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Введение

Общая характеристика работы. Диссертация посвящена исследова­

нию методов построения электронных подписей на основе кодов, исправляющих

ошибки. Электронные подписи представляют собой неотъемлемый элемент со­

временных криптографических протоколов, обеспечивая гарантии целостности

данных, аутентификации отправителя и невозможности отказа от авторства.

Применение кодов, исправляющих ошибки, в схемах электронной подписи яв­

ляется перспективным направлением, поскольку такие схемы обладают потен­

циальной устойчивостью к атакам с использованием квантовых вычислений.

Синтез схем электронной подписи, а также выбор соответствующих клас­

сов кодов и их параметров представляют собой значимые задачи как с тео­

ретической, так и с прикладной точки зрения в контексте обеспечения крип­

тографической стойкости. Эксплуатационные характеристики разработанных

схем, включая скорость вычисления, объем хранимых данных и уровень крип­

тографической стойкости, зависят как от используемой схемы подписи, так и

от свойств применяемых классов кодов. Обоснованный выбор параметров, осно­

ванный на оценках криптостойкости или ориентированный на противодействие

известным атакам, позволяет формировать защищенные криптографические си­

стемы.

Одновременно с этим для оценки устойчивости к возможным атакам схем

электронной подписи требуется детальный математический анализ структуры

и свойств различных классов кодов, исправляющих ошибки. В рамках данно­

го анализа формулируются и доказываются строгие математические утвержде­

ния, имеющие самостоятельную значимость не только в области криптографии,

но и в теории кодирования. Методы формального обоснования криптографиче­

ской стойкости опираются на аппарат теории вероятностей, теории кодирования

и алгебраических методов.

Диссертация содержит анализ характеристик схем электронной подписи
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в зависимости от класса используемых базовых кодов. Полученные результа­

ты могут быть использованы при выборе и стандартизации криптографиче­

ских схем с открытым ключом, основанных на кодах, исправляющих ошибки.

Кроме того, разработана новая схема электронной подписи, криптографическая

стойкость которой не зависит от конкретного типа корректирующих кодов. В

настоящее время схема проходит процедуру стандартизации в качестве пост­

квантового стандарта электронной подписи Российской Федерации.

Тема, объект и предмет исследований диссертации соответствуют паспор­

ту специальности 2.3.6. (Методы и системы защиты информации, информаци­

онная безопасность, физико-математические науки) по направлению:

11. Модели и методы оценки эффективности систем (комплексов), средств

и мер обеспечения информационной безопасности объектов защиты.

15. Принципы и решения (технические, математические, организационные

и др.) по созданию новых и совершенствованию существующих средств защиты

информации и обеспечения информационной безопасности.

19. Исследования в области безопасности криптографических алгоритмов,

криптографических примитивов, криптографических протоколов. Защита ин­

фраструктуры обеспечения применения криптографических методов.

В рамках исследования применяется математический аппарат и подходы

различных разделов математики, таких как теория кодирования, комбинатор­

ная теория вероятностей, теория алгоритмов, теория сложности вычислений,

теория графов.

Актуальность. Стойкость стандартизованных криптографических алго­

ритмов, используемых по всему миру, основана на сложности нескольких задач

из теории чисел. Обычно это задачи дискретного логарифмирования или фак­

торизации. Однако в 1994 году П.Шор показал [1], что квантовые компьютеры

могут взломать все схемы, построенные таким образом. В 2001 году алгоритм

Шора был реализован на квантовом компьютере с 7 кубитами [2]. С тех пор

стали разрабатываться все более и более мощные квантовые компьютеры, что
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представляет реальную угрозу современной криптографии с открытым клю­

чом.

Существует несколько областей, на которых могут основываться посткван­

товые криптографические схемы. Примерами таких областей являются целочис­

ленные решетки, коды, исправляющие ошибки, хэш-функциии, многомерные

квадратичные системы, а также симметричное шифрование и шифрование на

основе изогений эллиптических кривых. Тем не менее построенные схемы требу­

ют исследования стойкости, в том числе к атакам с использованием квантовых

компьютеров.

Сложные задачи, на которых основаны постквантовые схемы, хуже изуче­

ны по сравнению с теми, что лежат в основе классических криптосистем. По­

этому вероятность успешной атаки на новые схемы выше. Однако среди атак на

квантовых компьютерах лучшую оценку дает алгоритм Гровера [3], и эта оцен­

ка корневая. Поэтому постквантовые схемы внушают больше доверия, нежели

классические, подверженные полиномиальным атакам Шора. При этом неко­

торые задачи, считающиеся постквантовыми, оказываются нестойкими даже к

атакам на классических компьютерах. Так, например, базовая задача SIDH на

изогениях, которая некоторое время считалась сложной, была атакована в ра­

боте [4]. Это, в свою очередь, свидетельствует об отсутствии стойкости схем,

доказательства безопасности которых сводились к сложности этой задачи. Так

что в настоящее время остро стоит задача поиска лучшего подхода.

Коды, исправляющие ошибки, как математический объект имеют историю

длиною более 70-ти лет. Однако с точки зрения криптографии они стали рас­

сматриваться только спустя десятилетия, после предложения в 1978 году Робер­

том Мак-Элисом своей криптосистемы [5]. Но даже после этого долгое время не

было попыток стандартизовать кодовые схемы. Наконец в 2016 году Националь­

ный Институт Стандартов и Технологий США (NIST) [6] объявил открытый

конкурс на новый постквантовый стандарт США. В этом конкурсе участвова­

ли алгоритмы шифрования с открытым ключом, схемы цифровых подписей и
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схемы распределения ключей, среди которых были и варианты, построенные

на кодах.

Результаты получились неоднозначными. Большое число поданных схем

оказались подвержены атакам на классическом вычислителе. Среди них бы­

ли и все 3 схемы электронной подписи на кодах, исправляющих ошибки [7]:

pqsigRM [8], RaCoSS-R [9], RankSgn [10]. Первая была позже доработана [11], но

все равно оказалась уязвимой. Другие схемы, которые остаются стойкими, име­

ют неоптимальные эксплуатационные параметры и потенциально могут быть

атакованы в будущем.

Поэтому, несмотря на объявление победителей, параллельно был запущен

еще один дополнительный конкурс, нацеленный исключительно на алгоритмы

электронной подписи. Уже к июлю 2023 года был опубликован список из 40

новых претендентов. Схем на кодах, исправляющих ошибки, на первом раунде

было 6: CROSS [12], Enhanced pqsigRM [13], FuLeeca [14], LESS [15], MEDS [16]

и Wave [17]. Схемы CROSS и LESS прошли во 2 раунд и имеют возможность в

дальнейшем быть стандартизованными.

Параллельно с конкурсом NIST в России также начался процесс выбора

постквантовой схемы электронной подписи. Схемы на основе кодов были вы­

браны Техническим комитетом по стандартизации «Криптографические и за­

щитные механизмы» (ТК 26) [18] как одно из направлений разработки проектов

российских национальных стандартов постквантовых криптографических алго­

ритмов. Диссертационная работа мотивирована задачами, которые возникли в

процессе работ, проводимых в рамках ТК 26.

Помимо России, процессы по выбору и стандартизации постквантовых ал­

горитмов идут и в других странах. Так, например, в 2021–2025 годах в Южной

Корее проводился конкурс KpqC [19]. Аналогичные инициативы реализуются и

в рамках международных организаций по стандартизации, таких как ISO [20]

и IETF [21].

Исторически синтез электронной подписи на основе кодов продвигался не
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очень удачно. На протяжении длительного времени атаки на все предложен­

ные схемы подписей строились столь быстро, что возникло опасение, что та­

кие схемы вообще невозможно создать [22]. Одним из первых успешных вари­

антов можно назвать схему KKS, которая была предложена Г.Кабатянским,

Е.Круком и Б.Смитом в 1997 году [23]. Однако, согласно дальнейшим исследо­

ваниям [24], схема является стойкой только при одноразовом использовании.

Прорывом стало предложение Н.Куртуа, М.Финиаша и Н.Сендриера ин­

вертировать порядок алгоритмов в схеме шифрованя, то есть использовать ал­

горитм расшифрования в качестве алгоритма генерации подписи и шифрования

для ее проверки. Эта идея была представлена в 2001 году и в дальнейшем полу­

чила название CFS [25]. Позже Л.Далло предложил доказуемо стойкую версию

этой подписи, известную как mCFS [26]. В диссертации эти схемы отождествле­

ны под названием CFS.

Классическими примерами схем шифрования на основе кодов являются

криптосистемы Р.Мак-Элиса [5] и Х.Нидеррайтера [27]. В первом случае код

задан своей порождающей, а во втором — проверочной матрицей. Соответствен­

но, стойкость схем первого типа сводится к сложности решения задачи декоди­

рования, а второго типа — к сложности задачи синдромного декодирования.

Эти задачи эквивалентны по сложности, таким образом схемы на них эквива­

лентны по уровню стойкости.

Задачи декодирования и синдромного декодирования для кодов общего ви­

да являются NP-полными как задачи разрешимости и NP-трудными как задачи

поиска [28; 29]. Это гарантирует стойкость криптографических схем, постро­

енных на таких кодах. Также пока остаются стойкими схемы, построенные с

использованием кодов, которые предложил В.Д. Гоппа [30].

Однако в общем случае криптосистемы на основе выделенных классов ли­

нейных кодов могут быть подвержены атакам, поскольку замена кода приводит

к модификации постановки задачи. Поэтому при синтезе схем на кодах, исправ­

ляющих ошибки, обычно выбирают базовый код с эффективным алгоритмом
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декодирования, но маскируют его под код общего вида, все известные алго­

ритмы для которого экспоненциальны. Маскировка может осуществляться при

помощи умножения на одну (криптосистема Богданова–Ли [31]) или две мат­

рицы (криптосистемы Мак-Элиса [5] и Нидеррайтера [27]), которые становятся

частью секретного ключа криптосистемы.

Тем не менее, известны случаи, когда секретный ключ такого вида (или

эквивалентный ему) удавалось восстановить по открытым данным. Так была

атакована криптосистема Мак-Элиса на кодах Рида–Маллера [32; 33]. Известны

атаки на эту же криптосистему на кодах Рида–Соломона [34; 35]. Проблемы со

стойкостью оказались и у вариантов на основе других классов кодов [36—39].

Одним из подходов к дополнительному сокрытию структуры кода с сохра­

нением его эффективности является переход к некоторому его подкоду. При

этом стоит учитывать, что многие предложенные системы на основе подкодов

также оказались уязвимыми. Так, в работах [40; 41] К.Вишебринк построил

эффективные атаки на некоторые особые случаи криптосистемы Бергера–Луа­

дро [42], основанной на подкодах кодов Рида–Соломона. Криптосистема Мак­

Элиса, построенная на подкодах алгебраических геометрических кодов, была

атакована в [36]. А в работе [37] И.Чижову и М.Бородину удалось редуциро­

вать стойкость криптосистемы на подкодах кодов Рида–Маллера коразмерно­

сти один до стойкости схемы на полных кодах, где под коразмерностью понима­

ется количество векторов, отсутствующих в базисе кода. Тем не менее аналогич­

ных результатов для подкодов кодов Рида–Маллера больших коразмерностей

получено не было.

Еще одним способом усиления стойкости схемы с сохранением структу­

ры кодов является вариант, предложенный в 1994 году В.Сидельниковым [43]

для кодов Рида–Маллера. Криптосистемы такого типа используют не одну, а

несколько копий кода. Матрицы таких кодов объединены по столбцам. Несмот­

ря на то, что этот подход позволил избежать прямого переноса атак, направ­

ленных на вариант с одной копией кода Рида–Маллера, в работе [44] был пред­
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ложен специальный алгоритм восстановления секретного ключа и для моди­

фицированной схемы. Работы [45] и [46] решают эту же задачу для варианта

криптосистемы, в которой используются одновременно код Рида–Маллера и ли­

нейный код общего вида. Приведенные атаки работают при выполнении типич­

ного условия, которое, согласно работе [47], будет выполнено для случайного

кода с вероятностью близкой к 1. Однако полностью вопрос применимости кон­

струкции Сидельникова не закрыт, поскольку она не была доисследована для

других классов кодов, для которых могут найтись потенциально стойкие коды

специального вида.

Выбор класса кодов может существенно улучшить эффективность схемы.

Так квазициклические коды позволяют критически сократить размер откры­

того ключа, поскольку для хранения каждой циклической подматрицы доста­

точно хранения одной ее строки. Такой подход был отражен в рамках конкурса

NIST в схемах QC-MDPC [48] и LEDAcrypt [49], предлагающих схемы шифрова­

ния и механизм инкапсуляции ключа на кодах со средней и малой плотностью

проверок на четность (QC-MDPC и QC-LDPC кодах, соответственно). Первая

схема в первый же год подверглась атаке по времени, восстанавливающей сек­

ретный ключ за 𝑂(228) битовых операций вместо 𝑂(2256) заявленных. Вторая

работа дошла до второго раунда конкурса, но далее была отклонена из-за появ­

ления работы [50], обнаружившей большой класс слабых ключей, уязвимых к

раскрытию. Еще две схемы, эксплуатировавшие квазициклическую структуру

кодов, BIKE [51] и HQC [52], дошли до 4 раунда конкурса, а модифицированная

версия последней [53] в 2025 году стала победителем.

В 2020 году на конференции CTCrypt’20 было высказано предложение [54]

использовать QC-LDPC-коды для построения электронной подписи. Для реше­

ния этой задачи авторы работы подставили алгоритм генерации квазицикличе­

ских ключей из схемы [55] в классическую схему подписи CFS. Однако измене­

ние параметров для адаптации схемы шифрования под схему подписи привело

к росту параметров, для которых выросло время внутреннего алгоритма гене­
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рации вспомогательной невырожденной квазициклической матрицы. Оптими­

зация этого алгоритма могла бы поспособствовать повышению эффективности

всей схемы подписи.

Другой подход к построению схемы электронной подписи на кодах, ис­

правляющих ошибки, заключается в применении преобразования Фиата–Шами­

ра [56] к некоторому протоколу идентификации. В качестве такого протокола

можно использовать схемы Я.Штерна [57], А.Джаина и др. [58], CVE [59] и

прочие. Такой подход позволяет отказаться от использования алгоритма декоди­

рования, что дает возможность использовать в схеме произвольный линейный

код, а не ограничиваться узкими классами кодов с эффективными алгоритмами

декодирования.

Несмотря на то, что подпись на основе схемы идентификацииШтерна неод­

нократно упоминалась в литературе, ее полное описание до сих пор не было

представлено. Например, в обзоре Р.Овербека и Н.Сендриера [60] лишь отме­

чена возможность построения такой подписи, но сам алгоритм не приведен. В

работе [61] схема сформулирована с ошибкой, что приводит к значительному

снижению уровня стойкости по сравнению с ожидаемым значением. Коррект­

ное, но краткое описание схемы можно найти в [62].

Обоснование стойкости такой схемы подписи упоминается в работе Д.Пуан-

шеваля и Я.Штерна [63]. В этой статье представлена так называемая лемма

разветвления (Forking lemma). Авторы утверждают ее применимость к доказа­

тельству стойкости подписи Штерна, однако этот факт не был доказан ни в

данной работе, ни в последующих. При этом наличие доказательства стойко­

сти позволило бы существенно продвинуть исследования в области построения

схем электронной подписи на основе кодов, исправляющих ошибки. Это связано

с тем, что стойкость такой электронной подписи не только исключает возмож­

ность структурных атак, но и строго сводится к исходной NP-трудной задаче.

Цели и задачи диссертационной работы: анализ методов построения

схем электронной подписи на основе кодов, исправляющих ошибки, путем иссле­
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дования их структурных свойств, а также рассмотрение подходов, не зависящих

от конкретного класса кодов.

Для достижения поставленной цели были решены следующие задачи:

1. исследовать стойкость электронной подписи CFS на подкодах кодов Рида–

Маллера;

2. исследовать возможность эффективного построения электронной подписи

CFS на основе квазициклических кодов;

3. исследовать стойкость электронной подписи CFS на основе конструкции

Сидельникова;

4. разработать новую схемы электронной подписи на основе кодов, исправ­

ляющих ошибки, стойкость которой не зависела бы от структуры исполь­

зуемого кода.

Положения, выносимые на защиту:

1. Метод описания структурных свойств подкодов кода Рида–Маллера, схе­

ма подписи CFS на которых является стойкой к известному типу атак.

Способы построения таких подкодов и метод оценки их доли.

2. Два эффективных алгоритма построения невырожденных квазицикличе­

ских матриц, необходимых для эффективной реализации схемы подписи

CFS на квазициклических кодах.

3. Метод получения нижней оценки мощности множества открытых ключей

схемы подписи CFS, построенной на основе конструкции Сидельникова.

Описание структуры множества секретных ключей на кодах общего ви­

да и обобщенных кодах Рида–Соломона, схема подписи на которых под­

вержена атакам, разделяющим копии кода. Метод построения секретных

ключей подписи CFS с использованием обобщенных кодов Рида–Соломо­

на, позволяющий избежать известных атак.
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4. Схема электронной подписи, стойкость которой не зависит от сложности

задач на известном классе кодов. Обоснование стойкости построенной под­

писи.

Научная новизна. В диссертации получены следующие новые результа­

ты.

1. Описаны структурные свойства подкодов кода Рида–Маллера 𝑅𝑀(2,𝑚),

устойчивых к атакам, применимым к полному коду. Описаны структур­

ные свойства подкодов кода 𝑅𝑀(𝑟,𝑚), обеспечивающих стойкость к из­

вестным структурным атакам на полный код, и построен алгоритм их

генерации. Получена оценка доли стойких подкодов кода 𝑅𝑀(𝑟,𝑚) с ро­

стом параметра 𝑚.

2. Доказаны связи между невырожденностью квазициклической матрицы,

соответствующей матрицы над факторкольцом F2[𝑥]/(𝑥
𝑟 − 1) и матри­

цы, состоящей из весов соответствующих многочленов. Получены нижние

оценки доли невырожденных матриц среди всех матриц заданного раз­

мера над факторкольцом F2[𝑥]/(𝑓(𝑥)). Разработаны эффективные алго­

ритмы вычисления определителя над факторкольцом F2[𝑥]/(𝑓(𝑥)) и алго­

ритм генерации невырожденных матриц с равномерным распределением

на множестве всех невырожденных матриц заданного размера. Предло­

жена и теоретически обоснована специализированная версия алгоритма

генерации для случая, когда 𝑓(𝑥) = 𝑥𝑟 − 1.

3. Получена оценка снизу на мощность множества открытых ключей схемы

подписи CFS, построенной на основе конструкции Сидельникова. Описана

структура классов эквивалентности секретных ключей схемы через груп­

пы автоморфизмов линейного кода и его квадрата. Уточнена структура

классов эквивалентности для случая, когда в схеме используется обобщен­

ный код Рида–Соломона. Выделены три класса ключей схемы подписи,
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такие что квадрат кода, задающего открытый ключ, не раскладывается

в прямое произведение квадратов базовых кодов.

4. Построена схема электронной подписи на основе протокола идентифика­

ции Штерна. Доказана теорема о стойкости подписи к экзистенциальной

подделке при атаке с выбором сообщения (модель EUF-CMA).

Публикации по теме исследования.

Основные результаты диссертационной работы опубликованы в 5 печат­

ных работах (общим объемом 4.88 п.л.), из них 4 работы (объемом 4.69 п.л.) в

рецензируемых научных изданиях, рекомендованных для защиты в диссертаци­

онном совете МГУ по специальности 2.3.6. Методы и системы защиты информа­

ции, информационная безопасность и индексируемых в базе ядра Российского

индекса научного цитирования «eLibrary Science Index».

Публикации в рецензируемых научных изданиях, рекомендован­

ных для защиты в диссертационном совете МГУ по специальности

2.3.6. Методы и системы защиты информации, информационная без­

опасность и индексируемых в базе ядра Российского индекса научно­

го цитирования «eLibrary Science Index»:

[64] Vysotskaya V. Characteristics of Hadamard Square of Special Reed–Muller

Subcodes // Прикладная дискретная математика. – 2021. – №– 53. C. 75–88. –

EDN: TEDEFN.

0.88 п.л., Scopus, RSCI, импакт-фактор 0.11 (JCI).

[65] Высоцкая В. В., Высоцкий Л. И. Обратимые матрицы над некоторыми

факторкольцами: идентификация, построение и анализ // Дискретная матема­

тика. 2021. – T. 33. – №2. – C. 46–65. – EDN: VASNIG.

1.25 п.л., RSCI, импакт-фактор 0.39 (РИНЦ).

Соавтору принадлежит алгоритм приведения матрицы над факторкольцом коль­

ца многочленов к верхнетреугольному виду (Алгоритм 1 по тексту статьи),

остальные результаты статьи получены Высоцкой В. В., 90%, 1.06 п.л.
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На англ. языке: Vysotskaya V., Vysotsky L. Invertible matrices over some quotient

rings: identification, generation, and analysis // Discrete Mathematics and

Applications. – 2022. – 32(4). – pp. 263–278. – EDN: EDHYGI.

1 п.л., вклад автора 90%, 0.94 п.л., Scopus, WoS, импакт-фактор 0.22 (JCI).

[66] Высоцкая В.В. О структурных особенностях пространства ключей

криптосистемы Мак-Элиса–Сидельникова на обобщенных кодах Рида–Соломо­

на // Дискретная математика. – 2024. – T. 36. №4. – C. 28–43. – EDN: IBRMIU.

1 п.л., RSCI, импакт-фактор 0.39 (РИНЦ).

[67] Vysotskaya V., Chizhov I. The security of the code-based signature scheme

based on the Stern identification protocol // Прикладная дискретная математика.

2022. – №57. – C. 67–90. – EDN: FFRFUH.

1.56 п.л., Scopus, RSCI, импакт-фактор 0.11 (JCI).

Соавтору принадлежит постановка задачи и верификация результатов, осталь­

ные результаты статьи получены Высоцкой В. В., 95%, 1.56 п.л.

В прочих изданиях:

[68] Vysotskaya V. New estimates for dimension of Reed–Muller subcodes with

maximum Hadamard square // Прикладная дискретная математика. Приложе­

ние. – 2020. – №13. – C. 98–100. – EDN: TCYZCI.

0.19 п.л., ВАК, импакт-фактор 0.06 (РИНЦ).

Апробация результатов. Результаты, полученные в диссертации, докла­

дывались на международных конференциях и научно-исследовательских семи­

нарах:

� семинаре «Математические методы криптографического анализа» кафед­

ры информационной безопасности факультета вычислительной математи­

ки и кибернетики Московского государственного университета им. М.В.

Ломоносова, 2020 год;

� IX международной научной конференции «Современные тенденции в крип­

тографии» (CTCrypt 2020), Московская область, 15–17 сентября, 2020 год;
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� международной научно-практической конференции РусКрипто 2021, Сол­

нечногорск, 23–26 марта, 2021 год;

� научном семинаре кафедры информационной безопасности факультета

вычислительной математики и кибернетики Московского государственно­

го университета им. М.В. Ломоносова, 2021 год;

� научном семинаре кафедры информационной безопасности факультета

вычислительной математики и кибернетики Московского государственно­

го университета им. М.В. Ломоносова, 2022 год;

� XIII международной научной конференции «Современные тенденции в

криптографии» (CTCrypt 2024), Петрозаводск, 3–6 июня, 2024 год.

Теоретическая значимость. Проведенное исследование позволило полу­

чить результаты, углубляющие математические подходы к построению и обос­

нованию стойкости криптографических схем, основанных на кодах, исправляю­

щих ошибки.

В рамках изучения схемы электронной подписи CFS, основанной на подко­

дах кодов Рида–Маллера, был проведен анализ структуры квадратов Адамара

этих подкодов путем сведения задачи к задаче из теории графов. Анализ ком­

бинаторных свойств позволил оценить долю подкодов, которые не подвержены

известным атакам. Совокупность полученных результатов обеспечила формали­

зованное описание структурных характеристик подкодов, применение которых

в данной криптографической схеме обеспечивает стойкость за счет отличия от

полного кода Рида–Маллера и сохраняет эффективность благодаря унаследо­

ванному алгоритму декодирования.

Применение теории полей и фактор-колец позволило провести расширен­

ное исследование линейных свойств квазициклических матриц, представляю­

щих интерес в силу обеспечиваемого ими существенного сокращения разме­

ра открытого ключа в схеме электронной подписи CFS. Полученные резуль­
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таты наряду с анализом комбинаторных характеристик множества квазицик­

лических матриц позволили разработать эффективные алгоритмы генерации

ключей этой схемы.

Исследование алгебраических свойств конкатенированных кодов позволи­

ло, с одной стороны, получить оценки мощности множества открытых клю­

чей соответствующей схемы электронной подписи CFS, а с другой — описать

структуру множества секретных ключей. Особенности строения обобщенных

кодов Рида–Соломона дали возможность уточнить полученные результаты и

выделить подклассы секретных ключей, обладающих стойкостью к известным

атакам.

Схема электронной подписи на основе протокола идентификации Штер­

на была синтезирована с целью преодоления ограничений подходов, в которых

криптографическая стойкость существенно зависит от структуры используемо­

го кода. Основной задачей являлось построение схемы, для которой возможно

строгое обоснование стойкости, не опирающееся на практические знания о су­

ществующих атаках. Обоснование оценки уровня стойкости разработанной кон­

струкции опирается на методы сведения к вычислительно сложным задачам и

вероятностные оценки, применяемые в соответствующих моделях нарушителя.

Практическая значимость. Внедрение разработанной в диссертации

схемы электронной подписи в средства защиты информации решает практиче­

скую задачу обеспечения аутентификации и целостности сообщения, подтвер­

ждения авторства и неотказуемости от него в таких прикладных системах, как

службы электронной почты, облачные хранилища, системы электронного до­

кументооборота, мессенджеры и другие системы асинхронной передачи сооб­

щений, а также распределенные реестры и блокчейн-платформы. Особая акту­

альность предлагаемого решения обусловлена их стойкостью к атакам, реали­

зуемым с использованием квантовых вычислений. Полученные обоснованные

оценки уровня информационной безопасности позволяют осуществлять выбор

безопасных значений параметров.
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Полученные результаты, связанные с анализом использования специаль­

ных классов кодов в схеме подписи CFS, позволяют обоснованно оценить их

применимость с точки зрения криптографической стойкости и вычислительной

эффективности, а также выработать практические рекомендации для реализа­

ций на их основе. Результаты диссертации также могут войти в состав учебных

пособий и быть частью лекционных курсов.

Разработанная схема подписи на основе схемы идентификации Штерна

рассматривается в Техническом комитете 26 как вариант будущего посткванто­

вого стандарта.

Структура и объем диссертации. Диссертационная работа состоит из

введения, вспомогательного раздела, четырех глав, заключения, списка литера­

туры и одного приложения. Общий объем диссертации 159 страниц, включая 6

рисунков, 4 таблицы, 4 алгоритма и 1 приложение. Список литературы вклю­

чает 84 наименования на 9 страницах.

Содержание работы.

Во Введении обоснована актуальность диссертационной работы, сфор­

мулирована цель и аргументирована научная новизна исследований, показана

практическая значимость полученных результатов, представлены выносимые

на защиту научные положения.

Раздел Обозначения, определения и общие сведения устанавлива­

ет основные обозначения и формулирует определения, относящиеся к теории

кодов, исправляющих ошибки. В нем вводятся понятия линейной зависимости

и обратимости матриц в кольце, а также перечислены некоторые специальные

виды матриц.

Формулируются определения линейных и дуальных кодов, их параметров,

способов задания и операций над ними. Задаются классы кодов, которые (или

производные от которых) изучаются в рамках диссертационной работы: ква­

зициклические коды, коды Рида–Маллера, обобщенные коды Рида–Соломона.

Также приведены некоторые сведения о этих кодах и их свойства.
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Приведена формальная модель протокола электронной подписи, изложе­

но описание оригинальной схемы CFS [25], а также рассмотрены особенности ее

построения в случае использования квазициклических кодов вместо кодов Гоп­

пы и при формировании ключей на основе конструкции Сидельникова. Описан

протокол идентификации Штерна [57], который может быть использован в ка­

честве основы для построения схемы электронной подписи [56].

Кроме того, в этом разделе представлен перечень вычислительных задач,

обладающих доказанной алгоритмической сложностью либо не имеющих из­

вестных эффективных решений и, как следствие, рассматриваемых в качестве

основы для построения криптографических схем.

В Главе 1 исследуется структура ключей электронной подписи CFS на

основе подкодов кодов Рида–Маллера. Следуя результатам работы [37], подко­

ды, квадрат Адамара которых совпадает с квадратом соответствующего кода

Рида–Маллера, считаются небезопасными для внедрения в криптографическую

схему. Это обусловлено тем, что атака на такую схему за полиномиальное сво­

дится время к атаке на схему, построенную на полном коде Рида–Маллера, для

которой уже известны эффективные структурные атаки. Для описания таких

подкодов вводится термин стабильные подкоды. С целью выявления подкодов,

потенциально пригодных для криптографического применения, рассматривают­

ся так называемые нестабильные подкоды, базис которых получен исключени­

ем из стандартного базиса кода Рида–Маллера, заданного векторами значения

мономов

1, 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥1𝑥2, . . . , 𝑥𝑚−1𝑥𝑚, . . . , 𝑥1𝑥2 . . . 𝑥𝑟, . . . , 𝑥𝑚−𝑟+1𝑥𝑚−𝑟+2 . . . 𝑥𝑚,

𝑞(𝑚, 𝑟) мономов старшей степени. Стабильные подкоды можно представить как

линейную оболочку объединения кода Рида–Маллера порядка 𝑟−1 с набором из

𝑤(𝑚, 𝑟) векторов порядка 𝑟, где между величинами 𝑞(𝑚, 𝑟) и 𝑤(𝑚, 𝑟) существует

взаимно однозначное соответствие.

С практической точки зрения важна задача определения минимального
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значения 𝑞(𝑚, 𝑟), при котором квадрат подкода совпадает с квадратом полного

кода, что означает потерю стойкости. В эквивалентной дуальной постановке

необходимо максимизировать параметр 𝑤(𝑚, 𝑟). Знание этих величин позволяет

конструировать безопасные подкоды, удаляя из стандартного базиса 𝑞(𝑚, 𝑟)+1

вектор максимальной степени.

В Разделе 1.1 рассматриваются подкоды кодов Рида–Маллера порядка 2.

Для этого случая получено полное описание структуры стабильных и нестабиль­

ных подкодов, а также найдено точное значение параметра 𝑤(𝑚, 2) (Теорема 2,

Следствия 3 и 4). Раздел 1.2 посвящен обобщению подхода на случай произ­

вольного порядка 𝑟. В нем приводятся верхняя и нижняя оценки параметра

𝑤(𝑚, 𝑟) (Теоремы 3 и 4), что позволяет количественно оценить возможности по­

строения нестабильных подкодов при различных параметрах. Завершает главу

Раздел 1.3, в котором рассматриваются подкоды, полученные исключением из

стандартного базиса фиксированного числа мономов. Доказано, что доля неста­

бильных подкодов такого типа кода RM(𝑟,𝑚) стремится к нулю при 𝑚 → ∞

(Теорема 6).

Таким образом, результаты диссертации показывают, что при случайной

генерации маловероятно попасть в подкод, на основе которого может быть по­

строена стойкая криптографическая схема. Однако, следуя предложенной в ра­

боте методике систематического исключения векторов максимальной степени,

можно конструктивно формировать гарантировано нестабильные подкоды, что,

в свою очередь, обеспечивает потенциальную стойкость соответствующих крип­

тосистем, в частности схемы подписи CFS.

Глава 2 посвящена анализу возможностей построения схемы электронной

подписи на основе квазициклических кодов.

С точки зрения хранения открытой информации такой подход является

высокоэффективным, поскольку позволяет хранить в памяти не каждый эле­

мент матрицы открытого ключа, а лишь первую строку каждой подматрицы.

В результате объем памяти, необходимый для хранения квазициклической мат­
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рицы размера 𝑘0𝑟 × 𝑛0𝑟, снижается с 𝑘0𝑛0𝑟2 бит до 𝑘0𝑛0𝑟 бит.

Одним из шагов рассмотренного в диссертационной работе алгоритма ге­

нерации ключей на основе квазициклического кода является построение слу­

чайной невырожденной двоичной квазициклической матрицы. Для реализации

этого алгоритма необходимо эффективно проверять матрицу на невырожден­

ность. Сложность проверки на невырожденность матрицы в поле F2 стандарт­

ным образом определяется по алгоритму гауссова исключения и может быть

оценена как 𝑂(𝑛30𝑟
3) при 𝑛 = 𝑛0𝑟, 𝑛0 → ∞. Однако такой способ не учитывает

квазициклическую структуру и не оптимизирован для матриц такого вида.

Другой подход к решению этой задачи был предложен в работе, посвя­

щенной схеме LEDAcrypt [55]. Он основан на представлении квазициклической

матрицы как матрицы многочленов𝑀(𝑄) над факторкольцом кольца многочле­

нов 𝐾𝑓 = F2[𝑥]/(𝑥
𝑟 − 1), полученной заменой каждого циркулянта 𝑄 с первым

столбцом ̂︀𝑞 степени 𝑟 на многочлен ̂︀𝑞1+̂︀𝑞2𝑥+· · ·+̂︀𝑞𝑟𝑥𝑟−1. Для колец не работают
классические алгоритмы линейной алгебры над полем, включающие алгоритм

Гаусса. Поэтому авторы предлагают вместо этого применить к матрице 𝑀(𝑄)

экспоненциальный алгоритм вычисления перманента. Такой алгоритм возмож­

но использовать при малых значениях параметра 𝑛0 (например, 𝑛0 = 4). Но

схема подписи CFS требует значительно бóльших параметров [54], таких как

𝑛0 = 63, и для них экспоненциальная сложность построения подходящей мат­

рицы становится запретительной.

В работе для решения этой задачи квазициклическая матрица рассмат­

ривается в форме матрицы многочленов 𝑀(𝑄), по аналогии с тем, как это

было сделано в LEDAcrypt. Далее, на основе этой матрицы, вводится вспомога­

тельная матрица wt2(𝑀(𝑄)), элементы которой представляют собой четность

весов соответствующих многочленов, то есть четность количества их ненуле­

вых коэффициентов. Раздел 2.1 посвящен строгому заданию этих матриц, а в

Разделе 2.2 формализована связь между свойствами их обратимости (Теорема

7 и Следствие 6). Раздел 2.3 посвящен оценке доли невырожденных матриц в
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факторкольцах 𝐾𝑓 и 𝐾𝑥𝑟−1 (Следствие 7 и Теорема 10).

В Разделе 2.4 предложен эффективный алгоритм приведения матрицы

𝐴 ∈ 𝐾𝑛×𝑛
𝑓 к верхнетреугольному виду. На его основе в Разделе 2.5 построен

алгоритм генерации случайной обратимой матрицы над кольцом 𝐾𝑓 . Алгоритм

реализуется посредством случайной генерации матрицы многочленов и последу­

ющей проверки обратимости ее определителя. В случае отрицательного резуль­

тата генерация повторяется. Простроенный алгоритм эффективен (Теорема 12).

В качестве альтернативного подхода был предложен другой алгоритм ре­

шения той же задачи, но специализированный для колец𝐾𝑥𝑟−1 (Теорема 13). На

первом этапе осуществляется генерация случайной двоичной матрицы с после­

дующей проверкой ее обратимости. В случае положительного результата дан­

ная матрица интерпретируется как матрица весов, на основе которой форми­

руется матрица многочленов таким образом, чтобы вес каждого многочлена

совпадал со значением в соответствующем элементе. На завершающем этапе

вновь требуется проверка обратимости построенной матрицы через вычисление

ее определителя.

В Главе 3 рассматривается возможность построения ключей электронной

подписи CFS на основе конструкции Сидельникова. Если раньше открытый

ключ был произведением𝑀𝑅Γ тройки матриц, составляющих секретный ключ,

где 𝑀 была невырожденной матрицей, 𝑅 — проверочной матрицей некоторого

линейного кода, а Γ — перестановочной матрицей, то теперь рассматриваются

открытые ключи вида (𝑀1𝑅1‖𝑀2𝑅2)Γ, где обе матрицы 𝑀1,𝑀2 невырождены

и входят в секретный ключ, а 𝑅1, 𝑅2 — порождающие матрицы, вообще говоря,

не обязательно одинаковых кодов.

В силу того, что один открытый ключ как в оригинальной, так и в мо­

дифицированной криптосистеме может быть получен из различных секретных

ключей, их множество естественным образом разбивается на классы эквива­

лентности. Тогда для изучения особенностей структуры каждого класса можно

использовать любого его представителя. В частности, можно обращаться к от­
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крытым ключам вида (𝑅1‖𝑀𝑅2)Γ, где 𝑀 =𝑀−1
1 𝑀2.

В работе рассматриваются только случаи, когда матрицы 𝑅1 и 𝑅2 совпа­

дают. Код, заданный такой порождающий матрицей, в работе обозначен через

𝒞[𝑀 ], а также для него введено определение: такой код называется кодом с раз­

ложимым квадратом, если (𝒞[𝑀 ])2 = 𝒞2 × 𝒞2 и кодом с неразложимым

квадратом, если (𝒞[𝑀 ])2 ⊊ 𝒞2 × 𝒞2.

Способ задания ключей криптосистемы на основе конструкции Сидельни­

кова неоднократно подвергался изучению [44—46; 69]. Работа [44] рассматривает

случай, когда схема строится полностью на кодах Рида–Маллера (авторы рас­

сматривают обобщение, где используется некоторое произвольное число копий

кода 𝑢 ⩾ 2). Она предлагает полиномиальную атаку восстановления секретного

ключа по открытому ключу криптосистем, использующих код Рида–Маллера

с разложимым квадратом.

Полиномиальная атака на вариант, в котором 𝑅1 — порождающая матрица

кода Рида–Маллера, а 𝑅2 — порождающая матрица случайного линейного кода,

также возможна в предположении о разложимости квадрата соответствующего

кода [46]. Эти результаты были обобщены в работе [69], где для криптографи­

ческой схемы на основе 𝑢 порождающих матриц произвольных линейных кодов

построено сведение к стойкости схем на каждом коде по-отдельности.

В то же время в работе [47] показано, что с вероятностью близкой к 1 слу­

чайный линейный код обладает разложимым квадратом. Это делает введенное

понятие кода с неразложимым квадратом актуальным необходимым условием

стойкой криптосистемы.

Раздел 3.1 вводит дополнительное определение укорочения кода и связан­

ное с ним свойство. В Разделе 3.2 вводится понятие эквивалентных секретных

ключей схемы подписи, а также показано взаимно однозначное соответствие

между классом эквивалентности и некоторым введенным множеством переста­

новок 𝒢𝑅(𝑀1,𝑀2) (Теорема 14). Полученный результат есть обобщение резуль­

тата из работы [70], доказанного для кодов Рида–Маллера. Еще одним обобще­
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нием является полученная в этом разделе оценка снизу на мощность открытых

ключей соответствующей схемы подписи CFS (Теорема 15).

Введено понятие кода с разложимым и неразложимым квадратом и до­

казано, что любой линейный код обязан удовлетворять одному из этих опре­

делений (Теорема 16). Получено описание класса эквивалентности секретных

ключей схемы подписи CFS на основе конструкции Сидельникова, построенной

на произвольном линейном коде, если код 𝒞[𝑀 ] имеет разложимый квадрат

(Утверждение 28 и Утверждение 29). Раздел 3.3 уточняет результат, получен­

ный для произвольных линейных кодов, за счет сужения области исследования

до обобщенных кодов Рида–Соломона (Теорема 17).

Раздел 3.4 содержит примеры невырожденных матриц𝑀 , задающих коды

с неразложимым квадратом (Теорема 18, Следствие 12 и Теорема 20). Такие ко­

ды не могут быть найдены случайно в силу их малой вероятности, при этом они

являются потенциальной основой для построения стойких криптографических

схем, не подверженных упомянутым выше атакам.

Глава 4 посвящена разработке альтернативного подхода к построению схе­

мы электронной подписи на основе кодов, исправляющих ошибки. Недостатком

схемы CFS является то, что использование некоторых классов кодов может при­

вести к снижению ее криптографической стойкости. Это связано с некоррект­

ностью предположения о сложности для конкретных классов кодов задачи син­

дромного декодирования, которая заключается в поиске вектора 𝑒 веса 𝑡 такого,

что 𝐻𝑒𝑇 = 𝑠𝑇 для заданной матрицы 𝐻, вектора 𝑠 и числа 𝑡. На сегодняшний

день доказательство NP-трудности известно только для линейного кода общего

вида [28]. Поэтому целесообразным представляется построение схемы электрон­

ной подписи на основе оригинальной вычислительно сложной задачи, стойкость

которой не зависит от структуры используемого кода. Такой поход исключает

возможность использования алгоритмов декодирования, непосредственно опи­

рающихся на внутренние свойства кодов, что обусловливает необходимость по­

иска принципиально иного подхода по сравнению со схемой CFS.
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Вариант решения поставленной задачи предложен в Разделе 4.1, также в

нем введены формальные модели нарушителя. В качестве основы для построе­

ния новой схемы электронной подписи выбрана схема идентификации, предло­

женная Я. Штерном [57]. Как показали А. Фиат и А. Шамир в 1987 году [56], на

базе схемы идентификации возможно построение схемы электронной подписи,

посредством внедрения дополнительной хэш-функции, имитирующий интерак­

тивный ответ второй стороны. Для построенной схемы в Разделе 4.2 через се­

рию сведений получено обоснование стойкости в модели EUF-CMA, в которой

нарушитель, с целью построения подделки, имеет возможность запрашивать

подписи на выбранные им сообщения, а также вычислять значения внутренней

хэш-функции. Стойкость построенной схемы подписи описывает Следствие 13.

Схема подписи на основе схемы идентификации Штерна разрабатывалась

в рамках деятельности рабочей группы Технического комитета 26 по стандар­

тизации.

В Заключении представлены основные результаты диссертации.

Приложение включает код одного из приведенных в Главе 1 алгоритмов,

написанный на языке Python.

Благодарности. Автор диссертации выражает благодарность за поста­

новку задачи, внимание к работе и советы своему научному руководителю кан­

дидату физико-математических наук Чижову Ивану Владимировичу. Также ав­

тор благодарит мужа и друзей за поддержку, оказанную в процессе написания

работы.
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Обозначения, определения и общие сведения

Настоящий раздел посвящен введению понятий и свойств, которые исполь­

зуются далее по тексту диссертации.

