МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Иванов Андрей Александрович

Ковариантные непрерывные функторы в категориях Сотр и Р

1.1.3. Геометрия и топология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Диссертация подготовлена на кафедре общей топологии и геометрии механикоматематического факультета МГУ имени М.В.Ломоносова.

Научные руководители

Комбаров Анатолий Петрович, доктор физикоматематических наук, доцент; Садовничий Юрий Викторович, доктор физикоматематических наук, доцент.

Официальные оппоненты

Геворкян Павел Самвелович, доктор физикоматематических наук, профессор, Московский педагогический государственный университет, Институт математики и информатики, кафедра математического анализа имени академика П.С. Новикова, заведующий кафедрой.

 Фоменко
 Татьяна
 Николаевна, постор
 доктор
 физикоматематических
 наук, поцент, посударственный университет имени М.В.
 Московский ломоносова, дакультет вычислительной математики и кибернетики, кафедра общей математики, профессор.

Щепин Евгений Витальевич, доктор физикоматематических наук, профессор, член-корреспондент РАН, Математический институт им. В.А. Стеклова РАН, отдел геометрии и топологии, главный научный сотрудник.

Защита диссертации состоится «7» ноября 2025 г. в 17 часов 45 минут на заседании диссертационного совета МГУ.011.4 Московского государственного университета имени М.В.Ломоносова по адресу: 119234, Москва, ГСП-1, Ленинские горы, д. 1, Московский государственный университет имени М.В.Ломоносова, механико-математический факультет, аудитория 14-08.

E-mail: dissovet.msu.011.4@math.msu.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на портале: https://dissovet.msu.ru/dissertation/3560.

Автореферат разослан « » октября 2025 г.

Ученый секретарь диссертационного совета МГУ.011.4, кандидат физико-математических наук

В.А. Кибкало

Общая характеристика работы

Актуальность темы и степень её разработанности

Диссертационная работа относится к исследованиям в области общей топологии и теории категорий. В работе исследуются ковариантные функторы в топологических категориях. Несмотря на то, что само понятие категории появилось только в 1945 году в работе 1 С. Эйленберга и С. Маклейна, первыми работами, относящимися к этой тематике, можно считать статьи Л. Вьеториса 2 и Т. Важевского 3 1923 года, посвящённые пространству непустых замкнутых подмножеств в топологическом пространстве X (ехр X). Далее отдельные свойства этого пространства изучались в работах различных топологов, а отправной точкой систематического исследования и применения можно считать работу 4 Майкла 1951 года. После того, как в 1981 году Е.В. Щепин ввёл 5 понятие нормального функтора, действующего в категории Сотр компактов и их непрерывных отображений, операция гиперпространства $\exp(\cdot)$ стала одним из первых нетривиальных примеров подобного функтора, и при дальнейшем развитии теории нормальных функторов неоднократно применялась, в том числе и в диссертационной работе.

Одним из применений этой теории стали обобщения классической теоремы Катетова, доказанной 6 в 1948 году. Согласно этой теореме, если

 $^{^1}$ Eilenberg S., Mac Lane S. General Theory of Natural Equivalences // Transactions of the American Mathematical Society. -1945. - vol. 58. - pp. 231--294.

 ² Vietoris L. Kontinua zweiter Ordnung // Monatshefte für Mathematik und Physik.
 — 1923. — vol. 33. — pp. 49-62.

 $^{^3 \}it{Wazewski}$ T. Sur un continu singulier // Fundamenta Mathematicae. — 1923. — vol. 4. — pp. 214–245.

 $^{^4}$ Michael E. Topologies on spaces of subsets // Transactions of the American Mathematical Society. -1951. - vol. 71. - pp. 152--182.

 $^{^5}$ *Щепин Е. В.* Функторы и несчетные степени компактов // Успехи математических наук. — 1981. — Т. 36, № 3. — С. 3–62.

⁶ Katětov M. Complete normality of Cartesian products // Fundamenta Mathematicae. — 1948. — vol. 35. — pp. 271–274.

куб компакта наследственно нормален, то сам компакт метризуем. Естественным образом возникающий вопрос о том, верно ли это утверждение при замене куба компакта на его квадрат, был решён в следующих работах: во-первых, в 1977 году П. Никош построил⁷ отрицательный пример в предположении аксиомы Мартина и отрицании континуум-гипотезы, в 1993 году он вместе с Г. Грюнхаге построил⁸ другой отрицательный пример, но уже в предположении континуум-гипотезы, и наконец, в 2002 году П. Ларсон и С. Тодорчевич построили⁹ модель теории множеств, в которой из наследственной нормальности квадрата компакта следует метризуемость этого компакта. Таким образом, вопрос о том, верна ли теорема Катетова при замене куба на квадрат, также известный как проблема Катетова, не зависит от аксиом ZFC.

