МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Суконкин Максим Алексеевич

Подавление влияния приповерхностных неоднородностей на магнитотеллурические данные

1.6.9. Геофизика

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук

Диссертация подготовлена на кафедре геофизических методов исследования земной коры геологического факультета МГУ имени М.В. Ломоносова

Научный Пушкарев Павел Юрьевич

руководитель: доктор геолого-минералогических наук, доцент

Официальные оппоненты:

Белявский Виктор Владимирович, доктор технических доиент. Центр начк. геоэлектромагнитных исследований, филиал ФГБУН Институт физики Земли им. О.Ю. Шмидта Российской академии наук, лаборатория методологии интерпретации электромагнитных данных, главный научный сотрудник

Рыбин Анатолий Кузьмич, доктор физикоматематических наук, ФГБУН Научная станция Российской академии наук в г. Бишкеке, директор, главный научный сотрудник

Шимелевич Михаил Ильич, доктор физикоматематических наук, ФГБОУ ВО «Российский государственный геологоразведочный университет имени Серго Орджоникидзе», Институт цифровых технологий недропользования, кафедра Информационных систем и технологий, профессор

Защита диссертации состоится 19 ноября 2025 г. в 14 часов 30 минут на заседании диссертационного совета МГУ.016.6 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, д. 1, Главное здание МГУ, сектор «А», аудитория 308.

E-mail: dsmsu0403@yandex.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский проспект, д. 27) и на портале: https://dissovet.msu.ru/dissertation/3592

Автореферат разослан «____» октября 2025 г.

Ученый секретарь диссертационного совета МГУ.016.6, кандидат технических наук

К.М. Кузнецов

І. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Метод магнитотеллурического зондирования (МТЗ) применяется при изучении глубинного строения земной коры и верхней мантии, при поиске и разведке месторождений углеводородов, твердых полезных ископаемых и геотермальных ресурсов, а в высокочастотных модификациях — и при решении разных малоглубинных задач. Метод МТЗ использует принцип индукционного зондирования, при этом глубинность исследований определяется периодом колебаний магнитотеллурического (МТ) поля.

Верхняя часть разреза обычно сложена изменчивыми по составу и состоянию горными породами, что выражается в появлении приповерхностных неоднородностей (ЛППН). локальных распространены практически повсеместно, но наиболее проявляются в областях, где отсутствует непрерывный осадочный чехол, в зонах развития многолетнемерзлых пород, в горных регионах. ЛППН ΜΟΓΥΤ обладать хаотичными значениями электрического сопротивления (УЭС), а могут быть преимущественно высокоомными или проводящими.

ЛППН могут существенно искажать МТ данные, причем такие искажения имеют гальванический характер и проявляются в электрическом поле практически во всем диапазоне периодов. Возникают статические смещения амплитудных кривых МТЗ, построенных с использованием компонент тензора импеданса [Z] и теллурического тензора [T]. Это затрудняет интерпретацию МТ данных и может привести к ошибкам при построении геоэлектрических моделей.

Таким образом, подавление эффектов ЛППН в МТ данных является актуальной научной проблемой. Существует ряд подходов к ее решению, связанных с выделением устойчивых к влиянию ЛППН характеристик и с коррекцией этого влияния на амплитудные кривые МТЗ. Диссертационная работа направлена на анализ эффективности и дальнейшее развитие этих подходов.

Степень разработанности темы

Проблема, связанная с искажающим влиянием ЛППН, известна давно, с начала практического применения метода МТЗ. Ей посвящены работы основателей магнитотеллурики М.Н. Бердичевского, Л.Л. Ваньяна, В.И. Дмитриева, А.А. Кауфмана, А.А. Ковтун, И.И. Рокитянского и многих других исследователей.

К настоящему времени сложились три основных группы методов, направленных на подавление влияния ЛППН и извлечение информации о глубинных структурах.

