так что вектор ω превращается в

матрицуW , столбцы которой задают нормали этих гиперплоскостей, а скалярное

произведение – в матричное умножение.
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3.3 Эксперименты и результаты

Представленный метод выбора масштаба анализа и обработки гистологи-

ческих изображений предобученными нейронными сетями реализован на языке

программирования Python 3 с использованием библиотеки для работы с полно-

слайдовыми изображениями OpenSlide.

Метод протестирован на задаче классификации полнослайдовых гисто-

логических изображений стенок желудка из набора данных PATH-DT-MSU

(WSS1, WSS2) предобученной на масштабе ×20 свёрточной нейронной сетью

DenseNet121. PATH-DT-MSU является специализированным набором данных

для задач автоматического анализа гистопатологических изображений, в частно-

сти, для выявления и классификации опухолей. Он содержит аннотированные

изображения срезов тканей, полученные с помощью микроскопии, с разметкой

различных типов опухолей. Датасет включает данные различного разрешения,

что позволяет использовать его для алгоритмов компьютерного зрения как на

уровне отдельных клеток, так и на уровне тканевых структур. PATH-DT-MSU

также содержит клинико-морфологические метаданные, что делает его полез-

ным для исследований на стыке цифровой патологии и предиктивной аналитики.

Этот набор данных был создан в Московском государственном университете

имени М.В. Ломоносова и находит применение в разработке методов глубокого

обучения для поддержки диагностики в нейроонкологии.

Параметры метода (см. Алгоритм 1) в данном случае принимают

следующие значения: d = 1024, ε = 224, C = 5. Множество S =

{×10,×12,×14,×17,×20,×25,×30,×35,×43} составлено так, что si+1

si
≈ 1.2,

i = 1..N − 1.

Демонстрация применения метода к пяти различным многомасштабным

фрагментам, относящихся к пяти различным классам (AT, BG, LP, MM, TUM)

и вырезанных из полнослайдового изображения (Рис. 3.1), представлены на

Рис. 3.5. Для всех пяти фрагментов наибольший отступ (англ. margin) порож-

дается классификатором именно от гиперплоскости, отвечающей референсному

классу. Причём наблюдается заметная разница между величинами отступов от

референсной гиперплоскости и от всех остальных. Низкая устойчивость распо-

знавания класса LP к изменению масштаба, отмеченная в Таблице 6, находит своё

отражение и на Рис. 3.5 (в): достигая экстремума на масштабе ×17 (близком к
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истинному масштабу ×20, на котором велось обучение), кривая расстояний до

референсной гиперплоскости существенно сближается с кривой расстояний до

гиперплоскости TUM при обработке фрагмента на большем или меньшем мас-

штабе в сравнении с ×17.

Рисунок 3.5 –– Результаты применения метода к различным многомасштабным

фрагментам полнослайдового изображения. На графиках показаны зависимости

расстояний (ρ) до разделяющих гиперплоскостей в зависимости от масштаба (s)

обрабатываемого фрагмента. (а) – фрагмент класса AT, (б) – фрагмент класса BG,

(в) – фрагмент класса LP, (г) – фрагмент классаMM, (д) – фрагмент класса TUM.

В зависимости от специфики текстур фрагмента и ширины множества по-

иска варьируется характер представленных на Рис. 3.5 зависимостей:

– выпуклость (Рис. 3.5 (а, в)) – метод способен сделать однозначный вы-

вод о масштабе обработки с высокой уверенностью, ширина множества

S достаточна;

– монотонность (Рис. 3.5 (г, д)) – метод способен выбрать масштаб обра-

ботки, однако следует увеличить ширину множества S;

– почти константность (Рис. 3.5 (б)) – масштабы равнозначны.

На Рис. 3.6 представлена гистограмма по множеству предложенных мас-

штабов Ŝ для 100 случайных фрагментов полнослайдового изображения, разме-

ченных специалистами как LP-участки. Класс LP выбран ввиду особо низкой

устойчивости сети DenseNet121 к распознаванию LP-фрагментов в различных
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Рисунок 3.6 –– Гистограмма по множеству предложенных методом масштабов Ŝ

для 100 случайных фрагментов LP.

