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Общая характеристика работы

Актуальность темы

Современная медицина активно использует методы визуализации для ди-
агностики, мониторинга заболеваний и планирования лечения. Однако рост
объёма и сложности медицинских изображений требует более эффективных
методов математического моделирования и проблемно-ориентированных ком-
плексов программ для их анализа и обработки с применением современных
компьютерных технологий. Создание таких методов и эффективных алгоритмов
их реализации, является актуальной научно-технической проблемой в области
математического моделирования, решение которой позволит повысить точность,
интерпретируемость и надежность систем компьютерной диагностики. Ключе-
вой задачей при этом является синтез методологий, позволяющий интегрировать
классические математические модели с подходами глубокого обучения, извлека-
ющими знания из данных.

Актуальность темы обусловлена необходимостью повышения точности
диагностики. Традиционные методы обработки изображений (например, поро-
говая сегментация, фильтрация) часто недостаточно эффективны при работе
с зашумлёнными или низкоконтрастными медицинскими снимками. Гибрид-
ные методы, сочетающие классические математические модели с моделями
машинного обучения (свёрточные нейронные сети, трансформеры), позволяют
улучшить качество распознавания патологий, например, объединяя аппарат диф-
ференциальных уравнений и анализ и обработку больших данных.

Более того, классические численные методы хорошо справляются лишь с
определёнными типами искажений, часто требуя ручной настройки параметров
и не всегда адаптируясь к сложным случаям. Методы машинного обучения, на-
против, демонстрируют высокую обобщающую способность и эффективность
в задачах шумоподавления, повышения разрешения и улучшения контраста, но
могут быть чрезмерно сложными или требовать больших вычислительных ре-
сурсов, затрудняя проведение вычислительных экспериментов. Гибридный под-
ход, сочетающий преимущества классических моделей (интерпретируемость,
низкие вычислительные затраты) и методов машинного обучения (адаптивность,
высокая точность), позволяет преодолеть эти ограничения.

Внедрение гибридных методов анализа и обработки изображений ведёт
к автоматизации и ускорению медицинской диагностики. Ручная обработка
изображений трудоёмка и подвержена субъективным ошибкам. Комбинация ал-
горитмов предварительной обработки и нейросетевой классификации сокращает
время диагностики и снижает нагрузку на врачей. Появление новых архитек-
тур нейронных сетей (например, vision transformers) и методов объяснимого ИИ
(XAI) открывает возможности для создания интерпретируемых гибридных ме-
тодов, критически важных в медицине.
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Таким образом, разработка и совершенствование методов анализа и
обработки медицинских изображений представляет собой актуальную научно-
практическую задачу, решение которой способствует повышению качества
диагностики, снижению временных затрат и улучшению интерпретируемости.

Объектом исследования в данной диссертационной работе является про-
цесс компьютерного анализа медицинских изображений различных модаль-
ностей. Предметом исследования – гибридные методы повышения качества,
классификации и сегментации медицинских изображений.

Цель работы
Основная цель диссертационной работы заключается в разработке новых

гибридных методов для обработки и анализа медицинских изображений различ-
ных модальностей, таких как изображения магнитно-резонансной томографии,
ультразвуковые изображения, гистологические полнослайдовые изображения и
колоноскопические изображения, а также в реализации соответствующего ком-
плекса программ для проведения вычислительных экспериментов.

Научная новизна
В данной диссертационной работе разработаны:
– метод повышения качества изображений магнитно-резонансной томо-
графии,

– масштабно-инвариантный метод подавления осцилляций Гиббса
и уменьшения аддитивного гауссовского шума на изображениях
магнитно-резонансной томографии,

– проекционный метод сегментации опухолей на ультразвуковых, гисто-
логических и колоноскопических изображениях,

– метод выбора масштаба классификации полнослайдовых изображений.
Теоретическая и практическая ценность
Комбинирование классических методов математического моделирования

и современных методов машинного обучения расширяет теоретическую базу
для создания более эффективных гибридных методов. Разработка новых гибрид-
ных методов способствует интеграции подходов из разных областей и позволяет
находить баланс между точностью и сложностью модели, например, применяя
нейросетевые аппроксимации трудоёмких классических моделей.Предлагаемые
гибридные методы более интерпретируемы и устойчивы, чем чёрные ящики глу-
бокого обучения, что важно для врачебного принятия решений.

Разработанные в диссертационной работе методы обработки и анализа
медицинских изображений могут применяться как независимо при проведении
медицинских исследований, так и могут быть реализованы в виде связных мо-
дулей системы медицинской компьютерной диагностики.

Применение разработанных методов обработки и анализа медицинских
изображений имеет существенную практическую значимость. Внедрение раз-
работанных решений повышения качества медицинских данных способно при-
вести к уменьшению количества повторных исследований. Улучшение качества
визуализации способствует более точному обнаружению патологий, включая
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ранние стадии опухолей.Сокращение времени диагностики ускоряет постановку
диагноза и начало лечения, что критично для онкологических и острых состо-
яний, а снижение нагрузки на врачей за счёт автоматизации рутинных задач
(например, разметки полипов на колоноскопических снимках) позволяет пере-
распределить ресурсы на сложные случаи. Таким образом, результаты могут
быть востребованы в клиниках и диагностических центрах, в разработке меди-
цинского ПО, а также в научных исследованиях.