- $1.\$ Методы декомпозиции тензора импеданса. В их основе лежит представление тензора [Z] как произведения матрицы локальных электрических искажений [e], связанных с влиянием ЛППН, и региональной составляющей $[Z^R]$, связанной с глубинными структурами. Эта идея была сформулирована в работе (Zhang, Roberts, Pedersen, 1987). Свое развитие она получила в методах Бара (Bahr, 1988), Грума-Бэйли (Groom, Bailey, 1989), фазового тензора (Caldwell, Bibby, Brown, 2004) и других. В результате применения подобных методов осуществляется переход от тензора импеданса к характеристикам, свободным от влияния ЛППН и чувствительным к глубинным структурам.
- 2. Методы нормализации кривых МТЗ. Их идея заключается в том, чтобы исправить искаженный уровень амплитудных кривых. Например, кривые кажущегося сопротивления могут быть приведены к уровню кривых методов индукционного зондирования с измерением магнитного поля глубинного магнитовариационного зондирования (ГМВЗ) или зондирования становлением поля в ближней зоне (ЗСБ) (Рокитянский, 1971; Andrieux, Wightman, 1984; Pellerin, Hohmann, 1990). Широкое распространение получила пространственная низкочастотная фильтрация, при которой кривые приводятся к уровню, медленно меняющемуся в пространстве. Большое число работ, посвященной этой методике были написаны М. Н. Бердичевским (Бердичевский и др., 1989; Бердичевский и др., 1995).
- 3. Методы коррекции статических смещений в ходе инверсии. В ряде программ решения обратных 2D и 3D задач, помимо параметров модели, подбираются коэффициенты смещения кривых или элементы частотно-независимой матрицы гальванических искажений (Sasaki, Meju, 2006; Avdeeva et al., 2015). Это, однако, повышает число неизвестных параметров и неустойчивость решения.

Цель исследования

Целью исследования является анализ эффективности методов декомпозиции тензора импеданса [Z] и теллурического тензора [T], а также нормализации кривых MT3 с помощью пространственной фильтрации, и в конечном итоге выбор оптимальной методики подавления приповерхностных искажений в данных MT3.

Задачи исследования

- 1. Построение геоэлектрической модели, содержащей глубинную структуру и приповерхностный неоднородный слой. Численное моделирование МТ поля для модели с разными вариантами приповерхностного слоя.
- 2. Разработка программного обеспечения для анализа МТ данных, разделения локальных и региональных эффектов, нормализации амплитудных кривых МТЗ.
- 3. Анализ синтетических МТ данных для оценки искажающего влияния ЛППН в тензоре импеданса и теллурическом тензоре.
- 4. Оценка возможностей методов разделения локальных и региональных эффектов в тензоре импеданса.
- 5. Адаптация методов разделения локальных и региональных эффектов к теллурическому тензору и оценка их возможностей.
- 6. Исследование эффективности использования различных весов при пространственной низкочастотной фильтрации кривых МТЗ.
- 7. Выбор оптимального способа нормализации дополнительных компонент тензора импеданса и теллурического тензора.
- 8. Определение места рассмотренных методов в общем графе MT исследований.

Научная новизна исследования

Составлена характерная геоэлектрическая модель, содержащая проводящую впадину в верхней части высокоомного фундамента и неоднородную верхнюю часть разреза. С использованием синтетических данных, рассчитанных для этой модели, исследованы возможности методов разделения локальных и региональных эффектов в тензоре импеданса [Z]. Эти методы адаптированы к теллурическому тензору [T].

Исследованы возможности коррекции статического смещения с помощью пространственной низкочастотной фильтрации. Впервые опробованы дополнительные весовые характеристики, связанные с различием в уровнях кривых на соседних точках наблюдения и с различием в ориентации амплитудных и фазовых полярных диаграмм. Предложена методика нормализации дополнительных компонент [Z] и [T] с использованием коэффициентов нормализации, вычисленных для основных компонент.

Практическая значимость работы

Применение методов выделения из-под приповерхностного шума неискаженной информации о глубинных структурах и понимание

возможностей этих методов позволит более надежно интерпретировать МТ данные и решать геологические задачи, связанные с изучением глубинного строения и месторождений полезных ископаемых.

Разработанное программное обеспечение может применяться для анализа МТ данных, для подавления в них приповерхностных эффектов, для их визуализации и преобразования в различные форматы.

Полученные результаты рассматриваются в учебном курсе «Прямые и обратные задачи электромагнитных зондирований», читаемом для магистрантов кафедры геофизики геологического факультета МГУ.