Другим путём по обобщению теоремы Катетова, которым, в частности, посвящена первая глава работы, является замена куба на целый класс возможных пространств, образованных из искомого компакта, а также изменение требования наследственной нормальности на иные. Последнее происходит, в частности, в работе 10 Ф. Зенора 1971 года: он доказал, что из наследственной счётной паракомпактности куба следует метризуемость компакта. Ключевой же для этой темы является работа 11 В.В. Федорчука 1989 года, в которой он применил понятие нормального функтора для следующего обобщения теоремы Катетова: если для нормального функтора \mathcal{F}

⁷ Nyikos P. A compact nonmetrizable space P such that P^2 is completely normal // Topology Proceedings. — 1977. — vol. 2. — pp. 359–364.

⁸ Gruenhage G., Nyikos. P. Normality in X^2 for compact X // Transactions of the American Mathematical Society. — 1993. — vol. 340. — pp. 563–586.

 $^{^9}Larson~pp.,~Todorčevi\'c~S.$ Katětov's problem // Transactions of the American Mathematical Society. — 2002. — vol. 354. — pp. 1783–1791.

¹⁰ Zenor P. Countable paracompactness in product spaces // Proceedings of the American Mathematical Society. — 1971. — vol. 30, No. 1. — pp. 199–201.

¹¹ Федорчук В. В. К теореме Катетова о кубе // Вестник Московского университета. Серия 1: Математика. Механика. — 1989. — № 4. — С. 93–96.

степени $\geqslant 3$ в категории Сотр компактов и их непрерывных отображений пространство $\mathcal{F}(X)$ наследственно нормально, то компакт X метризуем. В 2000 году Т.Ф. Жураев доказал¹² аналог теоремы Федорчука, в котором он заменил наследственную нормальность на наследственную счётную паракомпактность. В 2017 году А.П. Комбаров получил результат, обобщающий одновременно результаты Жураева и Федорчука, использовав предложенное¹³ в 1984 году П. Никошем понятие паранормального пространства, в частности в работе¹⁴ А.П. Комбарова было доказано следующее: если для нормального функтора \mathcal{F} степени $\geqslant 3$ в категории Сотр пространство $\mathcal{F}(X)$ наследственно паранормально, то компакт X метризуем.

Также, вместо компактов можно рассматривать другой класс топологических пространств. В 1965 году А.В. Архангельский ввёл¹⁵ понятие перистого пространства, позже названного p-пространством. Используя его, М.А. Добрынина в 2011 году рассматривает¹⁶ категорию $\mathcal P$ паракомпактных p-пространств и их совершенных отображений, вводит понятие нормального функтора в этой категории и доказывает следующий аналог теоремы Федорчука: если для нормального функтора $\mathcal F$ степени $\geqslant 3$ в категории $\mathcal P$ пространство $\mathcal F(X)$ наследственно нормально, то паракомпактное p-пространство X метризуемо. В 2015 году А.П. Комбаров доказал¹⁷ аналог

 $^{^{12}}$ Жураев T. Ф. Нормальные функторы и метризуемость бикомпактов // Вестник Московского университета. Серия 1: Математика. Механика. — 2000. — № 4. — С. 8–11.

 $^{^{13}\,}Nyikos\,P.$ Problem section: Problem B // Topology Proceedings. — 1984 — vol. 9. — pp. 367.

 $^{^{14}}$ Комбаров А. П. Об одной слабой форме нормальности // Вестник Московского университета. Серия 1: Математика. Механика. — 2017. — № 5. — С. 48–51.

 $^{^{15}}$ Архангельский А. В. Об одном классе пространств, содержащем все метрические и все локально бикомпактные пространства // Математический сборник. — 1965. — Т. 67. — С. 55–85.

 $^{^{16}}$ Добрынина M. A. K теореме Федорчука о нормальном функторе // Математические заметки. — 2011. — T. 90, Ne 4. — C. 630-633.

 $^{^{17} \}it{ Комбаров} \ A. \ \Pi.$ Счетная паракомпактность и нормальные функторы // Мате-

данной теоремы, заменив требование наследственной нормальности $\mathcal{F}(X)$ на наследственную счётную паракомпактность.

Как оказалось, требование к нормальности функтора $\mathcal F$ является избыточным в теореме Федорчука. При развитии теории нормальных функторов возникло понятие полунормального функтора в категории Сотр, которое получается, если отказаться от части требований, налагаемых на нормальные функторы. Для них построено собое комбинаторное условие (*) (см. страницу 12), которому, в частности, удовлетворяют все нормальные функторы степени $\geqslant 3$, и доказана теорема, которая гласит, что если для полунормального функтора $\mathcal F$ в категории Сотр компактов и их непрерывных отображений его спектр имеет вид $sp\mathcal F=\{1,m,n,...\}$, $\mathcal F$ удовлетворяет условию (*) и пространство $\mathcal F_n(X)\backslash X$ наследственно нормально, то компакт X метризуем. В частности, условиям этой теоремы удовлетворяет функтор суперрасширения $\lambda(\cdot)$, впервые рассмотренный $\mathcal F$ дж. де Гроотом в 1969 году, и в последствии встречающийся в работах многих топологов.