Степень разработанности темы

Проблема анализа и обработки медицинских изображений является меж-
дисциплинарной и находится на стыке математики, компьютерных наук и ме-
дицины. Степень её разработанности характеризуется наличием двух крупных
исторически сложившихся направлений: классических методов, основанных на
математическом моделировании и численных методах, и методов машинного
(глубокого) обучения. В последние годы наблюдается устойчивая тенденция к
их конвергенции в рамках гибридных подходов.

Классические методы математического моделирования и численные
методы обработки изображений, такие как методы фильтрации, вейвлет-
преобразования, вариационные методы и методы решения обратных задач,
имеют солидную теоретическую базу и хорошо изучены. Эти методы отличают-
ся высокой интерпретируемостью, предсказуемостью поведения и относительно
низкими вычислительными затратами. Однако, как отмечено в актуальности,
их эффективность часто ограничивается специфическими типами искажений и
необходимостью ручной настройки параметров для каждого конкретного слу-
чая, что затрудняет их применение для обработки разнородных медицинских
данных с комплексными артефактами.

В настоящее время большую популярность приобрели методы глубокого
обучения в области математических методов обработки изображений и медицин-
ской визуализации. Так, свёрточные нейронные сети, в частности архитектуры
U-Net, SegNet, DeepLab и их модификации, продемонстрировали выдающие-
ся результаты в задачах сегментации, классификации и повышения качества
изображений. Более поздние архитектуры, такие как трансформеры и диффу-
зионные сети, расширили возможности подхода. Исследования в этой области
показывают, что данные методы обладают высокой адаптивностью и способно-
стью извлекать сложные признаки непосредственно из данных. Тем не менее,
им присущи недостатки: они часто рассматриваются как чёрные ящики, тре-
буют больших объёмов размеченных данных и значительных вычислительных
ресурсов, а также могут быть неустойчивы к изменению распределения вход-
ных данных.

Таким образом, в научном сообществе сформировалось направление ги-
бридных методов, которое активно развивается в последнее десятилетие.Данное
направление можно условно разделить на несколько потоков.
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Первый поток предполагает использование классических методов для пре-
добработки данных для нейронных сетей. Этот подход хорошо изучен, но часто
носит характер простой композиции, без глубокой интеграции методов.

Более глубокий уровень синтеза демонстрирует второй поток, связанный
с прямым встраиванием знаний предметной области (англ. domain knowledge) в
архитектуры нейронных сетей. Сюда относятся такие техники, как применение
физически информированных нейронных сетей и интеграция известных преоб-
разований (например, Фурье) в виде специальных слоёв.

Третий поток направлен на использование нейронных сетей для аппрок-
симации трудоёмких этапов классических алгоритмов. Этот подход позволяет
сохранить интерпретируемость классической модели, значительно ускорив её
работу. Исследования в этой области, например, работы по нейронным опера-
торам, показывают перспективность интеграции, но их применение к анализу и
повышению качества медицинских изображений остаётся недостаточно разви-
тым.

Проведённый анализ степени разработанности темы подтверждает акту-
альность и научную новизну диссертационного исследования. Существующий
зазор между классическими методами математического моделирования и совре-
менными методами глубокого обучения создаёт пространство для разработки
новых, более эффективных гибридных подходов, предлагаемых в данной ра-
боте. Комбинация строгости математического моделирования и адаптивности
машинного обучения позволяет сформулировать новые научные решения для
актуальных задач медицинской диагностики.

Методология и методы исследования

Методологической основой исследования являются методы математиче-
ского моделирования. Практическая реализация включает вычислительные экс-
перименты с использованием искусственных и реальных данных в рамках задач
машинного обучения и анализа изображений. Для решения поставленных задач
применяется гибридный подход, интегрирующий классические математические
модели с архитектурами глубокого обучения.

Степень достоверности результатов

Достоверность результатов проведённых исследований обеспечивается
опорой на теоретическую базу, воспроизводимыми вычислительными экспери-
ментами и тестированием алгоритмов на искусственных и реальных данных.

Апробация работы

Основные результаты работы докладывались на:

1. 32-оймеждународной конференции по компьютерной графике и зрению
«ГрафиКон’2022», (Москва, 2022);

2. 8-ой международной конференции по биомедицинской визуализации и
обработке сигналов «ICBSP’2023», (Сингапур, 2023);

3. 34-оймеждународной конференции по компьютерной графике и зрению
«ГрафиКон’2024», (Омск, 2024);
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4. 9-ой международной конференции по биомедицинской визуализации и
обработке сигналов «ICBSP’2024», (Гонконг, 2024);

5. 1-ой международной школе-конференции по тензорным методам в ма-
тематике и задачах искусственного интеллекта «SMBU’2024», (Шэнь-
чжэнь, 2024).