1. Сведения из общей алгебры

Определение 1. Линейной оболочкой span(𝑆) конечного множества 𝑆 векто­

ров из линейного пространства 𝑉 над полем F называется множество

span(𝑆) = {𝜆1𝑣1 + 𝜆2𝑣2 + · · ·+ 𝜆𝑛𝑣𝑛 | 𝑣1, . . . 𝑣𝑛 ∈ 𝑆, |𝑆| = 𝑛, 𝜆1, . . . , 𝜆𝑛 ∈ F} .

Определение 2. Для произвольного коммутативного кольца 𝐾 с единицей

набор векторов 𝑢1, . . . , 𝑢𝑘 ∈ 𝐾𝑛, 𝑘, 𝑛 ⩾ 1 будем называть линейно независимым,

если для любых элементов 𝛼1, . . . , 𝛼𝑘 ∈ 𝐾, одновременно не равных нулю, верно

𝛼1𝑢1 + . . .+ 𝛼𝑘𝑢𝑘 ̸= 0.

Пустой набор векторов будем считать линейно независимым по определению.

Определение 3. Для произвольного коммутативного кольца 𝐾 с единицей

матрица 𝐴 ∈ 𝐾𝑛×𝑛 называется невырожденной, если ее определитель является

обратимым элементом кольца. Матрица 𝐴 называется обратимой, если суще­

ствует матрица 𝐵 такая, что 𝐴𝐵 = 𝐵𝐴 = 𝐼.

Определение 4. Порядком числа 𝑔 ∈ Z по модулю 𝑑 ∈ N такому, что

НОД(𝑔, 𝑑) = 1, называется минимальное 𝑘 > 0 такое, что 𝑔𝑘 = 1 (mod 𝑑). Бу­

дем обозначать его ord𝑑(𝑔).

Определение 5. Подстановкой на конечном множестве Ω называется любое

взаимно однозначное отображение этого множества на себя.

Если Ω = N𝑛 = {1, 2, . . . , 𝑛}, то для обозначения множества подстановок

используется символ 𝒮𝑛. Далее будут рассматриваться только такие подстанов­

ки.
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Подстановка может быть задана несколькими способами. Первый из них

— это определить функцию 𝜋 : N𝑛 → N𝑛. Другой способ заключается в исполь­

зовании перестановочной матрицы.

Определение 6. Матрица 𝑃 размера 𝑛×𝑛, состоящая из элементов поля F𝑞𝑚,

называется перестановочной, если все ее элементы равны нулю или единице,

причем для каждого 1 ⩽ 𝑗 ⩽ 𝑛 единицы стоят на пересечении строки 𝜋(𝑗) и

столбца 𝑗, а остальные элементы равны нулю.

Таким образом, любой перестановочной 𝑛 × 𝑛-матрице 𝑃 можно взаимно

однозначно сопоставить подстановку 𝜋 ∈ 𝒮𝑛. Так, если обозначить через 𝑃𝑖𝑗

элемент, находящийся на пересечении строки с номером 𝑖 и столбца с номером 𝑗

матрицы 𝑃 , то 𝑃𝑖𝑗 = 1 тогда и только тогда, когда 𝜋(𝑗) = 𝑖. Таким образом,

умножение некоторого вектора (𝑤1, . . . 𝑤𝑛) справа на матрицу 𝑃 , также как и

непосредственное поэлементное применение подстановки 𝜋, дает в результате

вектор (𝑤𝜋(1), . . . , 𝑤𝜋(𝑛)). Поэтому в дальнейшем мы не будем делать различий

между подстановками и перестановочными матрицами.

Определение 7. Единичной матрицей 𝐼𝑛 называется квадратная матрица раз­

мера 𝑛× 𝑛, все элементы 𝐼𝑖𝑗 которой задаются как

𝐼𝑖𝑗 =

⎧⎪⎨⎪⎩1, если 𝑖 = 𝑗;

0, иначе.

2. Линейные коды

В общем смысле понятие кода обозначает множество слов, заданных над

некоторым фиксированным алфавитом. Однако в настоящей работе все резуль­

таты были получены для более узкого класса кодов, который обладает свой­

ством линейности.

Определение 8. Пусть F𝑞 — поле Галуа порядка 𝑞 и 𝑉𝑛 — линейное простран­

ство над полем F𝑞 размерности 𝑛. Тогда линейным блоковым 𝑞-ичным кодом
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называется линейное 𝑘-мерное подпространство 𝒞 пространства 𝑉𝑛. При этом 𝑘

называется размерностью кода, а 𝑛 — его длиной.

В дальнейшем под «кодом» всегда будем понимать именно линейный код.

Также иногда код длины 𝑛 и размерности 𝑘 будем называть [𝑛, 𝑘]-кодом.

Определение 9. Пусть 𝒞 — линейный код размерности 𝑘 над полем F𝑞. Под­

кодом кода 𝒞 называется любое линейное подпространство 𝒞 ′ ⊆ 𝒞 над F𝑞. Если

подкод 𝒞 ′ имеет размерность 𝑘′, то его коразмерность в коде 𝒞 определяется

как разность 𝑘 − 𝑘′.

Коды играют важную роль при передаче информации, поскольку позво­

ляют обнаруживать и исправлять возникающие в процессе ошибки. Эффектив­

ность конкретного кода при решении этих задач определяется характеристикой,

называемой минимальным расстоянием. Определим это понятие ниже.

Определение 10. Расстоянием Хэмминга (или просто расстоянием) 𝜌(𝑥, 𝑦)

между двумя векторами 𝑥 и 𝑦 называется число координат, в которых эти век­

торы различаются.

Определение 11. Весом Хэмминга (или просто весом) wt(𝑥) вектора 𝑥 назы­

вается число ненулевых координат этого вектора.

Определение 12. Минимальным (или кодовым) расстоянием линейного ко­

да 𝒞 называется число 𝑑, равное минимальному расстоянию между кодовыми

словами кода 𝒞, то есть

𝑑 = min
𝑥∈𝒞, 𝑦∈𝒞,

𝑥 ̸=𝑦

𝜌(𝑥, 𝑦) = min
𝑥∈𝒞, 𝑥̸=0

wt(𝑥).

Утверждение 1 ([71]). Код с минимальным расстоянием 𝑑 может исправ­

лять ⌊(𝑑−1)/2⌋ ошибок. Если 𝑑 четное, то код может одновременно исправ­

лять (𝑑− 2)/2 ошибок и обнаруживать 𝑑/2 ошибок.
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Линейный код как линейное пространство может быть задан своим бази­

сом, который можно представить в виде матрицы.

Определение 13. Матрица 𝐺 размера 𝑘 × 𝑛, состоящая из элементов поля,

строками которой являются векторы базиса кода 𝒞, называется порождающей

матрицей кода 𝒞.

Порождающая матрица кода не уникальна, что показывает следующее

утверждение. Его справедливость очевидным образом следует из свойств ли­

нейных подпространств.

Утверждение 2. Матрицы 𝐺1 и 𝐺2 являются порождающими матрицами

одного и того же кода 𝒞, если и только если существует невырожденная

квадратная матрица 𝑀 такая, что 𝐺1 =𝑀 ·𝐺2.

Определение 14. Под произведением Адамара (или просто произведением)

двух векторов 𝑏 и 𝑐 будем понимать вектор, полученный покомпонентным пе­

ремножением координат исходных векторов:

(𝑏1, . . . , 𝑏𝑛) ∘ (𝑐1, . . . , 𝑐𝑛) = (𝑏1𝑐1, . . . , 𝑏𝑛𝑐𝑛)

Будем обозначать его как 𝑏 ∘ 𝑐.

Определение 15. Произведением Адамара (или просто произведением) двух

кодов ℬ и 𝒞, обозначенным как ℬ ∘ 𝒞, будем называть линейную оболочка мно­

жества

{𝑏1 · 𝑏2 | 𝑏1 ∈ 𝒞1, 𝑏2 ∈ 𝒞2}.

Выражение 𝒞 ∘ . . . ∘ 𝒞⏟  ⏞  
𝑘 раз

есть 𝑘-тая степень кода 𝒞. Кратко будем обозначать ее

как 𝒞𝑘. В случае, когда 𝑘 = 2, будем называть полученный код квадратом

кода 𝒞.
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Определение 16. Под декартовым произведением двух кодов ℬ и 𝒞 будем

понимать множество ℬ×𝒞, элементами которого являются все возможные упо­

рядоченные конкатенации кодовых слов вида:

ℬ × 𝒞 = {𝑏‖𝑐
⃒⃒⃒
𝑏 ∈ ℬ, 𝑐 ∈ 𝒞}.

Определение 17. Подстановка координат, отображающая код 𝒞 “на себя”, то

есть переводящая каждое кодовое слово в кодовое слово того же кода, возмож­

но, отличное от исходного, называется автоморфизмом кода 𝒞. Множество всех

автоморфизмов кода 𝒞 обозначается Aut(𝒞).

Утверждение 3 ([71]). Множество автоморфизмов данного кода является

группой относительно операции композиции подстановок.

3. Дуальные коды

Определение 18. Пусть 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) и 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) — векторы

над полем F𝑞. Тогда скалярным произведением векторов 𝑥 и 𝑦 называется число

(𝑥, 𝑦) ∈ F𝑞 :

(𝑥, 𝑦) = 𝑥1 · 𝑦1 + 𝑥2 · 𝑦2 + . . .+ 𝑥𝑛 · 𝑦𝑛.

Векторы, скалярное произведение которых равно нулю, принято называть ор­

тогональными.

Каждый код 𝒞 однозначно задает так называемый дуальный код.

Определение 19. Дуальным кодом 𝒞⊥ к коду 𝒞 называется линейный код, со­

стоящий из всех возможных векторов длины 𝑛, которые ортогональны любому

кодовому слову кода 𝒞, то есть

𝒞⊥ = {𝑢 | (𝑢, 𝑐) = 0,∀𝑐 ∈ 𝒞}.

Код 𝒞⊥ имеет длину 𝑛 и размерность 𝑛−𝑘, другими словами, 𝒞⊥ есть [𝑛, 𝑛− 𝑘]-код.
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Определение 20. Порождающая матрица 𝐻 размера (𝑛 − 𝑘) × 𝑛 кода 𝒞⊥,

дуального к 𝒞, называется проверочной матрицей кода 𝒞.

Из этого определения следует также, что порождающая матрица 𝐺 кода

𝒞 является проверочной для кода 𝒞⊥.

Утверждение 4 ([71]). Проверочная и порождающая матрицы линейного ко­

да 𝒞 связаны соотношением

𝐻 ·𝐺𝑇 = 𝐺 ·𝐻𝑇 = 0.

Введение проверочной матрицы позволяет дать альтернативное определе­

ние линейного блокового кода.

Определение 21. Если 𝐻 — произвольная 𝑞-ичная матрица, то линейный бло­

ковый 𝑞-ичный код с проверочной матрицей𝐻 состоит из всех таких векторов 𝑥,

что 𝐻𝑥𝑇 = 0.

Легко заметить, что определения 8 и 21 эквивалентны.

Два утверждения ниже можно считать общеизвестными, однако приведем

их вместе с доказательствами.

Утверждение 5. Если для двух кодов ℬ и 𝒞 выполнено, что 𝒞 ⊆ ℬ, то также

выполнено ℬ⊥ ⊆ 𝒞⊥.

Доказательство. Рассмотрим кодовое слово 𝑥 ∈ ℬ⊥. По определению,

∀𝑣 ∈ ℬ : (𝑥, 𝑣) = 0 ⇒ ∀𝑣 ∈ 𝒞 : (𝑥, 𝑣) = 0,

поэтому 𝑥 ∈ 𝒞⊥.

Утверждение 6. (𝒞 × 𝒞)⊥ = 𝒞⊥ × 𝒞⊥.

Доказательство. Пусть для некоторого вектора выполнено вложение 𝑥‖𝑦 ∈

(𝒞 × 𝒞)⊥. Тогда (𝑥‖𝑦, 𝑐‖0) = 0 для любого 𝑐 ∈ 𝒞, а, следовательно, 𝑥 ∈ 𝒞⊥.

Аналогично можно показать, что 𝑦 ∈ 𝒞⊥. Таким образом, 𝑥‖𝑦 ∈ 𝒞⊥ × 𝒞⊥.
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Для доказательства в другую сторону зафиксируем произвольные вектора

𝑎 ∈ 𝒞, 𝑏 ∈ 𝒞, 𝑥 ∈ 𝒞⊥, 𝑦 ∈ 𝒞⊥. Тогда (𝑥‖𝑦, 𝑎‖𝑏) = (𝑥, 𝑎) + (𝑦, 𝑏) = 0, то есть

𝑥‖𝑦 ∈ (𝒞 × 𝒞)⊥.

4. Задачи на кодах

На линейных кодах возможно поставить ряд задач, которые являются до­

казано сложными. Это позволяет использовать их как основу для целого ряда

криптографических схем. Ниже приведем (не исчерпывающий) список таких

задач в форме разрешимости.

Задача 𝛾-GSD. Декодирование кода класса 𝛾

Дано: порождающая 𝑘 × 𝑛-матрица 𝐺 некоторого кода над F𝑞𝑚, ненулевой

вектор 𝑦 ∈ F𝑛
𝑞𝑚 и число 𝑡.

Вопрос: существует ли такая пара векторов (𝑥, 𝑒), 𝑥 ∈ F 𝑘
𝑞𝑚, 𝑒 ∈ F𝑛

𝑞𝑚, что

wt(𝑒) = 𝑡 и 𝑦 = 𝑥𝐺+ 𝑒?

Задача 𝛾-SD. Синдромное декодирование кода класса 𝛾

Дано: проверочная 𝑟 × 𝑛-матрица 𝐻 некоторого кода заданного класса 𝛾

над F𝑞𝑚, вектор 𝑠 ∈ F 𝑟
𝑞𝑚 (который называется синдромом) и число 𝑡.

Вопрос: существует ли такой вектор 𝑒 ∈ F𝑛
𝑞𝑚, что wt(𝑒) = 𝑡 и 𝐻𝑒𝑇 = 𝑠𝑇?

Задача 𝛾-CF. Поиск кодового слова кода класса 𝛾

Дано: проверочная 𝑟×𝑛-матрица𝐻 кода заданного класса 𝛾 над F𝑞𝑚 и число 𝑡.

Вопрос: существует ли такой вектор 𝑒 ∈ F𝑛
𝑞𝑚, что wt(𝑒) = 𝑡 и 𝐻𝑒𝑇 = 0?

Задача 𝛾-PE. Перестановочная эквивалентность кодов

Дано: 𝑟 × 𝑛-матрица 𝐺 над F𝑞𝑚.

Найти: такой набор матриц (𝐻,𝑅,Γ) над F𝑞𝑚, что 𝑟 × 𝑛-матрица 𝑅 — прове­

рочная или порождающая матрица заданного класса 𝛾, 𝑟× 𝑟-матрица 𝐻 невы­

рожденная, 𝑛× 𝑛-матрица Γ перестановочная и 𝐺 = 𝐻 ·𝑅 · Γ.
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Задача SD для случайного кода является NP-полной (см. [28], [29]). Луч­

ший из известных алгоритмов, решающих эту задачу, описан в работе [72] и

требует 𝑂(20.0465𝑛) битовых операций. Задача GSD эквивалентна по сложности

задаче SD, соответственно также является NP-полной. Работа [28] показала, что

это же верно для задачи CF. При этом задачи поиска, соответствующие задачам

разрешимости SD, GSD и CF, NP-трудны. Задача PE, согласно работе [73], не

может быть слишком легкой и не может быть сильно сложной (и точно не яв­

ляется NP-полной). Для конкретного семейства кодов сложность задач зависит

от структуры этого семейства.

В следующих разделах остановимся подробнее на нескольких выделенных

классах кодов. При этом будем опускать соответствующий префикс 𝛾, если

класс кодов однозначно определен текстом.

5. Квазициклические коды

Введем понятие квазициклического кода и рассмотрим его частные приме­

ры. В дальнейшем тексте диссертации будут изучаться только квазицикличе­

ские коды над полем F2.

Определение 22. Квадратная матрица 𝐴 ∈ F 𝑟×𝑟
2 называется циклической

матрицей (или циркулянтом) порядка 𝑟, если 𝑎𝑖𝑗 = ̂︀𝑎1+(𝑖−𝑗) mod 𝑟 для некоторо­

го вектора ̂︀𝑎 ∈ F 𝑟
2 . Иначе говоря, первый столбец матрицы 𝐴 есть ̂︀𝑎, а каждый

следующий получается из предыдущего циклическим сдвигом на один элемент

вниз.

Множество циркулянтов порядка 𝑟 образует кольцо с единицей.

Определение 23. Весом циркулянта 𝐴 ∈ F 𝑟×𝑟
2 назовем вес Хэмминга его пер­

вого столбца, то есть количество единиц в нем.
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Определение 24. Квазициклической матрицей называется матрица вида

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑄1,1 𝑄1,2 . . . 𝑄1,𝑛

𝑄2,1 𝑄2,2 . . . 𝑄2,𝑛

... ... . . . ...

𝑄𝑘,1 𝑄𝑘,2 . . . 𝑄𝑘,𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ ,

где матрицы 𝑄𝑖,𝑗 —циркулянты порядка 𝑟.

Определение 25. (Систематическими) квазициклическими кодами называ­

ются коды с (систематической) квазициклической проверочной матрицей.

Определение 26. Кодом с малой плотностью проверок на четность (LDPC­

кодом) называется представитель бесконечного семейства линейных [𝑛, 𝑘]-кодов,

каждые строка и столбец проверочной матрицы которых при 𝑛→∞ имеет фик­

сированный вес 𝑤 = 𝑂(1).

Определение 27. Кодом со средней плотности проверки на четность (MDPC­

кодом) называется представитель бесконечного семейства линейных [𝑛, 𝑘]-кодов,

каждые строка и столбец проверочной матрицы которых при 𝑛→∞ имеет фик­

сированный вес 𝑤 = 𝑂(
√
𝑛 log 𝑛).

Определение 28. Линейные коды называютсяQC-LDPC (QC-MDPC)-кодами,

если они являются одновременно LDPC (MDPC)-кодами и квазициклическими

кодами.

6. Коды Рида–Маллера

Настоящий раздел посвящен кодам Рида–Маллера. Этот класс кодов изве­

стен более 70 лет и интересен благодаря своей алгебраической структуре, кото­

рая допускают явное задание параметров и обладает рядом свойств, полезных

для исправления ошибок.



35

Определение 29. Кодом Рида–Маллера RM(𝑟,𝑚) называется множество век­

тор-значений 𝑓 всех булевых функций 𝑓(𝑥1, . . . , 𝑥𝑚), степень нелинейности (мак­

симальная степень монома, входящего в полином Жегалкина функции 𝑓) кото­

рых не превосходит 𝑟, то есть

RM(𝑟,𝑚) =
{︁
Ω𝑓 = (𝑓1, . . . , 𝑓𝑛), 𝑛 = 2𝑚

⃒⃒⃒

𝑓𝑗(𝑥1, . . . , 𝑥𝑚) = 𝑎𝑗0 ⊕
𝑡⨁︁

𝑠=1

⨁︁
1⩽𝑖1<···<𝑖𝑠⩽𝑚

𝑎𝑗𝑖1,...,𝑖𝑠𝑥𝑖1 . . . 𝑥𝑖𝑠, 𝑡 ⩽ 𝑟, 𝑗 = 1, . . . , 𝑛
}︁
.

В дальнейшем не будем делать различий в обозначении булевых функций

и их векторов значений.

Следующее утверждение связывает параметры (𝑛, 𝑘, 𝑡) и параметры (𝑟,𝑚)

кодов Рида–Маллера.

Утверждение 7 ([71]). Заданный относительно произвольного 𝑚 и произ­

вольного 𝑟 : 0 ⩽ 𝑟 ⩽ 𝑚 двоичный код RM(𝑟,𝑚) имеет:

1. длину 𝑛 = 2𝑚;

2. размерность

𝑘 =
𝑟∑︁

𝑖=0

(︀
𝑚
𝑖

)︀
; (1)

3. кодовое расстояние 2𝑚−𝑟.

Код Рида–Маллера удобно задавать через выделенный базис специального

вида. Иногда его называют мономиальным базисом, мы же будем обращаться

к нему как к стандартному.

Определение 30. Стандартный базис кода Рида–Маллера RM(𝑟,𝑚) включает

все мономы от 𝑚 переменных степени от 0 до 𝑟 включительно, т.е.

1, 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥1𝑥2, . . . , 𝑥𝑚−1𝑥𝑚, . . . , 𝑥1 · · ·𝑥𝑟, . . . , 𝑥𝑚−𝑟−1 · · ·𝑥𝑚.
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Далее отметим несколько свойств таких кодов. Первые два из них следуют

непосредственно из определения кода и определения операции возведения в

квадрат Адамара.

Утверждение 8. Для всех 0 ⩽ 𝑟 ⩽ 𝑚− 1 выполнено вложение

RM(𝑟,𝑚) ⊂ RM(𝑟 + 1,𝑚).

Утверждение 9. Для всех 0 ⩽ 𝑟1 ⩽ 𝑚− 1, 0 ⩽ 𝑟2 ⩽ 𝑚− 1 выполнено:

RM(𝑟1,𝑚) ∘ RM(𝑟2,𝑚) = RM(𝑟1 + 𝑟2,𝑚).

Утверждение 10 ([71]). Для всех 0 ⩽ 𝑟 ⩽ 𝑚− 1 код RM(𝑚− 𝑟− 1,𝑚) дуален

коду RM(𝑟,𝑚), то есть

RM⊥(𝑟,𝑚) = RM(𝑚− 𝑟 − 1,𝑚).

Тем самым код, дуальный к коду Рида–Маллера, сам является кодом

Рида–Маллера.

7. Обобщенные коды Рида–Соломона

Класс кодов Рида–Соломона, рассмотренный в данном разделе, обладает

максимально возможным кодовым расстоянием, поскольку достигает так назы­

ваемой границы Синглтона. Благодаря этому такие коды способны исправлять

наибольшее возможное число ошибок для заданной длины и размерности.

Определение 31. [𝑞𝑚 − 1, 𝑘]-обобщенным кодом Рида–Соломона (сокращенно

ОРС) GRS𝑘(𝛼, 𝑣) для вектора 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛), где 𝛼𝑖 — попарно различ­

ные элементы поля F𝑞𝑚, и вектора 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), где 𝑣𝑖 — не обязательно

различные ненулевые элементы поля F𝑞𝑚, называется 𝑘-мерное векторное про­

странство{︀
(𝑣1𝐹 (𝛼1), 𝑣2𝐹 (𝛼2), . . . , 𝑣𝑛𝐹 (𝛼𝑛)) |𝐹 ∈ F𝑞𝑚[𝑥], deg(𝐹 (𝑥)) < 𝑘

}︀
.
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Иногда для простоты изложения мы будем использовать многочлен 𝐹 (𝑥)

и его вектор значений (𝐹 (𝛼1), 𝐹 (𝛼2), . . . , 𝐹 (𝛼𝑛)) взаимозаменяемо.

Утверждение 11 ([71]). Матрица вида⎛⎜⎜⎜⎜⎜⎜⎝
𝑣1 𝑣2 . . . 𝑣𝑛

𝛼1𝑣1 𝛼2𝑣2 . . . 𝛼𝑛𝑣𝑛
...

... . . .
...

𝛼𝑘−1
1 𝑣1 𝛼𝑘−1

2 𝑣2 . . . 𝛼𝑘−1
𝑛 𝑣𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ = (2)

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1

𝛼1 𝛼2 . . . 𝛼𝑛

...
... . . .

...

𝛼𝑘−1
1 𝛼𝑘−1

2 . . . 𝛼𝑘−1
𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝
𝑣1 0 . . . 0

0 𝑣2 . . . 0
...

... . . . ...

0 0 . . . 𝑣𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ .

является порождающей матрицей кода Рида–Соломона.

Определение обобщенного кода Рида–Соломона позволяет записать следу­

ющее утверждение.

Утверждение 12. Для всех 𝑘1 и 𝑘2, таких что 1 ⩽ 𝑘1 < 𝑘2 ⩽ 𝑛, выполнено

вложение

GRS𝑘1(𝛼, 𝑣) ⊊ GRS𝑘2(𝛼, 𝑣). (3)

Следующее утверждение также использует определение кода ОРС в сово­

купности с правилом возведения в квадрат Адамара.

Утверждение 13. Произведение Адамара двух обобщенных кодов Рида–Соло­

мона при условии 𝑘1 + 𝑘2 ⩽ 𝑛+ 1 имеет вид

GRS𝑘1(𝛼, 𝑣
′) ∘ GRS𝑘2(𝛼, 𝑣′′) = GRS𝑘1+𝑘2−1(𝛼, 𝑣

′𝑣′′).

Следствие 1. dim(GRS𝑘(𝛼, 𝑣))
2 = 2𝑘 − 1.

Следствие 2. При 𝑘 ⩽ 𝑛+1
2 справедливо равенство

dim
(︀
(GRS𝑘(𝛼, 𝑣))

2 × (GRS𝑘(𝛼, 𝑣))
2
)︀
= 4𝑘 − 2. (4)
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Утверждение 14 ([71]). Параметры (𝑛, 𝑘, 𝑑) кода Рида–Соломона связаны со­

отношением

𝑑 = 𝑛− 𝑘 + 1.

Как и в случае с кодами Рида–Маллера, дуальный код к коду Рида–Соло­

мона сам является кодом Рида–Соломона.

Утверждение 15. GRS𝑘(𝛼, 𝑣)
⊥ = GRS𝑛−𝑘(𝛼, 𝑣

′) для некоторого 𝑣′.

Утверждение 16. Для любого вектора 𝑣 ∈ (F*𝑞𝑚)𝑛 существует вектор

𝑣′ ∈ (F*𝑞𝑚)𝑛 такой, что для любого 1 ⩽ 𝑘 ⩽ 𝑛− 1 выполнено

(GRS𝑘(𝛼, 𝑣))
⊥ = GRS𝑛−𝑘(𝛼, 𝑣

′). (5)

Несмотря на различие формулировок последних двух утверждений, их до­

казательства совпадают и содержатся в книге [71] (доказательство Теоремы 4

из Раздела 10.8).

Закончим раздел еще одним вспомогательным фактом об обобщенных ко­

дах Рида–Соломона.

Утверждение 17. Для любого вектора 𝑢 = (𝛾1, 𝛾2, . . . , 𝛾𝑘, 0, . . . , 0) ∈ F𝑛
𝑞𝑚 вер­

но, что 𝑅𝑢𝑇 ̸= 0, если 𝑅 — порождающая матрица вида (2) кода GRS𝑘(𝛼, 𝑣).

Доказательство. Любая матрица вида (2), составленная из столбцов порож­

дающей матрицы кода GRS𝑘(𝛼, 𝑣) с номерами 1, 2, . . . , 𝑖, где 1 ⩽ 𝑖 ⩽ 𝑛, будет

невырожденной. Это верно в силу того, что определитель такой матрицы отли­

чается от определителя матрицы Вандермонда лишь умножением на ненулевой

скаляр. В то же время условие 𝑅𝑢𝑇 = 0 означает вырожденность такой матри­

цы, что приводит к противоречию.

8. Электронная подпись CFS

Одним из широко используемых криптографических механизмов являет­

ся электронная подпись, которая представляет собой аналог классической под­
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писи, выполненной чернилами на бумаге. Электронная подпись решает задачи

контроля целостности данных и неотказуемости от авторства. Приведем ее фор­

мальное определение.

Определение 32. Для заданного пространства сообщенийℳ протоколом элек­

тронной подписи называется тройка полиномиальных вероятностных алгорит­

мов (KGen, SigGen, SigVer), называемых алгоритмами генерации ключей, гене­

рации подписей и проверки подписей соответственно, таких, что

1. KGen — полиномиальная вероятностная машина Тьюринга такая, что

KGen(1𝜆) = (pk, sk), где pk − открытый ключ, а sk − секретный.

2. SigGen — полиномиальная вероятностная машина Тьюринга такая, для

произвольного 𝑚 ∈ℳ возвращающая SigGen(sk,𝑚) = 𝜎.

3. SigVer — полиномиальная машина Тьюринга такая, что

SigVer(pk,𝑚, 𝜎) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, если 𝜎 корректная подпись

под сообщением 𝑚;

0, иначе.

Кроме того, для любой пары ключей (pk, sk) и любого сообщения𝑚 верно,

что SigVer(pk,𝑚, SigGen(sk,𝑚)) = 1.

Оригинальная схема CFS

В 2001 году Н.Куртуа, М.Финиаш и Н.Сендриер в работе [25] предложи­

ли схему электронной подписи, которую, следуя устоявшейся традиции, будем

называть схемой CFS. Ее особенностью является то, что только честный подпи­

сывающий может использовать возможность исправления ошибок секретного

кода. Этот эффект достигается за счет того, что схема подписи строится на

основе схемы шифрования. При идентичных алгоритмах генерации ключа ме­

няются местами алгоритмы шифрования и расшифрования таким образом, что
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алгоритм генерации подписи представляет собой расшифрование некоторого

вектора, полученного из сообщения (чаще всего это хэш-значение этого сооб­

щения), а алгоритм проверки подписи — перешифрование подписи и сравнение

результата с сообщением. Таким образом, секретный алгоритм декодирования,

который существенно использует структуру кода, вызывается в алгоритме ге­

нерации подписи, а для проверки подписи синдром вычисляется через прове­

рочную матрицу, поскольку это уже простая задача.

Основная сложность заключается в том, далеко не каждый вектор может

быть декодирован таким образом. В оригинальной работе для решения этой

проблемы авторы предлагают добавить к хэш-значению сообщения счетчик и

увеличивать значение счетчика до тех пор, пока не получится вектор, который

может быть успешно декодирован. Однако в 2008 году, Л.Далло показал [26],

что использование счетчика 𝑖 дает противнику дополнительную информацию,

поскольку если в подпись входит число 𝑖, значит все 𝑗 < 𝑖 не могут быть декоди­

рованы. Он предложил заменить последовательный выбор 𝑖 на случайный. Это

позволило не только устранить найденную уязвимость, но и формально обосно­

вать стойкость схемы подписи к подделке при условии, что задачи PE и SD (с

ослабленным условием на вес вектора ошибки) являются сложными для задан­

ного класса кодов. Ниже приведем включающее модификацию Далло описание

схемы CFS.

Параметры схемы: [𝑛, 𝑘]-код 𝒞, заданный над полем F𝑞, и хэш-функ­

ция ℎ : F*𝑞 → F𝑛−𝑘
𝑞 .

Алгоритм генерации пары ключей KGen:

1. Случайно выбирается невырожденная матрица𝑀 размера (𝑛−𝑘)×(𝑛−𝑘),

перестановочная матрица Γ размера 𝑛×𝑛 и проверочная матрица𝑅 кода 𝒞

размера (𝑛− 𝑘)× 𝑛.

2. 𝑊 = 𝑀𝑅Γ — матрица размера (𝑛 − 𝑘) × 𝑛 — открытый ключ, (𝑀,𝑅,Γ)

— секретный ключ.
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Алгоритм генерации подписи SigGen:

1. Выбрать случайный номер 𝑖 ∈ {1, . . . , 𝑞𝑛−𝑘}.

2. Вычислить 𝑣 = ℎ(ℎ(𝑚)‖𝑖)𝑀−𝑇 .

3. Декодировать 𝑥 = Dec𝑅(𝑣).

4. Если не удалось найти вектор 𝑥, то повторить шаги 1.–3.

5. Вычислить 𝑦 = 𝑥Γ−𝑇 .

6. Получить подпись Sign = (𝑖, 𝑦).

Алгоритм проверки подписи SigVer:

1. Вычислить 𝑠′ = 𝑦𝑊 𝑇 .

2. Вычислить 𝑠 = ℎ(ℎ(𝑚)‖𝑖).

3. Вернуть результат сравнения 𝑠 = 𝑠′.

Корректность:

Подпись Sign = (𝑖, 𝑦), вычисленная согласно алгоритму генерации подписи,

пройдет проверку, поскольку верна следующая цепочка преобразований:

𝑠′ = 𝑦𝑊 𝑇 = (𝑥Γ−𝑇 )(Γ𝑇𝑅𝑇𝑀𝑇 ) = 𝑥𝑅𝑇𝑀𝑇 (*)
= 𝑣𝑀𝑇 = ℎ(ℎ(𝑚)‖𝑖)𝑀−𝑇𝑀𝑇 =

ℎ(ℎ(𝑚)‖𝑖) = 𝑠. Переход (*) верен в силу того, что, согласно шагу 3. алгоритма

генерации подписи 𝑥𝑅𝑇 = 𝑣.

Оригинальная версия подписи CFS строилась на кодах Гоппы, однако име­

ла параметры, которые не позволили бы применить ее на практике. Тем не

менее, подпись может быть полностью аналогично построена на основе любого

линейного кода, при этом изменения будут касаться лишь алгоритма декоди­

рования Dec. И для ряда известных кодов параметры схемы уже приемлемы
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для использования. Однако нужно иметь в виду, что замена кода может так­

же ослабить стойкость схемы. Исходя из совокупности этих факторов в насто­

ящей работе матрица 𝑅 есть проверочная матрица некоторого подкода кода

Рида–Маллера.

Модификация схемы CFS на основе конструкции Сидельникова

Алгоритм генерации ключей подписи CFS для некоторых классов кодов мо­

жет быть модифицирован с целью обеспечения защиты к ряду атак. В качестве

одной из таких модификаций можно предложить конструкция В.М.Сидельнико­

ва, которая в оригинальной работе [43] применялась к кодовой криптосисте­

ме Мак-Элиса [5]. Вариант Сидельникова подразумевал использование кодов

Рида–Маллера, однако в настоящей работе будет рассмотрен общий случай ко­

дов общего вида, а также кодов Рида–Соломона.

Основная модификация затрагивает алгоритм генерации ключевой пары,

однако незначительные изменения вносятся и в алгоритмы генерации и провер­

ки подписи. Поэтому приведем ниже всю тройку алгоритмов. Отметим, что па­

раметры схемы подписи остаются идентичными оригинальному варианту, при

этом добавляется новый параметр 𝑢 задающий количество используемых копий

кода.

Параметры схемы: [𝑛, 𝑘]-код 𝒞, заданный над полем F𝑞,

хэш-функция ℎ : F*𝑞 → F𝑢𝑛−𝑘
𝑞 и 𝑢 ∈ N.

Алгоритм генерации пары ключей KGen:

1. Случайно выбираются невырожденные матрицы 𝑀1,𝑀2, . . . ,𝑀𝑢, каждая

размера 𝑘×𝑘, перестановочная матрица Γ размера 𝑢𝑛×𝑢𝑛 и проверочная

матрица 𝑅 кода 𝒞 размера 𝑘 × 𝑛.

2. 𝑊 = (𝑀1𝑅 ‖𝑀2𝑅 ‖ . . . ‖𝑀𝑢𝑅) ·Γ — матрица размера 𝑘×𝑢𝑛 — открытый

ключ, (𝑀1,𝑀2, . . . ,𝑀𝑢, 𝑅,Γ) — секретный ключ.

Алгоритм генерации подписи SigGen:
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1. Вычислить проверочную матрицу 𝐻 кода с порождающей матрицей 𝑊 .

2. Выбрать случайный номер 𝑖 ∈ {1, . . . , 𝑞𝑢𝑛−𝑘}.

3. Вычислить 𝑠 = ℎ(ℎ(𝑚)‖𝑖).

4. Найти вектор 𝑦 из системы уравнений 𝑠𝑇 = 𝐻𝑦𝑇 .

5. Вычислить 𝑥 = 𝑦Γ−1.

6. Декодировать методом Сидельникова 𝑚 = Dec𝑅,𝑀1,...,𝑀𝑢
(𝑥), обозначить

номер успешно декодированной компоненты через 𝑗.

7. Если не удалось декодировать, то повторить шаги 2.–6.

8. Вычислить 𝑒 = 𝑚𝑊 + 𝑦.

9. Получить подпись Sign = (𝑖, 𝑒).

Алгоритм проверки подписи SigVer:

1. Вычислить проверочную матрицу 𝐻 кода с порождающей матрицей 𝑊 .

2. Вычислить 𝑠 = ℎ(ℎ(𝑚)‖𝑖).

3. Вычислить 𝑠′ = 𝑒′𝐻𝑇 .

4. Подпись верна, если 𝑠 = 𝑠′.

Корректность:

Подпись Sign = (𝑖, 𝑦), вычисленная согласно алгоритму генерации подписи,

пройдет проверку, поскольку

𝑠′ = 𝑒𝐻𝑇 = 𝑒Γ𝐻𝑇 = (𝑚𝑊 + 𝑦)𝐻𝑇 = 𝑚𝑊𝐻𝑇 + 𝑦𝐻𝑇 = 𝑠.

Далее в работе будем рассматривать только частный случай, когда 𝑢 = 2.
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Модификация схемы CFS для квазициклического кода

Схема CFS на основе квазициклического кода отличается от оригинальной

сильнее, чем вариант, рассмотренный в разделе выше. Снова основная модифи­

кация касается алгоритма генерации ключей, но изменениям подвергаются, со­

ответственно, и алгоритмы генерации и проверки подписи. При описании этого

варианта будем опираться на схему шифрования из работы [74], используя в

качестве алгоритма генерации подписи алгоритм расшифрования, а в качестве

алгоритма проверки подписи — алгоритм шифрования.

Параметры схемы: простое число 𝑟, код 𝒞 с параметрами 𝑛 = 𝑟𝑛0, 𝑘 =

𝑟(𝑛0 − 1), заданный над полем F2, и хэш-функция ℎ : F*2 → F𝑟
2.

Алгоритм генерации пары ключей KGen:

1. Случайно выбирается невырожденная квазициклическая матрица 𝑄 раз­

мера 𝑛0𝑟 × 𝑛0𝑟,

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑄1,1 𝑄1,2 · · · 𝑄1,𝑛0

𝑄2,1 𝑄2,2 · · · 𝑄2,𝑛0

... ... . . . ...

𝑄𝑛0,1 𝑄𝑛0,2 · · · 𝑄𝑛0,𝑛0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

и проверочная матрица 𝐻 = (𝐻1‖ . . . ‖𝐻𝑛0
) размера 𝑟 × 𝑛0𝑟 некоторого

квазициклического кода с нечетным весом каждой строки.

2. Вычисляется матрица 𝐿 = (𝐿1‖ . . . ‖𝐿𝑛0
) = 𝐻(𝑄𝑇 )−1 размера 𝑟 × 𝑛0𝑟.

3. Вычисляется матрица 𝑀 = (𝑀1‖ . . . ‖𝑀𝑛0−1‖𝐼) = 𝐿−1𝑛0
𝐿 размера 𝑟 × 𝑛0𝑟.

4. Матрица 𝑀 — открытый ключ, пара (𝐻,𝑄) — секретный ключ.

Алгоритм генерации подписи SigGen:

1. Вычислить 𝐿 = (𝐿1‖ . . . ‖𝐿𝑛0
) = 𝐻(𝑄𝑇 )−1.

2. Выбрать случайный номер 𝑖 ∈ {1, . . . , 2𝑟}.
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3. Вычислить 𝑣 = ℎ(ℎ(𝑚)‖𝑖))𝐿𝑇
𝑛0
.

4. Декодировать 𝑥 = Dec𝐿(𝑣).

5. Если не удалось найти вектор 𝑥, то повторить шаги 2.–4.

6. Получить подпись Sign = (𝑖, 𝑥).

Алгоритм проверки подписи SigVer:

1. Вычислить 𝑠′ = 𝑥𝑀𝑇 .

2. Вычислить 𝑠 = ℎ(ℎ(𝑚)‖𝑖).

3. Вернуть результат сравнения 𝑠 = 𝑠′.

Корректность:

Выход алгоритма SigGen вида (𝑖, 𝑥) гарантирует выполнение условия на ша­

ге 3. алгоритма проверки подписи, поскольку 𝑠′ = 𝑥𝑀𝑇 = 𝑥𝐿𝑇𝐿−𝑇𝑛0

(*)
= 𝑣𝐿−𝑇𝑛0

=

ℎ(ℎ(𝑚)‖𝑖)𝐿𝑇
𝑛0
𝐿−𝑇𝑛0

= ℎ(ℎ(𝑚)‖𝑖) = 𝑠. Переход (*) верен в силу того, что, согласно

шагу 4. алгоритма генерации подписи 𝑥𝐿𝑇 = 𝑣.

8.1. Протокол идентификации Штерна

Под схемой идентификации обычно понимается интерактивный протокол,

в котором одна сторона, доказывающий (Prover), пытается убедить другую сто­

рону, проверяющего (Verifier), в знании секретного ключа и таким образом прой­

ти проверку личности. Протоколы идентификации состоят из предварительного

алгоритма генерации ключей KGen и непосредственного интерактивного прото­

кола доказательства, развернутого между двумя участниками.

К числу известных протоколов идентификации относится схема Я.Штерна,

впервые предложенная автором в 1993 году на конференции CRYPTO. Полно­

ценное описание протокола представлено в его работе 1994 года [57]. Штерн

предложил такую схему генерации ключевой пары, что задача восстановления
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секретного ключа по открытому в точности совпадала с классической зада­

чей синдромного декодирования. При использовании случайного кода, с учетом

сложности последней задачи, этот факт гарантировал отсутствие атак, направ­

ленных на восстановление секретного ключа.

При этом предложенный протокол несложно подделать. В своей статье

Штерн предлагает стратегию для противника, при которой возможно прой­

ти идентификацию без знания секретного ключа с вероятностью успеха, рав­

ной 2/3. Чтобы уменьшить эту вероятность и достичь требуемого уровня стой­

кости, алгоритм необходимо повторить несколько раз.

Параметры протокола зависят от параметров основного кода: его длины 𝑛,

размерности 𝑘 и минимального расстояния 𝑑. Проверочной матрицей этого кода

является случайная матрица 𝐻 ∈ F (𝑛−𝑘)×𝑛
2 . Также протокол использует крип­

тографическую хэш-функцию ℎ(·) : F* → F ℓ
2 .

Алгоритм генерации пары ключей KGen:

1. Выбрать случайный вектор 𝑠 из множества
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝑑
}︀
.