В 2017 году вводится 20 понятие порядка метрической аппроксимации, позднее известной как размерность квантования. В данной работе описывается конструкция, позволяющая для метризуемого, полунормального, эпиморфного и сохраняющего вес функтора \mathcal{F} и метрического компакта X определить размерность элементов пространства $\mathcal{F}(X)$. В последующих работах были отмечены взаимосвязи этого понятия с уже известными понятиями. В частности, для функтора $\exp(\cdot)$ это понятие совпадает с ёмкостной

матические заметки. — 2015. — Т. 98. № 5. — С. 794-796.

¹⁸ Иванов А. В. Теорема Катетова о кубе и полунормальные функторы // Ученые

записки Петрозаводского государственного Университета. — 2012. — N 2. — C. 104-108. $^{-19}$ de Groot. J. Superextensions and supercompactness // Proceedings of the

International Symposium «Extension Theory of Topological Structures and its Applications», VEB Deutscher Verlag der Wissenschaften. — 1969. — pp. 89–90.

 $^{^{20}}$ Ivanov A. V. On metric order in spaces of the form $\mathcal{F}(X)$ // Topology and its Applications. — 2017. — vol. 221. — pp. 107–113.

размерностью замкнутых подмножеств X, которая была подробно изучена в монографии 21 S. Б. Песина 1997 года. В 2019 году доказан 22 ряд утверждений, касающихся возможных значений размерности квантования для функтора суперрасширения. В частности доказано, что верхняя ёмкостная размерность достигает всех промежуточных значений от нуля до верхней ёмкостной размерности объемлющего компакта X на каких-то его подмножествах. Также верхняя размерность квантования для функтора суперрасширения может принимать и принимает на каких-то максимальных сцепленных системах из λX все значения из этого же отрезка. В 2023 году было доказано 23 , что аналогичное утверждение неверно для нижней ёмкостной размерности, в частности, существует компакт X, нижняя ёмкостная размерность которого равна 1, в то время как нижняя ёмкостная размерность любого его собственного непустого замкнутого подмножества равна 0.

Цели и задачи диссертации

Целью диссертационной работы является дальнейшее обобщение упомянутых выше теорем Федорчука, Добрыниной и Комбарова с помощью функторов в категории $\mathcal P$ паракомпактных p-пространств и их совершенных отображений. Также целью работы является исследование нижней размерности квантования для функтора суперрасширения.

В диссертационной работе решаются следующие задачи:

• Получить обобщения упомянутых выше теоремы Добрыниной и теоремы Комбарова, используя понятие нормального функтора в кате-

^{— &}lt;sup>21</sup> Песин Я. Б. Теория размерности и динамические системы: современный взгляд и приложения — Москва-Ижевск: Институт компьютерных исследований. 2002. — 404 с.

 $^{^{22}}$ Иванов А. В., Фомкина О. В. О порядке метрической аппроксимации максимальных сцепленных систем и емкостных размерностях // Труды Карельского научного центра РАН. — 2019. — N 7. — С. 5–14.

 $^{^{23}}$ Иванов А. В. О промежуточных значениях емкостных размерностей // Сибирский математический журнал. — 2023. — Т. 64, № 3. — С. 540–545.

гории \mathcal{P} и паранормального пространства. Определить понятие полунормального функтора в категории \mathcal{P} и получить с его помощью дальнейшее обобщение этих теорем.

• Доказать, что для любого метрического компакта X нижняя размерность квантования для функтора суперрасширения принимает все возможные значения от нуля до нижней ёмкостной размерности X на каких-то максимальных сцепленных системах, или же доказать обратное, построив контрпример.

Основные результаты диссертации

- Теорема, обобщающая теоремы Добрыниной и Комбарова, использующая понятия паранормальности и нормального функтора в категории Р.
- Теорема, являющаяся дальнейшим обобщением ряда известных ранее результатов, посвящённых обобщениям теоремы Катетова при помощи ковариантных функторов, и использующая определение полунормального функтора в категории P, введённое автором.
- Описание всех возможных промежуточных значений для нижней размерности квантования для функтора суперрасширения.

Положения, выносимые на защиту

- Паракомпактное p-пространство X с наследственно паранормальным пространством $\mathcal{F}(X)$ для нормального функтора \mathcal{F} в категории \mathcal{P} степени $\geqslant 3$ является метризуемым.
- Если куб паракомпактного p-пространства X наследственно паранормален, то X метризуемое пространство.
- Паракомпактное p-пространство X с наследственно паранормальным пространством $\mathcal{F}_n(X) \setminus X$ для полунормального функтора \mathcal{F} в кате-

гории \mathcal{P} со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющего условию (*) является метризуемым.

• Для каждого метрического компакта X нижняя размерность квантования для функтора суперрасширения принимает все возможные значения от нуля до нижней ёмкостной размерности X на каких-то максимальных сцепленных системах.