Публикации

По теме исследования опубликовано 7 работ, из них 3 работы в рецензируе-
мых научных изданиях, рекомендованных для защиты в диссертационном совете
МГУ по специальности и отрасли наук. Список опубликованных работ приведён
в конце диссертационной работы.

Личный вклад

Все результаты работы получены автором лично под научным руковод-
ством д.ф.-м.н., проф.А.С.Крылова.В работах, написанных в соавторстве, вклад
автора диссертационной работы в результаты является определяющим.

Основные положения, выносимые на защиту

1. Метод, объединяющий классический математический метод поиска
оптимальных субпиксельных сдвигов и свёрточную нейронную сеть,
позволил осуществить подавление осцилляций Гиббса на изображени-
ях магнитно-резонансной томографии головного мозга.

2. Нейронный оператор Фурье, обученный на результатах численных
расчётов классическими математическими методами, показал эф-
фективность для масштабно-инвариантного уменьшения осцилляций
Гиббса и аддитивного гауссовского шума на изображениях магнитно-
резонансной томографии головного мозга.

3. Проекционные сети Колмогорова-Арнольда, используемые в качестве
основы метода сегментации, позволили получить устойчивый метод
сегментации опухолей на ультразвуковых изображениях молочной же-
лезы, гистологических изображениях слизистых желёз и колоноскопи-
ческих изображениях.

4. Автоматический метод выбора масштаба гистологических полнослай-
довых изображений показал эффективность в классификации изобра-
жений стенок желудка предобученными нейронными сетями.

5. Разработанный программный комплекс по обучению гибридных мето-
дов обработки и анализа медицинских изображений ориентирован на
проведение вычислительных экспериментов.

Структура и объём работы

Диссертация состоит из введения, четырёх глав, заключения, списков ли-
тературы, публикаций автора по теме исследования, рисунков и таблиц. Полный
объём диссертации составляет 103 страницы, включая 32 рисунка и 6 таблиц.
Список литературы содержит 111 наименований.
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Основное содержание работы

Во введении обосновывается актуальность работы, изложены её цель,
научная новизна и практическая ценность, даны основные характеристики ра-
боты, сформулированы положения, выносимые на защиту, личный вклад автора,
представлен отчёт об апробации работы и публикациях, содержащих основные
результаты.

В первой главе рассматривается проблема повышения качества изображе-
ний магнитно-резонансной томографии головного мозга.Магнитно-резонансная
томография формирует изображение I(x) через обратное преобразование Фурье
k-пространства K(k):

I(x) = F−1(K(k)), (1)

где x = (x, y) и k = (kx, ky). В практических условиях измеряется лишь ко-
нечная область k-пространства, то есть истинный спектр K(k) подвергается
усечению оператором обрезки высоких частот:

R =

�
1, |kx| ≤ rmax, |ky| ≤ rmax,

0, иначе.

Тогда математическая модель реконструированного изображения I0(x), согласно
теореме о свёртке для обратного преобразования Фурье, имеет вид:

I0(x) = F−1(R ·K(k)). (2)

Таким образом, естественной моделью искажений на изображениях МРТ явля-
ются осцилляции Гиббса:

I0(x) = I(x) + εG(x), (3)

где осцилляционный компонент εG(x) представляет собой колебательные до-
бавки, локализованные в областях больших градиентов, например, на границах
тканей мозга. Осцилляции Гиббса не исчезают при увеличении числа гармоник
и концентрируются в окрестностях контуров на изображениях.

В главе предложен гибридный метод для подавления осцилляций Гиббса.
Метод относится к классу вычислительныхметодов реконструкции изображений
и объединяет классический поиск оптимальных субпиксельных сдвигов с обуча-
емой свёрточной нейронной сетью. Такой подход позволяет получить решение
задачи устранения артефактов при существенно меньшей вычислительной слож-
ности по сравнению с существующими глубокими нейронными сетями.

Разработанная гибридная архитектура DGAS9-CNN содержит два парал-
лельных канала кодирования признаков изображений: I0 – реконструкции по
усечённому Фурье-спектру и IK↑ – интерполированного результата классиче-
ского метода Кельнера. Оба канала описаны последовательностью свёрточных
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операторов, вводящих отображения вида:

xl = xl−1 + Φl(xl−1), l = 1, 2, ..., L, (4)

где L – число остаточных блоков, а Φl(xl−1) = σ(Wl ∗ xl−1) – l-й, свёрточ-
ный блок, обрабатывающий признаковое описание xl−1. Признаковые описания
агрегируются в модуле декодирования посредством свёртки предварительно
конкатенированных тензоров. Архитектура сети завершается модулем рекон-
струкции, который преобразует ставшее результатом фильтрации признаковое
описание в изображение целевого цветового пространства – оттенки серого (ан-
гл. greyscale).