масштабах (см. Таблицу 6), а значит высокой актуальности предлагаемого метода

для анализа многомасштабных LP-фрагментов изображения. Топ-3 предлагаемых

масштаба: ×17, ×14 и ×20, соответственно. В доверительный интервал истинно-

го масштаба (×17 ← ×20 → ×25) попало 56 % всех прогнозов из Ŝ . В более

широкий доверительный интервал истинного масштаба (×12 ← ×20 → ×25)

попало более 85 % всех прогнозов.

3.4 Выводы

Данная глава обращает внимание на низкую устойчивость свёрточных

нейронных сетей к изменению масштаба входных данных и предлагает автомати-

ческий метод выбора масштаба обработки, что особенно актуально при анализе

многомасштабных полнослайдовых гистологических изображений.

Условно разделив свёрточную нейронную сеть на два модуля: модуль нели-

нейного отображения и модуль разделяющих гиперплоскостей, – данная глава

представляет разработанный метод выбора масштаба на основе анализа рассто-

яний до разделяющих гиперплоскостей.

Предлагаемый метод протестирован на задаче классификации полнослай-

довых изображений стенок желудка из набора данных PATH-DT-MSU (WSS1,

WSS2) предобученной свёрточной нейронной сетью DenseNet121.
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Глава 4. Программный комплекс гибридных методов анализа и повышения
качества медицинских изображений

Гибридные методы требуют не только разработки новых эффективных

архитектур, но и создания надёжных, гибких инструментов их обучения. Тра-

диционные подходы, основанные на чистом PyTorch, зачастую приводят к

значительному дублированию кода, сложностям в воспроизведении вычисли-

тельных экспериментов и проблемам при масштабировании на распределённые

системы. В данной главе будет представлен разработанный программный

комплекс, реализованный на языке программирования Python на базе высо-

коуровневого фреймворка глубокого обучения PyTorch Lightning, решающий

указанные проблемы и предоставляющий унифицированный гибкий [103] дизайн

инструментария для обучения предлагаемых в диссертации гибридных методов

анализа и обработки медицинских изображений. Это позволяет существенно

сократить объём шаблонного кода и стандартизировать процесс проведения

вычислительных экспериментов.

Дизайн программной системы – это абстрактная концепция. Он касается

общего вида и структуры программы, а также детального вида и структуры каж-

дого модуля, класса и метода. Дизайн можно представить в различных формах,

но окончательным его воплощением является исходный код. В конечном итоге

исходный код и является дизайном.

Хороший дизайн программы – это архитектура и структура кода, которые

делают программное обеспечение удобным для разработки, поддержки, масшта-

бирования и использования. Гибкое проектирование – это процесс, а не разовое

событие. Это постоянное применение определённых паттернов и методик для

улучшения структуры и понятности программы.

К признакам плохого дизайна [104] относят:

1. Жёсткость: дизайн трудно поддаётся изменению.

2. Хрупкость: дизайн легко разрушается.

3. Косность: дизайн трудно использовать повторно.

4. Вязкость: трудно добиться желаемого.

5. Ненужную сложность: избыточное проектирование.

6. Ненужные повторения: чрезмерное использование копирования.

7. Непрозрачность: плохо выраженная цель.
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Дизайн называют жёстким, если единственное изменение провоцирует

целый каскад других изменений в зависимых модулях. Чем больше модулей при-

ходится менять, тем жёстче дизайн.

Дизайн является хрупким, если программа повреждается во многих местах

при внесении единственного изменения. То есть новые проблемы возникают в ча-

стях, не имеющих концептуальной связи с той, что была изменена, а исправление

одних проблем ведёт к появлению новых.

Дизайн называют косным, если он содержит части, которые могли бы ока-

заться полезны в других системах, но усилия и риски, сопряжённые с попыткой

отделить эти части от оригинальной системы, слишком велики.