Научная новизна

Полученные в диссертации результаты являются новыми. Ключевые из них:

- Теорема о метризуемости паракомпактного p-пространства X с наследственно паранормальным пространством $\mathcal{F}_n(X) \setminus X$ для полунормального функтора \mathcal{F} в категории \mathcal{P} со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющий условию (*).
- Теорема о том, что для любого неотрицательного числа b, не превосходящего нижнюю ёмкостную размерность метрического компакта (X, ρ) , существует максимальная сцепленная система, нижняя размерность квантования которой равна b, а её носитель совпадает с X.

Теоретическая и практическая ценность работы

Работа имеет теоретический характер, её результаты относятся к таким разделам математики, как общая топология, теория категорий и могут быть использованы для дальнейшего развития этих и смежных областей.

Степень достоверности

Все результаты диссертации являются оригинальными, обоснованы с помощью строгих математических доказательств и опубликованы в открытой печати. Результаты других авторов, используемые в диссертации, отмечены соответствующими ссылками.

Методы исследования

В работе используются методы теории множеств, общей топологии, математического анализа и теории категорий.

Апробация и публикации

Основные результаты диссертационной работы изложены в 3 печатных работах по теме диссертации(общим объёмом 0,9375 п.л.), все из которых опубликованы в научных изданиях, индексируемых в базах данных Web of Science, Scopus, RSCI и рекомендованных для защиты из списка МГУ(см. работы [1]-[3]).

Также результаты этой работы докладывались на научных семинарах и следующих конференциях:

- Кафедральный семинар им. П.С. Александрова (неоднократно, Москва, МГУ, 2021 г., 2022 г., 2023 г., 2024 г., 2025 г.)
- Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов—2023» (Москва, МГУ, 10.04.2023—21.04.2023)
- Научная конференция «Топология и её приложения», посвящённая памяти Е.Г. Пыткеева (международная конференция, Екатеринбург, Институт математики и механики УрО РАН, 07.02.2024—09.02.2024)

Структура и объём диссертации

Диссертация состоит из введения, двух глав, заключения и библиографии. Общий объём диссертации составляет 77 страниц. Библиография включает 35 наименований.

Краткое содержание работы

Введение содержит краткую историю вопросов, актуальность работы, цели, методы, терминологию и основные результаты.

Первая глава посвящена обобщениям упомянутых выше теоремы Добрыниной и теоремы Комбарова для функторов в категории Сотр компактов и их непрерывных отображений и в категории $\mathcal P$ паракомпактных p-пространств и их совершенных отображений. Перечислим тут основные определения и результаты этой главы.

В параграфе 1.1 рассматриваются две топологические категории и описывается несколько примеров ковариантных функторов, действующих в этих категориях. В частности, упоминаются функторы гиперпространства $\exp(\cdot),\,k\text{-}\text{ой гиперсимметрической степени }\exp_k(\cdot)\text{ и функтор суперрасширения }\lambda(\cdot).$

Определение 1.1.1. Категория Comp — это категория, объектами которой являются компакты, а морфизмами — непрерывные отображения между компактами.

Определение 1.1.2. Для топологического пространства X его гиперпространством $\exp(X)$ называется множество всех его непустых замкнутых подмножеств, снабженное топологией Вьеториса. База данной топологии состоит из множеств

$$O< U_1,...,U_n>=\{F\in \exp(X): F\subset U_1\cup...\cup U_n, F\cap U_1\neq\varnothing,...,F\cap U_n\neq\varnothing\},$$
где $U_1,...,U_n$ — открытые подмножества в X .

Определение 1.1.3. Пусть X — компакт. Тогда k-ой гиперсимметрической степенью пространства X называется множество $\exp_k(X) = \{F \in \exp(X) : |F| \leq k\}$, наделённое топологией, индуцированной топологией Вьеториса.

Определение 1.1.4. Пусть X — топологическое пространство. Система ξ замкнутых подмножеств X называется сцепленной, если любые два её элемента имеют непустое пересечение.

Определение 1.1.5. Если X — топологическое пространство, то через λX

обозначается множество всех максимальных по включению сцепленных систем(то есть не содержащихся в других сцепленных системах). Далее такие системы будем называть максимальными сцепленными системами.

Определение 1.1.6. Множество λX с топологией, заданной при помощи следующей предбазы:

$$O(U) = \{ \xi \in \lambda X : \text{существует такое } F \in \xi, \text{ что } F \subset U \},$$

где U — открытое подмножество X, называется суперрасширением топологического пространства X.

Определение 1.1.7. Топологическое пространство X называется р-пространством (или же перистым пространством), если существует последовательность \mathcal{U}_n семейств открытых подмножеств стоун-чеховской компактификации βX такая, что каждая система \mathcal{U}_n покрывает X и для каждого $x \in X$ выполняется включение $\bigcap_{n \in \mathbb{N}} st(x, \mathcal{U}_n) \subset X$, где $st(x, \mathcal{U}_n) = \bigcup \{U \in U_n : x \in U\}$.

Определение 1.1.8. Категория \mathcal{P} — это категория, объектами которой являются паракомпактные p-пространства, а морфизмами — совершенные отображения между паракомпактными p-пространствами.