Предлагаемый метод обучен с учителем на сформированном наборе дан-
ных с синтетическими артефактами Гиббса, полученными путём обрезки 1/9
центральной части Фурье-спектра. В ходе обучения была использована следу-
ющая функция потерь:

L(θ) = 1

N

N�

i=1

��F(I0i ; θ)− I1i
��
1
+ λ · ∥θ∥22 → min

θ∈Θ
, (5)

где I0i – входное изображение с осцилляциями Гиббса; I
1
i – референсное изобра-

жение без артефактов; F – гибридный метод с параметрами θ; λ – коэффициент
регуляризации (10−4). Обучение было проведено на графическом процессоре с
применением пакетной обработки данных и полиномиальной схемы уменьше-
ния темпа обучения:

ηk = η0 ·
�
1− k

Kmax

�γ

, (6)

где ηk – темп обучения на итерации k (η0 = 10−4); Kmax — максимальное ко-
личество итераций (1000); γ > 0 — показатель степени (0.3), определяющий
скорость уменьшения темпа обучения.

Разработанный гибридный метод сравнивается с глубокой свёрточной ней-
ронной сетьюGAS-CNN и классическим методом Кельнера.Алгоритм Кельнера
основан на поиске оптимальных субпиксельных сдвигов с целью минимизации
функционала, оценивающего величину осцилляций. В качестве такого функци-
онала выступает полная вариация.

Проведённое исследование демонстрирует, что гибридный метод превос-
ходит по качеству реконструкции алгоритм Кельнера и базовую нейронную
сеть GAS-CNN. Согласно Таблице 1, метод DGAS9-CNN достигает наивысше-
го значения PSNR (29.57 дБ) и величины полной вариации, наиболее близкой к
референсным изображениям, при этом обеспечивая время выполнения на цен-
тральном процессоре Intel(R) Core(TM) i7-8700 на 30–40 % меньшее, чем у
GAS-CNN. Результаты первой главы рекомендуют метод DGAS9-CNN как эф-
фективный вычислительный инструмент для подавления осцилляций Гиббса на
изображениях магнитно-резонансной томографии головного мозга (см. Рис. 1).
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Таблица 1 –– Средние значения PSNR, полной вариации и времени выполнения
методов улучшения качества изображенийМРТ головного мозга на тестовом на-
боре данных из 2617 изображений.

Метод PSNR (дБ) ↑ TV Время (с) ↓
I0 20.70 659.68 –
I1 – 601.75 –
Алгоритм Кельнера 21.68 540.18 0.23
GAS-CNN 29.46 620.09 1.03
DGAS9-CNN 29.57 611.25 0.68

Рисунок 1 –– Сравнение разработанного гибридного метода DGAS9-CNN
улучшения качества изображений МРТ головного мозга с нейронной сетью
GAS-CNN. (а) – референсное изображение без артефактов, (б) – изображение с
осцилляциями Гиббса, (в) – результат нейронной сети GAS-CNN, (г) – результат

гибридного метода DGAS9-CNN.

В второй главе исследуются методы повышения качества медицинских
изображений и автоматической семантической сегментации патологических об-
ластей на основе нейронных операторов.

Первая часть главы посвящена применению нейронного оператора Фурье
(англ. Fourier neural operator, FNO) для решения задачи повышения качества
изображений магнитно-резонансной томографии головного мозга. Теоретиче-
ской основой архитектуры FNO является интегральное представление решения
краевых задач, используя функцию Грина. Предлагаемый в главе метод за-
ключается в обучении нейронного оператора Фурье аппроксимации решения
уравнения анизотропной диффузии, использованном в модели Перона-Малика
для подавления шума на изображениях:

∂I

∂t
= div(c(x, t) ·∇I), (7)

I(x, 0) = I0(x),
∂I(x, t)

∂n

����
x∈∂Ω

= 0, (8)
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где I(x, t) – изображение на итерации t; c(x, t) – коэффициент диффузии; ∇I
– градиент изображения; div – оператор дивергенции; ∂Ω – контуры изображе-
ния; n – нормаль.

Коэффициент диффузии выбирается так, чтобы уменьшать диффузию в об-
ластях с большим градиентом:

c(|∇I|) = e−(
|∇I|
k )2 , (9)

где k – параметр, управляющий чувствительностью к контурам.

Рисунок 2 –– Средние значения TV, PSNR, SSIM методов улучшения качества
изображений МРТ головного мозга по тестовому набору данных IXI из 2617
изображений. Оценка устойчивости методов к изменению входного разреше-
ния и регуляризирующей способности нейронного оператора Фурье, обученного
аппроксимации модели Перона-Малика на масштабе ×1.0. Масштаб ×1.0 со-
ответствует равномерной пиксельной сетке 145 × 145. Остальные масштабы

получены линейной интерполяцией.