2. Вычислить 𝑦 = 𝐻𝑠𝑇 .

3. Вектор 𝑦 — открытый ключ, вектор 𝑠 — секретный ключ.

Описание протокола идентификации показано на рис. 1. В нем запись

𝑠
𝒰← 𝑆 означает, что 𝑠 выбрано из множества 𝑆 случайно равновероятно. А

выражение 𝑥← 𝑣 означает присваивание значения 𝑣 переменной 𝑥.
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Prover(𝑠) Verifier(𝑦)

𝑢
𝒰← F𝑛

2 , 𝜎
𝒰← 𝒮𝑛

𝑐0 ← ℎ(𝜎‖𝐻𝑢𝑇 )

𝑐1 ← ℎ(𝜎(𝑢))

𝑐2 ← ℎ(𝜎(𝑢⊕ 𝑠))

𝑐0, 𝑐1, 𝑐2

𝑏
𝒰← {0, 1, 2}

𝑏

if 𝑏 = 0 : 𝑟0 ← 𝜎, 𝑟1 ← 𝑢

if 𝑏 = 1 : 𝑟0 ← 𝜎, 𝑟1 ← 𝑢⊕ 𝑠

if 𝑏 = 2 : 𝑟0 ← 𝜎(𝑢), 𝑟1 ← 𝜎(𝑠)

𝑟0, 𝑟1

if 𝑏 = 0 :

Check 𝑐0
?
= ℎ(𝑟0‖𝐻𝑟𝑇1 ),

𝑐1
?
= ℎ(𝑟0(𝑟1))

if 𝑏 = 1 :

Check 𝑐0
?
= ℎ(𝑟0‖(𝐻𝑟𝑇1 ⊕ 𝑦)),

𝑐2
?
= ℎ(𝑟0(𝑟1))

if 𝑏 = 2 :

Check 𝑐1
?
= ℎ(𝑟0),

𝑐2
?
= ℎ(𝑟0 ⊕ 𝑟1),

wt(𝑟1)
?
= 𝑑

Рис. 1. Схема идентификации Штерна



48

Глава 1

Свойства ключей электронной подписи CFS на

основе подкодов кодов Рида–Маллера

Исследования криптографических схем на подкодах кодов Рида–Маллера

проводилось в работе [37]. В ней показано, что если для подкода 𝒞 кода Ри­

да–Маллера RM(𝑟,𝑚) выполняется равенство

𝒞2 = RM2(𝑟,𝑚), (1.1)

то атака на этот подкод полиномиально сводится к атаке на полный код. При

этом для кода RM(𝑟,𝑚) уже известна полиномиальная структурная атака [33].

Таким образом, подкоды, удовлетворяющие условию (1.1), нельзя назвать стой­

кими и использовать на практике.

Предметом анализа настоящей главы является структура подкодов кода

RM(𝑟,𝑚) таких, что построенная на них схема подписи CFS не будет подверже­

на упомянутой полиномиальной структурной атаке. Другим вопросом является

доля подкодов, стойких к данному классу атак.

Глава содержит результаты, опубликованные в работе [64].

1.1. Электронная подпись на подкодах кодов RM(2,𝑚)

Начнем с анализа схемы CFS на подкоде частного случая кода Рида–Мал­

лера с параметром 𝑟 = 2.

Допустим, что код Рида–Маллера задан своим стандартным базисом. Бу­

дем искать минимальное число мономов 𝑓1, . . . , 𝑓𝑤(𝑚,2) степени 2 таких, что для

подкода

span
(︀
RM(1,𝑚) ∪ {𝑓1, . . . , 𝑓𝑤(𝑚,2)}

)︀
(1.2)

выполнено условие (1.1). Иначе говоря, для заданных 𝑤(𝑚, 2) мономов верно,
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что (︀
span

(︀
RM(1,𝑚) ∪ {𝑓1, . . . , 𝑓𝑤(𝑚,2)}

)︀)︀2
= RM(4,𝑚). (1.3)

Подкод вида (1.2) будем называть стабильным.

Очевидно, что после нахождения минимального числа 𝑤(𝑚, 2) мономов 𝑓𝑖,

можно ответить на еще один вопрос: чему равно число 𝑞(𝑚, 2) мономов степе­

ни 2, которые можно исключить из базиса кода RM(2,𝑚) так, чтобы код

span
(︀
{1, 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥1𝑥2, . . . , 𝑥𝑚−1𝑥𝑚} ∖ {𝑔1, . . . , 𝑔𝑞(𝑚,2)}

)︀
остался стабильным. Соотношение между этими величинами может быть зада­

но следующим уравнением:

𝑞(𝑚, 2) =

(︂
𝑚

2

)︂
− 𝑤(𝑚, 2). (1.4)

Таким образом, после удаления 𝑞(𝑚, 2)+1 =
(︀
𝑚
2

)︀
−𝑤(𝑚, 2)+1 базисных векто­

ров, код становится нестабильным. Поэтому далее не будем останавливаться

на этой задаче отдельно.

Перейдем к графовой интерпретации задачи. Сопоставим подкоду

𝒜 ⊂ RM(2,𝑚) граф 𝐺 = (𝑉,𝐸) с множеством вершин 𝑉 = {𝑥1, . . . , 𝑥𝑚} и

множеством ребер 𝐸. Ребро {𝑥𝑖, 𝑥𝑗} ∈ 𝐸 тогда и только тогда, когда моном

𝑥𝑖𝑥𝑗 ∈ 𝒜.

Обозначим через deg(𝑣) степень вершины 𝑣 в графе. Будем говорить, что

граф с 𝑚 вершинами обладает свойством 𝑃 , если

1. степень deg(𝑣) любой вершины 𝑣 не менее, чем 𝑚− 3;

2. если deg(𝑣) = 𝑚− 3 и {𝑣, 𝑢1} /∈ 𝐸, {𝑣, 𝑢2} /∈ 𝐸, то {𝑢1, 𝑢2} ∈ 𝐸.

Случай deg(𝑥1) = 𝑚− 3 представлен на Рис. 1.1, где линиями показаны ребра

графа.

Теорема 1. Для любого 𝑚 ⩾ 4 подкод кода RM(2,𝑚) вида (1.2) стабилен

тогда и только тогда, когда соответствующий граф обладает свойством 𝑃 .
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𝑥1

𝑥2

𝑥3
𝑥4

𝑥𝑚−1

𝑥𝑚

Рис. 1.1. Случай deg(𝑥1) = 𝑚− 3

𝑢1 𝑢2

𝑢3 𝑢4

Рис. 1.2. Граф 𝐻

Доказательство. Обозначим через 𝐺 = (𝑉,𝐸) граф, соответствующий подко­

ду вида (1.2). Отметим, что условие (1.3) эквивалентно тому, что любой инду­

цированный подграф графа 𝐺 на четырех вершинах содержит подграф, изо­

морфный графу 𝐻, изображенному на Рис. 2. Ребра {𝑢1, 𝑢2} и {𝑢3, 𝑢4} соот­

ветствуют мономам степени 2, используемым для получения монома 𝑢1𝑢2𝑢3𝑢4.

Также заметим, что для того, чтобы показать, что подкод (1.2) стабильный, до­

статочно доказать, что любой моном степени четыре может быть представлен

как произведение двух мономов из кода. То же самое верно и для всех мономов

степени 3. Действительно, для произвольного монома 𝑢1𝑢2𝑢3 верно, что как ми­

нимум один из мономов 𝑢1𝑢2, 𝑢1𝑢3 или 𝑢2𝑢3 лежит в коде. В противном случае

моном 𝑢1𝑢2𝑢3𝑣 невозможно будет получить в результате операции возведения

в квадрат. Мономы степени один лежат в коде по определению.

Для доказательства необходимости зафиксируем произвольную вершину 𝑣.

Если отсутствуют любые три индуцированные ребра {𝑣, 𝑢𝑗} для 𝑗 = 1, 2, 3, то

индуцированный подграф на вершинах 𝑣, 𝑢1, 𝑢2, 𝑢3 не будет содержать иско­

мый подграф 𝐻. Противоречие доказывает, что deg(𝑣) ⩾ 𝑚 − 3. Однако, если

deg(𝑣) = 𝑚− 3 и {𝑣, 𝑢1} /∈ 𝐸, {𝑣, 𝑢2} /∈ 𝐸, то {𝑢1, 𝑢2} ∈ 𝐸, т.к. иначе ни один из

индуцированных подграфов на четырех вершинах, содержащий вершины 𝑣, 𝑢1

и 𝑢2, не будет иметь искомого подграфа. То есть выполнено свойство 𝑃 .

Достаточность. Зафиксируем любой индуцированный подграф на четырех

вершинах (назовем их 𝑣, 𝑢1, 𝑢2 и 𝑢3). Отметим, что он удовлетворяет свойству 𝑃
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для 𝑚 = 4. Если вершина 𝑣 имеет степень один, т.е. {𝑣, 𝑢1} ∈ 𝐸, но {𝑣, 𝑢2} /∈ 𝐸,

{𝑣, 𝑢3} /∈ 𝐸, тогда из свойства 𝑃 следует, что {𝑢2, 𝑢3} ∈ 𝐸. Поэтому в подграфе,

изоморфном графу𝐻 обязательно должны содержаться ребра {𝑣, 𝑢1} и {𝑢2, 𝑢3}.

Если все четыре вершины подграфа имеют степень как минимум два, то

в нем существует простой цикл длины три или четыре. В случае, когда цикл

имеет длину четыре, наличие подграфа, изоморфного 𝐻, очевидно. Иначе в

графе есть треугольник {𝑢1, 𝑢2, 𝑢3} и вершина 𝑣 степени как минимум два.

Предположим (без ограничения общности), что {𝑣, 𝑢1} ∈ 𝐸, тогда в искомый

подграф войдут ребра {𝑣, 𝑢1} и {𝑢2, 𝑢3}.

Из Теоремы 1 минимальное число ребер достигается в случае, когда граф

обладает свойством 𝑃 и степень каждой вершины есть 𝑚−3. Осталось описать

такие графы.

Утверждение 18. Пусть 𝑚 ⩾ 4. Если некоторый граф 𝐺 с 𝑚 вершинами,

степень каждой из которых есть 𝑚 − 3, обладает свойством 𝑃 , то допол­

нительный граф 𝐺 представляет собой объединение циклов длины как мини­

мум 4.

Доказательство. Поскольку степень каждой вершины графа 𝐺 равна 𝑚 − 3,

то степень каждой вершины графа 𝐺 равна двум. Более того, из второго пунк­

та свойства 𝑃 следует, что если граф 𝐺 содержит ребро {𝑣, 𝑢1} и {𝑣, 𝑢2}, то

он не содержит ребра {𝑢1, 𝑢2}. Поэтому в графе 𝐺 нет треугольников. Выбе­

рем произвольную вершину 𝑢1. Она не изолированная, поэтому можно выбрать

вершину, смежную с ней. Назовем ее 𝑢2. Поскольку deg(𝑢2) = 2, то существует

смежная с ней вершина 𝑢3 ̸= 𝑢1. Продолжаем рассуждение до тех пор, пока вер­

шина 𝑢𝑗 не совпадет с одной из вершин 𝑢1, . . . , 𝑢𝑗−1. Отметим, что 𝑢𝑗 не может

совпасть с 𝑢𝑖 при 𝑖 > 1, т.к. это бы означало, что deg(𝑢𝑖) ⩾ 3. Отсюда верши­

ны 𝑢1, . . . , 𝑢𝑗−1 образуют простой цикл. Причем его длина не меньше четырех,

поскольку в графе 𝐺 нет треугольников.
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Таким образом, мы описали структуру графа, соответствующего мини­

мальному стабильному подкоду вида (1.2). Теперь полностью опишем струк­

туру кодов такого типа.

Утверждение 19. Пусть 𝑚 ⩾ 4. Если некоторый граф 𝐺 с 𝑚 вершинами,

обладает свойством 𝑃 , то дополнительный граф 𝐺 представляет собой объ­

единение циклов длины как минимум 4 или является простым путем.

Доказательство. Действуем как в доказательстве Утверждения 18, пытаясь

найти цикл в графе 𝐺. Только в этот раз мы можем остановиться в вершине

степени один, в результате чего образуется простой путь. Изолированные вер­

шины являются простым путем по определению.

Теорема 2. Для любого 𝑚 ⩾ 4 верно, что

𝑤(𝑚, 2) =
𝑚(𝑚− 3)

2
.

Доказательство. На основе замечания после Теоремы 1 для вычисления зна­

чения 𝑤(𝑚, 2) необходимо посчитать все подкоды, соответствующие графам,

удовлетворяющим свойству 𝑃 , степень каждой вершины которых равна 𝑚− 3.

Из Утверждения 18 следует, что граф 𝐺 имеет в точности 𝑚 ребер. Отсюда

граф 𝐺 имеет не менее
(︀
𝑚
2

)︀
−𝑚 = 𝑚(𝑚− 3)/2 ребер.

Теорема 2 позволяет гарантировать стабильность при удалении из полного

кода произвольных 𝑚 мономов второй степени.

Следствие 3. Удаление любых 𝑚 мономов степени 2 из базиса кода RM(2,𝑚)

гарантировано дает стабильный подкод.

Доказательство. Удаление 𝑚 мономов из базиса полного кода Рида–Маллера

RM(2,𝑚) оставляет в этом базисе 𝑚(𝑚− 3)/2 мономов степени 2, что согласно

Теореме 17 гарантирует выполнение свойства стабильности.
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Еще одним результатом Теоремы 2 является способ построения нестабиль­

ного подкода: требуется исключить из полного кода как минимум 𝑚+1 моном

второй степени.

Следствие 4. Удаление 𝑚 + 1 или более мономов степени 2 из базиса кода

RM(2,𝑚) гарантировано дает нестабильный подкод.

Доказательство. По Теореме 17 минимальное число мономов степени 2 в под­

коде кода RM(2,𝑚) должно быть равно 𝑚(𝑚 − 3)/2, однако удаление 𝑚 + 1 и

более монома дает максимально 𝑚(𝑚− 3)/2− 1 моном.

1.2. Электронная подпись на подкодах кодов RM(𝑟,𝑚)

Теперь перейдем к решению аналогичной задачи в общем случае, когда

𝑟 > 2. То есть будем искать минимальное число 𝑤(𝑚, 𝑟) такое, что код

span
(︀
RM(𝑟 − 1,𝑚) ∪ {𝑓1, . . . , 𝑓𝑤(𝑚,𝑟)}

)︀
(1.5)

стабилен. Здесь через 𝑓𝑖 обозначены уже мономы степени 𝑟.

Сопоставим подкоду 𝒜 ⊂ RM(𝑟,𝑚) гиперграф 𝐺 = (𝑉,𝐸) с набором вер­

шин 𝑉 = {𝑥1, . . . , 𝑥𝑚}. 𝑟-ребро {𝑥𝑖1, . . . , 𝑥𝑖𝑟} ∈ 𝐸 тогда и только тогда, когда

моном 𝑥𝑖1 . . . 𝑥𝑖𝑟 ∈ 𝒜. Аналогом рассмотренного в предыдущей главе условия на­

личия в каждом индуцированном подграфе на 4 вершинах подграфа, изоморф­

ного графу 𝐻, является требование коду (1.5) быть стабильным. А именно,

каждый набор из 2𝑟 вершин должен быть покрыт двумя непересекающимися

𝑟-ребрами. Будем называть граф, удовлетворяющий этому условию стабиль­

ным графом. Замечания о покрытии мономов меньших степеней остаются теми

же, что и в случае 𝑟 = 2.

Также можно обобщить соотношение (1.4) из Раздела 1.1 как:

𝑞(𝑚, 𝑟) =

(︂
𝑚

𝑟

)︂
− 𝑤(𝑚, 𝑟).

Как и там, не будем останавливаться отдельно на поиске значения 𝑞(𝑚, 𝑟).



54

Далее будем использовать понятия «граф» и «гиперграф» взаимозаменя­

емо. Обозначим через 𝑤(𝑟,𝑚) минимальное число мономов степени 𝑟, которое

необходимо для того, чтобы подкод вида (1.5) был стабильным или, в графо­

вой интерпретации, минимальное число ребер в стабильном 𝑟-гиперграфе на 𝑚

вершинах.

Утверждение 20. Для любого натурального 𝑟 и 𝑚 ⩾ 2𝑟 выполнено

𝑤(𝑚, 𝑟) ⩾

(︀
𝑚
2𝑟

)︀(︀
𝑚−𝑟
𝑟

)︀ .
Доказательство. Отметим, что любое множство из 2𝑟 вершин в стабильном

графе содержит как минимум одно ребро. Более того, любое ребро содержится

в точности в
(︀
𝑚−𝑟
𝑟

)︀
таких множествах. Поэтому суммарное число ребер, умно­

женное на
(︀
𝑚−𝑟
𝑟

)︀
, есть как минимум число всех множеств из 2𝑟 вершин, кото­

рых
(︀
𝑚
2𝑟

)︀
. Это дает искомую оценку.

Следствие 5. Любой стабильный граф содержит не менее 1/
(︀
2𝑟
𝑟

)︀
ребер пол­

ного графа.

Доказательство. Суммарное число всех 𝑟-ребер в графе на𝑚 вершинах есть
(︀
𝑚
𝑟

)︀
.

Тогда
𝑤(𝑚, 𝑟)(︀

𝑚
𝑟

)︀ =

(︀
𝑚
2𝑟

)︀(︀
𝑚−𝑟
𝑟

)︀(︀
𝑚
𝑟

)︀ = (𝑟!)2

(2𝑟)!
=

1(︀
2𝑟
𝑟

)︀ .
Полученная в Утверждении 20 нижняя оценка числа 𝑤(𝑚, 𝑟) может быть

уточнена. Улучшенный результат сформулирован в Теореме 3.

Теорема 3. Для любого натурального 𝑟 и 𝑚 ⩾ 2𝑟 выполнено

𝑤(𝑚, 𝑟) ⩾
1

2

(︃√︃
(𝛾 + 1)2 + 8 ·

(︂
𝑚

2𝑟

)︂
+ 𝛾 + 1

)︃
, где 𝛾 =

√︃
𝑟−1∑︀

𝑢=max{1,3𝑟−𝑚}

(︂
𝑟

𝑢

)︂
.

Доказательство. Зафиксируем наименьшее множество ребер 𝐸 такое, что каж­

дые 2𝑟 вершины графа покрыты двумя непересекающимися ребрами из 𝐸. По

определению |𝐸| = 𝑤(𝑚, 𝑟).
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Зафиксируем любое ребро 𝑒 ∈ 𝐸. Обозначим через 𝐸𝑒 множество ребер

из 𝐸, пересекающихся с 𝑒, а через 𝑃𝑒 — множество неупорядоченных пар {𝑒′, 𝑒′′},

𝑒′, 𝑒′′ ∈ 𝐸𝑒. Каждая пара {𝑒′, 𝑒′′} соответствует подмножеству 𝐵 ⊂ 𝑒, 𝐵 =

(𝑒′ ∪ 𝑒′′) ∩ 𝑒. Аналогично каждому ребру из 𝐸𝑒 соответствует подмножество

𝐵 = 𝑒′ ∩ 𝑒.

С другой стороны зафиксируем произвольное подмножество 𝐵 ⊂ 𝑒 разме­

ра

max{1, 3𝑟 −𝑚} ⩽ |𝐵| ⩽ 𝑟 − 1. (1.6)

Т.к. |𝐵| ⩾ 3𝑟 − 𝑚, то |𝑉 ∖ 𝑒| + |𝐵| ⩾ 2𝑟 и существует множество 𝑆 такое,

что |𝑆| = 2𝑟, 𝑆 ∩ 𝑒 = 𝐵. По предположению множество ребер 𝐸 содержит

пару ребер, покрывающих 𝑆. Обозначим эти ребра через 𝑒′ и 𝑒′′. Возможны два

случая: либо оба ребра 𝑒′ и 𝑒′′ пересекаются с 𝑒, либо с 𝑒 пересекается только

одно из них. Таким образом, мы можем сопоставить подмножеству 𝐵 элемент

из 𝐸𝑒 ∪ 𝑃𝑒. Обратим внимание на то, что несмотря на то, что подмножество 𝐵

может соответствовать нескольким элементам 𝐸𝑒 ∪ 𝑃𝑒, обратное отображение

является однозначным. Таким образом, мы можем написать

|𝑃𝑒|+ |𝐸𝑒| ⩾
𝑟−1∑︀

𝑢=max{1,3𝑟−𝑚}

(︂
𝑟

𝑢

)︂
= 𝛾2,

где справа стоит число всех подмножеств𝐵 ⊂ 𝑒, удовлетворяющих условию (1.6).

Очевидно, что |𝑃𝑒| =
(︀|𝐸𝑒|

2

)︀
. Тогда(︂

|𝐸𝑒|
2

)︂
+ |𝐸𝑒| ⩾ 𝛾2 ⇔ |𝐸𝑒|2 + |𝐸𝑒| ⩾ 2𝛾2.

Из этого неравенства следует, что |𝐸𝑒| ⩾ 𝛾 (здесь используется тот факт, что 𝛾

не может лежать в интервале (0, 1), поскольку по определению представляет

собой квадратный корень из нуля или натурального числа).

Теперь мы можем оценить мощность множества 𝑃 всех неупорядоченных

пар {𝑒′, 𝑒′′} ребер из 𝐸. Обозначим через ̂︀𝑃 множество всех непересекающихся

неупорядоченных пар ребер из 𝐸. Понятно, что

𝑃 = ̂︀𝑃 ∪ ⋃︀
𝑒∈𝐸

{︀
{𝑒′, 𝑒} : 𝑒′ ∈ 𝐸𝑒

}︀
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и, более того,

|𝑃 | = | ̂︀𝑃 |+ 1

2

∑︀
𝑒∈𝐸
|𝐸𝑒|,

поскольку множество ̂︀𝑃 не пересекается со вторым множеством. и, проходя по

всем 𝑒 ∈ 𝐸, мы считаем каждую пересекающуюся неупорядоченную пару ровно

дважды.

Из того, что ребра из 𝐸 покрывают каждое множество размера 2𝑟, заклю­

чаем, что | ̂︀𝑃 | ⩾ (︀𝑚2𝑟)︀. Тогда
|𝑃 | − 1

2

∑︀
𝑒∈𝐸
|𝐸𝑒| ⩾

(︂
𝑚

2𝑟

)︂
.

Т.к. |𝑃 | =
(︀|𝐸|

2

)︀
=
(︀
𝑤(𝑚,𝑟)

2

)︀
, можно переписать последнее неравенство как(︂
𝑤(𝑚, 𝑟)

2

)︂
− 𝑤(𝑚, 𝑟)𝛾

2
⩾

(︂
𝑚

2𝑟

)︂
.

Решая квадратное неравенство

𝑤(𝑚, 𝑟)2 − 𝑤(𝑚, 𝑟)(𝛾 + 1)− 2 ·
(︂
𝑚

2𝑟

)︂
⩾ 0,

получаем условие теоремы.

Перейдем к доказательству верхней оценки. Зафиксируем наибольшее воз­

можное множество 𝒮, состоящее из множеств 𝑆𝑖 ⊂ 𝑉 размера 2𝑟 таких, что

max
𝑖,𝑗
|𝑆𝑖 ∩ 𝑆𝑗| ⩽ ℎ.

Сначала докажем вспомогательную лемму.

Лемма 1. Если ℎ < 𝑟/3, то для любого множества 𝑄 /∈ 𝒮, |𝑄| = 2𝑟 суще­

ствует не более двух множеств из 𝒮 таких, что их пересечение с 𝑄 имеет

размер не менее 𝑟.

Доказательство. Предположим, что множество 𝑄 пересекается как минимум

с тремя множествами так, что размер каждого из пересечений больше или ра­

вен 𝑟. Без ограничения общности предположим, что это множества 𝑆1, 𝑆2 и 𝑆3.
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Обозначим 𝑄 ∩ 𝑆1 = 𝐴1, 𝑄 ∩ 𝑆2 = 𝐴2, 𝑄 ∩ 𝑆3 = 𝐴3. Поскольку |𝑄| = 2𝑟, то

очевидно, что |𝐴1 ∪ 𝐴2 ∪ 𝐴2| ⩽ 2𝑟. С другой стороны, по формуле включений­

исключений

|𝐴1 ∪ 𝐴2 ∪ 𝐴2| ⩾ |𝐴1|+ |𝐴2|+ |𝐴3| − |𝐴1 ∩ 𝐴2| − |𝐴1 ∩ 𝐴3| − |𝐴2 ∩ 𝐴3|.

Тогда
3∑︀

𝑖=1

|𝐴𝑖| ⩽ 2𝑟 + 3ℎ.

По условию |𝐴𝑖| ⩾ 𝑟 для любого 𝑖 ∈ {1, 2, 3}, следовательно

3∑︀
𝑖=1

|𝐴𝑖| ⩾ 3𝑟.

Откуда 3𝑟 ⩽ 2𝑟 + 3ℎ и ℎ ⩾ 𝑟/3, что противоречит условию леммы.

Построение верхней оценки 𝑤(𝑚, 𝑟) будем выполнять через поиск макси­

мально возможного числа ребер, которое может быть исключено из полного

графа так, чтобы оставшийся граф сохранил свойство стабильности.

Теорема 4. Для любого натурального 𝑟 ⩾ 2, 𝑚 ⩾ 2𝑟 и ℎ < 𝑟/3

𝑤(𝑚, 𝑟) ⩽

(︂
𝑚

𝑟

)︂
− 𝑇 (𝑟,𝑚, ℎ) ·

(︂(︂
2𝑟

𝑟

)︂
− 2

)︂
,

где

𝑇 (𝑟,𝑚, ℎ) = max
{︀
𝑡 : ∃𝑆1, . . . , 𝑆𝑡

(︀
𝑆𝑖 ⊂ {1, . . . ,𝑚} &

& |𝑆𝑖| = 2𝑟 & (𝑖 ̸= 𝑗 ⇒ |𝑆𝑖 ∩ 𝑆𝑗| ⩽ ℎ), 𝑖, 𝑗 ∈ {1, . . . , 𝑡}
)︀}︀
.

Доказательство. Заметим, что двух непересекающихся 𝑟-ребер достаточно,

чтобы покрыть набор из 2𝑟 вершин. Таким образом, можно удалить 𝛿 =
(︀(︀

2𝑟
𝑟

)︀
− 2
)︀

𝑟-ребер из полного графа на 2𝑟 вершинах и сохранить свойство стабильности.

Очевидно, что больше ребер удалить нельзя.

Предположим, что из каждого множества, входящего в 𝒮, удалено 𝛿 ребер

так, что каждое из множеств покрыто не менее, чем двумя 𝑟-ребрами. Остается
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проверить, что существует подобное покрытие для любого набора из 2𝑟 вер­

шин. Поскольку по построению заведомо можно покрыть любое множество 𝑆𝑖,

осталось показать что можно покрыть и любое множество 𝑄 /∈ 𝑆, |𝑄| = 2𝑟.

Заметим, что если мощность пересечения 𝑄 с некоторым 𝑆𝑖 не превосходит

(𝑟 − 1), то удаление ребер в 𝑆𝑖 не влияет на количество ребер в 𝑄. В то же

время, согласно Лемме 1, при ℎ < 𝑟/3 любое множество размера 2𝑟 может

иметь пересечение размера не менее 𝑟 не более чем с двумя множествами из 𝒮.

Если есть только один такой набор, скажем 𝑆1, то возможны два случая:

1) |𝑄 ∩ 𝑆1| = 2𝑟 − 1. В этом случае существует ребро 𝑒1 ∈ 𝑄 ∩ 𝑆1, не содер­

жащее вершину 𝑣, {𝑣} = 𝑆1 ∖𝑄 (поскольку 𝑆1 должно быть покрыто дву­

мя непересекающимися ребрами). В качестве второго ребра можно взять

𝑒2 = 𝑄 ∖ 𝑒1 (отметим, что 𝑒2 ∈ 𝐸, поскольку были удалены только реб­

ра, содержащиеся во множествах 𝑆𝑖). Тогда пара непересекающихся ребер

{𝑒1, 𝑒2} образует покрытие 𝑄.

2) |𝑄∩𝑆1| < 2𝑟− 1. В этом случае во множестве 𝑄 ∖𝑆1 лежит не менее двух

вершин. Пусть это вершины 𝑣1 и 𝑣2. Тогда покрытие может быть получено

двумя непересекающимися ребрами 𝑒1, 𝑒2 ⊂ 𝑄 такими, что 𝑣1 ∈ 𝑒1, 𝑣2 ∈ 𝑒2.

Теперь рассмотрим случай, когда с 𝑄 по не менее чем 𝑟 вершинам пре­

секаются два множества 𝑆1 и 𝑆2. Предположим, что |𝐴1| > 𝑟 + ℎ. Тогда по

формуле включений-исключений верно, что |𝐴1∩𝐴2| = |𝐴1|+ |𝐴2|− |𝐴1∪𝐴2| >

𝑟+ℎ+𝑟−2𝑟 = ℎ, что противоречит условию |𝑆1∩𝑆2| ⩽ ℎ. Отсюда 𝑟 ⩽ |𝐴𝑖| ⩽ 𝑟+ℎ

для 𝑖 ∈ {1, 2}. Поэтому из 𝑄 может быть исключено не более 2 ·
(︀
𝑟+ℎ
𝑟

)︀
ребер.

Отметим, что(︀
2𝑟
𝑟

)︀
2 ·
(︀
𝑟+ℎ
𝑟

)︀ = (2𝑟)! 𝑟!ℎ!

2𝑟! 𝑟! (𝑟 + ℎ)!
=

1

2
· 2𝑟

𝑟 + ℎ
· 2𝑟 − 1

𝑟 + ℎ− 1
· . . . · 𝑟 + 1

ℎ+ 1
.

Последний множитель больше двух для 𝑟 > 3. Для остальных множителей

верно, что
2𝑟 − 𝑖

𝑟 + ℎ− 𝑖
>

2𝑟

𝑟 + ℎ
>

6

4
.
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Отсюда для 𝑟 > 3 (︀
2𝑟
𝑟

)︀
2 ·
(︀
𝑟+ℎ
𝑟

)︀ > 1

2

(︂
3

2

)︂𝑟−1
· 2 > 2.

Для 𝑟 = 2 и 𝑟 = 3 аналогичное неравенство может быть проверено непосред­

ственно. В 𝑄 входит
(︀
2𝑟
𝑟

)︀
/2 пар непересекающихся ребер, поэтому после удале­

ния из него 2 ·
(︀
𝑟+ℎ
𝑟

)︀
<
(︀
2𝑟
𝑟

)︀
/2 ребер остается как минимум одна такая пара.

Таким образом, граф, полученный после удаления из полного графа 𝛿 ре­

бер для каждого множества из 𝒮, стабилен. Остается напомнить, что |𝒮| есть

число множеств размера 2𝑟, которые пересекаются по не более, чем ℎ элемен­

там, то есть |𝒮| = 𝑇 (𝑟,𝑚, ℎ).

Замечание 1. В работе [75] П.Эрдеша и Дж.Спенсера вводится величина

m(𝑛, 𝑘, 𝑡), которую будем выделять жирным шрифтом для того, чтобы отде­

лить от величины 𝑚. Она обозначает размер наибольшего множества подмно­

жеств {1, . . . , 𝑛} размера 𝑘 таких, что любые два члена этого множества пере­

секаются менее, чем по 𝑡 элементам. Позже В.Редль [76] доказал, что

lim
𝑛→∞

m(𝑛, 𝑘, 𝑡) =

(︀
𝑛
𝑡

)︀(︀
𝑘
𝑡

)︀ .
То есть, в нашем случае

lim
𝑚→∞

𝑇 (𝑟,𝑚, ℎ) = lim
𝑚→∞

m(𝑚, 2𝑟, ⌊𝑟/3⌋) =

(︀
𝑚
⌊𝑟/3⌋

)︀(︀
2𝑟
⌊𝑟/3⌋

)︀ .
Верхняя оценка может быть улучшена эмпирическим методом. Для этого

построим Алгоритм 1, который получает на вход множество вершин 𝑉 и воз­

вращает множество ребер 𝐸 ⊂ 𝑉 × 𝑉 такое, что в полученном графе каждое

множество из 2𝑟 вершин покрыто двумя непересекающимися 𝑟-ребрами. Пол­

ная программная реализация Алгоритма 1 приведена в Приложении А.
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Алгоритм 1 Жадный алгоритм для построения

𝑟-покрытия
Вход: 𝑉 — множество вершин и 𝑟 — мощность ребер

Выход: Множество 𝑟-ребер 𝐸, которое покрывает множество 𝑉

Функция ChooseEdge:
𝑒 := ∅;

цикл 𝑖 = 1, . . . , 𝑟 выполнять

𝑉 ′ := {𝑣 ∈ 𝑉 : вершина 𝑣 может быть добавлена к ребру 𝑒};

𝑣 := argmin𝑣∈𝑉 ′ deg(𝑣);

𝑒 := 𝑒 ∪ {𝑣};
конец

вернуть 𝑒

Функция Main:

𝐸 := ∅;

до тех пор, пока 𝐸 не покрывает все вершины 𝑉 выполнять

𝑒 := ChooseEdge();

𝐸 := 𝐸 ∪ {𝑒};
конец

вернуть 𝐸

Точность результатов работы алгоритма может быть показана через срав­

нение с полученными выше теоретическими оценками. Так на Рис. 1.3 пред­

ставлены две нижние и две верхние оценки, которые были получены в Утвер­

ждении 20, Теореме 3, Теореме 4 и в результате применения Алгоритма 1 для

фиксированного параметра 𝑟 = 5. По рисунку видно, что улучшенные оценки

достаточно близки друг к другу.

1.3. Доля нестабильных подкодов кодов RM(𝑟,𝑚)

В этом разделе будем рассматривать подкоды кодов Рида–Маллера, задан­

ные стандартным базисом и имеющие коразмерность ℓ.

Для заданного параметра 𝑠 и множества 𝐼 = {𝑖𝑗}𝑠𝑗=1 будем называть неупо­
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Рис. 1.3. Сравнение оценок

рядоченные пары {𝐴,𝐵} критическим разбиением, если выполнена следующая

система условий: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴 ∩𝐵 = ∅,

𝐴 ∪𝐵 = 𝐼,

1 ⩽ |𝐴|, |𝐵| ⩽ 𝑟.

Критические разбиения могут быть связаны с нестабильными подкодами

RM(𝑟,𝑚) через следующее утверждение.

Утверждение 21. Подкод кода RM(𝑟,𝑚) является нестабильным тогда и

только тогда, когда из каждого критического разбиения для некоторого мо­

нома 𝑥𝑖1 . . . 𝑥𝑖𝑠 удален как минимум один элемент.

Доказательство. Если моном 𝑥𝑖1 . . . 𝑥𝑖𝑠 входит в квадрат кода, то он должен

быть образован парой {𝐴,𝐵} из соответствующего критического разбиения. Но

по условию либо 𝐴, либо 𝐵 отсутствует.

Утверждение 22. Для заданного параметра 𝑠 и произвольного множеств 𝐼

размера 𝑠 число критических разбиений этого множества есть

𝑣(𝑠) =
1

2

min{𝑟,𝑠−1}∑︀
𝑝=max{𝑠−𝑟,1}

(︂
𝑠

𝑝

)︂
.
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Доказательство. С одной стороны, размеры подмножеств не должны превы­

шать 𝑟. С другой стороны, разбиение должно быть нетривиальным, то есть

разбиение на пустое множество и множество, совпадающее с 𝐼, недопустимо.

Наконец, при рассмотрении всех разбиений каждая пара считается дважды.

Упорядочим каким-либо образом (скажем, лексикографически) элементы

каждого критического разбиения, а затем и сами критические разбиения. Те­

перь рассмотрим любое множество𝑀 , состоящее из элементов критических раз­

биений и удовлетворяющее свойству, что для каждого критического разбиения

𝑀 содержит хотя бы один его элемент. Множество𝑀 может быть закодировано

строкой 𝛼 ∈ {1, 2, 3}𝑣(𝑠), где

𝛼𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 ⇔ 1-ый элемент 𝑗-ой пары лежит в 𝑀 , а 2-ый — нет,

2 ⇔ 2-ый элемент 𝑗-ой пары лежит в 𝑀 , а 1-ый — нет,

3 ⇔ оба элемента 𝑗-ой пары лежат в 𝑀 .

Для того, чтобы обозначить множество, соответствующее заданной 𝛼 ∈ {1, 2, 3}𝑣(𝑠)

будем писать 𝑀(𝛼). Тогда

|𝑀(𝛼)| = #1(𝛼) + #2(𝛼) + 2 ·#3(𝛼),

где #𝑐(𝛼) есть число символов 𝑐 в строке 𝛼.

Используем множество 𝑀 для построения верхней оценки числа 𝜃 неста­

бильных подкодов кода RM(𝑟,𝑚).

Теорема 5. Число нестабильных подкодов кода RM(𝑟,𝑚) есть

𝜃 ⩽
2𝑟∑︀
𝑠=2

(︀
𝑚
𝑠

)︀
·

∑︀
𝛼∈{1,2,3}𝑣(𝑠)

(︀
𝑘−1−2𝑣(𝑠)
ℓ−|𝑀(𝛼)|

)︀
+
(︀
𝑘−1
ℓ−1
)︀
.

Доказательство. Существует ровно два вида нестабильных подкодов: содержа­

щие моном 1 и не содержащие его. Число подкодов второго типа равно
(︀
𝑘−1
ℓ−1
)︀
,

где 𝑘 — размерность кода RM(𝑟,𝑚).
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Зафиксируем параметр 𝑠, набор индексов 𝐼 размера 𝑠 и строку 𝛼 ∈ {1, 2, 3}𝑣(𝑠).

Среди подкодов первого типа есть(︂
𝑘 − 1− 2𝑣(𝑠)

ℓ− |𝑀(𝛼)|

)︂
,

обладающих свойством: среди мономов, составляющих критическое разбиение

для 𝐼, отсутствуют все мономы из 𝑀(𝛼). Дело в том, что нужно выбрать ℓ −

|𝑀(𝛼)| мономов из всех, имеющих степень больше нуля и не входящих ни в

одно критическое разбиение (их 𝑘 − 1− 2𝑣(𝑠)).

Для заданного 𝑠 существуют
(︀
𝑚
𝑠

)︀
вариантов выбрать 𝐼. Однако некоторые

коды могут быть посчитаны несколько раз. Теорема доказана.

Теорема 6. Если ℓ = 𝑐𝑜𝑛𝑠𝑡 и 𝑟 ⩾ 2ℓ+1, то доля нестабильных подкодов кодов

RM(𝑟,𝑚) стремится к нулю при 𝑚→∞.

Доказательство. Нашей целью является асимптотическая оценка вероятности

того, что после удаления ℓ векторов из стандартного базиса кода RM(𝑟,𝑚) квад­

рат полученного кода будет отличаться от RM(2𝑟,𝑚). Верхняя оценка равна

𝜃
⧸︀(︀

𝑘
ℓ

)︀
. Разделим ее на две части и покажем стремление к нулю для каждой из

них независимо. Для одного из них это сразу следует из того, что(︀
𝑘−1
ℓ−1
)︀(︀

𝑘
ℓ

)︀ =
ℓ

𝑘
−−−→
𝑚→∞

0,

поскольку 𝑘 →∞ при 𝑚→∞.

Теперь рассмотрим первую часть и обозначим ее числитель через 𝛾. Заме­

тим, что

#𝛼(1) + #𝛼(2) + 2 ·#𝛼(3) = |𝑀(𝛼)| ⩾ 𝑣(𝑠) = #𝛼(1) + #𝛼(2) + #𝛼(3).

Тогда количество удаленных векторов, являющихся элементами критических

разбиений для 𝑠, равно |𝑀(𝛼)| ⩾ 𝑣(𝑠), а общее количество удаленных векторов

равно ℓ. То есть 𝑣(𝑠) ⩽ ℓ и можно рассматривать только параметры 𝑠, удовле­

творяющие этому условию. Тогда

2𝑣(𝑠) =
min{𝑟,𝑠−1}∑︀

𝑝=max{𝑠−𝑟,1}

(︀
𝑠
𝑝

)︀
⩽ 2ℓ. (1.7)
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Рассмотрим отдельно два случая. Если 𝑠 ⩾ 𝑟 + 1, то min{𝑟, 𝑠 − 1} = 𝑟 и в

сумму (1.7) входит элемент
(︀
𝑠
𝑟

)︀
. Отсюда

2ℓ ⩾ 2𝑣(𝑠) ⩾

(︂
𝑠

𝑟

)︂
⩾ 𝑠.

Последнее неравенство следует из того, что(︂
𝑠

𝑟

)︂
=

(𝑟 + 1)

2
· (𝑟 + 2)

3
· . . . · (𝑠− 1)

𝑟
· 𝑠
1
.

Если, с другой стороны, 𝑠 < 𝑟 + 1, то max{𝑠− 𝑟, 1} = 1 и в сумму (1.7)

входит элемент
(︀
𝑠
1

)︀
. Следовательно,

2ℓ ⩾ 2𝑣(𝑠) ⩾

(︂
𝑠

1

)︂
= 𝑠.

Т.е. в любом случае выполняется неравенство 𝑠 ⩽ 2ℓ.

Упростим верхнюю оценку для 𝛾, используя это неравенство и монотон­

ность биномиального коэффициента
(︀
𝑛
𝑘

)︀
относительно параметра 𝑘, что гаран­

тирует рост величины
(︀
𝑛
𝑘

)︀
с ростом 𝑘:

2𝑟∑︀
𝑠=2

(︀
𝑚
𝑠

)︀ ∑︀
𝛼∈{1,2,3}𝑣(𝑠)

(︀
𝑘−1−2𝑣(𝑠)
ℓ−|𝑀(𝛼)|

)︀
⩽

2ℓ∑︀
𝑠=2

(︀
𝑚
2ℓ

)︀ ∑︀
𝛼∈{1,2,3}𝑣(𝑠)

(︀
𝑘−1−2𝑣(𝑠)
ℓ−|𝑀(𝛼)|

)︀
⩽

⩽ 2ℓ ·
(︂
𝑚

2ℓ

)︂
max
𝑠∈[2,2ℓ]

{︂(︂
𝑘 − 1− 2𝑣(𝑠)

ℓ− 𝑧

)︂
· 3𝑣(𝑠)

}︂
,

где 𝑧 = min𝛼∈{1,2,3}𝑣(𝑠)
{︀
|𝑀(𝛼)|

}︀
.