В параграфе 1.2 рассматриваются нормальные функторы в категориях Сомр и \mathcal{P} , а также ряд сопутствующих понятий. 2425

Определение 1.2.5. Ковариантный функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется нормальным, если он непрерывен, мономорфен, эпиморфен, сохраняет точку, пустое множество, пересечения, прообразы и вес.

 $^{2^{4}}$ Щепин E. B. Функторы и несчетные степени компактов // Успехи математических наук. — 1981. — T. 36, $\mathbb N$ 3. — C. 3-62.

 $^{^{25}}$ Добрынина М. А. К теореме Федорчука о нормальном функторе // Математические заметки. — 2011. — Т. 90, № 4. — С. 630–633.

Определение 1.2.6. Пусть $\mathcal{F}-$ мономорфный функтор в категории Сотр, пространство X- компакт, точка $a\in\mathcal{F}(X)$. Тогда подмножество компакта X, задаваемое формулой

$$supp(a) = \bigcap \{D : D - \text{замкнутое подмножество } X, a \in \mathcal{F}(D)\},$$

называется носителем точки a.

Определение 1.2.8. Если \mathcal{F} — мономорфный функтор и n — натуральное число такие, что для любого компакта X и для любой точки $a \in \mathcal{F}(X)$ верно неравенство $|\operatorname{supp}(a)| \leqslant n$, то говорят, что степень функтора \mathcal{F} не превосходит n ($\deg \mathcal{F} \leqslant n$). Если для некоторого натурального n верно утверждение $\deg \mathcal{F} \leqslant n$, но не верно $\deg \mathcal{F} \leqslant n-1$, то говорят, что степень \mathcal{F} равна n ($\deg \mathcal{F} = n$).

Пусть n — натуральное число. Тогда для мономорфного функтора ${\mathcal F}$ и компакта X имеет место следующее обозначение:

$$\mathcal{F}_n(X) = \{ a \in \mathcal{F}(X) : |\operatorname{supp}(a)| \leqslant n \}.$$

Определение 1.2.9. Пусть X — компакт, $n \in \mathbb{N}$ и \mathcal{F} — мономорфный функтор в категории Сотр. Рассмотрим отображение $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$, где n обозначает как натуральное число, так и n-точечное дискретное пространство, а само отображение π_n задаётся формулой $\pi_n(\xi, a) = \mathcal{F}(\xi)(a)$, в которой точка $\xi \in X^n$ в правой части равенства отождествляется с отображением $\xi: n \longrightarrow X$. Тогда π_n называется отображением Басманова 26 .

Для мономорфных функторов в категории \mathcal{P} аналогичным образом определяется понятие носителя supp, понятие $\mathcal{F}_n(X)$ и отображение Басманова π_n .

²⁶ Басманов В. Н. Ковариантные функторы, ретракты и размерность // Доклады Академии наук СССР. — 1983. — Т. 271, № 5. — С. 1033–1036.

Определение 1.2.10. Ковариантный функтор \mathcal{F} в категории \mathcal{P} называется нормальным, если он непрерывен, мономорфен, эпиморфен, сохраняет точку, пустое множество, пересечения, прообразы и вес, а также обладает непрерывным отображением Басманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

В параграфе 1.3 подробно описываются упомянутые выше результаты В.В. Федорчука, Т.Ф. Жураева, А.П. Комбарова и М.А. Добрыниной по обобщению теорем Катетова и Зенора при помощи нормальных функторов в категориях Сотр и \mathcal{P} , а также понятие паранормального (по Никошу²⁷) пространства.

Определение 1.3.5. Топологическое пространство X называется паранормальным (в смысле Никоша), если для любой счётной дискретной системы замкнутых подмножеств $\{F_n:n<\omega\}$ найдется локально конечная система открытых множеств $\{U_n:n<\omega\}$ такая, что $F_n\subset U_n$, и $F_m\cap U_n\neq\varnothing$ тогда и только тогда, когда $F_m=F_n$.

Также в этом параграфе автором работы сформулирована и доказана следующая теорема.

Теорема 1.3.8. Пусть X — паракомпактное p-пространство, \mathcal{F} — нормальный функтор степени $\geqslant 3$, действующий в категории \mathcal{P} паракомпактных p-пространств u их совершенных отображений. Тогда если пространство $\mathcal{F}(X)$ наследственно паранормально, то X — метризуемое пространство.

Для её доказательства в этом же параграфе доказываются следующие предложения.

 $^{^{27}\,}Nyikos\,P.$ Problem section: Problem B // Topology Proceedings. — 1984 — vol. 9. — pp. 367.

Предложение 1.3.11. Пусть X — паракомпактное p-пространство c единственной неизолированной точкой x_0 , причём $\chi(x_0,X) \geqslant \omega_1$. Тогда гиперсимметрическая степень $\exp_3 X$ не является наследственно паранормальным пространством.