Эксперименты на наборе данных IXI показали (см. Рис. 2), что обученный
нейронный оператор Фурье на результатах численных расчётов трёх итераций
дифференциальной модели анизотропной диффузии, с временным шагом ∆t =
0.1 и параметром чувствительности к контурам k = 0.1, превосходит по каче-
ству реконструкции классический алгоритм Кельнера. Важнейшим результатом
является демонстрация свойства масштабно-инвариантности метода на основе
нейронного оператора Фурье. Благодаря глобальной обработке информации в
частотной области, метод способен корректно обрабатывать изображения с про-
странственными характеристиками, не представленными в обучающей выборке.
Это означает, что оператор обобщается не только на новые данные из того же
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распределения, но и на данные, чей масштаб или разрешение отличаются от тех,
что использовались при обучении. Данное свойство критически важно для прак-
тического применения метода в клинических условиях, где изображения могут
быть получены на сканерах с различными протоколами и разрешениями.

Несмотря на то что пиковое отношение сигнала к шуму (PSNR), рас-
считываемое на основе среднеквадратической ошибки и выражаемое в деци-
белах, является стандартной количественной метрикой различия изображений,
его применение ограничено слабой корреляцией с воспринимаемым челове-
ком качеством. В связи с этим, для оценки результатов повышения качества
магнитно-резонансных изображений показатель PSNR дополнен структурным
индексом подобия (SSIM) и величиной полной вариации (TV). Контроль ве-
личины полной вариации, в свою очередь, позволяет количественно оценивать
амплитуду артефактов Гиббса и минимизировать риск избыточного сглажива-
ния диагностически значимых элементов.

Во второй части главы разработан новый гибридный метод сегментации на
основе обобщения сетей Колмогорова-Арнольда на задачи анализа и обработки
изображений. Несмотря на аппроксимационные свойства сетей Колмогорова-
Арнольда в задачах многомерной аппроксимации, их прямое применение к об-
работке изображений имеет фундаментальные ограничения.Ключевая проблема
заключается в том, что сети Колмогорова-Арнольда рассматривают входные дан-
ные как скалярные величины, игнорируя двумерную геометрическую структуру,
присущую визуальным данным.

В главе выдвинута и экспериментально подтверждена гипотеза о возмож-
ности представления непрерывных функционалов f(χ1, ...,χn) на Hn в виде
композиции линейных непрерывных функционалов, непрерывных функций од-
ной переменной и операции сложения:

f(χ1, ...,χn) ⇝
�

j

ζj(
�

i

φji(χi)), (10)

где χi ∈ H; φji ∈ H∗ и ζj : R → R. На основе этой гипотезы предлагает-
ся архитектура функциональной сети Колмогорова-Арнольда (англ. functional
Kolmogorov-Arnold network, FunKAN), в которой двумерные карты признаков χi

трактуются как элементы гильбертова пространстваH , а их обработка в очеред-
ном слое осуществляется проекционным методом по функциям Эрмита {ψk}rk=1

– собственнымфункциям интегрального оператораФурье, согласно выражению:

χl,j =

n�

i=1

ωl,j

�
r�

k=1

⟨φl(χl−1,i),ψl,k(χl−1,i)⟩ψl,k(χl−1,i)

�
, (11)

где φl ∈ Rn×h×w – обучаемые внутренние функции; ψl ∈ Rn×r×h×w – базисные
функции Эрмита и Wl ∈ R1×1×n×m – матрица свёрточных весов ωl,j .

Разработанный метод был применён как для повышения качества изобра-
жений МРТ, так и для семантической сегментации, будучи интегрированым в
U-образную архитектуру (U-FunKAN).
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Таблица 2 –– Сравнение качества современных методов сегментации в трёх
клинически различных медицинских сценариях. Результаты включают средние
значения IoU и значения F1.

Метод
BUSI GlaS CVC

IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑
U-Net 57.22 71.91 86.66 92.79 83.79 91.06
Att-Unet 55.18 70.22 86.84 92.89 84.52 91.46
U-Net++ 57.41 72.11 87.07 92.96 84.61 91.53
U-NeXt 59.06 73.08 84.51 91.55 74.83 85.36
Rolling-UNet 61.00 74.67 86.42 92.63 82.87 90.48
U-Mamba 61.81 75.55 87.01 93.02 84.79 91.63
UKAGNet 63.45 77.64 87.31 93.23 76.85 86.91
U-KAN 63.38 76.40 87.64 93.37 85.05 91.88
U-FunKAN 68.49 77.37 88.02 93.50 85.93 91.42

Таблица 3 –– Сравнение вычислительной эффективности методов сегментации.
Результаты получены с помощью инструмента THOP Python для профилирова-
ния моделей PyTorch.