Отметим справедливость неравенства 𝑣(𝑠) < 2𝑠, поскольку

2𝑠 = (1 + 1)𝑠 =
𝑠∑︀

𝑝=0

(︀
𝑠
𝑝

)︀
>

1

2

min{𝑟,𝑠−1}∑︀
𝑝=max{𝑠−𝑟,1}

(︀
𝑠
𝑝

)︀
= 𝑣(𝑠).

Кроме того, поскольку 𝑠 ⩽ 2ℓ, то 3𝑣(𝑠) ⩽ 𝑐 для некоторой константы 𝑐. Эти рас­

суждения в совокупности с монотонностью биномиального коэффициента
(︀
𝑛
𝑘

)︀
относительно 𝑛 и неравенством |𝑀(𝛼)| ⩾ 𝑣(𝑠) позволяют получить следующую

верхнюю оценку:

2𝑐ℓ ·
(︂
𝑚

2ℓ

)︂(︂
𝑘

ℓ− 𝑣(𝑠)

)︂
⩽ 2𝑐ℓ ·

(︂
𝑚

2ℓ

)︂(︂
𝑘

ℓ− 1

)︂
= 𝜓.
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Перейдем к оценку доли подкодов:

𝛾(︀
𝑘
ℓ

)︀ ⩽ 𝜓(︀
𝑘
ℓ

)︀ = 2𝑐ℓ ·
(︀
𝑚
2ℓ

)︀(︀
𝑘

ℓ−1
)︀(︀

𝑘
ℓ

)︀ = 2𝑐ℓ ·
(︂
𝑚

2ℓ

)︂
· ℓ
⧸︀
(𝑘 − ℓ+ 1) =

=
2𝑐ℓ ·

(︀
𝑚
2ℓ

)︀
𝑘 − ℓ+ 1

⩽ 2𝑐ℓ · 𝑚
2ℓ

2𝑘
.

Для достаточно большого 𝑚 можно утверждать, что существует такое 𝑝 =

2ℓ+ 1, что в представление (1) для 𝑘 входит слагаемое
(︀
𝑚
𝑝

)︀
⩾ 𝑚𝑝. Тогда

2𝑐ℓ · 𝑚
2ℓ

2𝑘
⩽ 2𝑐ℓ · 𝑚

2ℓ

𝑚2ℓ+1
= 2𝑐ℓ · 1

𝑚
−−−→
𝑚→∞

0.

Теорема доказана.

1.4. Выводы к первой главе

Глава посвящена описанию подкодов кода Рида–Маллера, позволяющих

построить вариант электронной подписи CFS, являющейся стойкой к полино­

миальной атаке из работы [37]. Такие подкоды получили в диссертации назва­

ние «нестабильные». В работе построен критерий для выявления таких кодов

порядка 2. Помимо этого диссертация описывает структуру всех стабильных

подкодов кода RM(2,𝑚). На основе полученных результатов представлен метод

построения нестабильного подкода, который может быть полезен для практи­

ческих приложений.

Для кода Рида–Маллера RM(𝑟,𝑚) произвольного порядка построен ряд

оценок, ограничивающих снизу и сверху число векторов степени 𝑟, подлежащих

исключению из кода для того, чтобы квадрат результата перестал совпадать с

квадратом полного кода. Полученные оценки также могут быть использованы

для построения нестабильного подкода, однако без гарантии его оптимальности.

Тем не менее, построение нестабильного подкода случайным образом ма­

ловероятно: в настоящей диссертации показано, что доля таких подкодов стре­

мится к нулю с увеличением параметра𝑚. Из этого следует, что при случайном
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выборе подкода кода Рида–Маллера вероятность построения стойкой схемы под­

писи на таких кодах также стремится к нулю.
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Глава 2

Генерация ключей в электронной подписи CFS

на основе квазициклических кодов

Алгоритм генерации ключей криптосистемы с открытым ключом LEDAcrypt,

предложенной в рамках конкурса NIST на новый постквантовый механизм

(см. [49]), требует нахождение невырожденной квадратной квазициклической

матрицы 𝑄. Идентичный алгоритм генерации ключей позднее был внедрен в

схему подписи CFS [54]. Однако рекомендации по поиску такой матрицы в рабо­

те [54] отсутствуют. Авторы [49] предлагают представить матрицу 𝑄 как матри­

цу многочленов и по ней составить матрицу весов, заменив каждый многочлен

на число, равное количеству его ненулевых коэффициентов. Такой подход поз­

воляет вывести необходимое условие невырожденности матрицы 𝑄 через пер­

манент матрицы весов. Это условие может быть применимо для построения

ключей в LEDAcrypt, поскольку для любого уровня стойкости максимальный

размер матрицы 𝑄 как блочной не превосходит 4 × 4. Но экспоненциальная

сложность вычисления перманента делает невозможной проверку его значения,

например, для матриц размера 63×63, которые предложены для схемы подписи

CFS для уровня стойкости, равного 128 бит.

Подход авторов LEDAcrypt, заключающийся в представлении квазицикли­

ческой матрицы как матрицы над факторкольцом кольца многочленов, позво­

ляет свести задачу поиска невырожденной квадратной квазициклической мат­

рицы 𝑄 к задаче построения случайной невырожденной матрицы над фактор­

кольцом кольца многочленов. Этот вопрос давно изучен для конечных полей, но

для колец представляет более сложную задачу. Сложным является даже вычис­

ление определителя матрицы, ведь классический алгоритм Гаусса неприменим

к кольцам, в которых есть делители нуля. Также нетривиальным является во­

прос, чему равна доля невырожденных матриц над данным конечным кольцом,
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в то время как в случае конечных полей этот вопрос также имеет простой ответ.

Для решения вопросов, поставленных в настоящей главе, используется ал­

горитм приведения матрицы над факторкольцом кольца многочленов к верхне­

треугольному виду. В работе [77] для решения аналогичной задачи предложено

два алгоритма. Первый с оценкой сложности 𝑂(𝑛3) арифметических операций

и применений расширенного алгоритма Евклида, а второй — со сложностью

𝑂(𝑛𝜔) операций того же типа, где 𝜔 — экспонента матричного умножения (т.е.

минимальное 𝜔, для которого сложность умножения двух матриц размера 𝑛×𝑛

есть 𝑂(𝑛𝜔)). Несмотря на то, что формально второй алгоритм имеет меньшую

сложность (известна оценка 𝜔 < 2.373 [78]), на практике даже для достаточно

больших матриц более целесообразно применение первого. Поэтому приведен­

ный в диссертации алгоритм является адаптацией первого алгоритма из [77].

Результаты главы опубликованы в работе [65].

2.1. Дополнительные определения

Некоторая часть результатов главы получена относительно факторкольца

𝐾𝑓 = F2[𝑥]/𝑓(𝑥) кольца многочленов над F2[𝑥]. В некоторых случаях будет

зафиксирован определенный вид этого многочлена.

Поставим кольцо циркулянтов порядка 𝑟 во взаимно однозначное соответ­

ствие с факторкольцом F2[𝑥]/(𝑥
𝑟− 1) (то есть кольцом многочленов по модулю

𝑥𝑟 − 1). Именно, циркулянту 𝐴 ∈ F𝑟×𝑟
2 с первым столбцом ̂︀𝑎 будет соответ­

ствовать многочлен ̂︀𝑎1 + ̂︀𝑎2𝑥+ . . .+ ̂︀𝑎𝑟𝑥𝑟−1. Несложно показать, что указанное
отображение является изоморфизмом, то есть сохраняет операции сложения и

умножения.

Определение 33. Весом многочлена 𝑓(𝑥) ∈ F2[𝑥] назовем количество его нену­

левых коэффициентов.

Очевидно, что вес многочлена степени не более 𝑟 − 1 и вес соответствую­

щего ему циркулянта равны. Вес многочлена 𝑓(𝑥) будем обозначать wt
(︀
𝑓(𝑥)

)︀
,
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его четность (то есть остаток от деления на 2) —wt2
(︀
𝑓(𝑥)

)︀
∈ F2.

Определение 34. Матрицу 𝑀(𝑄) ∈ 𝐾𝑛×𝑛
𝑥𝑟−1, полученную заменой в некоторой

квадратной квазициклической матрице 𝑄 порядка 𝑛 каждого циркулянта 𝑄𝑖𝑗

на многочлен 𝑚𝑖𝑗, будем называть матрицей многочленов.

Определение 35. Матрицу 𝑊 ∈ F𝑛×𝑛
2 , полученную из матрицы многочленов

𝑀 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1 заменой 𝑤𝑖𝑗 = wt2(𝑚𝑖𝑗), будем называть матрицей четности весов

матрицы 𝑀 и будем обозначать 𝑊 = wt2(𝑀).

Определение 36. Для произвольного коммутативного кольца 𝐾 с единицей

набор векторов 𝑢1, . . . , 𝑢𝑘 ∈ 𝐾𝑛, 𝑘, 𝑛 ⩾ 1 будем называть линейно независимым,

если для любых элементов 𝛼1, . . . , 𝛼𝑘 ∈ 𝐾, одновременно не равных нулю, верно

𝛼1𝑢1 + . . .+ 𝛼𝑘𝑢𝑘 ̸= 0.

Пустой набор векторов будем считать линейно независимым по определению.

Определение 37. Для произвольного коммутативного кольца 𝐾 с единицей

матрица 𝐴 ∈ 𝐾𝑛×𝑛 называется невырожденной, если ее определитель является

обратимым элементом кольца. Матрица 𝐴 называется обратимой, если суще­

ствует матрица 𝐵 такая, что 𝐴𝐵 = 𝐵𝐴 = 𝐼.

Определение 38. Обозначать долю невырожденных матриц среди всех мат­

риц из 𝐾𝑛×𝑛
𝑓 через 𝜚(𝐾𝑓 , 𝑛).

Определение 39. Обозначим множество собственных делителей многочлена

𝑓(𝑥) ∈ F2[𝑥] через 𝜂(𝑓(𝑥)). Множество неприводимых собственных делителей

обозначим через 𝜂(𝑓(𝑥)).

Определение 40. Порядком числа 𝑔 ∈ Z по модулю 𝑑 ∈ N такому, что

НОД(𝑔, 𝑑) = 1, называется минимальное 𝑘 > 0 такое, что 𝑔𝑘 = 1 (mod 𝑑).

Будем обозначать его ord𝑑(𝑔).
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2.2. О связях матриц многочленов, квазициклических

матриц и матриц весов

Представим в этом разделе некоторые свойства определителей квазицик­

лических матриц, матриц многочленов и матриц весов, а также взаимосвязи

между ними.

Утверждение 23. Любой циркулянт 𝐴 ∈ F 𝑟×𝑟
2 четного веса вырожден.

Доказательство. Для доказательства достаточно сложить все строки матри­

цы 𝐴. Поскольку 𝐴—циркулянт, то в каждом столбце одинаковое число еди­

ниц. Более того, количество единиц в каждом столбце четно, поэтому сумма

всех строк равна нулевому вектору. Полученное равенство [1, . . . , 1]𝐴 = 0 дока­

зывает вырожденность матрицы 𝐴.

Теорема 7. Квазициклическая матрица 𝑄 вырождена тогда и только тогда,

когда вырождена соответствующая ей матрица 𝑀(𝑄).

Доказательство. Достаточность. Пусть матрица 𝑀 = 𝑀(𝑄) вырождена.

Тогда существует ненулевой вектор 𝑦 ∈ 𝐾𝑛
𝑥𝑟−1 такой, что 𝑀𝑦 = 0. Предста­

вим вектор 𝑦 в квазициклическом виде, заменив каждый многочлен на соот­

ветствующую ему циклическую подматрицу. Очевидно, любой столбец 𝑦′ ∈ F𝑛𝑟
2

полученной матрицы является ненулевым решением уравнения 𝑄𝑦′ = 0, что

означает вырожденность матрицы 𝑄.

Необходимость. Если матрица 𝑄 вырождена, то существует такой вектор

𝑦′ = [𝑦′1, . . . , 𝑦
′
𝑛]
⊤, 𝑦′𝑖 ∈ F 𝑟

2 , что

𝑄𝑦′ = 0. (2.1)

Выполнение условия (2.1) означает, что

𝑄𝑖,1𝑦
′
1 + . . .+𝑄𝑖,𝑛𝑦

′
𝑛 = 0,

где 𝑄𝑖𝑗 — блок матрицы 𝑄. Сформируем из каждого столбца 𝑦′𝑖 циркулянт 𝑌
′
𝑖 ∈

F 𝑟×𝑟
2 , приписав справа (𝑟−1) столбец, каждый из которых равен предыдущему,



71

циклически сдвинутому вниз на 1. Полученную в результате матрицу назовем

матрицей 𝑌 ′. Заметим теперь, что циклический сдвиг столбца из F 𝑟
2 на один

элемент вниз задается матрицей перестановки 𝑃 ∈ F 𝑟×𝑟
2 :

𝑃 =

⎛⎝ 0 1

𝐼𝑟−1 0

⎞⎠ .

Отсюда следует, что 𝑡-ый столбец матрицы 𝑌 ′ есть [𝑃 𝑡𝑦′1, . . . , 𝑃
𝑡𝑦′𝑛]

⊤. Поскольку

𝑃 —циркулянт, а умножение циркулянтов коммутативно (это следует, напри­

мер, из упомянутого изоморфизма кольца циркулянтов факторкольцу 𝐾𝑥𝑟−1),

то для 𝑡-ого столбца можно записать

𝑄𝑖,1𝑃
𝑡𝑦′1 + . . .+𝑄1,𝑛𝑃

𝑡𝑦′𝑛 = 𝑃 𝑡(𝑄𝑖,1𝑦
′
1 + . . .+𝑄𝑖,𝑛𝑦

′
𝑛) = 𝑃 𝑡 · 0 = 0,

что означает, что столбец 𝑦 ∈ 𝐾𝑛
𝑥𝑟−1, соответствующий матрице 𝑌 ′, является

ненулевым решением уравнения 𝑀𝑦 = 0, что доказывает вырожденность мат­

рицы 𝑀 =𝑀(𝑄).

Из Теоремы 7 следует, что для исследования невырожденности квазицик­

лической матрицы𝑄 достаточно исследовать невырожденность матрицы𝑀(𝑄).

Покажем далее, что при умножении и сложении циклических многочленов

четности их весов умножаются и складываются соответственно.

Утверждение 24. Пусть 𝑓(𝑥) и 𝑔(𝑥)—многочлены из 𝐾𝑥𝑟−1. Тогда

wt2
(︀
𝑓(𝑥) + 𝑔(𝑥)

)︀
= wt2

(︀
𝑓(𝑥)

)︀
+ wt2

(︀
𝑔(𝑥)

)︀
, (2.2)

wt2
(︀
𝑓(𝑥)𝑔(𝑥)

)︀
= wt2

(︀
𝑓(𝑥)

)︀
wt2
(︀
𝑔(𝑥)

)︀
.

Доказательство. Часть утверждения про сумму 𝑓(𝑥)+𝑔(𝑥) верна в силу того,

что равенство (2.2) эквивалентно равенству

(𝑓1+. . .+𝑓𝑟+𝑔1+. . .+𝑔𝑟) mod 2 = ((𝑓1+. . .+𝑓𝑟) mod 2)+((𝑔1+. . .+𝑔𝑟) mod 2).

Докажем часть про произведение 𝑓(𝑥)𝑔(𝑥). Коэффициент при 𝑥𝑖 равен
𝑟∑︁

𝑗=1

𝑓𝑗 · 𝑔1+(𝑖−𝑗) mod 𝑟.
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Поэтому

wt2
(︀
𝑓(𝑥)𝑔(𝑥)

)︀
=

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑓𝑗 · 𝑔1+(𝑖−𝑗) mod 𝑟 =
𝑟∑︁

𝑗=1

𝑓𝑗

𝑟∑︁
𝑖=1

𝑔1+(𝑖−𝑗) mod 𝑟.

Заметим, что при фиксированном 𝑗 индекс при 𝑔 (то есть 1 + (𝑖− 𝑗) mod 𝑟) во

внутренней сумме пробегает все числа от 1 до 𝑟 ровно по одному разу. Отсюда

wt2
(︀
𝑓(𝑥)𝑔(𝑥)

)︀
=

𝑟∑︁
𝑗=1

𝑓𝑗

𝑟∑︁
𝑖=1

𝑔𝑖 = wt2
(︀
𝑓(𝑥)

)︀
wt2
(︀
𝑔(𝑥)

)︀
.

Теорема 8. Четность веса определителя матрицы 𝑀 равна определителю

матрицы wt2(𝑀): wt2(det𝑀) = det(wt2(𝑀)).

Доказательство. По определению определитель матрицы 𝑀 может быть вы­

числен по формуле

det𝑀 =
∑︁

𝛼1,𝛼2,...,𝛼𝑛

(−1)𝑁(𝛼1,𝛼2,...,𝛼𝑛) ·𝑚1𝛼1
𝑚2𝛼2

. . .𝑚𝑛𝛼𝑛
,

где суммирование проводится по всем перестановкам 𝛼1, 𝛼2, . . . , 𝛼𝑛 чисел из

множества {1, 2, . . . , 𝑛}, а 𝑁(𝛼1, 𝛼2, . . . , 𝛼𝑛) обозначает число инверсий в пере­

становке (𝛼1, 𝛼2, . . . , 𝛼𝑛). Отсюда и по Утверждению 24

wt2
(︀
det𝑀

)︀
=

∑︁
𝛼1,𝛼2,...,𝛼𝑛

wt2
(︀
𝑚1𝛼1

)︀
wt2
(︀
𝑚2𝛼2

)︀
. . .wt2

(︀
𝑚𝑛𝛼𝑛

)︀
=

=
∑︁

𝛼1,𝛼2,...,𝛼𝑛

(−1)𝑁(𝛼1,𝛼2,...,𝛼𝑛) · 𝑤1𝛼1
𝑤2𝛼2

. . . 𝑤𝑛𝛼𝑛
= det(wt2(𝑀)),

где 𝑤𝑖𝑗 — элементы матрицы 𝑊 и сложение и умножение производятся в по­

ле F2.

Следствие 6. Для того, чтобы была вырождена матрица 𝑄, необходимо,

чтобы была вырождена матрица wt2(𝑀(𝑄)).

Доказательство. Справедливость утверждения следует непосредственно из Тео­

рем 7 и 8.
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2.3. Оценка доли обратимых матриц

В этом разделе мы оценим величину 𝜚(𝐾𝑓 , 𝑛) для различных многочленов

𝑓(𝑥) ∈ F2[𝑥].

Утверждение 25. Для произвольного конечного коммутативного кольца 𝐾

с единицей и матрицы 𝐴 ∈ 𝐾𝑛×𝑛 следующие утверждения эквивалентны:

1. матрица 𝐴 обратима,

2. матрица 𝐴 невырождена,

3. столбцы матрицы 𝐴 линейно независимы.

Доказательство. Докажем сначала, что условия (1) и (2) эквивалентны. Дей­

ствительно, т.к. определитель произведения матриц равен произведению опре­

делителей, то для обратимой матрицы 𝐴 получаем

1 = det(𝐼) = det(𝐴𝐴−1) = det𝐴 det(𝐴−1),

значит, определитель является обратимым элементом 𝐾, т.е. матрица 𝐴 невы­

рождена. Напротив, если 𝐴 невырождена, то обратной к ней является матрица

𝐴−1 = (det𝐴)−1adj(𝐴),

где adj(𝐴)—присоединенная матрица.

Далее обоснуем эквивалентность условий (3) и (1), то есть покажем, что

линейная независимость столбцов матрицы эквивалентна ее обратимости. Если

𝐴 обратима, то из равенства 𝐴𝑥 = 0 следует 𝑥 = 0, поэтому не существует

ненулевой линейной комбинации столбцов, равной нулю. Обратно, рассмотрим

матрицу 𝐴, чьи столбцы 𝑎1, . . . , 𝑎𝑛 образуют линейно независимую систему. Ли­

нейная оболочка Im(𝐴) ее столбцов содержит ровно |𝐾|𝑛 векторов, т.к. для

каждого набора коэффициентов 𝛼1, . . . , 𝛼𝑛 ∈ 𝐾 получается уникальный стол­

бец 𝑣 = 𝛼1𝑎1 + · · ·+ 𝛼𝑛𝑎𝑛 (в силу линейной независимости разложение столбца
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𝑣 по столбцам матрицы 𝐴 единственно). Значит, Im(𝐴) = 𝐾𝑛, то есть система

𝐴𝑥 = 𝑣 разрешима для любой правой части 𝑣 ∈ 𝐾𝑛, в том числе для 𝑣, равных

столбцам единичной матрицы. Поэтому матрица 𝐴 обратима.

В связи с доказанным утверждением далее термины «невырождена» и «об­

ратима» будут использованы как синонимы.

Лемма 2. Для заданного набора линейно независимых векторов 𝑢1, . . . , 𝑢𝑘 ∈ 𝐾𝑛
𝑓 ,

0 ⩽ 𝑘 ⩽ 𝑛− 1, число векторов 𝑣 ∈ 𝐾𝑛
𝑓 таких, что система {𝑢1, . . . , 𝑢𝑘, 𝑣} ли­

нейно зависима, не превосходит∑︁
𝛼∈𝜂(𝑓)

2𝑘 deg 𝑓2(𝑛−𝑘) deg𝛼.

Доказательство. Для начала рассмотрим случай 𝑘 > 0. Необходимо оценить

сверху количество векторов 𝑣 ∈ 𝐾𝑛
𝑓 таких, что существует набор одновременно

не равных нулю коэффициентов 𝛼1, . . . , 𝛼𝑘, 𝛼 ∈ 𝐾𝑓 и

𝛼1𝑢1 + . . .+ 𝛼𝑘𝑢𝑘 = 𝛼𝑣. (2.3)

Введем множество 𝑉𝛼 такое, что

𝑉𝛼 = {𝑣 : 𝛼𝑣 ∈ span(𝑢1, . . . , 𝑢𝑘)}, 𝛼 ∈ 𝐾𝑓 .

Заметим, что для любого обратимого 𝛽 ∈ 𝐾 выполнено 𝑉𝛼 = 𝑉𝛼𝛽. Поэтому

множество всех различных значений 𝛼 разбивается на классы эквивалентности

отношения эквивалентности 𝛼′ ∼ 𝛼′′ ⇔ (существует обратимый 𝛽 : 𝛼′ = 𝛽𝛼′′).

Заметим, что все представители одного класса эквивалентности имеют одина­

ковый НОД с многочленом 𝑓(𝑥). Этот НОД является собственным делителем

𝑓(𝑥). Поэтому ⋃︁
𝛼∈𝐾𝑓

𝑉𝛼 =
⋃︁

𝛼∈𝜂(𝑓)

𝑉𝛼.

Более того, пусть некоторый многочлен 𝛼′ ∈ 𝐾𝑓 делится на 𝛼′′ ∈ 𝐾𝑓 , тогда

из того, что 𝛼′′𝑣 ∈ span(𝑢1, . . . , 𝑢𝑘) следует, что 𝛼′𝑣 ∈ span(𝑢1, . . . , 𝑢𝑘). Отсюда
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𝑉𝛼′′ ⊂ 𝑉𝛼′, поэтому ⋃︁
𝛼∈𝐾𝑓

𝑉𝛼 =
⋃︁

𝛼 — максмальный
собственный
делитель 𝑓

𝑉𝛼 =
∑︁

𝛼∈𝜂(𝑓)

𝑉𝑓/𝛼.

Последнее равенство следует из того, что неприводимые делители 𝑓(𝑥) взаим­

но однозначно соответствуют его максимальным собственным делителям, то

есть тем, что не делят ни один другой собственный делитель. Можно записать

соответствующее неравенство на размеры множеств:⃒⃒⃒⃒
⃒⃒ ⋃︁
𝛼∈𝐾𝑓

𝑉𝛼

⃒⃒⃒⃒
⃒⃒ ⩽ ∑︁

𝛼∈𝜂(𝑓)

⃒⃒
𝑉𝑓/𝛼

⃒⃒
.

Осталось оценить величину |𝑉𝛼| для некоторого 𝛼 ∈ 𝜂(𝐹 ). Домножим обе

части равенства (2.3) на 𝜃 = 𝑓/𝛼 и получим

𝜃𝛼1𝑢1 + . . .+ 𝜃𝛼𝑘𝑢𝑘 = 0.

Поскольку вектора 𝑢1, . . . , 𝑢𝑘 линейно независимы, то из равенства 𝛼𝑖𝜃 = 0

в факторкольце кольца 𝐾𝑓 следует равенство 𝛼𝑖(𝑥)𝜃(𝑥) = 𝑓(𝑥)𝛾(𝑥) в кольце

многочленов для некоторого 𝛾(𝑥) ∈ F2[𝑥]. Таким образом, 𝛼𝑖(𝑥) делится на

𝛼(𝑥) для любого 𝑖, и уравнение (2.3) можно переписать как

𝛼1

𝛼
𝑢1 + . . .+

𝛼𝑘

𝛼
𝑢𝑘 = 𝑣 (mod 𝑓/𝛼).

Существует
⃒⃒
𝐾𝑓/𝛼

⃒⃒𝑘
линейных комбинаций векторов 𝑢1, . . . , 𝑢𝑘 с коэффициента­

ми из 𝐾𝑓/𝛼. Каждая из них отвечает (2deg𝛼)𝑛 векторам 𝑣 из 𝐾𝑛
𝑓 . Поэтому

|𝑉𝛼| ⩽
⃒⃒
𝐾𝑓/𝛼

⃒⃒𝑘
(2deg𝛼)𝑛 = 2𝑘 deg(𝑓/𝛼)2𝑛deg𝛼 =

= 2𝑘 deg 𝑓−𝑘 deg𝛼2𝑛 deg𝛼 = 2𝑘 deg 𝑓2(𝑛−𝑘) deg𝛼.

Отсюда получаем ⃒⃒⃒⃒
⃒⃒ ⋃︁
𝛼∈𝐾𝑓

𝑉𝛼

⃒⃒⃒⃒
⃒⃒ ⩽ ∑︁

𝛼∈𝜂(𝑓)

2𝑘 deg 𝑓2(𝑛−𝑘)(deg 𝑓−deg𝛼).
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Для случая 𝑘 = 0 рассуждение остается корректным. Стоит лишь заме­

тить, что, вопреки интуиции, выработанной при работе с линейными простран­

ствами над полями, ненулевой вектор 𝑣 может образовывать линейно зависи­

мую систему.

Теорема 9. Доля 𝜚(𝐾𝑓 , 𝑛) невырожденных матриц 𝐴 ∈ 𝐾𝑛×𝑛
𝑓 удовлетворяет

неравенству

𝜚(𝐾𝑓 , 𝑛) ⩾
𝑛−1∏︁
𝑘=0

⎛⎝1− 2(𝑘−𝑛) deg 𝑓
∑︁

𝛼∈𝜂(𝑓)

2(𝑛−𝑘)(deg 𝑓−deg𝛼)

⎞⎠ . (2.4)

Доказательство. Вычислим количество невырожденных матриц с элементами

из кольца𝐾𝑓 . Будем строить такую матрицу итеративно, на каждом шаге добав­

ляя по столбцу, линейно не зависящему от предыдущих, и посчитаем, сколькими

способами можно это сделать. Для 0 ⩽ 𝑘 < 𝑛 количество векторов, линейно не

зависящих от предыдущих, можно найти по Лемме 2. Общее количество век­

торов 𝑥 ∈ 𝐾𝑛
𝑓 есть 2𝑛deg 𝑓 , поэтому общее количество невырожденных матриц

можно оценить снизу как

𝑛−1∏︁
𝑘=0

⎛⎝2𝑛deg 𝑓 − 2𝑘 deg 𝑓
∑︁

𝛼∈𝜂(𝑓)

2(𝑛−𝑘)(deg 𝑓−deg𝛼)

⎞⎠ .

Так как общее число матриц из 𝐾𝑛×𝑛
𝑓 есть 2𝑛

2 deg 𝑓 , получаем неравенство (2.4).

Следствие 7. Доля 𝜚(𝐾𝑓 , 𝑛) невырожденных матриц 𝐴 ∈ 𝐾𝑛×𝑛
𝑓 удовлетворя­

ет неравенству

𝜚(𝐾𝑓 , 𝑛) > 𝑒−2

⎛⎝1−
∑︁

𝛼∈𝜂(𝑓)

2−deg𝛼

⎞⎠ .

Доказательство. Для краткости будем обозначать через 𝑟 степень многочле­

на 𝑓(𝑥). Оценим величину из Теоремы 9. Поскольку 𝜂(𝑓) состоит только из
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неприводимых многочленов, можем записать∑︁
𝛼∈𝜂(𝑓)

2(𝑛−𝑘)(𝑟−deg𝛼) ⩽ 2𝑟(𝑛−𝑘)
∑︁

𝛼−неприв.
2−(𝑛−𝑘) deg𝛼 =

= 2𝑟(𝑛−𝑘)

(︃ ∞∑︁
𝑑=1

2−(𝑛−𝑘)𝑑 𝜓(𝑑)

)︃
= (2.5)

= 2𝑟(𝑛−𝑘)

(︃
2−(𝑛−𝑘) +

∞∑︁
𝑑=2

2−(𝑛−𝑘)𝑑𝜓(𝑑)

)︃
,

где 𝜓(𝑑) обозначает количество неприводимых многочленов степени 𝑑.

В работе [79] в Лемме 1 было показано, что 𝜓(𝑑) ⩽ 2𝑑−2
𝑑 . Поэтому мы

можем оценить сверху сумму в выражении (2.5) следующим образом

∞∑︁
𝑑=2

2−(𝑛−𝑘)𝑑
2𝑑

𝑑
⩽

1

2

∞∑︁
𝑑=2

2−(𝑛−𝑘−1)𝑑 ⩽
1

2
· 2−(𝑛−𝑘−1)·2

∞∑︁
𝑑=0

2−(𝑛−𝑘−1)𝑑. (2.6)

Для 0 ⩽ 𝑘 ⩽ 𝑛− 2 число 2−(𝑛−𝑘−1) не превосходит 1/2, поэтому и сумма геомет­

рической прогрессии в правой части (2.6) не превосходит 2. Отсюда и из того,

что 2−2(𝑛−𝑘−1) ⩽ 2−(𝑛−𝑘) для 0 ⩽ 𝑘 ⩽ 𝑛− 2, получаем, что∑︁
𝛼∈𝜂(𝑓)

2(𝑛−𝑘)(𝑟−deg𝛼) ⩽ 2𝑟(𝑛−𝑘)(2−(𝑛−𝑘) + 2−2(𝑛−𝑘−1)) ⩽ 2(𝑟−1)(𝑛−𝑘)+1.

Оценим сразу часть произведения (2.4), отвечающую 0 ⩽ 𝑘 ⩽ 𝑛− 2:

𝑛−2∏︁
𝑘=0

⎛⎝1− 2𝑟(𝑘−𝑛)
∑︁

𝛼∈𝜂(𝑓)

2(𝑛−𝑘)(𝑟−deg𝛼)

⎞⎠ ⩾
𝑛−2∏︁
𝑘=0

(︀
1− 2𝑘+1−𝑛)︀ .

Для оценки произведения оценим сначала логарифм одного сомножителя. От­

метим тривиально проверяемое неравенство: для 0 < 𝑥 < 1

ln(1− 𝑥) > − 𝑥

1− 𝑥
.

Поэтому

ln(1− 2𝑘+1−𝑛) > − 2𝑘+1−𝑛

1− 2𝑘+1−𝑛 ⩾ − 2𝑘+1−𝑛

1− 2−1
= −2𝑘+2−𝑛.



78

Теперь уже тривиально оценивается сумма логарифмов:

𝑛−2∑︁
𝑘=0

ln
(︀
1− 21+𝑘−𝑛)︀ > − 𝑛−2∑︁

𝑘=0

2𝑘+2−𝑛 > −2,

что доказывает неравенство

𝑛−2∏︁
𝑘=0

(︀
1− 2𝑘+1−𝑛)︀ > 𝑒−2.

Учитывая сомножитель для 𝑘 = 𝑛− 1, окончательно получаем:

𝜚(𝐾𝑓 , 𝑛) > 𝑒−2

⎛⎝1− 2−𝑟
∑︁

𝛼∈𝜂(𝑓)

2𝑟−deg𝛼

⎞⎠ = 𝑒−2

⎛⎝1−
∑︁

𝛼∈𝜂(𝑓)

2−deg𝛼

⎞⎠ .

Следствие 8. Для любых натуральных 𝑟 и 𝑛 верно неравенство

𝜚(𝐾𝑥𝑟−1, 𝑛) > 𝑒−2

⎛⎜⎜⎝1−
∑︁
𝑑|𝑟

𝑑—нечетное

2−ord𝑑(2)
𝜙(𝑑)

ord𝑑(2)

⎞⎟⎟⎠ ,

где 𝜙(𝑑)— количество взаимно простых с 𝑑 чисел от 1 до 𝑑 − 1 (функция

Эйлера).

Доказательство. Уточним оценку из Следствия 7 для многочлена 𝑓(𝑥) = 𝑥𝑟 − 1.

Для этого необходимо найти 𝜂(𝑓). Пусть 𝑟 = 2𝑘𝑟′, где 𝑟′—нечетное. Тогда в силу

того, что поле F2 имеет характеристику 2, получаем

𝑥𝑟 − 1 = (𝑥𝑟
′ − 1)2

𝑘

,

а поэтому 𝜂(𝑥𝑟 − 1) = 𝜂(𝑥𝑟
′ − 1). В связи с этим далее будем считать, что 𝑟

нечетно.

Для нечетного 𝑟 разложение 𝑥𝑟 − 1 ∈ F2[𝑥] на неприводимые множители

выглядит следующим образом (см. [80, Теорема 2.47(ii)]):

𝑥𝑟 − 1 =
∏︁
𝑑|𝑟

𝜙(𝑑)/ord𝑑(2)∏︁
𝑖=1

𝑃𝑑,𝑖(𝑥),
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где 𝑃𝑑,𝑖(𝑥) — некоторый неприводимый многочлен степени ord𝑑(2). Отсюда по­

лучаем, наконец, что

∑︁
𝛼∈𝜂(𝑓)

2−deg𝛼 =
∑︁
𝑑|𝑟

𝜙(𝑑)/ord𝑑(2)∑︁
𝑖=1

2−ord𝑑(2) =
∑︁
𝑑|𝑟

2−ord𝑑(2) · 𝜙(𝑑)

ord𝑑(2)
. (2.7)

Теорема 10. Для любого простого 𝑟 и натурального 𝑛 верно неравенство

𝜚(𝐾𝑥𝑟−1, 𝑛) >
1

4𝑒2
.

Доказательство. Обозначим величину из (2.7) для данного 𝑟 через 𝜉(𝑟). Оче­

видно, что для всех натуральных 𝑑 выполнено

ord𝑑(2) ⩾ ⌈log2(𝑑)⌉,

где ⌈𝑥⌉ есть минимальное целое число, большее или равное 𝑥. Из этого вытекает

следующая цепочка неравенств для 𝑟 > 1:

𝜉(𝑟) = 2−1 + 2−ord𝑟(2) · 𝑟 − 1

ord𝑟(2)
⩽ 2−1 + (𝑟 − 1)

2− log2(𝑟)

log2(𝑟)
=

= 2−1 +
𝑟 − 1

𝑟
· 1

log2(𝑟)
< 2−1 +

1

log2(𝑟)
.

Очевидно, что для 𝑟 ⩾ 16 выполнено 𝜉(𝑟) ⩽ 3/4. Случаи простых 𝑟 от 2 до 16

рассмотрены в Таблице 2.1. Далее, очевидно, что 𝜉(1) = 1/2. Более того, 𝜉(2)

𝑓 3 5 7 11 13

𝜉(𝑓) 3
4

9
16

3
4

513
1024

2049
4096

Таблица 2.1

также равно 1/2. Это следует из того факта, что единственным неприводимым

делителем многочлена 𝑥2 − 1 является многочлен 𝑥− 1 степени 1.

В результате можно утверждать, что для любого простого 𝑟 верно нера­

венство

𝜉(𝑟) ⩽
3

4
.
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Наконец, можно записать:

𝜚(𝐾𝑥𝑟−1, 𝑛) >
1− 𝜉(𝑟)

𝑒2
⩾

1

4𝑒2
.

2.4. Приведение матрицы к треугольной форме

Рассмотрим алгоритм приведения матрицы над кольцом 𝐾𝑓 к треуголь­

ной форме с помощью преобразований строк. Данный алгоритм на самом деле

примени́м к более широкому классу колец: достаточно, чтобы в кольце работал

алгоритм Евклида. Отметим, что классический алгоритм гауссова исключения

для матриц над полем в данном случае неприменим. Дело в том, что для выпол­

нения гауссова исключения требуется найти в столбце обратимый элемент, что

может быть невозможно, даже если матрица обратима. Рассмотрим, к примеру,

матрицу

𝐴 =

⎛⎝2 3

3 2

⎞⎠ ∈ Z2×2
6 .

Ее определитель равен −5 = 1 (mod 6), то есть матрица является невырожден­

ной. Также непосредственной проверкой можно убедиться, что 𝐴−1 = 𝐴. При

этом все элементы матрицы 𝐴 не являются обратимыми элементами кольца Z6,

то есть классический алгоритм гауссова исключения не будет работать для этой

матрицы.

Предлагаемый алгоритм основан на преобразовании строк, напоминающем

вращение Гивенса (см. [81]), которое применяется, в частности, для вычисления

QR-разложения матриц. Предлагаемое преобразование заключается в умноже­

нии матрицы 𝐴 слева на матрицу 𝑅, совпадающую с единичной за исключением

подматрицы размера 2 × 2 на пересечении строк и столбцов с заданными но­

мерами 𝑖1 и 𝑖2, где 𝑖1 < 𝑖2. Указанную подматрицу обозначим через ̂︀𝑅. Она
выбирается таким образом, чтобы после применения преобразования обратил­

ся в ноль элемент в позиции (𝑖2, 𝑖1). Покажем, что этого всегда можно добиться.
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Обозначим 𝑢1 := 𝑎𝑖1,𝑖1, 𝑢2 := 𝑎𝑖2,𝑖1. Применим алгоритм Евклида для вычисле­

ния НОД(𝑢1, 𝑢2), получим следующую последовательность равенств:

𝑢1 = 𝑢2𝑞1 + 𝑢3,

𝑢2 = 𝑢3𝑞2 + 𝑢4,

. . .

𝑢𝑠 = 𝑢𝑠+1𝑞𝑠 + 𝑢𝑠+2,

𝑢𝑠+1 = НОД(𝑢1, 𝑢2),

𝑢𝑠+2 = 0.

(2.8)

Помимо этого, каждый из элементов 𝑢𝑘 может быть записан как линей­

ная комбинация 𝑢1 и 𝑢2: 𝑢𝑘 = 𝛼𝑘𝑢1 + 𝛽𝑘𝑢2. Именно, по индукции тривиально

получается

𝑢1 = 1 · 𝑢1 + 0 · 𝑢2,

𝑢2 = 0 · 𝑢1 + 1 · 𝑢2,

𝑢3 = 𝑢1 − 𝑢2𝑞1 = 1 · 𝑢1 + (−𝑞1)𝑢2,

. . .

𝑢𝑘 = 𝑢𝑘−2 − 𝑢𝑘−1𝑞𝑘−2 =

= (𝛼𝑘−2 − 𝛼𝑘−1𝑞𝑘−2)𝑢1 + (𝛽𝑘−2 − 𝛽𝑘−1𝑞𝑘−2)𝑢2.

Для коэффициентов 𝛼𝑘 и 𝛽𝑘 получаем, таким образом:

𝛼1 = 1, 𝛽1 = 0,

𝛼2 = 0, 𝛽2 = 1,

𝛼𝑘 = 𝛼𝑘−2 − 𝛼𝑘−1𝑞𝑘−2, если 𝑘 ⩾ 2,

𝛽𝑘 = 𝛽𝑘−2 − 𝛽𝑘−1𝑞𝑘−2, если 𝑘 ⩾ 2.

(2.9)

Алгоритм, который помимо НОД(𝑢1, 𝑢2) вычисляет еще и коэффициенты 𝛼𝑘 и 𝛽𝑘,

называют расширенным алгоритмом Евклида.

В качестве ̂︀𝑅 возьмем

̂︀𝑅 :=

⎛⎝ 𝛼𝑠 𝛽𝑠

𝛼𝑠+1 𝛽𝑠+1

⎞⎠ .
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Для элементов 𝑎′𝑖1,𝑖1 и 𝑎
′
𝑖2,𝑖1

матрицы 𝐴′ = 𝑅𝐴 из (2.8) получаем равенство:⎛⎝𝑎′𝑖1,𝑖1
𝑎′𝑖2,𝑖1

⎞⎠ =

⎛⎝ 𝛼𝑠 𝛽𝑠

𝛼𝑠+1 𝛽𝑠+1

⎞⎠ ·
⎛⎝𝑎𝑖1,𝑖1
𝑎𝑖2,𝑖1

⎞⎠ =

⎛⎝НОД(𝑎𝑖1,𝑖1, 𝑎𝑖2,𝑖1)
0

⎞⎠ . (2.10)

Мы хотим показать, что матрица 𝑅 обратима. Для этого обозначим для

всех 𝑘 = 2, . . . , 𝑠+ 1

̂︀𝑅𝑘 :=

⎛⎝𝛼𝑘−1 𝛽𝑘−1

𝛼𝑘 𝛽𝑘

⎞⎠
и докажем следующее.

Лемма 3. Для всех 𝑘 = 2, . . . , 𝑠+ 1 выполнено равенство det ̂︀𝑅𝑘 = 1.

Доказательство. При 𝑘 = 2 искомый определитель имеет вид

det ̂︀𝑅2 = det

⎛⎝1 0

0 1

⎞⎠ = 1.

Далее, для всех 𝑘 > 2 можно записать, воспользовавшись (2.9),

det ̂︀𝑅𝑘 = det

⎛⎝ 𝛼𝑘−1 𝛽𝑘−1

𝛼𝑘−2 − 𝛼𝑘−1𝑞𝑘−2 𝛽𝑘−2 − 𝛽𝑘−1𝑞𝑘−2

⎞⎠ .