Методология и методы диссертационного исследования

Методология исследования построена на использовании синтетических МТ данных, рассчитанных для составленных автором геоэлектрических моделей, для оценки эффективности и дальнейшего развития различных методов подавления приповерхностных эффектов. При этом рассматривались методы, которые можно отнести к двум группам: (1) декомпозиции тензора импеданса [Z] и теллурического тензора [T]; и (2) нормализации амплитудных кривых МТЗ.

В ходе исследования для расчета синтетических МТ данных использовалось программное обеспечение для 3D моделирования МТ3DFwd (автор – R. Mackie). Для анализа и сопоставления результатов применения методов подавления приповерхностных эффектов использовалась программа МТDA, разработанная с участием автора диссертации. Для визуализации результатов в основном применялись программы Grapher и Surfer компании Golden Software.

Защищаемые положения

- 1 В условиях искажения магнитотеллурического поля влиянием локальных приповерхностных неоднородностей фазовый теллурический тензор эффективно решает задачу оценки размерности среды и определения направления простирания региональных структур.
- 2. Эффективность нормализации кривых МТЗ с применением пространственной низкочастотной фильтрации повышается с введением системы дополнительных весов за расхождение между осями амплитудных и фазовых полярных диаграмм, и за отклонение уровня кривой от среднего в скользящем окне.
- 3. Для нормализации дополнительных компонент тензора импеданса и теллурического тензора эффективно использование коэффициентов нормализации, определенных для главных компонент.

Степень достоверности полученных в ходе исследования результатов

Достоверность сделанных выводов об эффективности подходов к подавлению влияния ЛППН на МТ данные подтверждается сравнением результатов применения этих подходов с результатами расчётов для геоэлектрической модели без ЛППН. Также эта достоверность подтверждается согласием с результатами исследований других авторов в той части, в которой они перекрываются.

Основные результаты работы докладывались в ходе серии научных конференций и опубликованы в статьях.

Апробация работы

диссертации Результаты докладывались автором самостоятельно или соавторами докладов на следующих научных конференциях: XXX Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов-2023» (Москва, 2023), Всероссийский семинар по электромагнитным зондированиям Земли, посвященный 100-летию профессора М.Н. Бердичевского (Москва, 2023), 50-я сессия Международного семинара им. Д.Г. Успенского – В.Н. Страхова «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Москва, 2024), VII Международная геолого-геофизическая конференция и выставка «ГеоЕвразия 2024. Геологоразведочные технологии: наука и бизнес» (Москва, 2024), Научная конференция «Ломоносовские чтения - 2024», секция «Геология», подсекция «Геофизика» (Москва, 2024), 6-я конференция Всероссийская научная МФТИ, направление «Фундаментальная и прикладная физика», Секция прикладной геофизики (Долгопрудный, 2024), IX Международный симпозиум «Проблемы геодинамики и геоэкологии внутриконтинентальных орогенов» (Бишкек, 2024), III Научно-практическая конференция «Электроразведка-2024» имени И.Х. Абизгильдина (Москва, 2024), 51я сессия Международного семинара им. Д.Г. Успенского - В.Н. Страхова "Вопросы теории практики геологической интерпретации гравитационных, магнитных и электрических полей" (Пермь, 2025), Научная конференция «Ломоносовские чтения – 2025», секция «Геофизика» 2025), «Геология». подсекция (Москва, VIII Международная геолого-геофизическая конференция и выставка «ГеоЕвразия-2025. Геологоразведочные технологии: наука и бизнес» Международная 2025), 10-я научно-практическая конференция «Инновации в геологии, геофизике и географии — 2025» (Москва, 2025), IX Всероссийская школа-семинар по электромагнитным зондированиям Земли имени М.Н. Бердичевского, Л.Л. Ваньяна и В.И. Дмитриева (Иркутск, 2025).

В сборниках материалов всероссийских и международных конференций опубликовано 2 статьи. Получено 2 свидетельства о регистрации прав на программное обеспечение¹.

Публикации

Основные результаты диссертации опубликованы в 7статьях в рецензируемых научных журналах, из них 5 в изданиях, рекомендованных Ученым советом МГУ для защиты по специальности.

Личный вклад

Автор принимал непосредственное участие в создании геоэлектрической модели и численном моделировании МТ поля, в написании двух зарегистрированных программ (GMC и МТDA) для построения моделей и коррекции магнитотеллурических данных. Автор самостоятельно тестировал методы разделения локальных и региональных магнитотеллурических эффектов, а также адаптировал метод фазового тензора для теллурического тензора. Автором лично была осуществлена нормализация синтетических данных, включая реализацию новых весовых характеристик и методики нормализации дополнительных компонент тензоров.