Метод Gflops ↓ Params (M) ↓
U-Net 524.2 34.53
Att-Unet 533.1 34.9
U-Net++ 1109 36.6
U-NeXt 4.58 1.47
Rolling-UNet 16.82 1.78
U-Mamba 2087 86.3
U-KAN 14.02 6.35
U-FunKAN 4.35 3.6

Повышению качества изображений МРТ гибридный метод был обучен с
учителем с функцией потерь среднеквадратической ошибки:

Lenh =
1

N

N�

i=1

��I∗i − I1i
��2
2
, (12)

где I∗ – предсказываемые изображения, а I1 – референсные изображения.
Сегментации гибридный метод был обучен также с учителем с помощью

взвешенной комбинации бинарной перекрестной энтропии и коэффициента Сё-
ренсена:

Lsegm =
1

N

N�

i=1

0.1 · CE(I∗i , I
1
i ) +Dice(I∗i , I

1
i ), (13)

где I∗ – предсказываемые изображения, а I1 – референсные изображения.
Результаты показали (см. Таблицу 2), что U-FunKAN устанавливает новый

уровень точности по метрике IoU на всех трёх наборах данных: BUSI (ультразвук
молочной железы), GlaS (гистологические срезы) и CVC-ClinicDB (колоноско-
пические изображения).
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Рисунок 3 –– Качественные результаты работыU-FunKAN для трёх разнородных
медицинских сценариев. (а) – входные изображения, (б) – референсныемаски, (в)

– результаты метода.

Наиболее значительный прирост точности продемонстрирован на наборе
данных BUSI. Значение метрики IoU для метода U-FunKAN составило 68.49 %,
что на 5.04–13.31 процентных пункта выше результатов всех сравниваемых
методов. По метрике F1, учитывающей баланс между точностью и полнотой,
U-FunKAN показал результат, сравнимый с наилучшим 77.64 %, и уверенно пре-
взошёл классические и современные аналоги.

На наборе данных GlaS предложенный метод также показал наивысшую
точность, достигнув значения IoU, равного 88.02 %, и значения F1, равного
93.50 %.Преимущество над ближайшими конкурентамиU-KAN иUKAGNet яв-
ляется значимым, хотя и менее выраженным, чем на BUSI, что указывает на
высокую эффективность сравниваемых методов на данном типе гистологиче-
ских изображений.

На наборе данныхCVC-ClinicDB наблюдается схожая картина: U-FunKAN
демонстрирует наилучший показатель IoU, равный 85.93 %, опережая U-KAN
на 0.88 процентных пункта и U-Mamba на 1.14 процентных пункта. По мет-
рике F1 результат U-FunKAN оказался несколько ниже наилучшего значения,
показанного методом U-KAN, однако разница находится в пределах возможной
статистической погрешности.

Более того, U-FunKAN демонстрирует существенно более высокую вычис-
лительную эффективность (см. Таблицу 3), требуя в 3 раза меньше операций с
плавающей точкой и на 43% меньше обучаемых параметров по сравнению с ука-
занными аналогами. Качественные результаты сегментации, полученные пред-
ложенным проекционным методом представлены на Рис. 3. Дополнительным
преимуществом является интерпретируемость гибридного метода (см. Рис. 4),
обеспечиваемая возможностью анализа спектрального распределения энергии
признаков функций Эрмита. Точность, вычислительная экономичность и интер-
претируемость делают метод ценным для задач медицинской диагностики.
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Рисунок 4 –– Интерпретируемость слоя FunKAN, обученного на наборе данных
IXI для улучшения качества изображений МРТ. (а) – aгрегированный вклад ба-
зисных функций Эрмита по всем обученным внутренним функциям слоя, (б) –
характеристика важности признаков, вычисленная как спектральная энергия, (в)

– визуализация одной из обученных внутренних функций.

В третьей главе рассматривается проблема в области компьютерного
анализа гистологических изображений, а именно проблема низкой устойчи-
вости предобученных свёрточных нейронных сетей к изменению масштаба
(оптического увеличения) входных данных. Широкое внедрение технологии
полнослайдовых изображений (англ. whole slide imaging, WSI) в цифровую па-
тологию, пришедшей на смену световой микроскопии, создаёт потребность в
эффективных методах автоматизированной обработки. Однако эффективность
нейросетевых классификаторов, таких как DenseNet121, ResNet50, VGG19, кри-
тически зависит от соответствия масштаба анализируемого изображения тому
масштабу, на котором метод был обучен (см. Рис. 5). Эмпирически показано (см.

Рисунок 5 –– Участок полнослайдового гистологического изображения в различ-
ных оптических увеличениях (масштабах).

Таблицу 4), что отклонение от оптимального масштаба приводит к значительно-
му падению точности нейросетевой классификации (на 17 % в целом и на 67 %
для отдельных классов тканей). Поэтому, задача автоматического выбора мас-
штаба анализа для заданной предобученной нейронной сети является ключевой
для построения систем компьютерной диагностики на основеWSI.

В главе предложен метод выбора масштаба обработки полнослайдового
изображения на основе геометрического смысла нейронного классификатора.
Метод основан на интерпретации последнего линейного слоя классификатора
как набора разделяющих гиперплоскостей в признаковом пространстве.

15



Таблица 4 –– Точность (%) классификации фрагментов (224 × 224) полнослай-
дового изображения стенки желудка в зависимости от выбранного масштаба
входных данных. Acc – общая точность, Acc@AT – точность распознава-
ния участков подслизистой основы, Acc@BG – точность распознавания фона,
Acc@LP – точность распознавания неизменённых участков собственной пла-
стинки слизистой оболочки, Acc@MM – точность распознавания неизменённых
участков мышечной пластинки слизистой оболочки, Acc@TUM – точность рас-
познавания участков аденокарциномы.