Прибавим ко второй строке первую, домноженную на 𝑞𝑘−2 (отчего определитель

не поменяется). Тогда

det ̂︀𝑅𝑘 = det

⎛⎝𝛼𝑘−1 𝛽𝑘−1

𝛼𝑘−2 𝛽𝑘−2

⎞⎠ = − det𝐴𝑘−1,

и по индукции получаем утверждение леммы. Так как рассматривается кольцо

многочленов над полем F2 характеристики 2, то −1 = 1 и det ̂︀𝑅𝑘 = 1.

Теперь можно сформулировать алгоритм приведения квадратной матрицы

над 𝐾𝑓 к верхнетреугольному виду (Алгоритм 2, аналогичный алгоритму из

замечания в начале Главы 3 работы [77]).
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Алгоритм 2 Приведение матрицы 𝐴 ∈ 𝐾𝑛×𝑛
𝑓 к верхнетре­

угольному виду

Вход: Матрица 𝐴 ∈ 𝐾𝑛×𝑛
𝑓 со строками 𝑎⊤1 , . . . , 𝑎

⊤
𝑛

цикл 𝑗 = 1, . . . , 𝑛 выполнять

цикл 𝑖 = 𝑛− 1, . . . , 𝑗 выполнять
Шаг 1. Применить расширенный алгоритм Евклида для

вычисления НОД(𝑎𝑖,𝑗, 𝑎𝑖+1,𝑗) и найти числа 𝛼𝑠, 𝛽𝑠, 𝛼𝑠+1, 𝛽𝑠+1;

Шаг 2. 𝑎′𝑖 := 𝛼𝑠𝑎𝑖 + 𝛽𝑠𝑎𝑖+1;

Шаг 3. 𝑎′𝑖+1 := 𝛼𝑠+1𝑎𝑖 + 𝛽𝑠+1𝑎𝑖+1;

Шаг 4. 𝑎𝑖, 𝑎𝑖+1 := 𝑎′𝑖, 𝑎
′
𝑖+1;

конец

конец

Теорема 11. В результате работы Алгоритма 2, примененного к матрице

𝐴 ∈ 𝐾𝑛×𝑛
𝑓 получается верхнетреугольная матрица 𝐴′ = 𝑅𝐴, где det𝑅 = 1.

Алгоритм 2 имеет сложность 𝑂(𝑛3) умножений и сложений элементов

кольца 𝐾𝑓 , а также 𝑂(𝑛2) применений расширенного алгоритма Евклида в

этом кольце.

Доказательство. Из (2.10) следует, что после выполнения Шага 4 для данных

𝑖 и 𝑗 элемент в позиции (𝑖 + 1, 𝑗) занулится. Более того, элемент в этой пози­

ции будет оставаться нулевым до конца работы алгоритма, потому что при всех

последующих преобразованиях строк он будет заменяться на линейную комби­

нацию нулевых элементов. Отсюда получаем, что после выполнения алгоритма

матрица действительно будет иметь верхнетреугольный вид. Выполнение Ша­

га 4 эквивалентно умножению текущей матрицы слева на матрицу 𝑅(ℓ), отли­

чающуюся от единичной подматрицей ̂︀𝑅(ℓ), которая находится на пересечении

строк и столбцов с номерами 𝑖 и 𝑖 + 1. Разложение определителя det𝑅(ℓ) по

строкам с номерами 𝑖 и 𝑖 + 1 дает равенство det𝑅(ℓ) = det ̂︀𝑅(ℓ), а по Лемме 3

получаем, что det𝑅(ℓ) = 1.
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После завершения работы алгоритма получается матрица 𝑅(𝑁) . . . 𝑅(1)𝐴,

где 𝑁 — общее количество внутренних итераций цикла. Введение обозначения

𝑅 = 𝑅(𝑁) . . . 𝑅(1) дает первую часть утверждения теоремы.

Шаги 1–4, очевидно, суммарно выполняются (𝑛− 1) + (𝑛− 2) + · · ·+ 1 =

𝑛(𝑛− 1)/2 раз. На Шагах 2–3 выполняются умножения вектора из 𝐾𝑛
𝑓 на чис­

ло и сложения векторов, что требует 𝑂(𝑛) сложений и умножений элементов

кольца 𝐾𝑓 . Суммарно получаем 𝑂(𝑛3) сложений и умножений, а также 𝑂(𝑛2)

выполнений расширенного алгоритма Евклида при 𝑛→∞.

2.5. Построение случайной обратимой матрицы

Алгоритмы построения случайной обратимой матрицы в этом разделе опи­

раются на алгоритм приведения матрицы к треугольной форме (Алгоритм 2).

За основу анализа возьмем модель Random Access Machine [82, стр. 5–11]

с модификацией, позволяющей моделировать генерацию случайных битов. В

этом случае по аналогии со входной лентой машина имеет еще одну односто­

ронне бесконечную ленту, в ячейках которой записаны биты. Считывание оче­

редного бита с этой ленты производится с помощью инструкции «RAND 𝑥»,

аналогичной инструкции «READ 𝑥». Состояние выходной ленты после остано­

ва машины, а также сам факт останова теперь зависят от входа и случайной

ленты. Распределение заполнений случайной ленты выберем исходя из бернул­

лиевского процесса (бесконечной последовательности бросков честной монеты).

Тогда для фиксированного входа можно ставить вопросы: «Чему равна вероят­

ность останова?» или «Каково математическое ожидание времени работы?»
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Алгоритм 3 Построение случайной обратимой матрицы

𝐴 ∈ 𝐾𝑛×𝑛
𝑓

Вход: Кольцо 𝐾𝑓 , параметр 𝑛

Выход: Обратимая матрица 𝐴 ∈ 𝐾𝑛×𝑛
𝑓

Шаг 1. Построить случайную матрицу 𝐴 ∈ 𝐾𝑛×𝑛
𝑓 , выбрав каждый

элемент равномерно и независимо из 𝐾𝑓 ;

Шаг 2. Вычислить верхнетреугольную форму 𝑇 матрицы 𝐴;

Шаг 3. Вычислить 𝑑 :=
∏︀𝑛

𝑖=1 𝑡𝑖𝑖;

если элемент 𝑑 необратим тогда

Вернуться на Шаг 1;

иначе

вернуть 𝐴;

конец

Теорема 12. Пусть 𝑓(𝑥)—многочлен степени 𝑟 ⩾ 1. Тогда Алгоритм 3, при­

мененный к кольцу 𝐾𝑓 , корректен (то есть возвращает обратимую матри­

цу) и завершается с вероятностью 1, причем каждую обратимую матрицу

он возвращает с одинаковой вероятностью. В среднем (по внутреннему ис­

точнику случайности) он требует генерации 𝑛2𝑟[𝜚(𝐾𝑓 , 𝑛)]
−1 случайных бит

и выполнения 𝑂
(︀
𝑛3𝑟2[𝜚(𝐾𝑓 , 𝑛)]

−1)︀ битовых операций.

Доказательство. Покажем вначале, что алгоритм завершается на очередной

итерации тогда и только тогда, когда построенная матрица 𝐴 является обрати­

мой. Действительно, из Теоремы 11 следует, что det𝑇 = det𝐴. С другой сторо­

ны, определитель треугольной матрицы 𝑇 равен произведению диагональных

элементов, т.е. 𝑑. Поэтому det𝐴 обратим тогда и только тогда, когда обратим

элемент 𝑑.

Вероятность того, что случайно выбранная матрица окажется невырожден­

ной, равна 𝜚(𝐾𝑓 , 𝑛). Это число в рассматриваемом случае кольца с единицей

заведомо положительно для любого натурального 𝑛, т.к. единичная матрица



86

является невырожденной. Фиксируем произвольную невырожденную матрицу

𝐵 ∈ 𝐾𝑛×𝑛
𝑓 и вычислим вероятность Pr(returned = 𝐵) того, что алгоритм вер­

нул матрицу 𝐵. В силу независимости выбора матрицы 𝐴 на каждой итерации

алгоритма можно утверждать, что вероятность Pr(returned = 𝐵 ∧ steps = 𝑘) со­

бытия, что алгоритм завершится в точности после 𝑘 шагов и вернет матрицу 𝐵,

есть

Pr(returned = 𝐵 ∧ steps = 𝑘) = (1− 𝜚(𝐾𝑓 , 𝑛))
𝑘−1|𝐾𝑓 |−𝑛

2

. (2.11)

Тогда для вероятности Pr(returned = 𝐵) можно записать

Pr(returned = 𝐵) =
∞∑︁
𝑘=1

(1− 𝜚(𝐾𝑓 , 𝑛))
𝑘−1|𝐾𝑓 |−𝑛

2

=

=
1

1− (1− 𝜚(𝐾𝑓 , 𝑛))
|𝐾𝑓 |−𝑛

2

=
1

𝜚(𝐾𝑓 , 𝑛)|𝐾𝑓 |𝑛2 .

Поэтому вероятность получить каждую невырожденную матрицу на выходе

алгоритма одинакова.

Вероятность того, что алгоритм завершится за конечное число шагов, есть∑︁
𝐵 обратима

Pr(returned = 𝐵) =
1

𝜚(𝐾𝑓 , 𝑛)|𝐾𝑓 |𝑛2 𝜚(𝐾𝑓 , 𝑛)|𝐾𝑓 |𝑛
2

= 1,

ведь количество обратимых матриц есть в точности 𝜚(𝐾𝑓 , 𝑛)|𝐾𝑓 |𝑛
2

.

Перейдем к оценке ожидаемой сложности. Если алгоритм завершится в

точности после 𝑘 шагов, то его сложность составит 𝑘𝑛2 генераций случайного

элемента, 𝑂
(︀
𝑘𝑛3
)︀
сложений и умножений и 𝑂

(︀
𝑘𝑛2
)︀
применений расширенного

алгоритма Евклида при 𝑘 → ∞, 𝑛 → ∞. Поэтому достаточно оценить матема­

тическое ожидание количества шагов 𝑘. Так как из (2.11) следует, что

Pr(steps = 𝑘) = (1− 𝜚(𝐾𝑓 , 𝑛))
𝑘−1𝜚(𝐾𝑓 , 𝑛),

то по известной формуле для математического ожидания геометрического рас­

пределения получаем

E𝑘 =
∞∑︁

𝑘′=1

𝑘′ Pr(steps = 𝑘′) =
1

𝜚(𝐾𝑓 , 𝑛)
.
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Сложность вычисления суммы двух элементов кольца 𝐾𝑓 есть, очевидно,

𝑂(𝑟), а сложность вычисления произведения есть 𝑂(𝑟2) при 𝑟 → ∞. Также

можно показать, что сложность расширенного алгоритма Евклида есть 𝑂(𝑟2).

Именно, рассмотрим 𝑘-й шаг алгоритма (2.8). На нем выполняется деление с

остатком многочлена 𝑢𝑘 на 𝑢𝑘+1. При применении стандартного метода деления

«в столбик» для этого требуется 𝑂(deg 𝑢𝑘−deg 𝑢𝑘+1) шагов, сложность каждого

из которых есть 𝑂(deg 𝑢𝑘+1) битовых операций. Оценив последнюю величину

сверху как 𝑂(𝑟), получим в итоге, что весь алгоритм Евклида требует

𝑂
(︀
𝑟(deg 𝑢1 − deg 𝑢2) + 𝑟(deg 𝑢2 − deg 𝑢3) + . . .+ 𝑟(deg 𝑢𝑠 − deg 𝑢𝑠+1)

)︀
(2.12)

битовых операций. Эта сумма после перегруппировки слагаемых дает

𝑂(𝑟(deg 𝑢1 − deg 𝑢𝑠+1)) = 𝑂(𝑟2).

При выполнении расширенного алгоритма Евклида, однако, на каждом

шаге вычисляются многочлены 𝛼𝑘 и 𝛽𝑘. Покажем, что суммарная сложность

вычисления всех этих многочленов есть также 𝑂(𝑟2). Действительно, из (2.9)

следует, что сложность вычисления 𝛼𝑘 есть

𝑂(deg𝛼𝑘−1 deg 𝑞𝑘−2) = 𝑂(𝑟 deg 𝑞𝑘−2).

Из (2.8) же следует, что deg 𝑞𝑘 = deg 𝑢𝑘 − deg 𝑢𝑘+1. Вместе это позволяет полу­

чить оценку сложности вычисления всех многочленов 𝛼𝑘, аналогичную (2.12).

Для многочленов 𝛽𝑘 рассуждения аналогичны.

Мы видим, что основную сложность в Алгоритме 3 составляет Шаг 2, то

есть приведение матрицы к треугольной форме. Оказывается, в случае мат­

риц над кольцом 𝐾𝑥𝑟−1 есть возможность уменьшить требуемое число таких

приведений. Для этого в Алгоритме 4 предварительно строится и проверяется

невырожденность матрицы четности весов wt2(𝐴) ∈ F𝑛×𝑛
2 .

Теорема 13. Алгоритм 4 корректен и завершается с вероятностью 1, при­

чем каждую обратимую матрицу он возвращает с одинаковой вероятностью.
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Алгоритм 4 Построение случайной обратимой матрицы

𝐴 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1

Вход: Натуральные числа 𝑛 и 𝑟

Выход: Обратимая матрица 𝐴 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1

Шаг 1. Построить случайную матрицу 𝑊 ∈ F𝑛×𝑛
2 ;

Шаг 2. Проверить вырожденность матрицы 𝑊 ;

если матрица 𝑊 вырождена тогда
вернуться на Шаг 1

конец

Шаг 3. Построить матрицу 𝐴 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1 так, что элемент 𝑎𝑖𝑗 выбирается

независимо и равновероятно среди всех многочленов веса 𝑤𝑖𝑗;

Шаг 4. Вычислить верхнетреугольную форму 𝑇 матрицы 𝐴;

Шаг 5. Вычислить 𝑑 :=
∏︀𝑛

𝑖=1 𝑡𝑖𝑖;

если элемент 𝑑 необратим тогда

Вернуться на Шаг 1;

иначе

вернуть 𝐴;

конец

В среднем (по внутреннему источнику случайности) он требует выработки

𝑛2 + 𝑛2𝑟𝜚(F2, 𝑛)

𝜚(𝐾𝑥𝑟−1, 𝑛)

случайных бит и выполнения

𝑂

(︂
𝑛3𝑟2

𝜚(F2, 𝑛)

𝜚(𝐾𝑥𝑟−1, 𝑛)

)︂
битовых операций.

Доказательство. Корректность алгоритма при условии завершения следует из

Теоремы 12. Для доказательства завершимости с вероятностью 1 воспользуемся

теорией цепей Маркова. Именно, представим работу алгоритма в виде блужда­

ния по цепи Маркова, изображенной на Рис. 2.1.
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2,
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31

Рис. 2.1. Цепь Маркова, моделирующая возможные исполнения Алгоритма 4 (вертикальные

многоточия обозначают остальные состояния (2, ℓ′), ℓ′ ̸∈ {1, ℓ, 𝑁})

Состояния условно соответствуют шагам алгоритма. Начальное состоя­

ние 1 соответствует первым двум шагам, то есть построению и проверке вырож­

денности матрицы 𝑊 . Для каждой невырожденной матрицы 𝑊ℓ ∈ F𝑛×𝑛
2 есть

отдельное состояние (2, 1), . . . , (2, 𝑁), которое соответствуетШагам 3− 5. Здесь

через 𝑁 обозначено общее количество невырожденных матриц 𝑊 ∈ F𝑛×𝑛
2 . На­

конец, состояние 3 соответствует завершению алгоритма, то есть нахождению

невырожденной матрицы 𝐴.

Переходы из состояния 1 в состояния (2, 𝑖) соответствуют невырожденным

матрицам𝑊ℓ и имеют, очевидно, одинаковые вероятности 𝜚(F2, 𝑛)/𝑁 , а переход

1→ 1 имеет вероятность 1− 𝜚(F2, 𝑛). На рисунке через 𝑝 обозначена величина

𝜚(F2, 𝑛), этим же обозначением для краткости мы будем пользоваться дальше.

Вероятность перехода (2, ℓ) → 3 обозначена через 𝑞ℓ. Соответственно, ве­

роятность возврата в состояние 1 есть 1− 𝑞ℓ. Рассмотрим матрицы 𝑀 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1

такие, что wt2(𝑀) = 𝑊ℓ. Обозначим через 𝜙обр(𝑊ℓ) число обратимых, а через

𝜙(𝑊ℓ)— общее число матриц такого вида. Несложно видеть, что

𝑞ℓ =
𝜙обр(𝑊ℓ)

𝜙(𝑊ℓ)
.

Также очевидно, что 𝜙(𝑊ℓ) = 2𝑛
2(𝑟−1). Состояние 3 является поглощающим

(absorbing), то есть переход из него возможен только в него же (этот переход не
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соответствует шагам работы алгоритма и нужен лишь для того, чтобы постро­

енная модель действительно являлась цепью Маркова). Ясно, что построенная

цепь Маркова корректно моделирует работу Алгоритма 4.

Получим некоторые соотношения для 𝑞ℓ. Например, можно вычислить

𝑁∑︁
ℓ=1

𝑞ℓ =
1

2𝑛2(𝑟−1)

𝑁∑︁
ℓ=1

𝜙обр(𝑊ℓ).

Из Теоремы 8 следует, что для любой обратимой матрицы 𝑀 обратима также

матрица wt2(𝑀), то есть
∑︀𝑁

ℓ=1 𝜙обр(𝑊ℓ) дает общее число обратимых матриц𝑀 .

Таким образом приходим к равенству

𝑁∑︁
ℓ=1

𝑞ℓ =
𝜚(𝐾𝑥𝑟−1, 𝑛)2

𝑛2𝑟

2𝑛2(𝑟−1) = 𝜚(𝐾𝑥𝑟−1, 𝑛) · 2𝑛
2

или, иначе,
𝑁∑︁
ℓ=1

𝑞ℓ =
𝑁

𝑝
𝜚(𝐾𝑥𝑟−1, 𝑛). (2.13)

Так как все 𝑞ℓ > 0 (в силу того, что как минимум матрица 𝑊ℓ ∈ 𝐾𝑛×𝑛
𝑥𝑟−1 яв­

ляется невырожденной), то из каждого состояния существует путь с ненулевой

вероятностью до состояния 3. Поэтому, согласно определению из [83], построен­

ная цепь Маркова является поглощающей (absorbing). Значит, по [83, Теорема

11.3] вероятность оказаться в поглощающем состоянии равна 1, что доказывает

завершимость Алгоритма 4 с вероятностью 1.

Теперь посчитаем ожидаемое количество прохождений через состояния 1

и (2, ℓ) в рассматриваемой цепи. Для этого построим матрицу переходов цепи,

причем запишем ее сразу в каноническом виде [83, Раздел 11.2]:

𝑇 =

1 (2, 1) (2, 𝑁) 3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1− 𝑝 𝑝/𝑁 . . . 𝑝/𝑁 0

(2, 1) 1− 𝑞1 0 . . . 0 𝑞1
... . . . ...

(2, 𝑁) 1− 𝑞𝑁 0 . . . 0 𝑞𝑁

3 0 0 . . . 0 1

.
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Соответственно, левый верхний блок размера (𝑁 + 1) × (𝑁 + 1) обозна­

чим 𝑃 . Воспользуемся Теоремой 11.4 из [83] для вычисления математического

ожидания количества прохождений через каждое состояние. Указанная теоре­

ма утверждает, что матрица 𝐼 − 𝑃 обратима, а ее элемент с индексами 𝑠, 𝑠′

матрицы (𝐼 − 𝑃 )−1 есть математическое ожидание количества прохождений

состояния 𝑠′ среди всех путей, начинающихся в состоянии 𝑠. Нас интересуют

лишь пути, начинающиеся в состоянии 1, а значит, достаточно вычислить толь­

ко первую строку матрицы (𝐼−𝑃 )−1. Тривиально проверяется, что ею является

строка (︃
𝑁

𝑝
∑︀𝑁

ℓ=1 𝑞ℓ
,

1∑︀𝑁
ℓ=1 𝑞ℓ

, . . . ,
1∑︀𝑁
ℓ=1 𝑞ℓ

)︃
. (2.14)

Учитывая равенство (2.13), получаем, что математическое ожидание числа

выполнений Шагов 1 и 2 алгоритма есть [𝜚(𝐾𝑥𝑟−1, 𝑛)]
−1, а числа выполнений

Шагов 3–5 есть [𝜚(𝐾𝑥𝑟−1, 𝑛)]
−1𝑝.

Таким образом, ожидаемое количество случайных бит, выработанных на

Шагах 1 и 3, есть
𝑛2

𝜚(𝐾𝑥𝑟−1, 𝑛)
и
𝑛2𝑟𝜚(F2, 𝑛)

𝜚(𝐾𝑥𝑟−1, 𝑛)

соответственно, а ожидаемая сложность Шагов 2 и 4 есть

𝑂

(︂
𝑛3

1

𝜚(𝐾𝑥𝑟−1, 𝑛)

)︂
и 𝑂

(︂
𝑛3𝑟2

𝜚(F2, 𝑛)

𝜚(𝐾𝑥𝑟−1, 𝑛)

)︂
битовых операций соответственно при 𝑛→∞.

Вычислим теперь вероятность того, что алгоритм вернет конкретную невы­

рожденную матрицу 𝐵 ∈ 𝐾𝑛×𝑛
𝑥𝑟−1. Рассмотрим все пути из состояния 1 в состо­

яние 3, для которых возвращается матрица 𝐵. Предпоследнее состояние на

каждом таком пути есть (2, ℓ), где 𝑊ℓ = wt2(𝐵), а переход в состояние 3 по

матрице 𝐵 происходит с вероятностью(︂
|𝐾𝑥𝑟−1|

2

)︂−𝑛2

.

Для вычисления искомой вероятности применим формулу полной вероят­

ности, разбив множество всех путей из 1 в 3 на непересекающиеся (возможно,
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пустые) подмножества 𝜋𝑘, 𝑘 ⩾ 2, где в 𝜋𝑘 содержатся все пути длины 𝑘. Полу­

чим:

Pr(returned = 𝐵) =
∞∑︁
𝑘=2

Pr(перейти из 1 в (2, ℓ) за 𝑘 − 1 шаг)

(︂
|𝐾𝑥𝑟−1|

2

)︂−𝑛2

,

где returned—матрица, которую вернул алгоритм. Очевидно, что первый сомно­

житель в каждом слагаемом есть соответствующий элемент матрицы 𝑃 𝑘−1. Так

как 𝑃 + 𝑃 2 + . . . = (𝐼 − 𝑃 )−1 − 𝐼, то из (2.14) получаем:

Pr(returned = 𝐵) =

(︃
1∑︀𝑁
ℓ=1 𝑞ℓ

− 1

)︃(︂
|𝐾𝑥𝑟−1|

2

)︂−𝑛2

,

то есть не зависит от 𝐵.

2.6. Выводы ко второй главе

В настоящей главе исследовалась возможность построения электронной

подписи CFS на основе квазициклических кодов в случае, когда ключевая пара

генерируется по алгоритму, предложенному в схеме LEDAcrypt, который тре­

бует построение невырожденной квазициклической матрицы.

В диссертации эта задача сведена к задаче построения невырожденной

матрицы над факторкольцом кольца многочленов от одной переменной над по­

лем из двух элементов. Описан алгоритм приведения такой матрицы к верх­

нетреугольному виду для последующей проверки невырожденности. Найдены

нижние оценки доли невырожденных матриц среди всех матриц многочленов за­

данного размера. На основе этих результатов предложено и проанализировано

два эффективных алгоритма построения случайной невырожденной квазицик­

лической матрицы (в соответствии с равномерным распределением на множе­

стве всех таких матриц). Первый из них также может использоваться в общем

случае для построения невырожденной матрицы многочленов. Второй имеет

бо́льшую эффективность за счет того, что специализирован для квазицикли­

ческих матриц. Его обоснование использует связь между невырожденностью
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матрицы такого типа и матрицы четности весов, построенной для соответству­

ющей матрицы многочленов.
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Глава 3

Структура ключей электронной подписи CFS на

основе конструкции Сидельникова

Схемы с открытым ключом, сформированным на основе конструкции Си­

дельникова, известны своей нестойкостью к структурным атакам. Так, напри­

мер, в работе [44] описан алгоритм восстановления секретного ключа по от­

крытому, построенному на основе кода Рида–Маллера. Схемы типа Сидельни­

кова, использующие комбинацию кода Рида–Маллера и случайного линейного

кода, были атакованы в работах [45] и [46]. Также известен анализ стойкости

криптосистемы, построенной полностью на случайных кодах [69]. Обобщение

результатов перечисленных исследований показало, что рассматриваемые схе­

мы показывают нестойкость в одном и том же предположении о структуре кода,

задаваемого открытым ключом.

В настоящей главе вводится понятие кодов с разложимым квадратом, что

позволяет формализовать семейство кодов, подвергающих схему описанным ра­

нее структурным атакам. Одной из ключевых задач работы является описание

структуры пространства секретных ключей кодов, порождающих уязвимость

к данным атакам. Другой задачей является описание кодов, не удовлетворяю­

щих введенному определению. Этот вопрос особенно важен в свете результата

работы [47], где показано, что с вероятностью близкой к 1 случайный линейный

код обладает разложимым квадратом. Тогда поиск кодов, не обладающих этим

свойством, является базой разработки стойких криптографических схем.

Основные результаты главы представлены в работе [66].
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3.1. Дополнительные определения

Для проведения ряда доказательств в настоящей главе потребуется поня­

тие укорочения кода.

Определение 41. Для произвольного вектора 𝑐 ∈ F𝑛
𝑞𝑚 и ненулевого вектора

𝑣 ∈ F𝑛
2 ⊆ F𝑛

𝑞𝑚 можно построить вектор 𝑐(𝑣) = (𝑐𝑖1, . . . , 𝑐𝑖𝑠), где 1 ⩽ 𝑖1 < . . . <

𝑖𝑠 ⩽ 𝑛 — индексы всех ненулевых элементов вектора 𝑣. Тогда укорочением

кода 𝒞 называется код, задаваемый как 𝒞𝑣 = {𝑐(𝑣) | 𝑐 ∈ 𝒞}. Вектор 𝑣 в этом

случае называется вектором инцидентности укорочения 𝒞𝑣.

Структура укорочения кода задает структуру полного кода. В частности,

верно следующее утверждение.

Утверждение 26. Пусть для некоторого линейного кода 𝒞 ⊆ F𝑛
𝑞𝑚 и неко­

торого ненулевого вектора 𝑏 ∈ F𝑛
2 ⊆ F𝑛

𝑞𝑚 верно вложение 𝒞𝑏 ⊆ (𝒞𝑏)⊥. Тогда

𝑏 ∈ (𝒞2)⊥.

Доказательство. Так как 𝒞𝑏 ⊆ (𝒞𝑏)⊥, то для любых 𝑐′ ∈ 𝒞 и 𝑐′′ ∈ 𝒞 верно, что

(𝑐′(𝑏), 𝑐′′(𝑏)) = 0. Отсюда

0 =
∑︁
𝑗: 𝑏𝑗 ̸=0

𝑐′𝑗𝑐
′′
𝑗 =

𝑛∑︁
𝑗=1

𝑐′𝑗𝑐
′′
𝑗 𝑏𝑗 = (𝑐′ ∘ 𝑐′′, 𝑏),

откуда сразу следует условие утверждения.

3.2. Пространство ключей подписи CFS на основе

конструкции Сидельникова на линейных кодах

общего вида

Будем говорить, что схема подписи CFS обладает эквивалентными сек­

ретными ключами, если существует пара несовпадающих ключей (𝑀 ′
1,𝑀

′
2,Γ

′)

и (𝑀 ′′
1 ,𝑀

′′
2 ,Γ

′′), которым соответствует один и тот же открытый ключ

(𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅) · Γ′ = (𝑀 ′′
1𝑅 ‖𝑀 ′′

2𝑅) · Γ′′.
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Таким образом, множество секретных ключей криптосистемы естественным об­

разом разбивается на классы эквивалентности. Каждый класс может быть за­

дан порождающей матрицей кода и одним своим представителем. Введем для

него обозначение [(𝑀1,𝑀2,Γ)]𝑅.

Описание структуры классов эквивалентности в явном виде выглядит слож­

ной задачей, однако оно может быть получено через эквивалентное представле­

ние. Для этого рассмотрим перестановочную матрицу Γ такую, что существуют

невырожденные матрицы 𝑀 ′
1,𝑀

′
2, обладающие свойством:

(𝑀1𝑅 ‖𝑀2𝑅)Γ =𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅.

Обозначим через 𝒢𝑅(𝑀1,𝑀2) множество всех таких матриц Γ.

Теорема 14. Для произвольной матрицы 𝑅 полного ранга существует взаим­

но однозначное соответствие между классом эквивалентности [(𝑀1,𝑀2,Γ)]𝑅

секретных ключей и множеством 𝒢𝑅(𝑀1,𝑀2).

Доказательство. Введем отображение 𝑓 , отображающее произвольный секрет­

ный ключ в некоторую подстановку:

𝑓(𝑀 ′
1,𝑀

′
2,Γ

′) = ΓΓ′−1.

Тогда 𝑓 — инъективно, так как если ключи (𝑀 ′
1,𝑀

′
2,Γ

′), (𝑀 ′′
1 ,𝑀

′′
2 ,Γ

′′) эк­

вивалентны и 𝑓(𝑀 ′
1,𝑀

′
2,Γ

′) = 𝑓(𝑀 ′′
1 ,𝑀

′′
2 ,Γ

′′), то Γ′ = Γ′′, а, значит, из

(𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅)Γ
′ = (𝑀 ′′

1𝑅 ‖𝑀 ′′
2𝑅)Γ

′′

следует, что 𝑀 ′
𝑖𝑅 = 𝑀 ′′

𝑖 𝑅. Откуда, учитывая линейную независимость строк

порождающей матрицы, получаем 𝑀 ′
𝑖 =𝑀 ′′

𝑖 .

Покажем, что 𝑓 — сюръективно. Выберем подстановку Γ𝑔 ∈ 𝒢𝑅(𝑀1,𝑀2)

и найдем такой секретный ключ (𝑀 ′
1,𝑀

′
2,Γ

′), что 𝑓(𝑀 ′
1,𝑀

′
2,Γ

′) = Γ𝑔. По опре­

делению множества 𝒢𝑅(𝑀1,𝑀2) существуют невырожденные матрицы 𝑀 ′
1,𝑀

′
2

такие, что

(𝑀1𝑅 ‖𝑀2𝑅)Γ𝑔 = (𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅).
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Следовательно,

(𝑀1𝑅 ‖𝑀2𝑅)Γ = (𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅)Γ
−1
𝑔 Γ,

то есть (𝑀 ′
1,𝑀

′
2,Γ

−1
𝑔 Γ) ∈ [(𝑀1,𝑀2,Γ)]𝑅. Наконец, 𝑓(𝑀 ′

1,𝑀
′
2,Γ

−1
𝑔 Γ) = Γ(Γ−1𝑔 Γ)−1 =

ΓΓ−1Γ𝑔 = Γ𝑔.

Итак, отображение 𝑓 инъективно и сюръективно, а значит 𝑓 — взаимно

однозначное отображение класса эквивалентности с представителем (𝑀1,𝑀2,Γ)

во множество 𝒢𝑅(𝑀1,𝑀2).

Стоит отменить, что доказательство теоремы повторяет доказательство

аналога для частного случая, в котором 𝑅 — порождающая матрица кода

Рида–Маллера (его можно найти в [70, Теорема 1]).

Следующие два утверждения являются непосредственными следствиями

Теоремы 14.

Следствие 9. Класс эквивалентности [(𝑀1,𝑀2,Γ)]𝑅 состоит из ключей вида

(𝑀 ′
1,𝑀

′
2,Γ

−1
𝑔 Γ), где Γ𝑔 ∈ 𝒢𝑅(𝑀1,𝑀2) и

(𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅) = (𝑀1𝑅 ‖𝑀2𝑅)Γ𝑔.

Следствие 10. Справедлива формула для мощности класса эквивалентности⃒⃒
[(𝑀1,𝑀2,Γ)]𝑅

⃒⃒
= |𝒢𝑅(𝑀1,𝑀2)|.

Утверждение 27. Пусть 𝑅 — порождающая матрица произвольного кода 𝒞,

все столбцы которой различны. Тогда для любой подстановки Γ выполнено⃒⃒
[(𝐸,𝐸,Γ)]𝑅

⃒⃒
= 2𝑛|Aut(𝒞)|2.

Доказательство. В силу Следствия 10 вместо мощности класса эквивалентно­

сти [(𝐸,𝐸,Γ)]𝑅 можем искать мощность множества 𝒢𝑅(𝐸,𝐸).

Определим структуру этого множества. Возьмем подстановку Γ′ ∈ 𝒢𝑅(𝐸,𝐸).

Тогда по определению (𝑅 ‖𝑅)Γ′ =𝑀1𝑅 ‖𝑀2𝑅. Поскольку по условию в матри­

це 𝑅 нет одинаковых столбцов, то и в матрице 𝑀𝑖𝑅, 𝑖 ∈ {1, 2} все столбцы



98

также различны. Значит, существует подстановка 𝑃 ∈ Aut(𝒞)× Aut(𝒞) такая,

что (𝑅 ‖𝑅)Γ′ = (𝑅 ‖𝑅)𝑃.

Обозначив Γ′′ = Γ′𝑃−1, получаем, что Γ′ = Γ′′𝑃 , причем для Γ′′ выполнено

соотношение (𝑅 ‖𝑅)Γ′′ = 𝑅 ‖𝑅. Таким образом установлено, что множество

𝒢𝑅(𝐸,𝐸) совпадает со множеством {Γ′′𝑃 |Γ′′ = Γ′𝑃−1, 𝑃 ∈ Aut(𝒞) × Aut(𝒞)}.

То есть для нахождения мощности множества 𝒢𝑅(𝐸,𝐸) достаточно найти число

таких подстановок.

Поскольку |Aut(𝒞) × Aut(𝒞)| =
⃒⃒
Aut(𝒞)

⃒⃒2
, то этому же числу равно ко­

личество различных подстановок 𝑃 . Подстановка Γ′′ переставляет одинаковые

столбцы матрицы 𝑅 ‖𝑅. Таким образом, число подстановок Γ′′ равно 2𝑛. Сле­

довательно, подстановок вида Γ′′ · 𝑃 есть в точности 2𝑛
⃒⃒
Aut(𝒞))

⃒⃒2
.

Теорема 15. Справедлива оценка снизу на мощность Ψ множества откры­

тых ключей схемы подписи CFS на основе конструкции Сидельникова:

(2𝑛)!ℎ𝑘
2𝑛|Aut(𝒞)|

⩽ Ψ,

где 𝒞 — произвольный код с порождающей матрицей 𝑅, все столбцы которой

различны, а ℎ𝑘 — число невырожденных (𝑘 × 𝑘)-матриц над полем F𝑞𝑚.

Доказательство. Определим подмножество секретных ключей схемы подпи­

си CFS: ℋ = {(𝑀𝐷1,𝑀𝐷2,Γ)
}︀
, где 𝑀 — невырожденная (𝑘 × 𝑘)-матрица над

полем F𝑞𝑚, матрицы 𝐷𝑖 размера 𝑘 × 𝑘 задают автоморфизм 𝒞, а Γ ∈ 𝑆2𝑛.

Покажем, что если ключ (𝑀𝐷1,𝑀𝐷2,Γ) ∈ ℋ, а ключи (𝑀𝐷1,𝑀𝐷2,Γ) и

(𝑀1,𝑀2,Γ
′) эквивалентны, то (𝑀1,𝑀2,Γ

′) ∈ ℋ. Действительно, из эквивалент­

ности ключей следует, что

(𝑀𝐷1𝑅 ‖𝑀𝐷2𝑅)Γ = (𝑀1𝑅 ‖𝑀2𝑅)Γ
′.

Домножим равенство слева на невырожденную матрицу 𝑀−1 и получим

(𝐷1𝑅 ‖𝐷2𝑅)Γ = (𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅)Γ
′,
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где𝑀 ′
1 =𝑀−1𝑀1,𝑀

′
2 =𝑀−1𝑀2. Теперь домножим его справа на перестановоч­

ную матрицу (Γ′)−1. Имеем

(𝐷1𝑅 ‖𝐷2𝑅)Γ
′′ =𝑀 ′

1𝑅 ‖𝑀 ′
2𝑅,

где Γ′′ = Γ(Γ′)−1. В силу невырожденности матриц 𝑀 ′
1 и 𝑀 ′

2 аналогично до­

казательству Утверждения 27 можно показать существование такой подста­

новки 𝑃 ∈ Aut(𝒞) × Aut(𝒞), что (𝐷1𝑅 ‖𝐷2𝑅)Γ
′ = (𝐷1𝑅 ‖𝐷2𝑅)𝑃 . Тогда от­

крытый ключ (𝐷1𝑅 ‖𝐷2𝑅)Γ
′′ представим в виде 𝐷′1𝑅 ‖𝐷′2𝑅 для некоторых

𝐷′1 ∈ Aut(𝐶), 𝐷′2 ∈ Aut(𝐶). Из полученного равенства матриц 𝐷′1𝑅 ‖𝐷′2𝑅 =

𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅 и того факта, что 𝑅 имеет полный ранг, следуют равенства⎧⎪⎨⎪⎩𝑀
′
1 = 𝐷′1,

𝑀 ′
2 = 𝐷′2.

Поскольку 𝑀1 = 𝑀𝑀 ′
1,𝑀2 = 𝑀𝑀 ′

2, то (𝑀1,𝑀2,Γ
′) = (𝑀𝐷′1,𝑀𝐷′2,Γ

′), причем

𝐷′1 ∈ Aut(𝐶), 𝐷′2 ∈ Aut(𝐶). Следовательно, (𝑀1,𝑀2,Γ
′) ∈ ℋ.

Теперь заметим, что в силу Теоремы 14 множества [(𝑀𝐷1,𝑀𝐷2,Γ)]𝑅 и

𝒢𝑅(𝑀𝐷1,𝑀𝐷2) эквивалентны. По определению, множество 𝒢𝑅(𝑀𝐷1,𝑀𝐷2) со­

стоит из таких подстановок Γ, что существуют невырожденные матрицы𝑀1,𝑀2,

такие что

(𝑀𝐷1𝑅 ‖𝑀𝐷2𝑅)Γ =𝑀1𝑅 ‖𝑀2𝑅.

В результате домножения на невырожденную матрицу 𝑀−1 получаем

(𝐷1𝑅 ‖𝐷2𝑅)Γ = (𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅),

где 𝑀 ′
1 = 𝑀−1𝑀1,𝑀

′
2 = 𝑀−1𝑀2. Представим подстановку Γ как произведение

подстановок Γ = Γ̃Γ̃−1Γ, где Γ̃ — подстановка, действующая таким образом,

что (𝑀1𝑅 ‖𝑀2𝑅)Γ̃ = 𝑅 ‖𝑅. Таким образом мы перешли к рассмотрению под­

становок Γ, для которых существуют невырожденные матрицы 𝑀 ′
1,𝑀

′
2 такие,

что

(𝑅 ‖𝑅)Γ̃−1Γ =𝑀 ′
1𝑅 ‖𝑀 ′

2𝑅,
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то есть к рассмотрению множества 𝒢𝑅(𝐸,𝐸). То есть доказали равенство мощно­

стей множеств [(𝑀𝐷1,𝑀𝐷2,Γ)]𝑅 и 𝒢𝑅(𝐸,𝐸). Отсюда следует, что число откры­

тых ключей, порождаемых множеством секретных ключей, равно отношению

числа секретных ключей к мощности множества 𝒢𝑅(𝐸,𝐸).

Найдем размер множества ℋ. Для этого рассмотрим множество матриц

вида (𝑀,𝐷1, 𝐷2,Γ). Введем на этом множестве отношение эквивалентности сле­

дующим образом: два элемента (𝑀,𝐷1, 𝐷2,Γ) и (𝑀 ′, 𝐷′1, 𝐷
′
2,Γ

′) эквивалентны,

если им соответствует один и тот же элемент множества ℋ, то есть

(𝑀𝐷1,𝑀𝐷2,Γ) = (𝑀 ′𝐷′1,𝑀
′𝐷′2,Γ

′).

Заметим, что если в таком классе эквивалентности лежала четверка (𝑀,𝐷1, 𝐷2,Γ),

то будет лежать и четверка (𝑀𝐴−1, 𝐴𝐷1, 𝐴𝐷2,Γ), если 𝐴 ∈ Aut(𝒞).

Пусть тройки (𝑀𝐷1,𝑀𝐷2,Γ) ∈ ℋ и (𝑀 ′𝐷′1,𝑀
′𝐷′2,Γ

′) ∈ ℋ эквивалентны.

Запишем это условие как (𝑀𝐷1,𝑀𝐷2,Γ) = (𝑀 ′𝐷′1,𝑀
′𝐷′2,Γ

′) и будем искать

решения системы: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑀𝐷1 =𝑀 ′𝐷′1,

𝑀𝐷2 =𝑀 ′𝐷′2,

Γ = Γ′.

Тогда𝑀 =𝑀 ′𝐷′1𝐷
−1
1 ,𝑀 =𝑀 ′𝐷′2𝐷

−1
2 . И из того, что 𝐷1 ∈ Aut(𝒞), 𝐷′1 ∈ Aut(𝒞)

следует, что 𝐴 = 𝐷′1𝐷
−1
1 ∈ Aut(𝒞). Это дает возможность переписать систему

в следующем виде: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀 =𝑀 ′𝐴,

𝐷1 = 𝐴−1𝐷′1,

𝐷2 = 𝐴−1𝐷′2,

Γ = Γ′.
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Или, эквивалентно: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀 ′ =𝑀𝐴−1,

𝐷′1 = 𝐴𝐷1,

𝐷′2 = 𝐴𝐷2,

Γ′ = Γ.

То есть все элементы рассматриваемого класса эквивалентности имеют вид

(𝑀𝐴−1, 𝐴𝐷1, 𝐴𝐷2,Γ), а его мощность равна Aut(𝒞). Отсюда следует, что каж­

дый ключ (𝑀𝐷1,𝑀𝐷2,Γ) будет встречаться во множестве ℋ ровно |Aut(𝒞)|

раз.

Автоморфизм 𝐷𝑖 можно выбрать |Aut(𝒞)| способами, а подстановку Γ —

(2𝑛)! способами. При этом, как было оказано выше, одинаковые ключи будут

встречаться |Aut(𝒞)| раз.