Во всех опубликованных работах вклад автора является определяющим. Автор принимал активное участие в постановке научных задач, проведении численных исследований, разработке моделей, оценке полученных результатов и подготовке их к печати. Автором была проделана значительная работа над текстом статей с последующим представлением их в редакции

журналов, осуществлена переписка с редакторами и рецензентами.

Структура и объем диссертации

Диссертация состоит из введения, 5 глав, заключения и списка литературы из 98 наименований. Общий объем диссертации — 157 страниц, содержит 67 рисунков и 7 таблиц.

 $^{^{1}}$ 1. Пушкарев П.Ю., Суконкин М.А., Попов Д.Д. Свидетельство № 2024690038 о государственной регистрации программы для ЭВМ "GMC". — М.: Роспатент, 2024.

^{2.} Пушкарев П.Ю., Суконкин М.А., Попов Д.Д. Свидетельство № 2024690039 о государственной регистрации программы для ЭВМ "МТDA". — М.: Роспатент, 2024.

Поддержка работы

В 2024 и 2025 годах работа велась при финансовой поддержке Российского научного фонда, проект № 24-27-00147.

Благодарности

Автор выражает сердечную благодарность своему научному руководителю, д.г.-м.н., профессору кафедры геофизики геологического факультета МГУ Пушкареву Павлу Юрьевичу за неоценимую помощь и поддержку на всех этапах выполнения работы, а также за содействие в написании и публикации статей.

Автор благодарен всем преподавателям, научным сотрудникам, аспирантам и студентам отделения геофизики Московского Государственного Университета за предоставленную возможность получить необходимые для написания представленной работы навыки и знания, за предоставленное программное обеспечение.

Автор выражает свою признательность сотрудникам ООО «НТЦ Северо-Запад» за помощь и советы на разных этапах диссертационного исследования, а также за предоставленные источники литературы.

Отдельно автор хочет поблагодарить начальника отдела комплексных инженерных изысканий БКИИ АО «Атомэнергопроект» Собчинского Николая Сергеевича за помощь с организацией рабочего процесса.

II. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** изложены актуальность темы исследований, степень разработанности проблемы, цели и задачи исследований, научная новизна и практическая значимость работы, сформулированы основные защищаемые положения, приведена информация об апробации и публикациях, а также о личном вкладе автора.

Глава 1. Обзор методов подавления влияния локальных приповерхностных неоднородностей в MT данных.

Первая глава диссертационного исследования разделена на 3 раздела, в первом (1.1) из которых рассматривается природа локальных приповерхностных неоднородностей. Bo втором разделе рассматриваются основные методы нормализации амплитудных кривых МТЗ для борьбы с искажающими эффектами ЛППН. Третий раздел (1.3) описывает методы декомпозиции тензора импеданса, рассматриваются параметры, которые можно устойчиво определить из искаженных МТ данных. Классификация методов, разобранных в этой главе, приведена на рисунке 1.

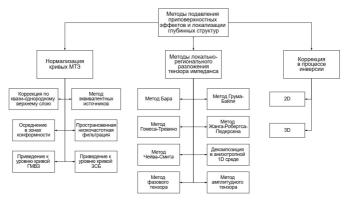


Рисунок 1 — Классификация методов подавления эффектов ЛППН и локализации глубинных структур.

Глава 2. Геоэлектрическая модель с неоднородным верхним слоем и анализ синтетических МТ данных.

В первом разделе (2.1) второй главы описана геоэлектрическая модель, используемая в работе. Она включает в себя фоновый слоистый разрез, глубинную трехмерную неоднородность, а также приповерхностный слой (рисунок 2). Этот слой содержит в себе множество трехмерных ЛППН, распределение которых отображено на рисунке 3. Эти неоднородности были помещены в приповерхностный

слой мощностью 25 метров. Значения удельного электрического сопротивления неоднородностей варьируются от 1 до 100 Ом·м, при фоновом УЭС верхнего слоя 10 Ом·м. Рассмотрены также варианты модели с однородным верхним слоем, а также с ЛППН с аномальным УЭС одного знака относительно вмещающего слоя и с различными мощностями.