Масштаб Acc ↑ Acc@AT ↑ Acc@BG ↑ Acc@LP ↑ Acc@MM ↑ Acc@TUM ↑
× 10 73.01 87.80 99.84 61.74 17.47 98.19
× 20 76.04 84.42 99.58 82.41 15.74 98.04
× 40 59.04 78.85 99.46 15.01 7.35 94.52

Суть метода заключается в следующем:
1. Для анализируемого изображения случайным образом выбирается мно-

жество точек.
2. Для каждой точки извлекается пирамида фрагментов на различных мас-

штабах из заданного диапазона.
3. Каждый многомасштабный фрагмент пропускается через сеть, и для

него вычисляется расстояние в признаковом пространстве до каждой из
разделяющих гиперплоскостей.

4. Для каждого фрагмента выбирается масштаб, на котором достигает-
ся максимальное расстояние до гиперплоскости своего (референсного)
класса.

5. Итоговый масштаб для всего слайда определяется как мода (наиболее
частый выбор) по всем проанализированным точкам.

Алгоритм не требует априорной информации об оптимальном масштабе или ис-
ходном увеличении сканирования и использует только внутренние параметры
самой нейронной сети.

Предлагаемый метод экспериментально проверен на наборе данных PATH-
DT-MSU, содержащем аннотированные полнослайдовые изображения стенок
желудка. В качестве тестовой нейронной сети использовалась предобученная
свёрточная сеть DenseNet121, обученная классификации фрагментов на 5 клас-
сов: подслизистая основа и мышечные слои (AT), фон (BG), собственная пла-
стинка слизистой (LP), мышечная пластинка слизистой (MM) и аденокарцинома
(TUM). Набор масштабов для поиска включал 9 уровней: {×10, ...,×43}.

Результаты подтверждают эффективность метода.В частности (см. Рис. 6),
для класса LP более 85 % прогнозов метода попадает в интервал: {×12, ...,×25},
– в окрестности истинного масштаба ×20, на котором метод был обучен.

В четвёртой главе рассматривается проблема обеспечения эффективно-
сти, воспроизводимости и управляемости вычислительных экспериментов при
разработке комплекса программ, реализующих гибридные методы анализа и по-
вышения качества медицинских изображений. Рост масштабов исследований в
области искусственного интеллекта выявил ряд сложностей на стыке теории и
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Рисунок 6 –– Гистограмма по множеству предложенных методом масштабов для
100 случайных фрагментов класса LP.

программной реализации, решение которых является необходимым условием
для достижения научной строгости и практической эффективности. Действи-
тельно, отсутствие единой системы конфигурации параметров эксперимента
приводит к трудностям в точном воспроизведении полученных результатов, ста-
вя под сомнение их достоверность и затрудняя накопление научного знания. А
экспоненциальный рост числа гиперпараметров, архитектурных решений и ва-
риантов предобработки данных делает непрактичным и подверженным ошибкам
управление экспериментами через традиционные интерфейсы командной стро-
ки.

В связи с этим, в рамках главы были поставлены и решены следующие
задачи:

1. Разработать модульную архитектуру программного комплекса, осно-
ванную на принципах разделения ответственности и инверсии управ-
ления, для гибкой интеграции новых методов.

2. Внедрить систему автоматизированного контроля качества кода, позво-
ляющую поддерживать соответствие стандартам программирования в
условиях активной разработки.

3. Создать гибридную систему конфигурации вычислительных экс-
периментов, сочетающую преимущества декларативного описания
параметров и гибкости командной строки, для гарантии их полной
воспроизводимости и управляемости.

4. Апробировать разработанный программный комплекс на реальных за-
дачах анализа и обработки изображений для подтверждения его прак-
тической эффективности.

Разработанный программный комплекс написан на Python 3 и постро-
ен на принципах SOLID с использованием фреймворка PyTorch Lightning. Для
повышения гибкости и сопровождаемости кода разработан механизм внедре-
ния зависимостей, позволяющий динамически конфигурировать компоненты
системы через внешние конфигурационные файлы, упрощая проведение экспе-
риментов.
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Для обеспечения единого качества кода программного комплекса внедрена
система статического анализа на основе современного инструмента Ruff.

Предложена и реализована гибридная система конфигурации вычисли-
тельных экспериментов, которая сочетает достоинства декларативного подхода
(конфигурационные файлы) и императивного подхода (интерфейс командной
строки для часто изменяемых параметров). Внедрение модульного подхода к
организации конфигурационных файлов с помощью директивы !include поз-
волило создать переиспользуемую иерархическую структуру. Для работы с этой
структурой была реализована фабрика объектов, выполняющая десериализацию
компонентов системы непосредственно из их декларативного описания.