Вязкость программы проявляется в ситуации, когда внести изменения с

сохранением дизайна оказывается значительно труднее, чем без сохранения.

Говорят, что дизайн обладает ненужной сложностью, если дизайн

засоряется конструкциями, которые никогда не будут востребованы.

Дублирующийся код требует значительных усилий при рефакторинге, ведь

ошибки, обнаруженные в повторяющемся блоке, должны быть исправлены во

всех его копиях. Более того, поскольку повторения немного отличаются друг от

друга, то и исправления будут разными.

Наконец, под непрозрачностью понимают трудность модуля для пони-

мания. Действительность такова, что код, эволюционирующий со временем,

постепенно становится всё более и более непрозрачным. Таким образом, разра-

ботчик должен примерять на себя роль читателя и прилагать сознательные усилия

к рефакторингу кода таким образом, чтобы тот был понятен читателям.

Известно несколько принципов объектно-ориентированного проектирова-

ния, позволяющих избавиться от признаков плохого дизайна и создать наилучший

дизайн для данного набора функций.

1. Принцип единственности обязанности (англ. single-responsibility

principle, SRP) [105].

2. Принцип открытости/закрытости (англ. open/closed principle, OCP) [106].

3. Принцип подстановки Лисков (англ. Liskov substitution principle,

LSP) [107].

4. Принцип инверсии зависимости (англ. dependency-inversion principle,

DIP) [108].

5. Принцип разделения интерфейсов (англ. interface segregation principle,

ISP) [109].
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Данные принципы, сформулированные в работе [110], являются резуль-

татом многолетней эволюции и накопленного опыта в области программной

инженерии. Их создание стало возможным благодаря коллективному интеллек-

туальному вкладу множества практиков и теоретиков. Вместе с тем, слепая

догматическая приверженность даже проверенным постулатам может привести к

негативным последствиям, таким как избыточное усложнение архитектуры, что

противоречит самой цели применения этих правил.

Разработанный программный комплекс для обучения гибридных методов

анализа и повышения качества медицинских изображений опубликован1 на об-

лачной платформе GitHub для хостинга и совместной разработки IT-проектов.

1https://github.com/MaksimPenkin/MedicalKAN
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4.1 Архитектура программного комплекса

Разработанный программный комплекс реализует концепцию разделения

ответственности между компонентами системы, что соответствует принципам

SOLID-программирования. Архитектура системы построена таким образом,

что изменение одной функциональной части не требует модификации других,

что обеспечивает масштабируемость и устойчивость к изменениям требований.

Кроме того, подобная организация кода способствует повторному использованию

компонентов в других исследовательских задачах.

Принцип единственности обязанности, гласящий, что у класса должна быть

только одна причина для изменения, находит отражение в применяемом высоко-

уровневом фреймворке глубокого обучения PyTorch Lightning в разделении задач

между компонентами, а именно:

1. LightningModule – ядро системы, инкапсулирующее:

– архитектуру нейронной сети,

– логику прямого распространения (англ. forward pass),

– алгоритм обучения, валидации и тестирования.

2. LightningDataModule – абстракция, обеспечивающая:

– загрузку и предобработку данных,

– разделение на выборки,

– генерацию пакетов (англ. batch).

3. Callbacks – механизм обратных вызовов для:

– сохранения чекпоинтов,

– мониторинга метрик.

4. Trainer – центральный класс, автоматизирующий:

– распределение обучения по ускорителям (GPU, HPU, TPU, IPU),

– логирование (TensorBoard, Wandb),

– прочую гибкую настройку (максимальное число эпох и т.д.).