Предложение 1.3.13. Пусть X — паракомпактное p-пространство, причём его гиперсимметрическая степень $\exp_3(X)$ наследственно паранормальна. Тогда пространство X метризуемо.

В параграфе 1.4 рассматриваются полунормальные функторы в категории Сотр и ряд сопутствующих понятий, а также автором вводиться понятие полунормального функтора в категории \mathcal{P} и проверяется несколько простых его свойств в рамках предложений 1.4.6-1.4.9.

Определение 1.4.1. Функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется полунормальным²⁸, если он непрерывен, мономорфен, сохраняет пересечения, точку и пустое множество.

Для всех натуральных n имеет место следующее обозначение:

$$\mathcal{F}_{nn}(X) = \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X),$$

где за $\mathcal{F}_0(X)$ принимается пустое множество.

Определение 1.4.2. Степенным спектром полунормального функтора \mathcal{F} называется множество

$$sp(\mathcal{F}) = \{k : k \in \mathbb{N}, \mathcal{F}_{kk}(k) \neq \emptyset\}.$$

Определение 1.4.4. Будем называть функтор \mathcal{F} , действующий в категории \mathcal{P} , полунормальным, если он непрерывен, мономорфен, сохраняет пере-

 $^{^{28}}$ Федорчук В. В., Филиппов В. В. Общая топология. Основные конструкции. — Москва: ФИЗМАТЛИТ, 2006. — 336 с.

сечения, точку и пустое множество, а также обладает непрерывным отображением Васманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

Пусть $sp(\mathcal{F}) = \{1, m, n, ...\}$. Построим отображение $\varphi_{nm}: n \longrightarrow m$ по формуле $\varphi_{nm}(i) = i$ при $i < m, \ \varphi(i) = m-1$ при $i \geqslant m$. Будем говорить, что \mathcal{F} удовлетворяет условию (*), если

$$\mathcal{F}(\varphi_{nm})(\mathcal{F}_{nn}(n)) \cap \mathcal{F}_{mm}(m) \neq \varnothing.$$

В параграфе 1.5 формулируется и доказывается основной результат этой главы — теорема, обобщающую теорему Добрыниной и теорему Комбарова при помощи понятия полунормального функтора в категории $\mathcal P$ и понятия наследственной паранормальности.

Теорема 1.5.1. Пусть \mathcal{F} — полунормальный функтор в категории \mathcal{P} паракомпактных p-пространств u их совершенных отображений со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющий условию (*). Если для паракомпактного p-пространства X пространство $\mathcal{F}_n(X) \setminus X$ наследственно паранормально, то пространство X метризуемо.

Определение 1.5.3. Пусть X — топологическое пространство, а n — натуральное число. Обобщённой диагональю Δ_n пространства X называется подмножество пространства X^n , состоящее из точек, у которых хотя бы две координаты совпадают.

При доказательстве теоремы 1.5.1 доказывается следующее предложение.

Предложение 1.5.4. Пусть X — паракомпактное p-пространство, причём Δ_n — G_δ -множество в X^n . Тогда X метризуемо.

Также в этом параграфе разобрано предложение, показывающее, что теорема 1.5.1 обобщает некоторые ранее известные результаты.

Предложение 1.5.2. Нормальный в категории \mathcal{P} функтор \mathcal{F} степени $\geqslant 3$ обладает степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяет условию (*).

Вторая глава работы посвящена понятию размерности квантования. Рассмотрим основные определения и результаты.

В параграфе 2.1 рассматривается понятие метризуемого функтора в категории Сотр, а также разобраны два примера таких функторов: функтор гиперпространства $\exp(\cdot)$ и функтор суперрасширения $\lambda(\cdot)$.

Определение 2.1.1. Пусть (X, ρ) — метрическое пространство. Тогда следующая точная верхняя грань

$$diam(X) = \sup_{x,y \in X} (\rho(x,y))$$

называется диаметром пространства (X, ρ) .

Определение 2.1.2. Полунормальный функтор \mathcal{F} в категории Сомр компактов и их непрерывных отображений называется метризуемым (по В.В. Федорчуку²⁹), если для любой метрики ρ на метризуемом компакте X можно указать совместимую с топологией метрику $\rho_{\mathcal{F}}$ на $\mathcal{F}(X)$ таким образом, чтобы выполнялись следующие условия:

- 1. Если $i:(X,\rho^1)\longrightarrow (Y,\rho^2)$ изометрическое вложение метризуемых компактов, то $\mathcal{F}(i):(\mathcal{F}(X),\rho^1_{\mathcal{F}})\longrightarrow (\mathcal{F}(Y),\rho^2_{\mathcal{F}})$ тоже изометрическое вложение.
- 2. Для любого метризуемого компакта (X, ρ) верно $\rho_{\mathcal{F}}|_{X} = \rho$.
- 3. Для любого метризуемого компакта (X, ρ) верно равенство

$$\operatorname{diam}(\mathcal{F}(X)) = \operatorname{diam}(X).$$

 $^{^{29}}$ Федорчук В. В. Тройки бесконечных итераций метризуемых функторов // Известия Академии наук СССР. Серия математическая. — 1990. — Т. 54, № 2. — С. 396–417.