Число открытых ключей Ψℋ, которое можно получить из множества ℋ,

равно

Ψℋ =
|ℋ|

|𝒢𝑅(𝐸,𝐸)|
=

ℎ𝑘|Aut(𝒞)|2(2𝑛)!
|𝒢𝑅(𝐸,𝐸)||Aut(𝒞)|

=
ℎ𝑘|Aut(𝒞)|2(2𝑛)!

2𝑛|Aut(𝒞)|2|Aut(𝒞)|
=

(2𝑛)!ℎ𝑘
2𝑛|Aut(𝒞)|

.

Осталось вспомнить, что ℋ — подмножество секретных ключей, поэтому

число классов эквивалентности, а значит и число открытых ключей, будет не

меньше, чем число классов в множестве ℋ, то есть

(2𝑛)!ℎ𝑘
2𝑛|Aut(𝒞)|

⩽ Ψ.

Это и требовалось доказать.

Доказательство теоремы является обобщением результата для кодов Рида­

Маллера (см. [84, Теорема 2]). Для его получения необходимо взять 𝑢 = 2. При

этом отсутствие одинаковых столбцов явно прописано в условии теоремы, а не

следует из свойств кода.

Обозначим через 𝒞[𝑀 ] линейный код с порождающей матрицей 𝑅 ‖ 𝑀𝑅,

где 𝑅 — порождающая матрица произвольного линейного кода 𝒞 размера 𝑘×𝑛,
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а 𝑀 — невырожденная матрица размера 𝑘 × 𝑘. Несложно проверить, что

𝒢𝑅(𝑀1,𝑀2) = 𝒢𝑅(𝐼,𝑀−1
1 𝑀2) = 𝒢𝑅(𝐼,𝑀)

для 𝑀 = 𝑀−1
1 𝑀2. Далее покажем, что структура множества 𝒢𝑅(𝐼,𝑀), а, зна­

чит, и множества 𝒢𝑅(𝑀1,𝑀2), зависит от вида кода 𝒞[𝑀 ]. Для этого нам пона­

добится следующее определение.

Определение 42. Код 𝒞[𝑀 ] будем называть

1. кодом с разложимым квадратом, если (𝒞[𝑀 ])2 = 𝒞2 × 𝒞2;

2. кодом с неразложимым квадратом, если (𝒞[𝑀 ])2 ⊊ 𝒞2 × 𝒞2.

Покажем, что для любого линейного кода 𝒞 код 𝒞[𝑀 ] обязан быть либо с

разложимым квадратом, либо с неразложимым.

Теорема 16. (𝒞[𝑀 ])2 ⊆ 𝒞2 × 𝒞2 для всех невырожденных матриц 𝑀 .

Доказательство. Пусть строки матрицы𝑀 составляют вектора {𝑚𝑖 | 1 ⩽ 𝑖 ⩽ 𝑘},

а строки матрицы 𝑅 — вектора {𝑟𝑖 | 1 ⩽ 𝑖 ⩽ 𝑘}. Тогда код 𝒞[𝑀 ], заданный

относительно матрицы 𝑀 , представляет собой линейную оболочку векторов

(𝑟1 ‖𝑚1𝑅), . . . , (𝑟𝑘 ‖𝑚𝑘𝑅). При этом код (𝒞[𝑀 ])2 состоит из векторов(︃
𝑘∑︁

𝑖=1

𝛼𝑖(𝑟𝑖 ‖𝑚𝑖𝑅)

)︃
∘

(︃
𝑘∑︁

𝑗=1

𝛽𝑗(𝑟𝑗 ‖𝑚𝑗𝑅)

)︃
=

=

(︃
𝑘∑︁

𝑖=1

𝑘∑︁
𝑗=1

𝛼𝑖𝛽𝑗(𝑟𝑖 ∘ 𝑟𝑗)
⃦⃦⃦ 𝑘∑︁

𝑖=1

𝑘∑︁
𝑗=1

𝛼𝑖𝛽𝑗((𝑚𝑖𝑅) ∘ (𝑚𝑗𝑅))

)︃
,

где 𝛼𝑖 и 𝛽𝑗 — элементы поля GF(𝑞𝑚) для 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘.

Докажем, что 𝑢 ∈ 𝒞2 × 𝒞2 в предположении, что 𝑢 ∈ (𝒞[𝑀 ])2. Поскольку

код 𝒞2 линейный, для этого достаточно показать, что (𝑟𝑖 ∘ 𝑟𝑗) ∈ 𝒞2 и ((𝑚𝑖𝑅) ∘

(𝑚𝑗𝑅)) ∈ 𝒞2. Первое вложение следует из определения операции возведения в
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квадрат Адамара, а второе можно представить как

(𝑚𝑖1𝑟1 + · · ·+𝑚𝑖𝑘𝑟𝑘) ∘ (𝑚𝑗1𝑟1 + · · ·+𝑚𝑗𝑘𝑟𝑘) =

=
𝑘∑︁

𝑠,𝑡=1

(𝑚𝑖𝑠𝑟𝑠 ∘𝑚𝑗𝑡𝑟𝑡) =
𝑘∑︁

𝑠,𝑡=1

(𝑚𝑖𝑠 ·𝑚𝑗𝑡)(𝑟𝑠 ∘ 𝑟𝑡),

где последнее выражение есть линейная комбинация векторов 𝑟𝑠 ∘ 𝑟𝑡. Таким

образом, снова пользуясь линейностью 𝒞2, можно утверждать, что оно также

лежит в этом коде.

Далее будем изучать множество 𝒢𝑅(𝐼,𝑀) в случае, когда код 𝒞[𝑀 ] имеет

разложимый квадрат.

Утверждение 28. Если (𝒞[𝑀 ])2 = 𝒞2 × 𝒞2, то 𝒢𝑅(𝐼,𝑀) ⊆ Aut(𝒞2 × 𝒞2).

Доказательство. Согласно определению, если Γ ∈ 𝒢𝑅(𝐼,𝑀), то 𝒞[𝑀 ]Γ пред­

ставляет собой линейную оболочку строк матрицы 𝑀 ′
1𝑅 ‖ 𝑀 ′

2𝑅, где 𝑀
′
1,𝑀

′
2 —

невырожденные, то есть 𝒞[𝑀 ]Γ ⊆ 𝒞 × 𝒞. Возведение в квадрат обеих частей

вложения позволяет утверждать также, что (𝒞[𝑀 ]Γ)2 ⊆ (𝒞 × 𝒞)2.

Заметим, что операции возведения в квадрат и применения подстановки

коммутируют. То есть, в частности, верно, что (𝒞[𝑀 ]Γ)2 = (𝒞[𝑀 ])2Γ. Кроме

того,

(𝒞 × 𝒞)2 =
{︁
(𝑎 ‖ 𝑏) ∘ (𝑐 ‖ 𝑑)

⃒⃒⃒
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒞

}︁
=

=
{︁
(𝑎 ∘ 𝑐 ‖ 𝑏 ∘ 𝑑)

⃒⃒⃒
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒞

}︁
= 𝒞2 × 𝒞2.

Отсюда, (𝒞[𝑀 ])2Γ ⊆ 𝒞2 × 𝒞2.

Тогда из равенства (𝒞[𝑀 ])2 = 𝒞2×𝒞2 следует вложение (𝒞2 × 𝒞2)Γ ⊆ 𝒞2 × 𝒞2.

Применение подстановки не меняет размерность кода. То есть, более того, имеет

место равенство (𝒞2 × 𝒞2)Γ = 𝒞2 × 𝒞2. Другими словами, Γ ∈ Aut(𝒞2 × 𝒞2).
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Пусть Γ𝑏 — подстановка, которая меняет местами левую и правую части

матрицы по правилу Γ𝑏(𝑘) = ((𝑘 − 1 + 𝑛) mod 2𝑛) + 1 для 1 ⩽ 𝑘 ⩽ 2𝑛. Опреде­

лим тогда новое множество перестановок

𝒜(𝒞) =
⋃︁

Γ∈Aut(𝒞)×Aut(𝒞)

{Γ,ΓΓ𝑏,Γ𝑏Γ}.

Утверждение 29. 𝒜(𝒞) ⊆ 𝒢𝑅(𝐼,𝑀).

Доказательство. Матрица, задающая подстановку Γ ∈ Aut(𝒞)×Aut(𝒞), имеет

вид

Γ =

⎛⎝ Γ1 0

0 Γ2

⎞⎠ .

Тогда (𝑅 ‖ 𝑀𝑅)Γ = (𝑅Γ1 ‖ 𝑀𝑅Γ2). Поскольку Γ𝑖 является автоморфизмом,

то 𝑅Γ𝑖 = 𝐴𝑖𝑅 для некоторых невырожденных матриц 𝐴𝑖, 𝑖 ∈ {1, 2}. Отсюда

(𝑅 ‖ 𝑀𝑅)Γ = (𝐴1𝑅 ‖ 𝑀𝐴2𝑅) и, после введения обозначений 𝑀 ′
1 = 𝐴1,𝑀

′
2 =

𝑀𝐴2, получаем Γ ∈ 𝒢𝑅(𝐼,𝑀).

Очевидно, что Γ𝑏 ∈ 𝒢𝑅(𝐼,𝑀). Кроме того, если Γ ∈ Aut(𝒞)× Aut(𝒞), то

(𝑅 ‖ 𝑀𝑅)ΓΓ𝑏 = (𝑀1𝑅 ‖ 𝑀2𝑅)Γ𝑏 = (𝑀2𝑅 ‖ 𝑀1𝑅),

а также

(𝑅 ‖ 𝑀𝑅)Γ𝑏Γ = (𝑀𝑅 ‖ 𝑅)Γ = (𝐴1𝑀𝑅 ‖ 𝐴2𝑅) = (𝑀 ′
1𝑅 ‖ 𝑀 ′

2𝑅),

то есть ΓΓ𝑏 ∈ 𝒢𝑅(𝐼,𝑀) и Γ𝑏Γ ∈ 𝒢𝑅(𝐼,𝑀).

3.3. Пространство ключей подписи CFS на основе

конструкции Сидельникова на кодах, основанных на

ОРС и имеющих разложимый квадрат

В этом разделе покажем, как результаты Раздела 3.2 могут быть улучше­

ны для кодов Рида–Соломона. Будем считать здесь, что код GRS𝑘(𝛼, 𝑣) задан

порождающей матрицей вида (2).
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Утверждение 30. Aut(GRS𝑘(𝛼, 𝑣)× GRS𝑘(𝛼, 𝑣)) = 𝒜(GRS𝑘(𝛼, 𝑣)).

Доказательство. Покажем, что для любой подстановки Γ′ ∈ Aut(GRS𝑘(𝛼, 𝑣)×

GRS𝑘(𝛼, 𝑣)) верно, что Γ′ ∈ 𝒜(GRS𝑘(𝛼, 𝑣)). Обозначим через 𝐺 следующую по­

рождающую матрицу кода GRS𝑘(𝛼, 𝑣)× GRS𝑘(𝛼, 𝑣):

𝐺 =

⎛⎝ 𝑅 0

0 𝑅

⎞⎠ .

Если Γ′ не переставляет столбцы между половинами (2𝑘 × 2𝑛)-матрицы

𝐺 (т.е. все столбцы остаются в своих половинах), то Γ′ ∈ Aut(GRS𝑘(𝛼, 𝑣)) ×

Aut(GRS𝑘(𝛼, 𝑣)) и Γ′ ∈ 𝒜(GRS𝑘(𝛼, 𝑣)). Иначе, без ограничения общности, будем

считать, что переставленные столбцы имеют номера

1, 2, . . . , 𝑡 и

𝑛+ 1, 𝑛+ 2, . . . , 𝑛+ 𝑡, 1 ⩽ 𝑡 ⩽ 𝑛.

То есть: ⎛⎝ 𝑅 0

0 𝑅

⎞⎠Γ′ =

⎛⎝ 0 𝑅′2 𝑅′1 0

𝑅′′1 0 0 𝑅′′2

⎞⎠ ,

где 𝑅 = (𝑅′1 ‖ 𝑅′2) = (𝑅′′1 ‖ 𝑅′′2), матрицы 𝑅′1 и 𝑅
′′
1 имеют размеры 𝑘 × (𝑛− 𝑡),

а матрицы 𝑅′2, 𝑅
′′
2 — размеры 𝑘 × 𝑡.

Докажем от противного, что 𝑡 = 𝑛. Пусть это не так, и 1 ⩽ 𝑡 ⩽ 𝑛 − 1.

Тогда из условия Γ′ ∈ Aut(GRS𝑘(𝛼, 𝑣)×GRS𝑘(𝛼, 𝑣)) следует, что любая линейная

комбинация строк матрицы

𝐺1 =

⎛⎝ 0 𝑅′2

𝑅′′1 0

⎞⎠
принадлежит коду GRS𝑘(𝛼, 𝑣). Заметим, что первые 1 ⩽ ℓ ⩽ 𝑘 строк матри­

цы (2) образуют порождающую матрицу [𝑛, ℓ]-обобщенного кода Рида–Соломо­

на. Соответственно, каждая квадратная подматрица матрицы (2), включающая
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строки с номерами из множества {1, 2, . . . ℓ}, где 1 ⩽ ℓ ⩽ 𝑘, невырождена. От­

сюда следует, в частности, что матрицы 𝑅′1, 𝑅
′
2, 𝑅

′′
1 и 𝑅

′′
2 имеют полный ранг.

В силу того, что матрица 𝐺1 имеет блочную структуру, выполнено

rank(𝑅′2) + rank(𝑅′′1) = min(𝑘, 𝑛− 𝑡) + min(𝑘, 𝑡).

Если 1 ⩽ 𝑡 ⩽ 𝑛 − 1, то min(𝑘, 𝑛 − 𝑡) ⩾ 1 и min(𝑘, 𝑡) ⩾ 1. Если при этом

дополнительно 𝑡 < 𝑘 и 𝑛− 𝑡 < 𝑘, то

rank(𝑅′2) + rank(𝑅′′1) = (𝑛− 𝑡) + 𝑡 = 𝑛 > 𝑘.

Иначе 𝑡 ⩾ 𝑘 или 𝑛 − 𝑡 ⩾ 𝑘, откуда min(𝑘, 𝑛 − 𝑡) + min(𝑘, 𝑡) > 𝑘. То есть в

любом случае dim(GRS𝑘(𝛼, 𝑣)) > 𝑘, что невозможно, ведь dim(GRS𝑘(𝛼, 𝑣)) = 𝑘.

Полученное противоречие доказывает, что 𝑡 = 𝑛. В этом случае Γ′ = Γ𝑏 и

Γ′ ∈ 𝒜(GRS𝑘(𝛼, 𝑣)).

Вложение 𝒜(GRS𝑘(𝛼, 𝑣)) ⊆ Aut(GRS𝑘(𝛼, 𝑣) × GRS𝑘(𝛼, 𝑣)) очевидно, по­

скольку Γ𝑏 ∈ Aut(GRS𝑘(𝛼, 𝑣) × GRS𝑘(𝛼, 𝑣)). Одновременно любая подста­

новка Γ ∈ Aut(GRS𝑘(𝛼, 𝑣))× Aut(GRS𝑘(𝛼, 𝑣)) также является подстановкой из

Aut(GRS𝑘(𝛼, 𝑣) × GRS𝑘(𝛼, 𝑣)), не переставляющей столбцы между подматри­

цами. Следовательно, аналогичное верно и для их суперпозиций, т.е. ΓΓ𝑏 ∈

Aut(GRS𝑘(𝛼, 𝑣)× GRS𝑘(𝛼, 𝑣)) и Γ𝑏Γ ∈ Aut(GRS𝑘(𝛼, 𝑣)× GRS𝑘(𝛼, 𝑣)).

Это завершает доказательство.

Теорема 17. Если (GRS𝑘(𝛼, 𝑣)[𝑀 ])2 = GRS2𝑘−1(𝛼, 𝑣
2)× GRS2𝑘−1(𝛼, 𝑣

2), то

𝒜(GRS𝑘(𝛼, 𝑣)) ⊆ 𝒢𝑅(𝐼,𝑀) ⊆ 𝒜(GRS2𝑘−1(𝛼, 𝑣2)).

Доказательство. Справедливость теоремы следует из Утверждений 28, 29 и 30,

а также из свойств операции возведения в квадрат кода Рида-Соломона.

3.4. Неразложимость квадратов кодов на основе ОРС

Для практических применений интерес представляют коды с неразложи­

мым квадратом, поскольку для них множество 𝒢𝑅(𝐼,𝑀) имеет более сложную
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структуру, что может затруднить построение атаки на всю схему. Далее мы

приведем три класса матриц 𝑀 , для которых код GRS𝑘(𝛼, 𝑣)[𝑀 ] будет иметь

неразложимый квадрат.

Итак, пусть 𝑖1 и 𝑖2 — пара натуральных чисел, таких, что 1 ⩽ 𝑖1 < 𝑖2 ⩽ 𝑘.

Пусть также 𝑎, 𝑏 ∈ F 𝑘
𝑞𝑚 и матрица

𝐵 =

⎛⎝ 𝑎𝑖1 𝑎𝑖2

𝑏𝑖1 𝑏𝑖2

⎞⎠
невырождена. Определим на основе этих параметров (𝑘× 𝑘)-матрицу 𝑇 𝑖1,𝑖2

𝑎,𝑏 сле­

дующим образом:

𝑇 𝑖1,𝑖2
𝑎,𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑖1↓ 𝑖2↓

1 0 . . . 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0 . . . 0
... ... . . . ... . . .

... . . .
...

𝑖1→ 𝑎1 𝑎2 . . . 𝑎𝑖1 . . . 𝑎𝑖2 . . . 𝑎𝑘
... ... . . .

... . . . ... . . .
...

𝑖2→ 𝑏1 𝑏2 . . . 𝑏𝑖1 . . . 𝑏𝑖2 . . . 𝑏𝑘
... ... . . .

... . . .
... . . . ...

0 0 . . . 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Отметим, что невырожденность матрицы 𝐵 гарантирует невырожденность мат­

рицы 𝑇 𝑖1,𝑖2
𝑎,𝑏 .

Частный случай, когда одна из строк, образованных наборами 𝑎 и 𝑏, сов­

падает с соответствующей строкой единичной матрицы, будем обозначать че­

рез 𝑇 𝑖
𝑤, выделяя только нетривиальную строку.

Теорема 18. Если {𝑖1, 𝑖2} ∩ {1, 𝑘} ≠ ∅, то(︁
GRS𝑘(𝛼, 𝑣)

[︁
𝑇 𝑖1,𝑖2
𝑎,𝑏

]︁)︁2
⊊ GRS2𝑘−1(𝛼, 𝑣

2)× GRS2𝑘−1(𝛼, 𝑣
2).
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Доказательство. Обозначим строки порождающей матрицы кода Рида–Соло­

мона 𝑅 через 𝑟𝑖 для 1 ⩽ 𝑖 ⩽ 𝑘. Тогда в порождающей матрице кода(︁
GRS𝑘(𝛼, 𝑣)

[︁
𝑇 𝑖1,𝑖2
𝑎,𝑏

]︁)︁2
есть строки следующих типов:

1. 𝑟𝑠 ∘ 𝑟𝑡 ‖ 𝑟𝑠 ∘ 𝑟𝑡, где 𝑠, 𝑡 /∈ {𝑖1, 𝑖2};

2. а. 𝑟𝑖1 ∘ 𝑟𝑠 ‖ 𝑎𝑅 ∘ 𝑟𝑠,

б. 𝑟𝑖2 ∘ 𝑟𝑠 ‖ 𝑏𝑅 ∘ 𝑟𝑠,

где 𝑠 /∈ {𝑖1, 𝑖2};

3. а. 𝑟𝑖1 ∘ 𝑟𝑖2 ‖ 𝑎𝑅 ∘ 𝑏𝑅,

б. 𝑟𝑖1 ∘ 𝑟𝑖1 ‖ 𝑎𝑅 ∘ 𝑎𝑅,

в. 𝑟𝑖2 ∘ 𝑟𝑖2 ‖ 𝑏𝑅 ∘ 𝑏𝑅.

Строки первого типа суть конкатенации строк значений многочленов сте­

пени ℓ : 0 ⩽ ℓ ⩽ 2𝑘 − 2, т.е. имеют вид 𝑣2 ∘ 𝑥ℓ ‖ 𝑣2 ∘ 𝑥ℓ. Отметим, что из-за

дополнительного условия на номера 𝑖1 и 𝑖2 невозможно получить все 𝑥ℓ в ука­

занном диапазоне. Так, для 𝑗 ∈ {1, 2} при 𝑖𝑗 = 1 не удастся получить многочлен

первой степени, а при 𝑖𝑗 = 𝑘 — многочлен степени 2𝑘 − 2. Тогда число различ­

ных строк такого типа можно оценить сверху числом 2𝑘 − 2.

Так как число номеров 𝑠 таких, что 𝑠 /∈ {𝑖1, 𝑖2}, равно 𝑘 − 2, то макси­

мальное число линейно независимых строк второго типа равно 𝑘 − 2. Строк

третьего типа три.

В итоге получаем

dim

(︂(︁
GRS𝑘(𝛼, 𝑣)

[︁
𝑇 𝑖1,𝑖2
𝑎,𝑏

]︁)︁2)︂
⩽ (2𝑘 − 2) + 2 · (𝑘 − 2) + 3 = 4𝑘 − 3,

а искомое вложение следует из Теоремы 16 и равенства (4).

Следствие 11.
(︁
GRS𝑘(𝛼, 𝑣)

[︁
𝑇 𝑖
𝑤

]︁)︁2
⊊ GRS2𝑘−1(𝛼, 𝑣

2)× GRS2𝑘−1(𝛼, 𝑣
2).

Доказательство. Определим 𝑒(𝑠) ∈ F𝑛
2 следующим образом: 𝑒(𝑠)𝑗 = 1 ⇔ 𝑗 = 𝑠.

Тогда при 𝑖 ̸= 1 требуемое утверждение получается из Теоремы 18 при выборе
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𝑖1 = 1, 𝑖2 = 𝑖 и 𝑎 = 𝑒(1), 𝑏 = 𝑤. При 𝑖 = 1 выберем 𝑖1 = 𝑖 = 1, 𝑖2 = 2 и 𝑎 = 𝑤,

𝑏 = 𝑒(2).

Утверждение 31. Если 𝑘 ⩽ 𝑛+1
2 , то dim((GRS𝑘(𝛼, 𝑣)[𝑀 ])2) ⩾ 2𝑘−1 для любой

невырожденной матрицы 𝑀 .

Доказательство. Справедливость условия следует из того, что

dim((GRS𝑘(𝛼, 𝑣)[𝑀 ])2) ⩾ dim((GRS𝑘(𝛼, 𝑣))
2) = 2𝑘 − 1.

Обозначим через 𝐷 диагональную матрицу с ненулевыми диагональными

элементами 𝑑𝑖. Тогда следующее утверждение очевидно.

Утверждение 32. dim
(︀
(GRS1(𝛼, 𝑣)[𝐷])2

)︀
= 1.

Утверждение 33. dim((GRS2(𝛼, 𝑣)[𝐷])2) = 3, 𝑛 ⩾ 4.

Доказательство. Порождающая матрица кода (GRS2(𝛼, 𝑣)[𝐷])2 вложена в мат­

рицу 𝐺 вида

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑣2 ∘ 𝑥0 (𝑣2 ∘ 𝑥0)𝑑0𝑑0
𝑣2 ∘ 𝑥1 (𝑣2 ∘ 𝑥1)𝑑0𝑑1
𝑣2 ∘ 𝑥1 (𝑣2 ∘ 𝑥1)𝑑1𝑑0
𝑣2 ∘ 𝑥2 (𝑣2 ∘ 𝑥2)𝑑1𝑑1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Первая, вторая и четвертая строки этой матрицы линейно независимы, посколь­

ку содержат в левой половине порождающую матрицу кода GRS3(𝛼, 𝑣). Таким

образом, эти строки образуют порождающую матрицу кода (GRS2(𝛼, 𝑣)[𝐷])2 и

его размерность равна 3.

Теорема 19. Если 3 < 𝑘 ⩽ 𝑛+1
2 , то 2𝑘 − 1 ⩽ dim((GRS𝑘(𝛼, 𝑣)[𝐷])2) ⩽ 4𝑘 − 6,

причем и верхняя, и нижняя оценки достижимы.
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Доказательство. Сначала покажем, что 2𝑘 − 1 ⩽ dim((GRS𝑘(𝛼, 𝑣)[𝐷])2) ⩽

4𝑘 − 6. Нижняя оценка верна в силу Утверждения 31.

Перейдем к верхней оценке. Порождающая матрица кода (GRS𝑘(𝛼, 𝑣)[𝐷])2

является подматрицей матрицы 𝐺 следующего вида:

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣2 ∘ 𝑥0 (𝑣2 ∘ 𝑥0)𝑑0𝑑0
𝑣2 ∘ 𝑥1 (𝑣2 ∘ 𝑥1)𝑑0𝑑1
𝑣2 ∘ 𝑥2 (𝑣2 ∘ 𝑥2)𝑑0𝑑2
𝑣2 ∘ 𝑥2 (𝑣2 ∘ 𝑥2)𝑑1𝑑1
. . . . . .

𝑣2 ∘ 𝑥2𝑘−2 (𝑣2 ∘ 𝑥2𝑘−2)𝑑𝑘−1𝑑𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Матрица 𝐺 может быть разбита на блоки по степеням 𝑥, стоящим в ее левой

части. Элементарными преобразованиями строк каждый блок может быть при­

веден к виду ⎛⎜⎜⎜⎜⎜⎜⎝
𝑣2 ∘ 𝑥𝑝 (𝑣2 ∘ 𝑥𝑝)𝑑𝑖1𝑑𝑗1

0 (𝑣2 ∘ 𝑥𝑝) (𝑑𝑖2𝑑𝑗2 − 𝑑𝑖1𝑑𝑗1)

. . . . . .

0 (𝑣2 ∘ 𝑥𝑝) (𝑑𝑖𝑡𝑑𝑗𝑡 − 𝑑𝑖1𝑑𝑗1)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Для того, чтобы размерность кода достигала верхней границы кода, необ­

ходимо потребовать, чтобы ранг каждого блока был максимален. Заметим, что

при 𝑝 ∈ {0, 1, 2𝑘 − 3, 2𝑘 − 2} ранг блока не может отличаться от единицы, по­

скольку соответствующие многочлены могут быть получены единственным об­

разом: 𝑥0 = 𝑥0𝑥0, 𝑥1 = 𝑥0𝑥1, 𝑥2𝑘−3 = 𝑥𝑘−2𝑥𝑘−1 и 𝑥2𝑘−2 = 𝑥𝑘−1𝑥𝑘−1. Отсюда

rank(𝐺) ⩽ 2 · (2𝑘 − 1)−
⃒⃒
{0, 1, 2𝑘 − 3, 2𝑘 − 2}

⃒⃒
= (4𝑘 − 2)− 4 = 4𝑘 − 6.

Перейдем к вопросам достижимости. Так нижняя оценка достигается, на­

пример, при 𝑑0 = 𝑑1 = . . . = 𝑑𝑘−1.

Для доказательства достижимости верхней оценки отметим, что при вы­

полнении следующего условия:

∀𝑝 ∈ {2, . . . , 2𝑘 − 4} ∃𝑖′, 𝑗′, 𝑖′′, 𝑗′′ : 𝑖′ + 𝑗′ = 𝑖′′ + 𝑗′′ = 𝑝, 𝑑𝑖′𝑑𝑗′ ̸= 𝑑𝑖′′𝑑𝑗′′ (3.1)
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0 1 2 3 4 5 6 7 8 9 10

0 ∙ ∙

1 ∙ ∙ ∙ ∙

2 ∙ ∙ ∙ ∙

3 ∙ ∙ ∙ ∙

4 ∙ ∙ ∙ ∙

5 ∙ ∙ ∙ ∙

6 ∙ ∙ ∙ ∙

7 ∙ ∙ ∙ ∙

8 ∙ ∙ ∙

9 ∙

10

Таблица 3.1 Точки стоят в пересечении 𝑖-ой строки и 𝑗-го столбца для пар (𝑖, 𝑗), участвующих

в неравенствах (для 𝑘 = 11)

ранг блоков, заданных многочленами степеней отличных от {0, 1, 2𝑘 − 3, 2𝑘 − 2},

будет строго равен двум. Одним из вариантов достижения верхней границы яв­

ляется выполнения следующих условий (первое гарантирует выполнение усло­

вия (3.1) для всех четных значений 𝑝, а второе — для нечетных):⎧⎪⎨⎪⎩𝑑𝑖𝑑𝑖 ̸= 𝑑𝑖−1𝑑𝑖+1 для 𝑖 = 1, . . . , 𝑘 − 2;

𝑑𝑖𝑑𝑖+1 ̸= 𝑑𝑖−1𝑑𝑖+2 для 𝑖 = 1, . . . , 𝑘 − 3.

Для наглядности отметим в Таблице 3.1 элементы с индексами (𝑖, 𝑗), которые

участвуют в рассматриваемых неравенствах. Такой набор индексов выбран не

случайно. Дело в том, что здесь для каждого 𝑝 = 2, . . . , 2𝑘 − 4 на диагонали

{(𝑖, 𝑗) | 𝑖 + 𝑗 = 𝑝} есть ровно две рассматриваемые пары, т.е. минимальное

возможное количество.

Пусть 𝑔 — порождающий элемент F2(𝑞
𝑚). Тогда 𝑑𝑖 = 𝑔𝛾𝑖, и систему можно

переписать как
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⎧⎪⎨⎪⎩𝑔
2𝛾𝑖 ̸= 𝑔𝛾𝑖−1+𝛾𝑖+1 для 𝑖 = 1, . . . , 𝑘 − 2;

𝑔𝛾𝑖+𝛾𝑖+1 ̸= 𝑔𝛾𝑖−1+𝛾𝑖+2 для 𝑖 = 1, . . . , 𝑘 − 3.

Откуда ⎧⎪⎨⎪⎩2𝛾𝑖 ̸= 𝛾𝑖−1 + 𝛾𝑖+1 для 𝑖 = 1, . . . , 𝑘 − 2;

𝛾𝑖 + 𝛾𝑖+1 ̸= 𝛾𝑖−1 + 𝛾𝑖+2 для 𝑖 = 1, . . . , 𝑘 − 3.

Значения 𝛾𝑖, удовлетворяющие условию (3.1), можно выбрать, например, в со­

ответствии с Таблицами 3.2 и 3.3. Тогда 2𝑘 − 5 блоков будут иметь ранг 2, а

Таблица 3.2 Выбор значений 𝛾𝑖 в случае, когда 𝑘 — нечетное

𝑖 0 1 2 3 . . . 𝑘 − 3 𝑘 − 2 𝑘 − 1

𝛾𝑖 0 𝑘 − 1 1 𝑘 − 2 . . . 𝑘−3
2

𝑘+1
2

𝑘−1
2

Таблица 3.3 Выбор значений 𝛾𝑖 в случае, когда 𝑘 — четное

𝑖 0 1 2 3 . . . 𝑘 − 3 𝑘 − 2 𝑘 − 1

𝛾𝑖 0 𝑘 − 1 1 𝑘 − 2 . . . 𝑘+2
2

𝑘−2
2

𝑘
2

блоки, соответствующие 𝑝 ∈ {0, 1, 2𝑘 − 3, 2𝑘 − 2}, будут иметь ранг 1.

Покажем, что из матрицы 𝐺 можно выбрать 4𝑘− 6 линейно независимых

строк: первую строку из 4 блоков ранга 1 и первые две строки из 2𝑘− 5 блоков

ранга 2. Обозначим через 𝜒𝑝 и 𝜓𝑝 соответственно коэффициенты 𝑑𝑖1𝑑𝑗1 и (𝑑𝑖2𝑑𝑗2−

𝑑𝑖1𝑑𝑗1) из 𝑝-ого блока, 2 ⩽ 𝑝 ⩽ 2𝑘−4. Предположим противное: пусть существует

некоторая нетривиальная линейная комбинация этих строк, равная нулю. То

есть

𝑎01
(︀
𝑣2 ∘ 𝑥0 ‖ (𝑣2 ∘ 𝑥0)𝜒0

)︀
+ 𝑎11

(︀
𝑣2 ∘ 𝑥1 ‖ (𝑣2 ∘ 𝑥1)𝜒1

)︀
+ 𝑎21

(︀
𝑣2 ∘ 𝑥2 ‖

(︀
𝑣2 ∘ 𝑥2)𝜒2

)︀
+

+ 𝑎22
(︀
0 ‖ (𝑣2 ∘ 𝑥2)𝜓2) + 𝑎31

(︀
𝑣2 ∘ 𝑥3 ‖ (𝑣2 ∘ 𝑥3)𝜒3

)︀
+ 𝑎32

(︀
0 ‖ (𝑣2 ∘ 𝑥3)𝜓3

)︀
+ . . . = 0.
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Отсюда, в частности, должно быть выполнено условие:

𝑎01(𝑣
2 ∘ 𝑥0) + 𝑎11(𝑣

2 ∘ 𝑥1) + 𝑎21(𝑣
2 ∘ 𝑥2) + 𝑎31(𝑣

2 ∘ 𝑥3) + . . . = 0. (3.2)

Но эта сумма есть линейная комбинация строк порождающей матрицы обоб­

щенного кода Рида–Соломона, которые линейно независимы по определению.

Поэтому сумма (3.2) может быть равна нулю лишь при условии, что

𝑎01 = 𝑎11 = 𝑎21 = 𝑎31 = . . . = 0. (3.3)

Также необходимо, чтобы было верно равенство

𝑎01(𝑣
2 ∘ 𝑥0)𝜒0 + 𝑎11(𝑣

2 ∘ 𝑥1)𝜒1 + 𝑎21(𝑣
2 ∘ 𝑥2)𝜒2 + 𝑎22(𝑣

2 ∘ 𝑥2)𝜓2+

+ 𝑎31(𝑣
2 ∘ 𝑥3)𝜒3 + 𝑎32(𝑣

2 ∘ 𝑥3)𝜓3 + . . . = 0.

Или, в силу условия (3.3), что

𝑎22(𝑣
2 ∘ 𝑥2)𝜓2 + 𝑎32(𝑣

2 ∘ 𝑥3)𝜓3 + . . . = 0.

Но поскольку значения 𝑑𝑖 выбирались таким образом, чтобы ни одна из разно­

стей 𝜓𝑝 не обращалась в ноль, то 𝑎22 = 𝑎32 = . . . = 0. Из последнего равенства

следует, что только тривиальная линейная комбинация выбранных нами строк

равна нулю.

Следствие 12. (GRS𝑘(𝛼, 𝑣)[𝐷])2 ⊊ GRS2𝑘−1(𝛼, 𝑣
2)×GRS2𝑘−1(𝛼, 𝑣2) для 𝑘 ⩽ 𝑛+1

2 .

Доказательство. Справедливость вложения непосредственно следует из Утвер­

ждений 32 и 33, Теорем 16 и 19, а также равенства (4).

В заключение рассмотрим задание кода GRS𝑘(𝛼, 𝑣) систематической по­

рождающей матрицей над F2𝑚, то есть матрицей вида:

𝑅 =
(︁
𝐼𝑘 . . . . . .

)︁
,
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где 𝐼𝑘 — единичная матрица размера 𝑘 × 𝑘. Это возможно в силу невырожден­

ности главной (𝑘×𝑘)-подматрицы порождающей матрицы кода GRS𝑘(𝛼, 𝑣), что

следует из того, что определитель такой матрицы отличается от определителя

матрицы Вандермонда лишь умножением на ненулевой скаляр.

Напомним, что матрица 𝐴 размера ℓ× ℓ называется ортогональной, если

𝐴𝐴𝑇 = 𝐼ℓ.

Теорема 20. Для любой матрицы 𝐻 ′ вида

𝐻 ′ =

⎛⎝ 𝐻̂ 𝐻1

0 𝐻2

⎞⎠ ,

где 𝐻̂ — ортогональная подматрица, выполнено

(GRS𝑘(𝛼, 𝑣)[𝐻
′])2 ⊊ GRS2𝑘−1(𝛼, 𝑣

2)× GRS2𝑘−1(𝛼, 𝑣
2).

Доказательство. Согласно Утверждениям 5 и 6 условие

GRS2𝑘(𝛼, 𝑣)[𝐻
′] ⊊ GRS2𝑘−1(𝛼, 𝑣

2)× GRS2𝑘−1(𝛼, 𝑣
2)

эквивалентно условию

(GRS2𝑘(𝛼, 𝑣)[𝐻
′])⊥ ⊋ (GRS2𝑘−1(𝛼, 𝑣

2))⊥ × (GRS2𝑘−1(𝛼, 𝑣
2))⊥.

Согласно Утверждению 16 найдется вектор 𝑣′ такой, что (GRS2𝑘−1(𝛼, 𝑣
2))⊥ =

GRS𝑛−2𝑘+1(𝛼, 𝑣
′). Поэтому будем доказывать вложение

(GRS2𝑘(𝛼, 𝑣)[𝐻
′])⊥ ⊋ GRS𝑛−2𝑘+1(𝛼, 𝑣

′)× GRS𝑛−2𝑘+1(𝛼, 𝑣
′).

Заметим, что если матрица 𝐻̂ имеет размер ℓ× ℓ, то верно, что

(𝑅 ‖ 𝐻 ′𝑅) =

⎛⎜⎜⎜⎝ 𝐼ℓ . . . . . . 𝐻̂ . . . . . .

0 . . . . . . 0 . . . . . .

⎞⎟⎟⎟⎠ . (3.4)
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Рассмотрим вектор 𝑢 = (𝑢𝐿 ‖ 𝑢𝑅) вида

𝑢 = (111 . . . 1⏟  ⏞  
ℓ

000 . . . 0⏟  ⏞  
n−ℓ

111 . . . 1⏟  ⏞  
ℓ

000 . . . 0⏟  ⏞  
n−ℓ

)T.

Покажем, что для укорочения (GRS2𝑘(𝛼, 𝑣)[𝐻
′])𝑢 выполнено условие Утвержде­

ния 26. Действительно, для его порождающей матрицы

⎛⎝ 𝐼ℓ 𝐻̂

0 0

⎞⎠ выполнено

условие ⎛⎝ 𝐼ℓ 𝐻̂

0 0

⎞⎠ ·
⎛⎝ 𝐼𝑇ℓ 0

𝐻̂𝑇 0

⎞⎠ =

⎛⎝ 𝐼ℓ + 𝐻̂𝐻̂𝑇 0

0 0

⎞⎠ = 0.

Отсюда из Утверждения 26 получаем 𝑢 ∈ (GRS2𝑘(𝛼, 𝑣)[𝐻
′])
⊥
.

Предположим, что 𝑢𝐿 ∈ GRS𝑛−2𝑘+1(𝛼, 𝑣
′). Но, согласно соотношениям (3)

и (5) GRS𝑛−2𝑘+1(𝛼, 𝑣
′) ⊆ GRS𝑛−𝑘(𝛼, 𝑣

′) = GRS⊥𝑘 (𝛼, 𝑣
2), где последнее равенство

следует из Утверждения 16. Тогда можно заключить, что 𝑢𝐿 ∈ GRS⊥𝑘 (𝛼, 𝑣
2).

Однако в этом случае для порождающей матрицы 𝑅̃ вида (2) кода GRS𝑘(𝛼, 𝑣
2)

должно быть выполнено равенство 𝑅̃𝑢𝑇𝐿 = 0, что невозможно в силу Утвер­

ждения 17. Полученное противоречие опровергает предположение о том, что

𝑢𝐿 ∈ GRS𝑛−2𝑘+1(𝛼, 𝑣
′). Аналогичное замечание для вектора 𝑢𝑅 завершает дока­

зательство.

3.5. Выводы к третьей главе

Глава посвящена исследованию классов эквивалентности секретных клю­

чей электронных подписей типа CFS, построенных на основе конструкции Си­

дельникова при использовании линейных кодов общего вида или обобщенных

кодов Рида–Соломона. Предложен механизм исследования структуры множе­

ства секретных ключей в схемах такого вида путем перехода к исследованию

множеств, однозначно соответствующих классам эквивалентности секретных

ключей. Подход позволил получить нижнюю оценку мощности открытых клю­

чей исследуемой схемы подписи. Описаны классы эквивалентности секретных
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ключей электронной подписи CFS, построенной на конкатенации произволь­

ных линейных кодов, при условии разложимости квадрата кода, задаваемого

открытым ключом. Структура классов эквивалентности уточнена для частного

случая, когда схема строится на обобщенных кодах Рида–Соломона. Наконец,

приведены три частных случая кодов на основе обобщенных кодов Рида–Соло­

мона, квадрат которых неразложимым.
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Глава 4

Построение стойкой схемы подписи на основе

кодов общего типа

Результаты первых глав диссертации показали, что схема электронной под­

писи CFS может быть подвергнута структурным атакам, которые возможны за

счет факта использования кодов из фиксированного класса. Поэтому целью

настоящей главы является построение новой схемы электронной подписи, стой­

кость которой не зависела бы от структуры используемого кода. При этом необ­

ходимо отказаться от конструкции CFS, которая в алгоритме генерации подпи­

си явно использует алгоритм декодирования кода.

Одним из возможных подходов к решению поставленной задачи являет­

ся применение преобразования А.Фиата и A.Шамира [56] к одной из извест­

ных схем идентификации. В качестве такой схемы можно выбрать, например,

протокол Я.Штерна [57]. Это позволит отказаться от использования кодов с

известной структурой, делающих подпись потенциально уязвимой к структур­

ным атакам, а также свести стойкость схемы к стойкости задачи синдромного

декодирования, которая является NP-трудной.

В настоящей главе приведем описание схемы подписи, полученной на ос­

нове протокола идентификации Штерна, и исследуем стойкость построенной

конструкции. Эти исследования проводились автором в рамках процесса стан­

дартизации постквантовых криптографических механизмов в России при Тех­

ническом комитете 26 по стандартизации [18].

Для вывода стойкости схемы подписи в настоящем разделе потребуется

обращение к задаче, определенной для хэш-функций.

Задача Coll(ℎ). Поиск коллизии

Дано: хэш-функция ℎ : F*2 → F ℓ
2 .
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Найти: вектора 𝑥′, 𝑥′′ ∈ F*2, 𝑥′ ̸= 𝑥′′ такие, что ℎ(𝑥′) = ℎ(𝑥′′).