За поддержку модульности дополнительно отвечает разработанный

механизм внедрения зависимости (англ. dependency injection, DI), являю-

щийся своеобразной формой инверсии управления (англ. inversion of control,

IoC) [111]. В сложных системах машинного обучения, где эксперименты включа-

ют множество компонентов, жёсткое связывание кода усложняет тестирование,

модификацию и повторное использование. Предлагаемый механизм внедрения
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зависимости решает эти проблемы, позволяя динамически управлять зависимо-

стями между компонентами на основе конфигураций. В полном соответствии с

принципом единственной ответственности объект (например, CommonLitModel,

см. Листинг 4.1) отдаёт заботу о построении требуемых ему зависимостей внеш-

нему, предназначенному для этого общему механизму (см. Листинг 4.2). Так,

объект CommonLitModel делегирует получение доступа к архитектуре метода,

функции потерь и оптимизатору (см. строки 11, 13, 15 Листинга 4.1). Механизм

внедрения зависимости позволяет легче создавать альтернативные реализации,

задавая их, например, в конфигурационных файлах, без внесения изменений в код

объектов. Тем самым способствуя чистому коду, модульности, тестируемости и

значительно упрощая управление сложными вычислительными экспериментами

машинного обучения.

Листинг 4.1: Базовый класс CommonLitModel.

from . import nets

from ..nn import losses, optimizers

from src.utils.torch_utils import split_loss_logs

from lightning import LightningModule

5

class CommonLitModel(LightningModule):

def __init__(self, network, criterion=None, optimizer=None):

super(CommonLitModel, self).__init__()

10

self._model = nets.get(network)

if criterion is not None:

self._criterion = losses.get(criterion)

if optimizer is not None:

15 self._optimizer = optimizers.get(optimizer, partial=True)

def forward(self, x, **kwargs):
if isinstance(x, dict):

try:

20 y_pred = self._model(**x, **kwargs)
except:

y_pred = self._model(x, **kwargs)
elif isinstance(x, (list, tuple)):

try:

25 y_pred = self._model(*x, **kwargs)
except:

y_pred = self._model(x, **kwargs)
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else:

y_pred = self._model(x, **kwargs)
30 return y_pred

def compute_loss(self, y_pred, y):

if isinstance(y, dict):

try:

35 value = self._criterion(y_pred, **y)
except:

value = self._criterion(y_pred, y)

elif isinstance(y, (list, tuple)):

try:

40 value = self._criterion(y_pred, *y)
except:

value = self._criterion(y_pred, y)

else:

value = self._criterion(y_pred, y)

45 return split_loss_logs(value)

def configure_optimizers(self):

return self._optimizer(params=self.parameters())

Листинг 4.2: Реализация механизма внедрения зависимости на примере

src/models.

from lightning import LightningModule

from .base_model import CommonLitModel

from .mri_enhancement_model import MRIEnhancementModel

5 from src.utils.serialization_utils import create_object

def get(identifier, **kwargs):
obj = create_object(identifier,

10 module_objects={

"CommonLitModel": CommonLitModel,

"MRIEnhancementModel": MRIEnhancementModel},

**kwargs)

15 if isinstance(obj, LightningModule):

return obj

raise ValueError(f"Could not interpret model instance: {obj}.")
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Класс CommonLitModel открыт для расширения в соответствии с принци-

пом открытости/закрытости. Так, часто меняющиеся методы, определяющие тре-

нировочный, валидационный и тестовый шаги, реализованы в дочерних классах.

Пример реализации тренировочного шага для обучения методов улучшения каче-

ства изображений магнитно-резонансной томографии приведён в Листинге 4.3.

Важно осознанно применять абстракции только к тем фрагментам программы,

которые часто изменяются. Отказ от преждевременного абстрагирования столь

же важен, как и само абстрагирование.

Листинг 4.3: КлассMRIEnhancementModel, используемый для обучения методов

улучшения качества изображений магнитно-резонансной томографии.

from .base_model import CommonLitModel

class MRIEnhancementModel(CommonLitModel):

5 def __init__(self, *args, **kwargs):
super(MRIEnhancementModel, self).__init__(*args, **kwargs)

def training_step(self, batch, batch_idx):

x, y = batch

10 y_pred = self(x)

loss, logs = self.compute_loss(y_pred, y)

logs = {"train/" + k: v for k, v in logs.items()}

self.log_dict(logs, on_step=True, on_epoch=True)

return loss
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4.2 Технология статического анализа программного кода

Статический анализ кода – это процесс анализа программного обеспечения

без его фактического выполнения. Для Python существует множество инстру-

ментов статического анализа, которые помогают выявлять ошибки, проблемы

дизайна и потенциальные уязвимости.