Здесь под ограничением метрики $\rho_{\mathcal{F}}$ на пространство X подразумевается ограничение на $\mathcal{F}_1(X) \subset \mathcal{F}(X)$. Для полунормальных функторов \mathcal{F} в категории Сотр отображение $X \longrightarrow \mathcal{F}_1(X)$, ставящее в соответствие точке x единственный элемент пространства $\mathcal{F}(\{x\})$, является гомеоморфизмом.

Определение 2.1.3. Если для метризуемого функтора \mathcal{F} , для всех метризуемых компактов X и для всех их метрик ρ заданы метрики $\rho_{\mathcal{F}}$ согласно определению выше, то говорят, что семейство метрик $\rho_{\mathcal{F}}$ задаёт метризацию функтора \mathcal{F} .

Параграф 2.2 посвящён непосредственно понятию размерности квантования и разобрано устройство этих размерностей для двух функторов из предыдущего параграфа. В частности, для функтора $\exp(\cdot)$ размерность квантования совпадает с ёмкостной размерностью.

Определение 2.2.1. Пусть \mathcal{F} — полунормальный функтор в категории Сотр компактов и их непрерывных отображений. Говорят, что функтор \mathcal{F} имеет бесконечную степень, если для любого натурального числа n и для любого бесконечного компакта X верно, что $\mathcal{F}_n(X) \neq \mathcal{F}(X)$.

Пусть \mathcal{F} — метризуемый, эпиморфный, сохраняющий вес функтор в категории Сотр, обладающий бесконечной степенью. Тогда для функтора \mathcal{F} имеет место следующее обозначение для каждого $\xi \in \mathcal{F}(X)$ и каждого вещественного числа $\varepsilon > 0$:

$$N(\xi, \varepsilon, \mathcal{F}(X)) = \min\{n : \rho_{\mathcal{F}}(\xi, \mathcal{F}_n(X)) \le \varepsilon\}.$$

Определение 2.2.2. Следующие две величины, характеризующие асимптотику роста $N(\xi, \varepsilon, \mathcal{F}(X))$ при стремлении ε к 0, называются верхней и нижней размерностью квантования точки ξ соответственно³⁰.

 $^{^{30}}$ Иванов А. В., Фомкина О. В. О порядке метрической аппроксимации максимальных сцепленных систем и емкостных размерностях // Труды Карельского

$$\overline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = \sup\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = \infty\},$$

$$\underline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \underline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = \sup\{\alpha : \underline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = \infty\}.$$

Если множество $\{\alpha:\overline{\lim}_{\varepsilon\to 0}\varepsilon^{\alpha}N(\xi,\varepsilon,\mathcal{F}(X))=0\}$ оказалось пустым, то считается, что $\overline{\dim}_{\mathcal{F}}\xi=\infty$ (аналогично для нижней размерности квантования).

Определение 2.2.5. Для метрического компакта F верхняя и нижняя ёмкостные размерности определяются по следующим формулам:

$$\begin{split} \overline{\dim}_B F &= \overline{\lim}_{\varepsilon \to 0} \frac{\log N(F,\varepsilon)}{-\log \varepsilon}, \\ \underline{\dim}_B F &= \underline{\lim}_{\varepsilon \to 0} \frac{\log N(F,\varepsilon)}{-\log \varepsilon}, \end{split}$$

где $N(F,\varepsilon) = N(F,\varepsilon,\exp F)$.

Параграф 2.3 содержит подробное описание ряда известных результатов для ёмкостной размерности и размерности квантования для функтора суперрасширения, включая описанные выше в кратком обзоре истории этой темы. Формулируется ключевой вопрос этой главы: существует ли компакт с лакунами в множестве значений нижней размерности квантования для функтора суперрасширения, или же для любого компакта на каких-то максимальных сцепленных системах принимаются все возможные значения нижней размерности квантования в промежутке от нуля до нижней ёмкостной размерности объемлющего компакта? В этом же параграфе рассматривается особая конструкция максимальной сцепленной системы $\xi(A, B)$, предложенная $\xi(A, B)$, и автором доказываются следующие важнаучного центра РАН. — 2019. — \Re 7. — С. 5–14.

 $^{^{31}}$ Вакулова (Кашуба) Е. В. О носителях максимальных сцепленных систем // Труды Петрозаводского государственного университета. Серия "Математика". — 2004. — N 11. — С. 3–8.

ные свойства этой конструкции:

Определение 2.3.5. Пусть $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, а (X, ρ) — метрическое пространство. Множество $A \subset X$ называется ε -разделённым, если для любых различных точек $x, y \in A$ выполняется неравенство $\rho(x, y) > \varepsilon$.

Предложение 2.3.7. Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ множество $D = \{x_1, ..., x_{k+1}\} \cup \{y_1, ..., y_k\}$ является ε -разделённым, то $N(\xi(A, B), \varepsilon/2) \geqslant 2k$.

