ОТЗЫВ

на автореферат диссертации Назарова Антона Викторовича «Угловые распределения материала, распыленного с поверхности металлов газовыми кластерными ионами», представленной на соискание ученой степени кандидата физико-математических наук по специальности: 1.3.5 – Физическая электроника.

Исследования взаимодействия ионных пучков кластеров, содержащих сотни или тысячи атомов инертных газов, с поверхностью твердых тел вызывают повышенный интерес в связи с применением таких пучков для полировки поверхности, использования при послойном анализе методами ВИМС, формирования наноструктур на поверхности различных материалов. Распыление материалов атомарными и молекулярными пучками изучается более семидесяти лет и к настоящему моменту времени накоплен большой экспериментальный объем результатов, позволивший создать адекватные модели распыления материалов и использовать это явление в практических целях. В последнее время развитие экспериментальной техники позволило получать ионные кластерные пучки, взаимодействие которых с поверхностью открывает новые эффекты в распылении материалов, которые значительно отличаются от случая распыления атомарными ионами. К настоящему времени происходит накопление экспериментальных данных, посвященных вопросам взаимодействия таких пучков с поверхностью твердых тел, которые позволили бы понять механизмы распыления кластерными ионами, поэтому актуальность диссертационной работы Назарова А.В., посвященной экспериментальному изучению и моделированию угловых распределений распыленного с поверхности металлов пучками кластерных ионов инертных газов, не вызывает сомнений.

В работе получен целый ряд новых результатов, имеющих большую научную и практическую ценность. Среди них хотелось бы выделить следующие:

- экспериментально исследовано угловое распределение распыленных атомов с поверхности Cu, Mo и W при облучении поверхности кластерными ионами Ar_n^+ , Kr_n^+ и Xe_n^+ ;
- установлено, что вид полученных распределений зависит от материала распыляемой мишени и массы атомов, составляющих кластер и отличается от изотропного распределения, которое наблюдается при распылении одноэлементных металлов атомарными ионами. Наблюдаются так называемые «латеральные максимумы» распределения, положение которых зависит от типа ионов и средней энергии, приходящейся на один атом кластера. Эти результаты необходимо учитывать при анализе поверхности методом ВИМС при использовании в качестве первичных кластерных ионов;
- проведенное моделирование распыления кластерными ионами методом молекулярной динамики позволило выяснить причины изменения пространственных распреде-

лений распыленных атомов при изменении средней энергии атомов в кластере.

Достоверность полученных результатов подтверждается использованием современных экспериментальных установок формирования кластерных ионных пучков и измерения плотности распыленного материала на коллекторе, сравнением полученных результатов с имеющимися экспериментальными данными и результатами моделирования.

Полученные автором результаты докладывались на Международных научных конференциях, опубликованы в шести статьях в рецензируемых журналах, включенных в список ВАК, Scopus и Web of Science.

Автореферат написан хорошим языком, логически выстроен и содержит достаточно иллюстративного материала, однако в качестве **недостатка** можно отметить отсутствие значений энергии и количества атомов в кластере в тексте и подписи к рисунку 1.

В целом, диссертационная работа «Угловые распределения материала, распыленного с поверхности металлов газовыми кластерными ионами» по научному уровню, актуальности, научной новизне и практической значимости соответствует требованиям отвечает требованиям, установленным Московским государственным университетом имени М.В. Ломоносова к работам подобного рода, а ее автор — Назаров Антон Викторович — несомненно заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 1.3.5. - Физическая электроника.

Доктор физико-математических наук по специальности 01.04.04 – физическая электроника, доцент

Ведущий научный сотрудник лаборатории «Диагностика микро- и наноструктур» Ярославского филиала Физико-технологического института им. К.А. Валиева Российской Академии Наук (ЯФ ФТИАН РАН) Бачурин Владимир Иванович

28.08.2023

Подпись ведущего научного сотрудника ЯФ ФТИАН РАН доктора физикоматематических наук, доцента БАЧУРИНА В.И. удостоверяю Директор ЯФ ФТИАН РАН Трушин О.С.

150007, Ярославль, ул. Университетская, 21, (4852) 24-65-52, <u>director@yf-ftian.ru</u> Ярославский Филиал Федерального государственного бюджетного учреждения науки Физико-технологического института им. К.А. Валиева Российской Академии Наук.