С помощью статического анализа обычно выявляют:

1. Ключевые признаки необходимости рефакторинга.

2. Потенциальные уязвимости.

3. Устаревшие конструкции.

4. Несоответствие кода стандартам.

5. Потенциальные ошибки.

В рамках разработки данного программного комплекса использовался

современный инструмент Ruff, что позволило обеспечить соответствие кода

стандарту PEP 8, выявить потенциальные логические ошибки и поддерживать

единый стиль написания. Интеграция этого инструмента в процесс разработки

существенно повысила читаемость и поддерживаемость кодовой базы. Традици-

онные линтеры, flake8, pylint и pycodestyle, обладают рядом ограничений, таких

как высокое время выполнения и фрагментированность экосистемы, выраженная

в необходимости использования нескольких инструментов для разных проверок.

Ruff – это современный высокопроизводительный линтер, объединяющий

функциональность множества инструментов в единое решение с минимальными

накладными расходами. Будучи написанным на Rust, Ruff работает от 10 до 100

раз быстрее других линтеров, предлагая низкоуровневую оптимизацию парсин-

га и анализа AST (англ. abstract syntax tree), параллельную обработку файлов и

минимальные зависимости в сравнении с Python-инструментами. Настраивается

Ruff с помощью конфигурационного файла (см. Листинг 4.4).

Листинг 4.4: Пример конфигурационного файла ruff.toml для линтера Ruff.

# Exclude a variety of commonly ignored directories.

exclude = [

".ruff_cache",

".mypy_cache",

5 ".pytest_cache",

".git",

"__pycache__",
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"__init__.py",

"build",

10 "venv",

"*.egg−info",
"*.pyi",
"src/models/nets"]

15 extend−include = ["*.ipynb"]
# extend−select = ["I"] # makes ruff sort imports

# Same as Black.

line−length = 150

20 indent−width = 4

# Assume Python 3.11

target−version = "py311"

25 [lint]

# Enable Pyflakes (`F`) and a subset of the pycodestyle (`E`) codes.

select = ["E4", "E7", "E9", "F"]

ignore = ["E401"]

30 # Allow fix for all enabled rules (when `−−fix`) is provided.

fixable = ["ALL"]

unfixable = []

# Allow unused variables when underscore−prefixed.

35 dummy−variable−rgx = "^(_+|(_+[a−zA−Z0−9_]*[a−zA−Z0−9]+?))$"

# Enable per−file disabling rules.

[lint.per−file−ignores]

"src/models/base_model.py" = ["E722"]

40

[format]

# Like Black, use double quotes for strings.

quote−style = "double"

# Like Black, indent with spaces, rather than tabs.

45 indent−style = "space"

# Like Black, respect magic trailing commas.

skip−magic−trailing−comma = false

# Like Black, automatically detect the appropriate line ending.

line−ending = "auto"
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Использование Ruff на протяжении всего жизненного цикла разработки

программного комплекса позволило достичь нескольких ключевых целей, напря-

мую влияющих на эффективность научно-исследовательской деятельности. Ruff,

выступая в роли формализованного арбитра, обеспечил строгое и автоматическое

соблюдение единых стандартов оформления, минимизируя риск фрагментации

стиля кода, упрощая чтение, анализ и модификацию.Наиболее значимым вкладом

Ruff оказалось прямое выявление потенциальных источников ошибок на этапе

написания кода, до запуска вычислительных экспериментов. В контексте числен-

ного моделирования, где выполнение одного расчёта может занимать часы или

сутки, выявление подобной ошибки на стадии кодирования сэкономило значи-

тельные вычислительные и временные ресурсы.