Сложность этой задачи зависит от структуры функции ℎ. В общем случае

сложность решения такой задачи с использованием парадокса дней рождения

можно оценить как 𝒪
(︀
2

ℓ
2

)︀
.

Глава содержит результаты статьи [67].

4.1. Синтез схемы подписи

Ниже приведем описание схемы электронной подписи, которая является

результатом применения преобразования Фиата–Шамира [56] к схеме иденти­

фикации Штерна. Преобразование состоит в замене случайного значения 𝑏,

сгенерированного проверяющим, на некоторую функцию 𝑓 от сообщения и зна­

чений, полученных от доказывающего. Важно, чтобы 𝑓 зависела сразу от всех

этих значений.

Параметры подписи такие же, как и в исходном протоколе идентифика­

ции, описанном выше. Дополнительно схема использует хэш-функцию 𝑓(·) :

F*2 → {0, 1, 2}𝛿. Длина подписи зависит от параметра 𝛿, который определяется

параметром безопасности 𝜆.
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Stern.KGen(1𝜆)

1 : 𝑠
𝒰←
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝜔
}︀

2 : 𝑦 ← 𝐻𝑠𝑇

3 : return (𝑦, 𝑠)

Stern.SigGen(𝑠,𝑚)

1 : foreach 0 ⩽ 𝑖 < 𝛿 :

2 : 𝑢𝑖
𝒰← F𝑛

2 , 𝜎𝑖
𝒰← 𝒮𝑛

3 : 𝑐𝑖,0 ← ℎ(𝜎𝑖‖𝐻𝑢𝑇𝑖 )

4 : 𝑐𝑖,1 ← ℎ(𝜎𝑖(𝑢𝑖))

5 : 𝑐𝑖,2 ← ℎ(𝜎𝑖(𝑢𝑖 ⊕ 𝑠))

6 : 𝑐𝑖 ← 𝑐𝑖,0‖𝑐𝑖,1‖𝑐𝑖,2

7 : 𝑐← 𝑐0‖ . . . ‖𝑐𝛿−1

8 : 𝑏← 𝑓(𝑚‖𝑐)

9 : foreach 0 ⩽ 𝑖 < 𝛿 :

10 : if 𝑏𝑖 = 0 : 𝑟𝑖 ← 𝜎𝑖‖𝑢𝑖

11 : if 𝑏𝑖 = 1 : 𝑟𝑖 ← 𝜎𝑖‖(𝑢𝑖 ⊕ 𝑠)

12 : if 𝑏𝑖 = 2 : 𝑟𝑖 ← 𝜎𝑖(𝑢𝑖)‖𝜎𝑖(𝑠)

13 : 𝑟 ← 𝑟0‖ . . . ‖𝑟𝛿−1

14 : return 𝑐‖𝑟

Stern.SigVer(𝑦,𝑚, (𝑐‖𝑟))
1 : 𝑏← 𝑓(𝑚‖𝑐)

2 : foreach 0 ⩽ 𝑖 < 𝛿 :

3 : if
[︀
𝑏𝑖 = 0

]︀
∧
[︁[︀
𝑐𝑖,0 ̸= ℎ(𝑟𝑖,0‖𝐻𝑟𝑇𝑖,1)

]︀
∨
[︀
𝑐𝑖,1 ̸= ℎ(𝑟𝑖,0(𝑟𝑖,1))

]︀]︁
:

4 : return 0

5 : if
[︀
𝑏𝑖 = 1

]︀
∧
[︁[︀
𝑐𝑖,0 ̸= ℎ(𝑟𝑖,0‖(𝐻𝑟𝑇𝑖,1 ⊕ 𝑦))

]︀
∨
[︀
𝑐𝑖,2 ̸= ℎ(𝑟𝑖,0(𝑟𝑖,1))

]︀]︁
:

6 : return 0

7 : if
[︀
𝑏𝑖 = 2

]︀
∧
[︁[︀
𝑐𝑖,1 ̸= ℎ(𝑟𝑖,0)

]︀
∨
[︀
𝑐𝑖,2 ̸= ℎ(𝑟𝑖,0 ⊕ 𝑟𝑖,1)

]︀
∨
[︀
wt(𝑟𝑖,1) ̸= 𝜔

]︀]︁
:

8 : return 0

9 : return 1

Для оценки стойкости схемы подписи построим серию экспериментов, в ко­

торых нарушитель представлен вероятностной полиномиальной машиной Тью­

ринга. Выражение Exp⇒ 𝑏 следует трактовать как «значение 𝑏 стало выходом
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экспериментаExp». После наступления события abort в псевдокоде оракула со­

ответствующий эксперимент останавливается и возвращает 0. Для того, чтобы

подчеркнуть, что значение 𝑥 — результат вероятностного алгоритма 𝐴, будем

писать 𝑥←$ 𝐴(. . . ). Как и ранее запись 𝑠
𝒰← 𝑆 означает, что 𝑠 выбрано из мно­

жества 𝑆 случайно равновероятно. А выражение 𝑥← 𝑣 означает присваивание

значения 𝑣 переменной 𝑥.

Будем моделировать случайный оракул F : F*2 → {0, 1, 2}𝛿, используя тех­

нику «ленивое семплирование». Для этого введем множество ΠF, содержащее

пары вида (𝛼,F(𝛼)). Запись (𝛼, ·) ∈ ΠF для некоторого 𝛼 ∈ F*2 означает су­

ществование такого 𝛽 ∈ {0, 1, 2}𝛿, что (𝛼, 𝛽) ∈ ΠF. Поскольку множество ΠF

содержит не более одной пары (𝛼, 𝛽) для каждого значения 𝛼, то ΠF(𝛼) пред­

ставляет собой либо 𝛽, если (𝛼, 𝛽) ∈ ΠF, либо специальное значение ⊥, если

такая пара отсутствует.

Определение 43. Для схемы подписи Stern.Σ преимущество нарушителя 𝒜

в модели EUF-NMA с доступом к случайному оракулу обозначим через

AdvEUF-NMA
Stern (𝒜) = Pr[ExpEUF-NMA

Stern (𝒜)⇒ 1],

где эксперимент ExpEUF-NMA
Stern (𝒜) определен следующим образом:

ExpEUF-NMA
Stern (𝒜)

1 : (pk, sk)←$ Stern.KGen()

2 : ΠF ← ∅

3 : (𝑚, 𝜁)←$ 𝒜F(pk)

4 : return Stern.SigVer(pk,𝑚, 𝜁)

Oracle F(𝛼)

1 : if 𝛼 ∈ ΠF : 𝛽 ← ΠF(𝛼)

2 : else

3 : 𝛽
𝒰← {0, 1, 2}𝛿

4 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

5 : return 𝛽

Определение 44. Для схемы подписи Stern.Σ преимущество нарушителя 𝒜

в модели EUF-CMA с доступом к случайному оракулу обозначим через

AdvEUF-CMA
Stern (𝒜) = Pr[ExpEUF-CMA

Stern (𝒜)⇒ 1],

где эксперимент ExpEUF-CMA
Stern определен следующим образом:
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ExpEUF-CMA
Stern (𝒜)

1 : (pk, sk)←$ Stern.KGen()

2 : ℒ ← ∅

3 : ΠF ← ∅

4 : (𝑚, 𝜁)←$ 𝒜Sign,F(pk)

5 : if 𝑚 ∈ ℒ : return 0

6 : return Stern.SigVer(pk,𝑚, 𝜁)

Oracle F(𝛼)

1 : if 𝛼 ∈ ΠF : 𝛽 ← ΠF(𝛼)

2 : else

3 : 𝛽
𝒰← {0, 1, 2}𝛿

4 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

5 : return 𝛽

Oracle Sign(𝑚)

1 : 𝜁 ←$ Stern.SigGen(sk,𝑚)

2 : ℒ ← ℒ ∪ {𝑚}

3 : return 𝜁

4.2. Обоснование стойкости новой схемы подписи

Для проведения дальнейших рассуждений нам необходимо ввести несколь­

ко дополнительных определений.

Определение 45. Плотностью троичного дерева 𝑇 глубины 𝛿 с 𝑁 листьями

назовем величину 𝑁/3𝛿.

Определение 46. Назовем дерево 𝜌-плотным деревом, если его плотность не

меньше, чем 𝜌.

Определение 47. Назовем дерево равномерно 𝜌-плотностным деревом, если

каждое его поддерево, не считая листьев, является 𝜌-плотным деревом.

Утверждение 34. Если рассматривать 𝜌-плотное дерево 𝑇 , все листья ко­

торого имеют глубину 𝛿, как граф, то в нем существует подграф, который

является равномерно 𝜌
𝛿 -плотным деревом с тем же корнем.

Доказательство. Приведем алгоритм построения такого поддерева. Будем ид­

ти от яруса 𝛿 − 1 к корню (ярусу 0) и исключать из дерева вершины, которые
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являются корнями поддеревьев плотности меньшей, чем 𝜃 = 𝜌
𝛿 . Отметим, что

пока алгоритм не остановится, т.е. не дойдет до корня, структура дерева может

быть отличной от исходной (а именно ветви могут иметь глубину отличную

от 𝛿). Однако после завершения алгоритма каждый из оставшихся листьев бу­

дет иметь глубину равную 𝛿.

Покажем, что на каждом шаге этого алгоритма плотность корня уменьша­

ется не более, чем на 𝜃. Для этого рассмотрим ярус с номером 𝑖. Пусть на этом

ярусе в исходном дереве 𝑇 расположено 𝜅 вершин. Плотности образованных ими

поддеревьев есть 𝜌𝑖,1, . . . , 𝜌𝑖,𝜅. Если 𝑡 означает количество листьев дерева 𝑇 , то

𝜌𝑖,1 + . . .+ 𝜌𝑖,𝜅 =
𝑡

3𝛿−𝑖
= 3𝑖𝜌.

После окончания работы алгоритма на 𝑖-ом ярусе из дерева исключены

вершины плотности меньше, чем 𝜃. Отсюда новая плотность дерева 𝜌′𝑖,𝑗 равна

либо 𝜌𝑖,𝑗, либо 0, если 𝜌𝑖,𝑗 < 𝜃. Тогда

𝜌′𝑖,1 + . . .+ 𝜌′𝑖,𝜅 ⩾ 𝜌𝑖,1 + . . .+ 𝜌𝑖,𝜅 − 𝜅𝜃 ⩾ 3𝑖𝜌− 𝜅𝜃.

Для новой плотности корня 𝜌′ выполнено 3𝑖𝜌′ ⩾ 3𝑖𝜌− 𝜅𝜃 и

𝜌′ ⩾ 𝜌− 𝜅

3𝑖
𝜃 ⩾ 𝜌− 𝜃.

В результате всех удалений 𝜌 уменьшилась максимально на (𝛿 − 1)𝜃. Так

как 𝜃 = 𝜌
𝛿 , то

𝜌− (𝛿 − 1)
𝜌

𝛿
=
𝜌𝛿 − (𝛿 − 1)𝜌

𝛿
=
𝜌

𝛿
= 𝜃.

То есть полученное дерево является равномерно 𝜃-плотным.

Теорема 21. Пусть 𝒜 — нарушитель, решающий задачу EUF-NMA для под­

писи на основе схемы идентификации Штерна, делая не более одного запроса

к оракулу хэширования F. Тогда

AdvEUF-NMA
Stern (𝒜)⩽ max

{︃
15· 3

√︃
𝛿2𝑇

min{𝑇SD, 𝑇Coll}
+

(︂
2

3

)︂𝛿

,

(︂
2

3

)︂𝛿 (︀
1 + 2𝛿 · 1.1𝛿

)︀}︃
,
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где 𝑇SD и 𝑇Coll — сложности оптимальных алгоритмов решения задачи

SD(𝐻, 𝑦, 𝜔) и Coll(ℎ) с вероятностями успеха не менее 1− 1
𝑒 .

Доказательство. Обозначим

𝜀 = AdvEUF-NMA
Stern (𝒜)−

(︂
2

3

)︂𝛿

. (4.1)

В случае 𝜀 ⩽ 0 доказательство завершено. Поэтому далее будем рассматривать

случай

AdvEUF-NMA
Stern (𝒜) =

(︂
2

3

)︂𝛿

+ 𝜀, 𝜀 > 0.

Будем представлять работу нарушителя 𝒜 на всех выходах случайного

оракула F как неполное троичное дерево 𝑇 (𝑥), в котором каждый лист имеет

глубину 𝛿. Оно задается случайной лентой 𝑥 нарушителя 𝒜. Каждый выход 𝑏𝑖
случайного оракула соответствует определенному пути в дереве. Если значе­

ние 𝑏𝑖 равно 0, то у вершины есть левый сын, если 𝑏𝑖 = 1, то у вершины есть

средний сын, и если 𝑏𝑖 = 2, то у вершины есть правый сын. Если нарушитель

не смог корректно построить подпись для некоторого случайного оракула, то

соответствующая ему ветвь удаляется из дерева. Отметим, что фиксация лен­

ты нарушителя гарантирует, что на каждом ярусе дерева проверяется часть

подписи, соответствующая одному и тому же набору (𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,2).

Покажем, что если в дереве найден ярус 𝑖 на котором есть хотя бы три

вершины 𝑣𝑖,0, 𝑣𝑖,1 и 𝑣𝑖,2 такие, что у вершины 𝑣𝑖,0 есть левый сын, у вершины 𝑣𝑖,1

есть средний сын и у вершины 𝑣𝑖,2 есть правый сын, то может быть решена одна

из задач SD(𝐻, 𝑦, 𝜔) и Coll(ℎ). Здесь некоторые из этих вершин 𝑣𝑖,0, 𝑣𝑖,1 и 𝑣𝑖,2

могут совпадать. Далее представим алгоритм, который позволит нарушителю

𝒜 найти эти вершины в дереве 𝑇 (𝑥) с вероятностью 1− 1
𝑒 .

Пусть в дереве есть такие вершины. Этот случай соответствует ситуации,

когда нарушитель сгенерировал три корректные подписи в случае, когда на 𝑖-м

шаге оракул выдал разные значения: 𝑏𝑖 = 0, 𝑏𝑖 = 1 и 𝑏𝑖 = 2. Заметим, что из

этого следует, что нарушитель построил по каждому из этих 𝑏𝑖 ответ 𝑟𝑖, который

прошел проверку, т.е. выли корректно восстановлены значения 𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,2.
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Пусть на запрос 𝑏𝑖 = 0 были получены значения 𝑟𝑖,0 = 𝜎0 и 𝑟𝑖,1 = 𝑢0, на

запрос 𝑏𝑖 = 1 — значения 𝑟𝑖,0 = 𝜎1 и 𝑟𝑖,1 = 𝑤1 (соответствующее 𝑢𝑖 ⊕ 𝑠) и 𝜎1

и, наконец, результатом запроса 𝑏𝑖 = 2 стали 𝑟𝑖,0 = 𝑧2 (соответствующее 𝜎𝑖(𝑢𝑖))

и 𝑟𝑖,1 = 𝑡2 (соответствующее 𝜎𝑖(𝑠)). Поскольку 𝑐0 может быть получено в двух

случаях (𝑏𝑖 = 0 и 𝑏𝑖 = 1), то

𝑐𝑖,0 = ℎ(𝜎0‖𝐻𝑢𝑇0 ) = ℎ(𝜎1‖𝐻𝑤𝑇
1 ⊕ 𝑦).

Из этого следует, что либо у хэш-функции может быть найдена коллизия,

либо 𝜎0 = 𝜎1 и𝐻𝑢𝑇0 = 𝐻𝑤𝑇
1 ⊕𝑦. Аналогичные рассуждения позволяют показать,

что если коллизия не была найдена, то 𝑧2 = 𝜎0(𝑢0) и 𝑧2⊕ 𝑡2 = 𝜎1(𝑤1). Отметим,

что поскольку третий ответ был принят, то 𝑡2 удовлетворяет ограничению на

вес. Обозначая 𝜎 = 𝜎0 = 𝜎1, имеем

𝑡2 = 𝑧2 ⊕ (𝑡2 ⊕ 𝑧2) = 𝜎(𝑢0 ⊕ 𝑤1).

Отсюда 𝑢0 ⊕ 𝑤1 также имеет нужный вес. Теперь

𝐻(𝑢0 ⊕ 𝑤1)
𝑇 = 𝐻𝑢𝑇0 ⊕𝐻𝑤𝑇

1 = 𝑦

и 𝑢0 ⊕ 𝑤1 — это приемлемый секретный ключ.

Обозначим 𝜃 = 𝜀
2𝛿 . Теперь опишем теперь вероятностный алгоритм поиска

дерева с вершинами 𝑣𝑖,0, 𝑣𝑖,1 и 𝑣𝑖,2.

Алгоритм 1

� Случайным образом выбрать значение 𝑥 случайной ленты нарушителя

(т.е. определить дерево 𝑇 (𝑥));

� Задать 60
𝜃2 выходов случайного оракула (т.е. определить столько ветвей

этого дерева);

� Просмотреть дерево по ярусам в поиске вершин 𝑣𝑖,0, 𝑣𝑖,1 и 𝑣𝑖,2. Если они

найдены, то решить одну из задач SD(𝐻, 𝑦, 𝜔) и Coll(ℎ). Иначе вернуться

на Шаг 1.
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Лемма 4. В предположениях Теоремы 21 вероятность успеха каждого запус­

ка Алгоритма 1 не менее, чем 𝜀
4, где 𝜀 определено как в (4.1).

Доказательство. Определим множество 𝑋 как

𝑋 = {𝑥
⃒⃒
в 𝑇 (𝑥) не менее 2𝛿 +

𝜀

2
· 3𝛿 веток𝑇 (𝑥)}.

Тогда Pr[𝑥 ∈ 𝑋] ⩾ 𝜀/2.

Иначе пусть Pr[𝑥 ∈ 𝑋] < 𝜀/2. Обозначим количество листьев в дереве

𝑇 (𝑥) через 𝑡. Тогда Pr[𝒜 ⇒ 1 ∧ 𝑥 /∈ 𝑋] = 𝑡/3𝛿 < (2/3)𝛿 + 𝜀/2. Следовательно,

вероятность успеха нарушителя 𝒜 есть

Pr[𝒜 ⇒ 1] = Pr[𝒜 ⇒ 1 ∧ 𝑥 ∈ 𝑋] + Pr[𝒜 ⇒ 1 ∧ 𝑥 /∈ 𝑋] ⩽ Pr[𝑥 ∈ 𝑋]+

+ Pr[𝒜 ⇒ 1 ∧ 𝑥 /∈ 𝑋] < 𝜀/2 +
(︀
(2/3)𝛿 + 𝜀/2

)︀
= (2/3)𝛿 + 𝜀.

Однако это противоречит предположению Теоремы 21.

Рассмотрим отдельно случай 𝑥 ∈ 𝑋. Заметим, что 𝑋 задает множество

𝜀/2-плотных деревьев. Поэтому по Предложению 34 из каждого такого дерева

можно выделить поддерево, которое будет равномерно 𝜃-плотным с листьями

глубины 𝛿. Назовем такое дерево 𝑇1(𝑥).

Для любого индекса 𝑖, 0 ⩽ 𝑖 ⩽ 𝛿 обозначим через 𝑛𝑖,1, 𝑛𝑖,2 и 𝑛𝑖,3 количество

вершин на уровне 𝑖 в 𝑇1(𝑥). Общее число вершин на уровне 𝑖 обозначим через 𝑛𝑖.

Тогда для 0 ⩽ 𝑖 < 𝛿 выполнено, что

𝑛𝑖+1 = 𝑛𝑖,1 + 2𝑛𝑖,2 + 3𝑛𝑖,3 = 𝑛𝑖 + 𝑛𝑖,2 + 2𝑛𝑖,3. (4.2)

Пусть 𝑞 = max𝑖 𝑛𝑖,3/𝑛𝑖. Тогда 𝑛𝑖,3 ⩽ 𝑞𝑛𝑖. Из (4.2) следует, что

𝑛𝑖+1 ⩽ 𝑛𝑖 + 𝑛𝑖,2 + 2𝑞𝑛𝑖 ⩽ 2𝑛𝑖 + 2𝑞𝑛𝑖 = 2𝑛𝑖(1 + 𝑞).

Из определения равномерной 𝜃-плотности дерева для каждого 𝑖 : 0 ⩽ 𝑖 ⩽ 𝛿

выполнено неравенство:

𝑛𝑖 ⩾ 3𝑖𝜃.
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Тогда

3𝛿𝜃 ⩽ 𝑛𝛿 ⩽ 2𝛿𝑛0(1 + 𝑞)𝛿.

Поскольку 𝑛0 = 1 (𝑖 = 0 соответствует корню дерева), имеем

𝛿 ln(1 + 𝑞) + 𝛿 ln 2 ⩾ ln 𝜃 + 𝛿 ln 3.

Разделив на 𝛿, мы наконец получаем

𝑞 ⩾
3

2
· 𝜃

1
𝛿 − 1.

Теперь зафиксируем 𝛼 := log 3
2

(︁
1.1 · (2𝛿) 1

𝛿

)︁
и рассмотрим отдельно два

случая.

Если 𝜀 ⩽
(︀
2
3

)︀𝛿(1−𝛼)
то

AdvEUF-NMA
Stern (𝒜) ⩽

(︂
2

3

)︂𝛿
(︃
1 +

(︂
2

3

)︂−𝛼𝛿)︃
=

(︂
2

3

)︂𝛿 (︀
1 + 2𝛿 · 1.1𝛿

)︀
.

Иначе, если 𝜀 >
(︀
2
3

)︀𝛿(1−𝛼)
то верно, что

𝜃
1
𝛿 =

(︁ 𝜀
2𝛿

)︁ 1
𝛿

<

(︃(︀
2
3

)︀𝛿(1−𝛼)
2𝛿

)︃ 1
𝛿

=

(︀
2
3

)︀(1−𝛼)
𝛿
√
2𝛿

.

Можно проверить, что для 𝛼, определенного так, как это было сделано выше,

выполняется неравенство 𝑞 ⩾ 0.1. Отметим, что 𝑞 на самом деле не зависит

от 𝜃.

Пусть 𝑗 есть номер уровня, на котором достигается максимальное зна­

чение 𝑞. Тогда 𝑛𝑗,3 = 𝑞𝑛𝑗. Обозначим через 𝐿𝑗(𝜋) предикат: путь 𝜋 лежит в

𝑇1(𝑥) и проходит через левого сына некоторой вершины уровня 𝑗. Аналогич­

но можно определить предикаты 𝐶𝑗(𝜋) и 𝑅𝑗(𝜋). Через 𝐿𝑗 обозначим предикат

(∃𝜋 : 𝐿𝑗(𝜋)).

Тогда справедливо следующее неравенство:

Pr[𝐿𝑗] ⩾Pr[∃𝜋 : (𝑣1 ∈ 𝜋 ∨ 𝑣2 ∈ 𝜋 ∨ . . . ∨ 𝑣𝑛𝑗,3
∈ 𝜋) ∧ 𝐿𝑗(𝜋)] =

=

𝑛𝑗,3∑︁
𝑖=1

Pr[∃𝜋 : (𝑣𝑖 ∈ 𝜋) ∧ 𝐿𝑗(𝜋)].
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Здесь 𝑣𝑖 — это вершина 𝑗-го уровня, имеющая трех сыновей. Для такой вершины

гарантировано существование левого сына.

Вероятность Pr[∃𝜋 : (𝑣𝑖 ∈ 𝜋)∧𝐿𝑗(𝜋)] для 1 ⩽ 𝑖 ⩽ 𝑛𝑗,3 равна числу 𝑆 путей в

𝑇1(𝑥), проходящих через левого сына 𝑣𝑖, деленному на 3𝛿. В поддереве с корнем

𝑣𝑖 существует не более 3𝛿−𝑗−1 листьев. Но, поскольку 𝑇1(𝑥) — это равномерно

𝜃-плотное дерево, то

𝑆 ⩾ 3𝛿−𝑗−1𝜃 ⇒ Pr[∃𝜋 : (𝑣𝑖 ∈ 𝜋) ∧ 𝐿𝑗(𝜋)] ⩾
3𝛿−𝑗−1𝜃

3𝛿
.

Отсюда можем заключить, что

Pr[𝐿𝑗] ⩾ 𝑛𝑗,3 ·
3𝛿−𝑗−1𝜃

3𝛿
=
𝑛𝑗,3
3𝑗
· 𝜃
3
=
𝑛𝑗,3
𝑛𝑗
· 𝑛𝑗
3𝑗
· 𝜃
3
⩾ 𝑞 · 𝜃 · 𝜃

3
⩾
𝜃2

30
.

Теперь найдем вероятность 𝑃 того, что, выбирая 60
𝜃2 ветвей 𝜋𝑗, на 𝑗-ом

уровне дерева 𝑇1(𝑥) мы найдем вершины 𝑣𝑗,0, 𝑣𝑗,1 и 𝑣𝑗,2.

𝑃 = Pr[∃𝑗0, 𝑗1, 𝑗2 : 𝐿𝑗(𝜋𝑗0) ∧ 𝐶𝑗(𝜋𝑗1) ∧𝑅𝑗(𝜋𝑗2)] =

= 1− Pr[∄𝑗0 : 𝐿𝑗(𝜋𝑗0) ∨ ∄𝑗1 : 𝐶𝑗(𝜋𝑗1) ∨ ∄𝑗2 : 𝑅𝑖(𝜋𝑗2)] ⩾

⩾ 1− Pr[∄𝑗0 : 𝐿𝑗(𝜋𝑗0)]− Pr[∄𝑗1 : 𝐶𝑗(𝜋𝑗1)]− Pr[∄𝑗2 : 𝑅𝑗(𝜋𝑗2)] =

= 1− 3Pr[∄𝑗0 : 𝐿𝑗(𝜋𝑗0)] = 1− 3Pr[𝐿𝑗]
60
𝜃2 = 1− 3(1− Pr[𝐿𝑗])

60
𝜃2 ⩾

⩾ 1− 3

(︂
1− 𝜃2

30

)︂ 60
𝜃2

⩾ 1− 3

𝑒2
.

Таким образом, вероятность успеха Алгоритма 1 поиска вершин 𝑣𝑖,0, 𝑣𝑖,1

и 𝑣𝑖,2 складывается из вероятностей выбора плотного дерева 𝑇 (𝑥) и вероятно­

сти 𝑃 . Она равна 𝑝 := 𝜀
2 · (1−

3
𝑒2 ) >

𝜀
4 .

Алгоритм 1 запускается некоторым нарушителем ℬ 1/𝑝 раз. Сложность

одного запуска равна 𝑇 ′ := 60𝑇
𝜃2 . Вероятность того, что за 1/𝑝 попытку не слу­

чится ни одного успеха есть (1 − 𝑝)
1
𝑝 . Тогда вероятность ℬ есть 1 − (1 − 𝑝)

1
𝑝 .

Покажем, что

1− (1− 𝑝)
1
𝑝 > 1− 1

𝑒
.
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В самом деле, разложения в ряд Маклорена функций 1
1−𝑝 и 𝑒

𝑝 имеют вид:

1

1− 𝑝
= 1 + 𝑝+ 𝑝2 + . . . , 𝑒𝑝 = 1 +

𝑝

1!
+
𝑝2

2!
+ . . . ,

поэтому для всех 𝑝 ∈ (0, 1) выполнено

1

1− 𝑝
> 𝑒𝑝 ⇒ (1− 𝑝) < 1

𝑒𝑝
⇒ (1− 𝑝)

1
𝑝 <

1

𝑒
.

Итоговая сложность нарушителя ℬ есть 𝑇 ′′ := 𝑇 ′

𝑝 < 240𝑇
𝜃2𝜀 . Пусть ℬ решает

задачу SD(𝐻, 𝑦, 𝜔) с вероятностью 𝑝1, а Coll(ℎ) — с вероятностью 𝑝2. Тогда

𝑝1 + 𝑝2 = 1− 1

𝑒
.

Назовем 𝑇SD,(1− 1
𝑒)
— сложность оптимального алгоритма решения задачи син­

дромного декодирования с вероятностью успеха 1− 1
𝑒 , а 𝑇Coll,(1− 1

𝑒)
— сложность

оптимального алгоритма поиска коллизии хэш-функции с вероятностью успеха

1− 1
𝑒 . Тогда

𝑇SD,(1− 1
𝑒)

⩽
1

𝑝1
𝑇SD,𝑝1 ⩽

1

𝑝1
𝑇 ′′,

𝑇Coll,(1− 1
𝑒)

⩽
1

𝑝2
𝑇Coll,𝑝2 ⩽

1

𝑝2
𝑇 ′′.

Первые неравенства следуют из того, что повторение 1
𝑝1
раза алгоритма с вероят­

ностью успеха 𝑝1 дает алгоритм с вероятностью успеха 1− 1
𝑒 , однако, возможно,

неоптимальный по сложности. Второе неравенство следует из того, что ℬ ре­

шает одну из двух задач, соответственно, имеет сложность не менее сложности

алгоритма, решающего одну из них.

Отсюда

𝑇 ′′ ⩾ 𝑝1𝑇SD,(1− 1
𝑒)

и 𝑇 ′′ ⩾ 𝑝2𝑇Coll,(1− 1
𝑒)
.

Следовательно, обозначая ̃︀𝑇 = min
{︁
𝑇SD,(1− 1

𝑒)
, 𝑇Coll,(1− 1

𝑒)

}︁
, можно переписать

𝑇 ′′ ⩾
1

2

(︀
𝑝1𝑇SD,(1− 1

𝑒)
+ 𝑝2𝑇Coll,(1− 1

𝑒)
)︀
⩾

1

2
(𝑝1 + 𝑝2)̃︀𝑇 ⩾

1− 1
𝑒

2
̃︀𝑇 .

Эквивалентно,
960𝛿2𝑇

𝜀3
⩾

1− 1
𝑒

2
̃︀𝑇 .
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Выражая из последнего неравенства 𝜀 и замечая, что 3

√︁
1920
1− 1

𝑒

⩽ 15, получаем:

𝜀 ⩽ 15 · 3

√︃
𝛿2𝑇̃︀𝑇 .

Наконец для 𝜀 >
(︀
2
3

)︀𝛿(1−𝛼)
получаем

AdvEUF-NMA
Stern (𝒜) ⩽ 15 · 3

√︃
𝛿2𝑇

min{𝑇SD, 𝑇Coll}
+

(︂
2

3

)︂𝛿

.

А для произвольного 𝜀 выполнено, что

AdvEUF-NMA
Stern (𝒜)⩽max

{︃
15· 3

√︃
𝛿2𝑇

min{𝑇SD, 𝑇Coll}
+

(︂
2

3

)︂𝛿

,

(︂
2

3

)︂𝛿 (︀
1 + 2𝛿 · 1.1𝛿

)︀}︃
.

Теорема 22. Пусть 𝒜 — нарушитель, решающий задачу EUF-NMA для под­

писи на основе схемы идентификации Штерна, делая не более 𝑞𝑓 запросов к

оракулу хэширования F. Тогда существует такой нарушитель ℬ, который

решает задачу EUF-NMA для этой подписи, делая не более одного запроса к

оракулу хэширования и

𝑞𝑓 · AdvEUF-NMA
Stern (ℬ) ⩾ AdvEUF-NMA

Stern (𝒜)− 3−𝛿.

Причем, если сложность нарушителя 𝒜 равна 𝑇 , то сложность наруши­

теля ℬ есть 𝑇 + 𝑐′𝑞𝑓 , где 𝑐
′ — константа, зависящая от модели вычисления.

Доказательство. Пусть оригинальному эксперименту в модели EUF-NMA с

𝑞𝑓 запросами к оракулу хэширования F соответствует эксперимент Exp0. В

этом эксперименте𝒜— нарушитель, строящий экзистенциальную подделку для

подписи на основе схемы идентификации Штерна с использованием случайного

оракула F. Следовательно,

AdvEUF-NMA
Stern (𝒜) := Pr[Exp0(𝒜)⇒ 1].
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Exp0(𝒜)
1 : 𝑠

𝒰←
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝜔
}︀

2 : 𝑦 ← 𝐻𝑠𝑇

3 : ΠF ← ∅

4 : (𝑚, 𝑐‖𝑟)←$ 𝒜F(𝑦)

5 : return Stern.SigVer(𝑦,𝑚, 𝑐‖𝑟)

Oracle F(𝛼)

1 : if 𝛼 ∈ ΠF : 𝛽 ← ΠF(𝛼)

2 : else

3 : 𝛽
𝒰← {0, 1, 2}𝛿

4 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

5 : return 𝛽

Построим теперь по 𝒜 нарушителя ℬ, строящего экзистенциальную под­

делку в модели с одним запросом к случайному оракулу. ℬ симулирует ора­

кул F, который способный выдать 𝑞𝑓 ответов, при помощи алгоритма SimF𝑡.

Здесь 𝒜SimF𝑡 означает, что единственный запрос, который ℬ делает к своему

случайному оракулу F* совпадает с 𝑡-ым запросом нарушителя 𝒜 к оракулу F.

Отметим, что выход оракула F* имеет равномерное распределение, т.е. значе­

ния 𝛽, полученные на строках 3 и 4 оракула SimF𝑡 невозможно различить.

ℬF*
(𝑦)

1 : ΠF ← ∅

2 : 𝑗 ← 0

3 : 𝑡
𝒰← {1, . . . , 𝑞𝑓}

4 : (𝑚, 𝑐‖𝑟)←$ 𝒜SimF𝑡(𝑦)

5 : return (𝑚, 𝑐‖𝑟)

SimF𝑡(𝛼)

1 : 𝑗 ← 𝑗 + 1

2 : if (𝛼, ·) ∈ ΠF : 𝛽 ← ΠF(𝛼)

3 : elseif 𝑗 = 𝑡 : 𝛽 ← F*(𝛼)

4 : else : 𝛽
𝒰← {0, 1, 2}𝛿

5 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

6 : return 𝛽

Для генерации подписи нарушитель 𝒜 может либо существенно использо­

вать один запрос к оракулу F, либо не использовать ни одного из них. Пусть

𝐼 — это случайная величина, которая соответствует числу запросов нарушите­

ля 𝒜 к оракулу F для создания подделки. В случае, если 𝒜 не использует ни

одного, положим 𝐼 = 0. Отсюда

Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1] ⩾

⩾ Pr[Exp0(𝒜)⇒ 1 ∧ 𝑡 = 𝐼] ⩾ Pr[Exp0(𝒜)⇒ 1 ∧ 𝑡 = 𝐼 ∧ 𝐼 ⩾ 1] =

= Pr[𝑡 = 𝐼] Pr[Exp0(𝒜)⇒ 1 ∧ 𝐼 ⩾ 1] ⩾
1

𝑞𝑓
Pr[Exp0(𝒜)⇒ 1 ∧ 𝐼 ⩾ 1].
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Отметим, что в случае, когда нарушитель 𝒜 не использует ни одного за­

проса к случайному оракулу F, его вероятность успеха не превосходит 3−𝛿,

поскольку ему необходимо полностью угадать выход 𝑏 = F(𝛼). Отсюда и из

определения условной вероятности выполнено, что

Pr[Exp0(𝒜)⇒ 1] ⩽ Pr[Exp0(𝒜)⇒ 1 ∧ 𝐼 ⩾ 1] + Pr[Exp0(𝒜)⇒ 1 ∧ 𝐼 = 0] ⩽

⩽ Pr[Exp0(𝒜)⇒ 1 ∧ 𝐼 ⩾ 1] + 3−𝛿.

Следовательно,

Pr[Exp0(𝒜)⇒ 1]− 3−𝛿 ⩽ 𝑞𝑓 · Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1].

Объединяя приведенные выше рассуждения, получаем итоговое неравенство:

𝑞𝑓 ·AdvEUF-NMA
Stern (ℬ) = 𝑞𝑓 ·Pr[Exp(ℬ)⇒ 1] ⩾ Pr[Exp0(𝒜)⇒ 1]− 3−𝛿 =

= AdvEUF-NMA
Stern (𝒜)− 3−𝛿.

ℬ запускает 𝒜 и симулирует 𝑞𝑓 запросов к оракулу F. Таким образом, если

сложность нарушителя 𝒜 есть 𝑇 , то сложность нарушителя ℬ не превышает

𝑇 + 𝑐′𝑞𝑓 для некоторой константы 𝑐′.

Теорема 23. Пусть 𝒜 — нарушитель, решающий задачу EUF-CMA для под­

писи на основе схемы идентификации Штерна, делая не более 𝑞𝑓 запросов к

оракулу хэширования F и не более 𝑞𝑠 запросов к оракулу подписи Sign. Тогда

существует такой нарушитель ℬ, который решает задачу EUF-NMA для

этой подписи, делая не более 𝑞𝑓 запросов к оракулу хэширования и

AdvEUF-NMA
Stern (ℬ) ⩾ AdvEUF-CMA

Stern (𝒜)− 𝑞𝑠 ·
(︂
14𝑐𝛿𝑞𝑓
𝑇𝐶𝑜𝑙𝑙

)︂𝛿

,

где 𝑇𝐶𝑜𝑙𝑙 — сложность оптимального алгоритма решения задачи Coll(ℎ) с

вероятностью успехане менее 1− 1
𝑒 , а 𝑐 — константа, зависящая от модели

вычислений.
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Причем, если сложность нарушителя 𝒜 равна 𝑇 , то сложность нару­

шителя ℬ ограничена сверху значением 𝑇 + 𝑐′′(𝑞𝑓 + 𝑞𝑠𝑇
𝑆𝑖𝑔
Stern), где 𝑇

𝑆𝑖𝑔
Stern — слож­

ность алгоритма генерации подписи, а 𝑐′′ — константа, зависящая от модели

вычислений.

Доказательство. Пусть оригинальному эксперименту в модели EUF-CMA со­

ответствует эксперимент Exp0. В этом эксперименте 𝒜 — нарушитель, строя­

щий экзистенциальную подделку для подписи на основе схемы идентификации

Штерна с использованием случайного оракула F и оракула подписи Sign. Мы

предполагаем, что 𝒜 может сделать не более 𝑞𝑓 запросов к оракулу F и не

более 𝑞𝑠 запросов к оракулу Sign.

AdvEUF-CMA
Stern (𝒜) := Pr[Exp0(𝒜)⇒ 1].

Эксперимент Exp1 представляет собой модификацию Exp0 в которой ис­

пользуются множества Π𝑆,Π ⊂ F*2 × {0, 1, 2}𝛿. Множество Π𝑆 заполняется в

процессе взаимодействия с оракулом Sign, а Π = ΠF ∪ Π𝑆.

Модификации алгоритмов F и Sign не влияют на распределения их выхо­

дов, откуда

Pr[Exp0(𝒜)⇒ 1] = Pr[Exp1(𝒜)⇒ 1].
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Exp0(𝒜) = ExpEUF-CMA
Stern (𝒜)

1 : 𝑠
𝒰←
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝜔
}︀

2 : 𝑦 ← 𝐻𝑠𝑇

3 : ℒ ← ∅

4 : ΠF ← ∅

5 : (𝑚, 𝑐‖𝑟)←$ 𝒜Sign,F(𝑦)

6 : if 𝑚 ∈ ℒ : return 0

7 : return Stern.SigVer(𝑦,𝑚, 𝑐‖𝑟)

Oracle F(𝛼)

1 : if 𝛼 ∈ ΠF : 𝛽 ← ΠF(𝛼)

2 : else

3 : 𝛽
𝒰← {0, 1, 2}𝛿

4 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

5 : return 𝛽

Oracle Sign(𝑠,𝑚)

1 : foreach 0 ⩽ 𝑖 < 𝛿 :

2 : 𝑢𝑖
𝒰← F𝑛

2 , 𝜎𝑖
𝒰← 𝒮𝑛

3 : 𝑐𝑖,0 ← ℎ(𝜎𝑖‖𝐻𝑢𝑇𝑖 )

4 : 𝑐𝑖,1 ← ℎ(𝜎𝑖(𝑢𝑖))

5 : 𝑐𝑖,2 ← ℎ(𝜎𝑖(𝑢𝑖 ⊕ 𝑠))

6 : 𝑐𝑖 ← 𝑐𝑖,0‖𝑐𝑖,1‖𝑐𝑖,2

7 : 𝑐← 𝑐0‖ . . . ‖𝑐𝛿−1

8 : 𝑏← F(𝑚‖𝑐)

9 : foreach 0 ⩽ 𝑖 < 𝛿 :

10 : if 𝑏𝑖 = 0 : 𝑟𝑖 ← 𝜎𝑖‖𝑢𝑖

11 : if 𝑏𝑖 = 1 : 𝑟𝑖 ← 𝜎𝑖‖(𝑢𝑖 ⊕ 𝑠)

12 : if 𝑏𝑖 = 2 : 𝑟𝑖 ← 𝜎𝑖(𝑢𝑖)‖𝜎𝑖(𝑠)

13 : 𝑟 ← 𝑟0‖ . . . ‖𝑟𝛿−1

14 : ℒ ← ℒ ∪ {𝑚}

15 : return 𝑐‖𝑟
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Exp1(𝒜)
1 : 𝑠

𝒰←
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝜔
}︀

2 : 𝑦 ← 𝐻𝑠𝑇

3 : ℒ ← ∅

4 : (ΠF,Π𝑆)← (∅,∅)

5 : Π← ΠF ∪ Π𝑆

6 : (𝑚, 𝑐‖𝑟)←$ 𝒜Sign,F(𝑦)

7 : if 𝑚 ∈ ℒ : return 0

8 : return Stern.SigVer(𝑦,𝑚, 𝑐‖𝑟)

Oracle F(𝛼)

1 : if (𝛼, ·) ∈ Π : return Π(𝛼)

2 : 𝛽
𝒰← {0, 1, 2}𝛿

3 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

4 : Π← ΠF ∪ Π𝑆

5 : return 𝛽

Oracle Sign(𝑠,𝑚) (Exp1)

1 : foreach 0 ⩽ 𝑖 < 𝛿 :

2 : 𝑢𝑖
𝒰← F𝑛

2 , 𝜎𝑖
𝒰← 𝒮𝑛

3 : 𝑐𝑖,0 ← ℎ(𝜎𝑖‖𝐻𝑢𝑇𝑖 )

4 : 𝑐𝑖,1 ← ℎ(𝜎𝑖(𝑢𝑖))

5 : 𝑐𝑖,2 ← ℎ(𝜎𝑖(𝑢𝑖 ⊕ 𝑠))

6 : 𝑐𝑖 ← 𝑐𝑖,0‖𝑐𝑖,1‖𝑐𝑖,2

7 : 𝑐← 𝑐0‖ . . . ‖𝑐𝛿−1

8 : if (𝑚‖𝑐, ·) ∈ Π : 𝑏← Π(𝑚‖𝑐)

9 : else

10 : 𝑏
𝒰← {0, 1, 2}𝛿

11 : Π𝑆 ← Π𝑆 ∪ {(𝑚‖𝑐, 𝑏)}

12 : Π← ΠF ∪ Π𝑆

13 : foreach 0 ⩽ 𝑖 < 𝛿 :

14 : if 𝑏𝑖 = 0 : 𝑟𝑖 ← 𝜎𝑖‖𝑢𝑖

15 : if 𝑏𝑖 = 1 : 𝑟𝑖 ← 𝜎𝑖‖(𝑢𝑖 ⊕ 𝑠)

16 : if 𝑏𝑖 = 2 : 𝑟𝑖 ← 𝜎𝑖(𝑢𝑖)‖𝜎𝑖(𝑠)

17 : 𝑟 ← 𝑟0‖ . . . ‖𝑟𝛿−1

18 : ℒ ← ℒ ∪ {𝑚}

19 : return 𝑐‖𝑟

Эксперимент Exp2 отличается от эксперимента Exp1 только алгоритмом

Sign. В нем больше не используется секретный ключ. Вместо этого результат

формируется по случайному вектору 𝑏.