Предложение 2.3.8. Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ выполнено неравенство $\rho(x_{k+1}, y_{k+1}) \leqslant \varepsilon$, то $N(\xi(A, B), \varepsilon) \leqslant 2k + 1$.

Параграф 2.4 содержит ответ на ключевой вопрос предыдущего параграфа:

Теорема 2.4.1. Пусть (X,ρ) — метрический компакт. Для любого неотрицательного числа $b \leqslant \underline{\dim}_B X = a \leqslant \infty$ существует максимальная сцепленная система $\xi \in \lambda X$, для которой $\underline{\dim}_{\lambda}(\xi) = b$ и $\mathrm{supp}(\xi) = X$.

Эта теорема доказывается в этом же параграфе, но, так как доказательство случая b=a несколько отличается от прочих, он выделен в отдельное предложение.

Предложение 2.4.2. Для любого метрического компакта (X, ρ) существует максимальная сцепленная система ξ , для которой

$$\underline{\dim}_{\lambda} \xi = \underline{\dim}_{B} X, \ \overline{\dim}_{\lambda} \xi = \overline{\dim}_{B} X, \operatorname{supp}(\xi) = X.$$

Заключение

Отправной точкой для первой части работы были теоремы, развивавшие идею, представленную в теореме Федорчука, и при работе с этими теоремами автору удалось получить результаты, обобщающие многие из этих теорем. Центральной в этой главе является теорема для полунормальных функторов $\mathcal F$ в категории $\mathcal P$ паракомпактных p-пространств с наследственно паранормальным пространством $\mathcal F_n(X) \setminus X$. Однако, весьма вероятно, что эту теорему можно обобщать и далее, это касается как требований, накладываемых на сам функтор $\mathcal F$, так и на подпространства $\mathcal F(X)$.

Во второй главе диссертационной работы, посвящённой исследованию недавно введённого понятия размерности квантования, автором был получен следующий результат: верхние и нижние размерности квантования для полунормального функтора суперрасширения $\lambda(\cdot)$ обладают свойством принимать все возможные промежуточные значения на некоторых максимальных сцепленных системах, в то время как нижняя ёмкостная размерность лишена этого свойства, хотя эта размерность также является нижней размерностью квантования, но для другого функтора, а именно функтора гиперпространства $\exp(\cdot)$. Разумеется, понятие размерности квантования нуждается в дополнительном исследовании, в частности, в более подробном изучении размерности квантования для функтора суперрасширения $\lambda(\cdot)$ и других полунормальных функторов в категории Comp, используемых в топологии.

Результаты работы могут быть интересны специалистам, работающим в областях топологии и теории категорий.

Благодарности

Автор выражает глубокую благодарность своим научным руководителям, доктору физико-математических наук, профессору Анатолию Петровичу Комбарову, и доктору физико-математических наук, профессору Юрию Викторовичу Садовничему за постановку задач, постоянное внимание к работе и ценные советы, а также всем сотрудникам кафедры общей топологии и геометрии механико-математического факультета МГУ за тёплую доброжелательную атмосферу

Публикации автора по теме диссертации Статьи в рецензируемых научных изданиях, рекомендованных для защиты в диссертационном совете МГУ по специальности 1.1.3. Геометрия и топология, и входящие в базы цитирования Scopus, РИНЦ, RSCI, Web of Science

[1] Иванов А. А. Нормальные функторы и паранормальность // Вестник Московского университета. Серия 1: Математика. Механика. — 2021. — N_0 6. — С. 51–53.

EDN: MUPRDT; Импакт-фактор 0,211(РИНЦ). 0,1875 п.л.

Перевод: Ivanov A. A. Normal Functors and Paranormality // Moscow University Mathematics Bulletin. — 2021. — vol. 76. — pp. 271—273.

EDN: GMJYRK; Импакт-фактор 0.2(JIF). 0.1875 п.л.

[2] Иванов А. А. Полунормальные функторы и паранормальность // Вестник Московского университета. Серия 1: Математика. Механика. -2023.- № 2.- С. 67-71.

EDN: ADKFMP; Импакт-фактор 0,211(РИНЦ). 0,3125 п.л.

Перевод: Ivanov A. A. Seminormal Functors and Paranormality // Moscow University Mathematics Bulletin. — 2023. — vol. 78. — pp. 100—104.

EDN: DOJSVP; Импакт-фактор 0,2(JIF). 0,3125 п.л.

[3] Иванов А. А. О размерности квантования максимальных сцепленных систем // Сибирский математический журнал. — 2024. — Т. 65, № 3. — С. 517—523.

EDN: QGQPFK; Импакт-фактор 0,571(РИНЦ). 0,4375 п.л.

Перевод: Ivanov A. A. On the Quantization Dimension of Maximal Linked Systems // Siberian Mathematical Journal. — 2024. — vol. 65. —

pp. 575-581.

EDN:АНТҮDК; Импакт-фактор 0,7(JIF). 0,4375 п. л.