Разработанный программный комплекс был апробирован в серии вычисли-
тельных экспериментов по обучению гибридных методов анализа и обработки
медицинских изображений различных типов, что подтвердило его эффектив-
ность и масштабируемость.

Заключение

В заключении приведены основные результаты работы, которые заклю-
чаются в следующем:

1. Разработан гибридный метод подавления осцилляций Гиббса на изоб-
ражениях МРТ головного мозга.

2. Предложен масштабно-инвариантный метод повышения качества изоб-
ражений МРТ.

3. Создан проекционный метод сегментации опухолей на ультразвуковых
изображениях молочной железы, гистологических и колоноскопиче-
ских изображениях с использованием сетей Колмогорова-Арнольда.

4. Разработан метод автоматического выбора масштаба классификации
полнослайдовых гистологических изображений.

5. Реализован комплекс проблемно-ориентированных программных
средств, обеспечивающий воспроизводимость вычислительных экс-
периментов.

18



Публикации автора по теме диссертации

Научные статьи, опубликованные в рецензируемых научных изда-
ниях, рекомендованных для защиты в диссертационном совете МГУ по
специальности и отрасли наук

1. Hybrid Method for Gibbs-ringing Artifact Suppression in Magnetic
Resonance Images / M.A. Penkin, A.S. Krylov, A.V. Khvostikov //
Programming and Computer Software — 2021. — vol. 47. No. 3.
— pp. 207–214. EDN: EUGNNS. Импакт-фактор 0,212 (SJR)
[0.35 / 0.46] п.л.
Автором разработан гибридный метод уменьшения осцилляций Гиббса
на изображениях магнитно-резонансной томографии головного мозга.
Выполнена программная реализация, обучение и тестирование предла-
гаемого метода на наборе данных IXI.

2. Automated Method for Optimum Scale Search when using Trained
Models for Histological Image Analysis / M.A. Penkin, A.V. Khvostikov,
A.S. Krylov // Programming and Computer Software — 2023. — vol. 49.
No. 3. — pp. 172-177. EDN: QRCFPG. Импакт-фактор 0,212 (SJR)
[0.2 / 0.35] п.л.
Автором предложен численный метод определения масштаба обработ-
ки и анализа полнослайдовых гистологических изображений предобу-
ченными свёрточными нейронными сетями. Выполнена программная
реализация и тестирование алгоритма на гистологическом наборе дан-
ных стенок желудка PATH-DT-MSU.

3. Adaptive Method for Selecting Basis Functions in Kolmogorov–Arnold
Networks for Magnetic Resonance Image Enhancement / M.A. Penkin,
A.S. Krylov // Programming and Computer Software — 2025. — vol. 51.
No. 3. — pp. 167–172. EDN: GLUUTO. Импакт-фактор 0,212 (SJR)
[0.3 / 0.4] п.л.
Автором разработан масштабно-инвариантный метод подавления ос-
цилляций Гиббса и аддитивного гауссовского шума на медицинских
изображениях с использованием предложенной схемы адаптивного
выбора базисных функций для аппроксимации функций Колмогорова-
Арнольда в нейронных сетях Колмогорова-Арнольда. Выполнена
программная реализация, обучение и тестирование метода.

19



Иные публикации
4. How to Choose Adaptively Parameters of Image Denoising Methods? /
A. Krylov,M. Penkin, N.Mamaev, A. Khvostikov // 2019 Ninth International
Conference on Image Processing Theory, Tools and Applications (IPTA)
— 2019. — pp. 1–6. DOI: 10.1109/IPTA.2019.8936123 (WoS, Scopus)
[0.1 / 0.35] п.л.

5. Attention-based Convolutional Neural Network for MRI Gibbs-ringing
Artifact Suppression / M. Penkin, A. Krylov, A. Khvostikov //
CEUR Workshop Proceedings — 2020. — vol. 2744. — pp. 1–12.
DOI: 10.51130/graphicon-2020-2-3-34 Импакт-фактор 0,166 (SJR)
[0.5 / 0.7] п.л.

6. Medical Image Joint Deringing and Denoising Using Fourier Neural
Operator / M. Penkin, A. Krylov // Proceedings of the 2023 8th International
Conference on Biomedical Imaging, Signal Processing — 2023. —
pp. 40–45. DOI: 10.1145/3634875.3634881 (ACM International Conference
Proceeding Series, Scopus) Импакт-фактор 0,191 (SJR) [0.2 / 0.35] п.л.

7. Kolmogorov-Arnold Networks as Deep Feature Extractors for MRI
Reconstruction / M. Penkin, A. Krylov // Proceedings of the 2024 9th
International Conference on Biomedical Imaging, Signal Processing —
2024. — pp. 92–97. DOI: 10.1145/3707172.3707186 (ACM International
Conference Proceeding Series, Scopus) Импакт-фактор 0,191 (SJR)
[0.25 / 0.35] п.л.

20



Пенкин Максим Александрович

Гибридные методы анализа и повышения качества медицинских изображений

Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать . . . Заказ №
Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз.

Типография