Покажем, что распределения выходов 𝑐‖𝑟 алгоритма Sign в экспериментах

Exp1 и Exp2 неразличимы в случае, когда не выполнено условие со строки 23.

Для этого достаточно показать, что распределения каждой части подписи вида

𝑐𝑖‖𝑟𝑖 = 𝑐𝑖,0‖𝑐𝑖,1‖𝑐𝑖,2‖𝑟𝑖,0‖𝑟𝑖,1 для 𝑖 = 0, . . . , 𝛿− 1 из эксперимента Exp2 совпадает

с распределением соответствующей части подписи из Exp1.
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Oracle Sign(𝑚) (Exp2)

1 : 𝑠′
𝒰←
{︀
𝑥 ∈ F𝑛

2 : wt(𝑥) = 𝜔
}︀

2 : foreach 0 ⩽ 𝑖 < 𝛿 :

3 : 𝑏𝑖
𝒰← {0, 1, 2}

4 : 𝑢′𝑖
𝒰← F𝑛

2 , 𝜎
′
𝑖

𝒰← 𝒮𝑛,

5 : if 𝑏𝑖 = 0 :

6 : 𝑐𝑖,0 ← ℎ(𝜎′
𝑖‖𝐻𝑢′𝑇𝑖 )

7 : 𝑐𝑖,1 ← ℎ(𝜎′
𝑖(𝑢

′
𝑖))

8 : 𝑐𝑖,2 ← ℎ(𝜎′
𝑖(𝑢

′
𝑖 ⊕ 𝑠′))

9 : 𝑟𝑖 ← 𝜎′
𝑖‖𝑢′𝑖

10 : if 𝑏𝑖 = 1 :

11 : 𝑐𝑖,0 ← ℎ(𝜎′
𝑖‖(𝐻𝑢′𝑇𝑖 ⊕ 𝑦))

12 : 𝑐𝑖,1 ← ℎ(𝜎′
𝑖(𝑠

′))

13 : 𝑐𝑖,2 ← ℎ(𝜎′
𝑖(𝑢

′
𝑖))

14 : 𝑟𝑖 ← 𝜎′
𝑖‖𝑢′𝑖

15 : if 𝑏𝑖 = 2 :

16 : 𝑐𝑖,0 ← ℎ(𝜎′
𝑖‖𝐻(𝑢′𝑖 ⊕ 𝑠′)𝑇 )

17 : 𝑐𝑖,1 ← ℎ(𝜎′
𝑖(𝑢

′
𝑖 ⊕ 𝑠′))

18 : 𝑐𝑖,2 ← ℎ(𝜎′
𝑖(𝑢

′
𝑖))

19 : 𝑟𝑖 ← 𝜎′
𝑖(𝑢

′
𝑖 ⊕ 𝑠′)‖𝜎′

𝑖(𝑠
′)

20 : 𝑐𝑖 ← 𝑐𝑖,0‖𝑐𝑖,1‖𝑐𝑖,2

21 : 𝑐← 𝑐0‖ . . . ‖𝑐𝛿−1

22 : 𝑟 ← 𝑟0‖ . . . ‖𝑟𝛿−1

23 : if (𝑚‖𝑐, ·) ∈ ΠF : abort

24 : Π𝑆 ← Π𝑆 ∪ {(𝑚‖𝑐, 𝑏)}

25 : Π← ΠF ∪ Π𝑆

26 : ℒ ← ℒ ∪ {𝑚}

27 : return 𝑐‖𝑟

Далее будем рассматривать аргументы хэш-функции ℎ, соответствующие

хэш-значениям 𝑐𝑖,𝑗 вместо них самих. Это решение обусловлено тем фактом, что

при совпадении распределений величин 𝜉 и 𝜂 также совпадают и распределения

величин ℎ(𝜉) и ℎ(𝜂). В самом деле,

Pr[ℎ(𝜉) = 𝑎] = Pr[𝜉 ∈ ℎ−1(𝑎)] = Pr[𝜂 ∈ ℎ−1(𝑎)] = Pr[ℎ(𝜂) = 𝑎].

В случае, когда 𝑏𝑖 = 0, для стороннего наблюдателя секретный ключ 𝑠 яв­

ляется случайной величиной. Остальные значения выбираются случайно, так­

же как это делалось в оригинальном протоколе. Таким образом, распределения,

очевидно, совпадают.

Если 𝑏𝑖 = 1, то вероятность того, что в эксперименте Exp1 строка 𝑐𝑖‖𝑟𝑖
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равна 𝑎1‖𝑎2‖𝑎3‖𝑎4‖𝑎5‖𝑎6 есть

𝑃𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6 =

= Pr
[︀
𝜎𝑖 = 𝑎1, 𝐻𝑢

𝑇
𝑖 = 𝑎2, 𝜎𝑖(𝑢𝑖) = 𝑎3, 𝜎𝑖(𝑢𝑖 ⊕ 𝑠) = 𝑎4, 𝜎𝑖 = 𝑎5, 𝑢𝑖 ⊕ 𝑠 = 𝑎6

]︀
=

= I
[︀
𝑎1 = 𝑎5, 𝐻(𝑎6 ⊕ 𝑠)𝑇 = 𝑎2, 𝑎1(𝑎6) = 𝑎4

]︀
×

× Pr
[︀
𝜎𝑖 = 𝑎1, 𝑠 = 𝑎−11 (𝑎3)⊕ 𝑎6, 𝑢𝑖 = 𝑎−11 (𝑎3)

]︀
,

где I
[︀
𝜃
]︀
означает индикатор выражения 𝜃. В эксперименте Exp2 эта вероят­

ность равна

̂︀𝑃𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6 =

= Pr
[︀
𝜎′𝑖 = 𝑎1, 𝐻𝑢

′𝑇
𝑖 ⊕ 𝑦 = 𝑎2, 𝜎

′
𝑖(𝑠
′) = 𝑎3, 𝜎

′
𝑖(𝑢
′
𝑖) = 𝑎4, 𝜎

′
𝑖 = 𝑎5, 𝑢

′
𝑖 = 𝑎6

]︀
=

= I
[︀
𝑎1 = 𝑎5, 𝐻𝑎

𝑇
6 ⊕ 𝑦 = 𝑎2, 𝑎1(𝑎6) = 𝑎4

]︀
Pr
[︀
𝜎′𝑖 = 𝑎1, 𝑠

′ = 𝑎−11 (𝑎3), 𝑢
′
𝑖 = 𝑎6

]︀
.

Поскольку 𝐻(𝑎6⊕𝑠)𝑇 = 𝐻𝑎𝑇6 ⊕𝑦, индикаторы этих двух выражений совпадают.

Теперь вычислим вероятности. Отметим, что поскольку все случайные ве­

личины выбраны независимо, то вероятность пересечения событий равна про­

изведению их вероятностей. Поэтому можем искать их независимо.

Pr[𝜎𝑖 = 𝑎1] = Pr[𝜎′𝑖 = 𝑎1] =
1

𝑛!
,

Pr[𝑠 = 𝑎−11 (𝑎3)⊕ 𝑎6 = 𝑎′] =
1

2𝑛
,

Pr[𝑢𝑖 = 𝑎−11 (𝑎3) = 𝑎′′] =
1

2𝑛
,

Pr[𝑠′ = 𝑎−11 (𝑎3) = 𝑎′′′] =
1

2𝑛
,

Pr[𝑢′𝑖 = 𝑎6] =
1

2𝑛

для любых констант 𝑎′, 𝑎′′ и 𝑎′′′. Тогда

Pr
[︀
𝜎𝑖 = 𝑎1, 𝑠 = 𝑎−11 (𝑎3)⊕ 𝑎6, 𝑢𝑖 = 𝑎−11 (𝑎3)

]︀
= Pr

[︀
𝜎′𝑖 = 𝑎1, 𝑠

′ = 𝑎3, 𝑢
′
𝑖 = 𝑎6

]︀
=

1

𝑛!22𝑛

и распределения неразличимы.
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Наконец, если 𝑏𝑖 = 2, то аналогичная рассмотренному выше случаю веро­

ятность в эксперименте Exp1 есть

𝑃𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6 =

= Pr
[︀
𝜎𝑖 = 𝑎1, 𝐻𝑢

𝑇
𝑖 = 𝑎2, 𝜎𝑖(𝑢𝑖) = 𝑎3, 𝜎𝑖(𝑢𝑖 ⊕ 𝑠) = 𝑎4, 𝜎𝑖(𝑢𝑖) = 𝑎5, 𝜎𝑖(𝑠) = 𝑎6

]︀
=

= I
[︀
𝑎3 = 𝑎5, 𝑎3 ⊕ 𝑎6 = 𝑎4, 𝐻(𝑎−11 (𝑎3))

𝑇 = 𝑎2
]︀
×

× Pr
[︀
𝜎𝑖 = 𝑎1, 𝑢𝑖 = 𝑎−11 (𝑎3), 𝑠 = 𝑎−11 (𝑎6)

]︀
а в эксперименте Exp2 она равна

̂︀𝑃𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6 = Pr
[︀
𝜎′𝑖 = 𝑎1, 𝐻(𝑢′𝑖 ⊕ 𝑠′)𝑇 = 𝑎2, 𝜎

′
𝑖(𝑢
′
𝑖 ⊕ 𝑠′) = 𝑎3, 𝜎

′
𝑖(𝑢
′
𝑖) = 𝑎4,

𝜎′𝑖(𝑢
′
𝑖 ⊕ 𝑠′) = 𝑎5, 𝜎

′
𝑖(𝑠
′) = 𝑎6) = I

[︀
𝑎3 = 𝑎5, 𝑎4 ⊕ 𝑎6 = 𝑎3, 𝐻(𝑎−11 (𝑎3))

𝑇 = 𝑎2
]︀
×

× Pr
[︀
𝜎′𝑖 = 𝑎1, 𝑢

′
𝑖 = 𝑎−11 (𝑎4), 𝑠

′ = 𝑎−11 (𝑎6)
]︀
.

Применяя рассуждения, аналогичные сделанным выше, получаем, что

Pr
[︀
𝜎𝑖 = 𝑎1, 𝑢𝑖 = 𝑎−11 (𝑎3), 𝑠 = 𝑎−11 (𝑎6)

]︀
=

= Pr
[︀
𝜎′𝑖 = 𝑎1, 𝑢

′
𝑖 = 𝑎−11 (𝑎4), 𝑠

′ = 𝑎−11 (𝑎6)
]︀
=

1

𝑛!22𝑛

и распределения совпадают.

Проверка на строке 23 соответствует случаю, когда значение 𝑐, сгенериро­

ванное в процессе создания подписи под сообщением 𝑚, уже лежало в множе­

ствеΠF. Будем рассматривать худший случай, в котором нарушитель𝒜 сначала

делает все 𝑞𝑓 запросов к оракулу хэширования F. Обозначим через 𝑝 вероят­

ность того, что условие было выполнено для некоторого сообщения на одном

из 𝑞𝑠 запросов:

𝑝 := Pr
[︀
𝑐 ∈ Π𝐹

𝑐

]︀
,

где

ΠF
𝑐 = {𝑐 ∈ F 3𝛿ℓ

2 | ∃𝑚 ∈ F*2,∃𝛽 ∈ {0, 1, 2}𝛿 : (𝑚‖𝑐, 𝛽) ∈ ΠF}.

Для строки 𝑐 и множества Π ⊂ F*2 × F 3𝛿ℓ
2 × {0, 1, 2}𝛿 введем проекцию этого

множества на часть строки как

Π𝑐,(0,1) = {𝑐0,1 | ∃𝑚 ∈ F*2,∃𝑐 ∈ F 3𝛿ℓ
2 ,∃𝛽 ∈ {0, 1, 2}𝛿 : (𝑚‖𝑐, 𝛽) ∈ Π}.
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Аналогично для кортежа 𝑐*,1 = (𝑐0,1, . . . , 𝑐𝛿−1,1) определим множество

Π𝑐,(*,1) = {𝑐*,1 | ∃𝑚 ∈ F*2,∃𝑐 ∈ F 3𝛿ℓ
2 ,∃𝛽 ∈ {0, 1, 2}𝛿 : (𝑚‖𝑐, 𝛽) ∈ Π}.

Тогда для множества Π ⊂ F*2 × F 3𝛿ℓ
2 × {0, 1, 2}𝛿 верно неравенство

𝑝 ⩽
∑︁
Π

Pr[ΠF = Π ∧ 𝑐*,1 ∈ Π𝑐,(*,1)].

Отметим, что первое событие задано случайным оракулом нарушителя 𝒜,

в то время как второе задано оракулом подписи. Из этого следует, что эти

события независимы и

𝑝 ⩽
∑︁
Π

Pr[ΠF = Π]Pr[𝑐*,1 ∈ Π𝑐,(*,1)].

Поскольку все 𝑐𝑖 являются функциями независимых случайных величин

для всех 𝑖 ∈ {0, 𝛿 − 1}, то события 𝑐𝑖,1 ∈ ΠF
𝑐,(𝑖,1) также независимы. Отсюда

𝑝 ⩽
∑︁
Π

Pr[ΠF = Π]
𝛿−1∏︁
𝑖=0

Pr[𝑐𝑖,1 ∈ Π𝑐,(𝑖,1)] ⩽

⩽
∑︁
Π

Pr[ΠF = Π]

(︂
max

𝑖∈{0,𝛿−1}
Pr[𝑐𝑖,1 ∈ Π𝑐,(𝑖,1)]

)︂𝛿

⩽

⩽

(︂
max
Π

max
𝑖∈{0,𝛿−1}

Pr[𝑐𝑖,1 ∈ Π𝑐,(𝑖,1)]

)︂𝛿∑︁
Π

Pr[ΠF = Π] =

=

(︂
max
Π

max
𝑖∈{0,𝛿−1}

Pr[𝑐𝑖,1 ∈ Π𝑐,(𝑖,1)]

)︂𝛿

⩽

⎛⎝max
Π

max
𝑖∈{0,𝛿−1}

∑︁
𝑦∈Π𝑐,(𝑖,1)

Pr[𝑐𝑖,1 = 𝑦]

⎞⎠𝛿

⩽

⩽

(︂
max
Π

max
𝑖∈{0,𝛿−1}

⃒⃒
Π𝑐,(𝑖,1)

⃒⃒
max

𝑦∈Π𝑐,(𝑖,1)

Pr[𝑐𝑖,1 = 𝑦]

)︂𝛿

⩽

⩽

(︂
𝑞𝑓 max

𝑖∈{0,𝛿−1}
max
𝑦∈F ℓ

2

Pr[ℎ(𝑥𝑖) = 𝑦]

)︂𝛿

⩽

⎛⎝𝑞𝑓 ∑︁
𝑖∈{0,𝛿−1}

max
𝑦∈F ℓ

2

Pr[ℎ(𝑥𝑖) = 𝑦]

⎞⎠𝛿

⩽

⩽

(︂
𝛿𝑞𝑓 max

𝑦∈F ℓ
2

Pr[ℎ(𝑥) = 𝑦]

)︂𝛿

.

Обозначим 𝑝ℎ = max𝑦∈F ℓ
2
Pr[ℎ(𝑥) = 𝑦]. Тогда существует алгоритм поиска

коллизии хэш-функции ℎ, имеющий сложность 𝑇 ′ = 2𝑐
𝑝ℎ
, где 𝑐 — это константа,
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зависящая от модели вычислений и соответствующая сложности однократного

вычисления значения хэш-функции. Тогда для оптимального алгоритма 𝑇Coll,

решающего задачу Coll(ℎ), справедливо

𝑇Coll ⩽ 𝑇 ′ и 𝑝ℎ ⩽
2𝑐

𝑇Coll
.

Наконец, получаем

𝑝 ⩽

(︂
2𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿

.

Обозначим 𝑝ℎ = max𝑦∈F ℓ
2
Pr[ℎ(𝑥) = 𝑦]. Тогда существует алгоритм 𝒞, ко­

торый находит коллизию хэш-функции следующим образом. Он выбирает 𝑡

случайных входов 𝑥𝑖 и вычисляет их хэш-значения. 𝒞 останавливается после

того, как нашел коллизию. Тогда событие «𝒞 проиграет» раскладывается на

два несовместимых события: «не существует такого 𝑥 ∈ {𝑥𝑖}𝑡𝑖=1, что ℎ(𝑥) = 𝑦»

и «существует лишь один такой 𝑥». Мы утверждаем, что алгоритм делает не

более 14
𝑝ℎ
шагов и имеет вероятность успеха не менее 1− 1

𝑒 .

Чтобы доказать этот факт, мы рассмотрим отдельно два случая: 𝑝ℎ ⩽ 0.25

и 𝑝ℎ > 0.25. В первом случае число шагов можно взять равным 𝑡1 :=
3
𝑝ℎ
. Тогда

Pr[𝒞 проиграет] = (1− 𝑝ℎ)𝑡1 +
𝑡1∑︁
𝑖=1

𝑝ℎ(1− 𝑝ℎ)𝑡1−1 = (1− 𝑝ℎ)𝑡1 + 𝑡1𝑝ℎ(1− 𝑝ℎ)𝑡1−1 ⩽

⩽ 𝑒−3 +

3
𝑝ℎ
· 𝑝ℎ𝑒−3

1− 𝑝ℎ
= 𝑒−3

(︂
1 +

3

1− 𝑝ℎ

)︂
⩽ 5𝑒−3 < 𝑒−1.

Здесь мы пользовались тем, что (1 + 𝑤)𝑧 ⩽ 𝑒𝑤𝑧 для 𝑧 > 0.

Если 𝑝ℎ > 0.25, зафиксируем 𝑡2 := 14 и

Pr[𝒞 проиграет] = (1− 𝑝ℎ)𝑡2 +
𝑡2∑︁
𝑖=1

𝑝ℎ(1− 𝑝ℎ)𝑡2−1 = (1− 𝑝ℎ)𝑡2 + 𝑡2𝑝ℎ(1− 𝑝ℎ)𝑡2−1 ⩽

⩽ 0.75𝑡2 + 𝑡2𝑝ℎ ·0.75𝑡2−1 = 0.75𝑡2−1(0.75 + 𝑡2𝑝ℎ) < 0.75𝑡2−1(1 + 𝑡2) < 𝑒−1.

Сложность алгоритма 𝒞 в первом случае равна 3𝑐
𝑝ℎ
, а во втором — 14𝑐, где 𝑐

есть константа, зависящая от модели вычислений и соответствующая однократ­

ному вычислению хэш-функции. Поэтому сложность всего алгоритма может
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быть оценена как 𝑇 = 14𝑐
𝑝ℎ
. Отметим, что, если 𝑝ℎ > 0, то алгоритм находит

коллизию с вероятностью, равной 1, поскольку Pr[𝒞 проиграет]→ 0 при 𝑡→∞.

Тогда можно утверждать, что для сложности оптимального алгоритма

𝑇Coll решения задачи Coll(ℎ) с вероятностью не менее 1− 1
𝑒 верно, что

𝑇Coll ⩽ 𝑇 и 𝑝ℎ ⩽
14𝑐

𝑇Coll
.

Наконец, получаем

𝑝′ ⩽

(︂
14𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿

.

Обозначим через 𝐺 событие, заключающееся в том, что условие со стро­

ки 23 ни разу не выполнилось. Тогда из того, что случилось событие 𝐺, следует,

что условие было выполнено хотя бы единожды за 𝑞𝑓 запросов 𝒜. Если 𝑚𝑖‖𝑐𝑖

есть строки, сформированные во время работы алгоритма генерации подписи,

то

Pr[𝐺] = Pr[𝑚1‖𝑐1 ∈ ΠF ∨ . . . ∨𝑚𝑞𝑠‖𝑐𝑞𝑠 ∈ ΠF] ⩽ Pr[𝑐1 ∈ Π𝐹
𝑐 ∨ . . . ∨ 𝑐𝑞𝑠 ∈ Π𝐹

𝑐 ] =

= 1− Pr[𝑐1 /∈ Π𝐹
𝑐 ∧ . . . ∧ 𝑐𝑞𝑠 /∈ Π𝐹

𝑐 ] = 1−
𝑞𝑠∏︁
𝑖=1

Pr[𝑐𝑖 /∈ Π𝐹
𝑐 ] =

= 1−
𝑞𝑠∏︁
𝑖=1

(1− Pr[𝑐𝑖 ∈ Π𝐹
𝑐 ]) = 1− (1− 𝑝′)𝑞𝑠.

Тогда используя неравенство Бернулли при 𝑝′ ⩽ 1, 𝑞𝑠 > 0, получим

Pr[𝐺] ⩽ 1− 1 + 𝑞𝑠𝑝
′ ⩽ 𝑞𝑠 ·

(︂
14𝑐𝛿𝑞𝑓
𝑇𝐶𝑜𝑙𝑙

)︂𝛿

.

Поскольку

Pr[Exp1(𝒜)⇒ 1] = Pr[Exp1(𝒜)⇒ 1 ∧𝐺] + Pr[Exp1(𝒜)⇒ 1 ∧𝐺] ⩽

⩽ Pr[Exp2(𝒜)⇒ 1] + Pr[𝐺],

то

Pr[Exp1(𝒜)⇒ 1]− Pr[Exp2(𝒜)⇒ 1] ⩽ Pr[𝐺] = 𝑞𝑠 ·
(︂
14𝑐𝛿𝑞𝑓
𝑇𝐶𝑜𝑙𝑙

)︂𝛿

.
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Теперь на основе нарушителя 𝒜 построим нарушителя ℬ, который стро­

ит экзистенциальную подделку подписи в модели EUF-NMA. Он симулирует

оракулы F и Sign, используя алгоритмы SimF и SimSign. Алгоритм SimSign по­

вторяет алгоритм Sign из эксперимента Exp2. Оракул F* является случайным

оракулом ℬ.
ℬF*

(𝑦)

1 : ℒ ← ∅

2 : ΠF ← ∅

3 : (𝑚, 𝑐‖𝑟)←$ 𝒜SimSign,SimF(𝑦)

4 : if 𝑚 ∈ ℒ : return 0

5 : return (𝑚, 𝑐‖𝑟)

Oracle SimF(𝛼)

1 : 𝛽 ← F*(𝛼)

2 : ΠF ← ΠF ∪ {(𝛼, 𝛽)}

3 : return 𝛽

Теперь обозначим через Out(𝒜) и Out(ℬ) пары (𝑚, 𝑐‖𝑟), которые выдают

нарушитель𝒜 в экспериментеExp2 и нарушитель ℬ в эксперименте EUF-NMA,

соответственно. Out(𝒜)𝑚,𝑐 и Out(ℬ)𝑚,𝑐 есть проекции выходов нарушителей на

𝑚‖𝑐. Отметим, что проекция не определена в случае, когда нарушитель ℬ воз­

вращает 0 (при𝑚 ∈ ℒ). Но далее будем рассматривать только те эксперименты,

выход которых равен 1, что исключает этот случай.

Также определим

V(𝐹,𝑚, 𝑐, 𝑟) := Ver(𝑦,𝑚, 𝑐‖𝑟),

где Ver — это алгоритм проверки подписи, использующий функцию 𝐹 . Также

для 𝑚 ∈ F*2, 𝑐 ∈ F 3𝛿ℓ
2 определим

𝑝𝑚,𝑐 := Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1 ∧ Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐] =

= Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1 ∧ Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 ∈ ΠF]+

+ Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1 ∧ Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 /∈ ΠF].

Если 𝑚‖𝑐 /∈ ΠF, то нарушитель не знает истинного хэш-значения для этой

строки, и ему приходится угадывать его. Это возможно сделать с вероятностью
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равной 3−𝛿. Также отметим, что результат эксперимента EUF-NMA равен ре­

зультату работы алгоритма проверки подписи, поэтому верно, что

ExpEUF-NMA
Stern (ℬ) = V(F,𝑚, 𝑐, 𝑟). (4.3)

Отсюда

𝑝𝑚,𝑐 = Pr[V(F,𝑚, 𝑐, 𝑟) ∧ Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 ∈ ΠF] + 3−𝛿.

Для строки 𝑚‖𝑐 ∈ ΠF выполнено

V(F*,𝑚, 𝑐, 𝑟) = V(F,𝑚, 𝑐, 𝑟),

поскольку оракул хэширования F нарушителя 𝒜 строго задан оракулом F* на­

рушителя ℬ. Тогда

𝑝𝑚,𝑐 = Pr[V(F*,𝑚, 𝑐, 𝑟) ∧ Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 ∈ ΠF] + 3−𝛿.

Аналогично тому, как было доказано равенство (4.3), можно показать, что

Exp2(𝒜) = V(F*,𝑚, 𝑐, 𝑟).

Противник ℬ всегда возвращает выход 𝒜, поэтому

Out(ℬ)𝑚,𝑐 = Out(𝒜)𝑚,𝑐.

Наконец стратегия 𝒜 в случае, когда 𝑚‖𝑐 /∈ ΠF, совпадает со стратегией ℬ и,

следовательно, имеет ту же вероятность успеха, равную 3−𝛿.

Из приведенных аргументов получаем, что

𝑝𝑚,𝑐 = Pr[Exp2(𝒜)⇒ 1 ∧ Out(𝒜)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 ∈ ΠF]+

+ Pr[Exp2(𝒜)⇒ 1 ∧ Out(𝒜)𝑚,𝑐 = 𝑚‖𝑐 ∧ 𝑚‖𝑐 /∈ ΠF] =

= Pr[Exp2(𝒜)⇒ 1 ∧ Out(𝒜)𝑚,𝑐 = 𝑚‖𝑐].
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Таким образом,

Pr[ExpEUF-NMA
Stern (ℬ)⇒ 1] = Pr[Exp(ℬ)⇒ 1 ∧

⋁︁
(𝑚,𝑐)

Out(ℬ)𝑚,𝑐 = 𝑚‖𝑐] =

=
∑︁
(𝑚,𝑐)

𝑝𝑚,𝑐 =
∑︁
(𝑚,𝑐)

Pr[Exp2(𝒜)⇒ 1 ∧ Out(𝒜)𝑚,𝑐 = 𝑚‖𝑐] = Pr[Exp2(𝒜)⇒ 1].

Следовательно,

AdvEUF-NMA
Stern (ℬ) ⩾ AdvEUF-CMA

Stern (𝒜)− 𝑞𝑠 ·
(︂
2𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿

.

Противник ℬ запускает 𝒜 и симулирует 𝑞𝑓 запросов к оракулу F и 𝑞𝑠 запросов

к оракулу Sign. Отметим, что сложность оракула Sign не превосходит слож­

ности оригинального алгоритма генерации подписи. Поэтому сложность ℬ не

превосходит 𝑇 + 𝑐′′(𝑞𝑓 + 𝑞𝑠𝑇
𝑆𝑖𝑔
Stern).

Следствие 13. Пусть 𝒜 — нарушитель, решающий задачу EUF-CMA для

подписи на основе схемы идентификации Штерна, делая не более 𝑞𝑓 запросов

к оракулу хэширования F и не более 𝑞𝑠 запросов к оракулу генерации подпи­

си Sign. Тогда

AdvEUF-CMA
Stern (𝒜) ⩽ max

{︃
15𝑞𝑓 ·

3

√︃
𝛿2(𝑇 + ˜̃𝑐(2𝑞𝑓 + 𝑞𝑠𝑇

𝑆𝑖𝑔
Stern))

min{𝑇SD, 𝑇Coll}
+

+

(︂
2

3

)︂𝛿

·(1 + 𝑞𝑓) + 𝑞𝑠 ·
(︂
14𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿

,

(︂
2

3

)︂𝛿

·
(︀
1 + 𝑞𝑓

(︀
1 + 2𝛿 · 1.1𝛿

)︀)︀
+𝑞𝑠 ·

(︂
14𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿
}︃
,

(4.4)

где 𝑇 𝑆𝑖𝑔
Stern — сложность алгоритма генерации подписи, 𝑇 есть максимальная

возможная сложность нарушителя 𝒜, 𝑇SD и 𝑇Coll — сложности оптималь­

ных алгоритмов, решающих задачи SD(𝐻, 𝑦, 𝜔) и Coll(ℎ) с вероятностями

успеха не менее, чем 1 − 1
𝑒 , а 𝑐 и

˜̃𝑐 — константы, зависящие от модели вы­

числений.

Доказательство. Сложность 𝑇 нарушителя в модели EUF-NMA с одним за­

просом к оракулу хэширования из Теорем 21–23 не превышает 𝑇 + ˜̃𝑐(2𝑞𝑓 +
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𝑞𝑠𝑇
𝑆𝑖𝑔
Stern), где 𝑇 — сложность нарушителя в модели EUF-CMA, а ˜̃𝑐 = max{𝑐′, 𝑐′′}.

Также для нарушителя ℬ, делающего не более 𝑞𝑓 запросов к оракулу хэширво­

ания в модели EUF-NMA, справедливо, что

AdvEUF-NMA
Stern (ℬ) ⩽ max

{︃
15𝑞𝑓 ·

3

√︃
𝛿2𝑇

min{𝑇SD, 𝑇Coll}
+

(︂
2

3

)︂𝛿

·(1 + 𝑞𝑓),(︂
2

3

)︂𝛿

·
(︀
1 + 𝑞𝑓

(︀
1 + 2𝛿 · 1.1𝛿

)︀)︀}︃
,

откуда

AdvEUF-CMA
Stern (𝒜) ⩽ AdvEUF-NMA

Stern (ℬ) + 𝑞𝑠 ·
(︁
14𝑐𝛿𝑞𝑓
𝑇Coll

)︁𝛿
⩽

⩽ max

{︃
15𝑞𝑓 ·

3

√︃
𝛿2𝑇

min{𝑇SD, 𝑇Coll}
+

(︂
2

3

)︂𝛿

· (1 + 𝑞𝑓) + 𝑞𝑠 ·
(︂
14𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿

,

(︂
2

3

)︂𝛿

·
(︀
1 + 𝑞𝑓

(︀
1 + 2𝛿 · 1.1𝛿

)︀)︀
+ 𝑞𝑠 ·

(︂
14𝑐𝛿𝑞𝑓
𝑇Coll

)︂𝛿
}︃
.

4.3. Выводы к четвертой главе

Подход к построению электронной подписи с применением преобразования

Фиата–Шамира позволяет исключить из схемы функцию декодирования, что

дает возможность выбирать коды общего вида без предъявления требования

на существование эффективного алгоритма декодирования, которое было обя­

зательным для схем типа CFS. Теперь схема не только избегает уязвимостей,

порожденных особенностями кодов специального вида, но и сводится к NP-труд­

ной задаче синдромного декодирования произвольного линейного кода.

Кроме того, за счет отсутствия требования на однозначность декодирова­

ния, в предложенной схеме возможно увеличение числа ошибок, вносимых в

кодовое слово. Так, при выборе параметров, можно задать вес ошибки равным

кодовому расстоянию 𝑑, а не классическому значению ⌊𝑑−12 ⌋. Такое значение
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обеспечивает максимальную трудоемкость известных экспоненциальных алго­

ритмов типа ISD, решающих задачу синдромного декодирования.

Стоит отметить, что стойкость предложенной схемы подписи также сво­

дится к задаче поиска коллизии хэш-функции ℎ. Сложность этой задачи кон­

тролируется выбором функции. Однако, требование на использование крипто­

графически стойкой хэш-функции явно или неявно предъявляется и к схемам

типа CFS. Следовательно, по сравнению с ними предложенная схема не накла­

дывает никаких дополнительных ограничений.

Результаты настоящей главы позволяют построить электронную подпись

на основе протокола идентификации Штерна с требуемым уровнем криптогра­

фической стойкости через выбор параметров, дающих малое значение величины

AdvEUF-CMA
Stern (𝒜). В частности, представленные результаты нашли практическое

применение в Российской Федерации в процессе стандартизации электронной

подписи под названием «Шиповник».
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Заключение

К основными результатами диссертационной работы можно отнести следу­

ющее.

1. Описана структура всех подкодов кодов Рида–Маллера второго порядка,

свойства которых являются причиной уязвимости соответствующих вари­

антов схемы подписи CFS. Такое описание, в частности, помогает постро­

ить подкод, дающий схему подписи, стойкую к известным атакам. Для

кодов произвольного порядка выписаны оценки, задающие стойкие под­

коды, и показано, что число таки кодов стремится к нулю с ростом пара­

метра 𝑚, задающего код Рида–Маллера. Таким образом, при случайном

выборе подкода кода Рида–Маллера почти невозможно построить стой­

кую схему подписи.

2. Для другого варианта схемы подписи CFS, в котором ключи строятся на

основе квазициклических кодов, предложены алгоритмы, позволяющие

эффективно генерировать ключевую пару. Известные ранее алгоритмы

при решении этой задачи либо не использовали структуру кода, что ска­

зывалось на их трудоемкости, либо, несмотря на специализацию, работали

за экспоненциальное время.

3. При справедливости дополнительного условия в случае, когда ключи под­

писи CFS строятся на основе конструкции Сидельникова, получены соот­

ношения, описывающие классы эквивалентности секретных ключей. Это

же условие является необходимым для ряда известных атак и выполня­

ется с вероятностью, близкой к единице. В совокупности это говорит о

невозможности использования конструкции Сидельникова при случайном

выборе экземпляров кодов. Поэтому в работе предложено несколько спе­

циальных классов секретных ключей, схемы на которых не подвержены

известным атакам.
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4. Наконец, предложен вариант построения схемы электронной подписи, ко­

торая лишена недостатков, связанных с особенностями базовых кодов.

Синтез такой подписи состоит в применении преобразования Фиата–Шами­

ра к протоколу идентификации Штерна. Стойкость построенной схемы

обоснована и сведена к NP-трудной задаче декодирования случайного ли­

нейного кода.

Полученные в диссертации результаты могут быть применены при разра­

ботке новых подходов к проектированию криптографических схем с открытым

ключом. Работа позволяет выбирать наиболее стойкие классы кодов для кодо­

вых систем, исключая неперспективные варианты, а также способствует повы­

шению эффективности и безопасности построения электронных подписей.

Эти результаты могут найти применение в различных областях, в частно­

сти:

1. при синтезе и анализе схем электронной подписи, построенных на основе

кодов, исправляющих ошибки;

2. в учебном процессе студентов-математиков, проходящих обучение в рам­

ках специализации «Математические и программные методы обеспечения

информационной безопасности»;

3. в научных центрах, проводящих исследования в области защиты инфор­

мации.
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59. Cayrel P.-L., Véron P., el Yousfi Alaoui S. M. A zero-knowledge identification

scheme based on the q-ary syndrome decoding problem // Lecture Notes in

Computer Science. — 2011. — Т. 6544 LNCS. — С. 171—186.

60. Overbeck R., Sendrier N. Code-based cryptography. — 2009.



154

61. Roy P. S., Morozov K., Fukushima K. Evaluation of code-based signature

schemes // IACR Cryptology ePrint Archive. — 2019. — С. 22.

62. Code-based identification and signature schemes in software / S. M. el Yousfi

Alaoui [и др.] // Lecture Notes in Computer Science. — 2013. — Т. 8128

LNCS. — С. 122—136.

63. Pointcheval D., Stern J. Security proofs for signature schemes // Advances

in Cryptology — EUROCRYPT ’96. EUROCRYPT 1996. Lecture Notes in

Computer Science. — 1996. — Т. 1070. — С. 387—398.

64. Vysotskaya V. Characteristics of Hadamard Square of Special Reed–Muller

Subcodes // Prikladnaya Diskretnaya Matematika. — 2021. — Т. 53. — С. 75—

88.

65. Высоцкая В. В., Высоцкий Л. И. Обратимые матрицы над некоторыми

факторкольцами: идентификация, построение и анализ // Дискретная ма­

тематика. — 2021. — Т. 33, № 2. — С. 46—65.

66. Высоцкая В. В. О структурных особенностях пространства ключей крип­

тосистемы Мак-Элиса–Сидельникова на обобщенных кодах Рида–Соломо­

на // Дискретная математика. — 2024. — Т. 36, № 4. — С. 28—43.

67. Vysotskaya V., Chizhov I. The security of the code-based signature scheme

based on the Stern identification protocol // Prikladnaya Diskretnaya Matematika. —

2022. — Т. 57. — С. 67—90.

68. Vysotskaya V. New estimates for dimension of Reed–Muller subcodes with

maximum Hadamard square // Прикладная дискретная математика. При­

ложение. — 2020. — № 13. — С. 98—100.

69. Deundyak V. M.,Kosolapov Y. V.On the strength of asymmetric code cryptosystems

based on the merging of generating matrices of linear codes // 16th International

Symposium "Problems of Redundancy in Information and Control Systems REDUNDANCY

2019. — 2019. — С. 143—148.



155

70. Чижов И. В. Ключевое пространство криптосистемы Мак-Элиса–Сидель­

никова // Дискрет. матем. — 2009. — Т. 21. — С. 132—159.

71. MacWilliams F. J., Sloane N. J. A. The theory of error-correcting codes. —

1977. — С. 744.

72. Both L., May A. Decoding linear codes with high error rate and its impact

for LPN security // Post-Quantum Cryptography. PQCrypto 2018. LNCS. —

2018. — Т. 10786. — С. 25—46.

73. Petrank E., Roth R. M. Is code equivalence easy to decide? // IEEE Transactions

on Information Theory. — 1997. — Т. 43, № 5. — С. 1602—1604.

74. LEDAkem: a post-quantum Key Encapsulation Mechanism based on QC-LDPC

codes / M. Baldi [и др.] // Post-Quantum Cryptography. PQCrypto 2018.

Lecture Notes in Computer Science. — 2018. — Т. 10786. — С. 3—24.

75. Erdös P., Spencer J. Probabilistic methods in combinatorics. — 1974. — С. 106.
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Приложение А

Программная реализация Алгоритма 1

1 import copy

2 import collections

3

4 def bin(x,y):

5 res = 1

6 for i in range(y):

7 res *= (x-i)*1.0/(i+1)

8 return res

9

10 class fs(frozenset):

11 def __str__(self):

12 return " <{0}>".format(", ".join(str(x) for x in self))

13 def __repr__(self):

14 return str(self)

15

16 def find_min_deg(vert , v_old , ban , ban_set , edge):

17 N = len(vert)

18 first = True

19 for i in range(N):

20 if (i in ban) or (edge.union ({i}) in ban_set):

21 continue

22 if first:

23 res = i

24 first = False

25 elif len(vert[i]) < len(vert[res]):

26 res = i

27 elif len(vert[i]) == len(vert[res]):

28 if len(v_old[i]) < len(v_old[res]):

29 res = i

30 return res

31

32 def form_ban(ban_set , count , edge , r, n):

33 if r == 0:

34 return

35 for v in edge:
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36 tmp = edge - {v}

37 count[tmp] += 1

38 if count[tmp] == n-r+1:

39 ban_set.add(tmp)

40 form_ban(ban_set , count , edge -{v}, r-1, n)

41

42 def new_edge(v_old , r, edges , ban_set):

43 ban = set()

44 vert = copy.deepcopy(v_old)

45 N = len(vert)

46 edge = set()

47 inter = set()

48 for i in range(r-1):

49 inter_local = set()

50 to_add = find_min_deg(vert , v_old , ban , ban_set , edge)

51 edge.add(to_add)

52 ban.add(to_add)

53 inter = inter.union(vert[to_add ])

54 for edge_to_rem in vert[to_add ]:

55 for v in edge_to_rem:

56 if v != to_add:

57 vert[v]. remove(edge_to_rem)

58 L = len(edges)

59 for i in range(L):

60 if edge.issubset(edges[i]):

61 ban.add(list(edges[i]-edge)[0])

62 to_add = find_min_deg(vert , v_old , ban , ban_set , edge)

63 edge.add(to_add)

64 inter = inter.union(vert[to_add ])

65 return (fs(edge), inter)

66

67 def main(r,n):

68 stop = bin(n,2*r)

69 vert = [set() for i in range(n)]

70 edges = []

71 set_num = 0

72 inter = set()

73 inter_num = 0

74 edge_inter_parts = set()

75 part_to_main = dict()
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76 count = collections.defaultdict(int)

77 ban_set = set()

78 rep_num = 0

79

80 while set_num - rep_num - inter_num < stop:

81 local_rep = set()

82 (edge , inter) = new_edge(vert ,r,edges , ban_set)

83 form_ban(ban_set , count , edge , r, n)

84 edges.append(edge)

85 for i in edge:

86 vert[i].add(edge)

87 for e in inter:

88 to_add = fs(edge.intersection(e))

89 edge_inter_parts.add(to_add)

90 part_to_main[to_add] = e

91 for e in edge_inter_parts:

92 inter_add = edge - e

93 if inter_add in edge_inter_parts:

94 tmp1 = part_to_main[inter_add] - inter_add

95 tmp = (part_to_main[e] - edge).union(tmp1)

96 if tmp in edges:

97 local_rep.add(tmp)

98 rep_num += len(local_rep)

99 set_num = bin(len(edges) ,2)

100 inter_num += len(inter)

101 print(edges)
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