К недостаткам статических анализаторов кода можно отнести ложные сра-

батывания. Например, при реализации специализированных численных алго-

ритмов разработчик может сознательно отступать от общих правил в пользу

производительности или точности.Анализатор, не обладающий знаниями о пред-

метной области, может интерпретировать такие решения как нарушения.



81

4.3 Система конфигурации вычислительных экспериментов

Современные исследования в области машинного обучения и глубоких

нейронных сетей, используемых в гибридных методах, требуют проведения

многочисленных вычислительных экспериментов с различными архитектурами,

гиперпараметрами и наборами данных. Для обеспечения воспроизводимости,

управляемости и масштабируемости вычислительных экспериментов необходи-

ма система конфигурации. Двумя основными подходами здесь являются импе-

ративный интерфейс командной строки (англ. command line interface, CLI) и

декларативная конфигурация, например, с помощью JSON или YAML файлов.

Несмотря на преимущества классического интерфейса командной строки,

такие как оперативность внесения изменений и удобную интеграцию с bash-

циклами поиска оптимальных параметров, недостатки перевешивают, когда речь

идёт о разработке больших программных комплексов, требующих длительной

поддержки. Плоская структура параметров быстро приводит к информационной

перегрузке интерфейса, а также к экспоненциальному росту числа флагов при

увеличении сложности эксперимента. Следствием плоской структуры является

отсутствие семантической группировки, смешение разноуровневых параметров

и невозможность передачи сложных структур.

Использование декларативной системы конфигурации экспериментов на

основе конфигурационных файлов разрешает описанные выше проблемы, обес-

печивая научную строгость (воспроизводимость) и инженерную надёжность

(разделение логики и конфигурации). Более того, конфигурационные файлы слу-

жат не только для настройки эксперимента, но и для его документирования.

Действительно, они позволяют добавлять комментарии и метаданные, связывают

результаты обучения с конкретными параметрами и упрощают сравнение экспе-

риментов за счёт чёткой фиксации изменений. Примером современной мощной

декларативной системы конфигурации экспериментов является Hydra. Однако

она не лишена недостатков: во-первых, при большом количестве параметров

конфигурационные файлы становятся громоздкими и сложными для навигации,

во-вторых, Hydra не позволяет использовать динамические вычисления внутри

конфигурационныхфайлов, которые часто оказываются удобными, например, для

задания переменных окружения.
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В данном разделе описывается разработанная гибридная система конфигу-

рации вычислительных экспериментов, задающая очередной эксперимент YAML

файлом (см. Листинг 4.5), причём настройка наиболее часто изменяемых пара-

метров вынесена в CLI (см. Листинг 4.6).

Листинг 4.5: Корневая конфигурация одного из вычислительных экспериментов

улучшения качества изображений магнитно-резонансной томографии головного

мозга. Задано обучение метода из семейства нейронных операторов на гра-

фическом ускорителе GPU на наборе данных IXI. Вложенные спецификации

гиперпараметров выбранного метода и загрузчиков данных скрыты в соответству-

ющих YAML файлах и добаляются динамически во время загрузки.

trainer: !include "./trainers/gpu.yaml"

model: !include "./models/neuraloperator/model.yaml"

data:

train_dataloaders:

5 − !include "./data/ixi/train_dataloader.yaml"

val_dataloaders:

− !include "./data/ixi/val_dataloader.yaml"

Листинг 4.6: Пример использования системы конфигурации экспериментов.

python train.py −−config ./configs/train.yaml −−limit_train_batches 0.1

Стандарт оформления корневого конфигурационного файла отображён в

Листинге 4.5 и включает в себя следующие обязательные секции: trainer, model,

data, – задающие конфигурации процесса обучения, метода и набора данных для

обучения, валидации и тестирования.

Директива !include не включена в синтаксисYAML и реализована отдель-

но. Использование этой директивы позволяет повысить читаемость объёмных

конфигурационных файлов, скрывая спецификации некоторых логических ком-

понент в отдельных YAML файлах, а также способствует повторному использо-

ванию общих параметров в разных экспериментах и управлению версионностью

отдельных блоков. Так, например, конфигурация метода повышения качества

изображений магнитно-резонансной томографии включает в себя несколько логи-

ческих компонент (см.Листинг 4.7): версия архитектуры нейронной сети задаётся

в поле network, спецификация функции потерь в поле criterion и оптими-

затора в поле optimizer. Эти логические компоненты естественным образом

образуют словарь именованных параметров config, который подаётся иници-

ализатору целевого объекта в фабрике объектов через kwargs (см. строчку 13
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Листинга 4.8). Задание целевого объекта осуществляется по двум полям: назва-

ние модуля module, содержащего целевой класс, и, собственно, имя целевого

класса class_name. Если название модуля не указано явно, то фабрика объек-

тов будет искать целевой класс в реестре module_objects. Фабрика объектов

поддерживает частичное (англ. partial) создание объектов, фиксируя часть аргу-

ментов и сохраняя возможность передачи оставшихся аргументов в дальнейшем.

Такой сценарий реализуется при создании оптимизатора (см. Листинг 4.1).

Листинг 4.7: Конфигурация метода улучшения качества изображений магнитно-

резонансной томографии.

module: src.models

class_name: MRIEnhancementModel

config:

network: !include "./nets/funkan.yaml"

5 criterion: !include "../../losses/mse.yaml"

optimizer: !include "../../optimizers/adam.yaml"

Листинг 4.8: Фабрика объектов.

def create_object_from_config(config, module_objects=None,partial=False):

if config is None:

return None

5 cls_module, cls_name, cls_config =

config.get("module"), config["class_name"], config["config"]

if not cls_module:

cls = module_objects[cls_name]

else:

10 cls = getattr(import_module(cls_module), cls_name)

if not partial:

return cls(**cls_config)
else:

15 return functools.partial(cls, **cls_config)

Таким образом, осуществляется десериализация объектов из их иерархического

представления в виде вложенной структуры YAML файлов. Важно отметить, что

имена ключей словаря config заданы не системой конфигурации, как в един-

ственном корневом конфигурационном файле (см. Листинг 4.5), а наследуются

из кода, то есть определяются параметрами инициализатора целевого объекта.
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Это обеспечивает дополнительную гибкость, прозрачность и сохранение един-

ства именования одних и техже сущностей в коде и файлах конфигураций, снижая

когнитивную нагрузку на пользователя.

В рамках диссертационной работы разработанная гибридная система кон-

фигурации экспериментов использовалась для:

– обучения и валидации предлагаемых гибридных методов,

– выбора гиперпараметров через автоматизированные запуски,

– фиксации условий вычислительных экспериментов для последующего

воспроизведения.
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Заключение

Диссертационная работа посвящена разработке гибридных методов обра-

ботки и анализа медицинских изображений различных типов, включая изоб-

ражения магнитно-резонансной томографии, ультразвуковые, гистологические,

полнослайдовые и колоноскопические изображения.

В ходе проведённого исследования полностью достигнута основная цель

работы, разработан комплекс новых гибридных методов и соответствующий про-

граммный инструментарий для проведения вычислительных экспериментов.

Результаты работы заключаются в следующем:

1. Разработан гибридный метод подавления осцилляций Гиббса на изобра-

жениях МРТ головного мозга.

2. Предложен масштабно-инвариантный метод повышения качества изоб-

ражений МРТ.

3. Создан проекционный метод сегментации опухолей на ультразвуковых

изображениях молочной железы, гистологических и колоноскопических

изображениях с использованием сетей Колмогорова-Арнольда.

4. Разработан метод автоматического выбора масштаба классификации

полнослайдовых гистологических изображений.

5. Реализован комплекс проблемно-ориентированных программных

средств, обеспечивающий воспроизводимость вычислительных экс-

периментов.
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