При составлении геоэлектрической модели применялась программа GMC (Geophysical Models Creator), написанная автором совместно с П.Ю. Пушкаревым и Д.Д. Поповым (Пушкарев и др., 2024а). Расчеты МТ поля выполнялись с помощью программы MT3DFwd (Mackie et al., 1993).

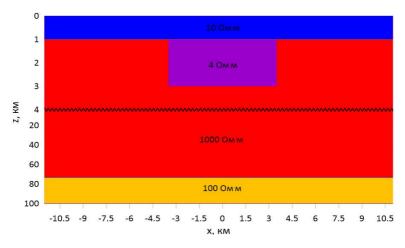


Рисунок 2 — Разрез геоэлектрической модели.

В последующих разделах главы продемонстрировано влияние ЛППН на различные МТ параметры. Для их расчета была задействована программа МТDA (Magneto Telluric Data Analysis), написанная теми же авторами в системе MATLAB (Пушкарев и др., 2024b). На рисунке 4 в качестве примера представлены кривые эффективного кажущегося сопротивления и фазы эффективного импеданса, полученные в точках, обведенных кружками на карте на рисунке 3. Как уже упоминалось ранее, под влиянием аномального поля, связанного с ЛППН, происходит статический сдвиг кривых кажущегося сопротивления, а фазовые кривые остаются практически неизменными. На рисунке 4 а,б изображены кривые МТЗ в точке 1 над высокоомной ЛППН с УЭС 20 Ом·м, здесь кривая кажущегося сопротивления смещается вверх (по

сравнению с результатами для модели с однородным приповерхностным слоем). На рисунке 4 в,г показаны кривые над проводящей ЛППН (точка 2), в этом случае кривая кажущегося сопротивления смещается вниз.

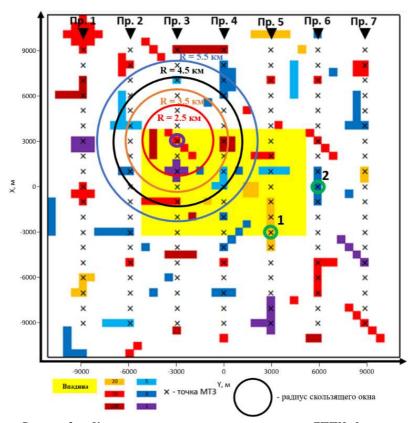


Рисунок 3 — Карта верхнего слоя модели, содержащего ЛППН. Фоновое значение УЭС — 10 Ом·м, УЭС ЛППН меняются от 1 до 100 Ом·м. Желтым прямоугольником показано положение глубинной проводящей впадины. Крестики — точки МТЗ. Треугольниками обозначено направление профилей. Зелеными кружками обведены точки, данные которых представлены на следующих рисунках, а фиолетовым — точка, в которой продемонстрирован анализ нормализованных данных в 5 главе. Тонкими кругами обозначены радиусы скользящего окна, в котором проводилась пространственная фильтрация.

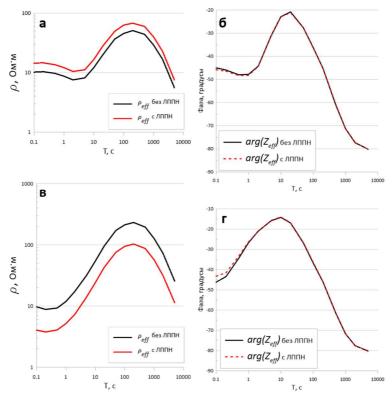


Рисунок 4 — Кривые эффективного кажущегося сопротивления (а, в) и фазы эффективного импеданса (б, г). Вверху (а, б) — точка 1 над высокоомной ЛППН (20 Ом·м), внизу (в, г) — точка 2 над проводящей ЛППН (3 Ом·м).

Глава 3. Локально-региональное разложение тензора импеданса.

В третьей главе на синтетических данных для модели, представленной в предыдущей главе, были опробованы методы Бара (Bahr, 1988) и фазового тензора (Caldwell et al., 2004). В первом разделе (3.1) рассчитывались главные направления тензора импеданса [Z], которые в 2D среде определяют азимуты вдоль и вкрест простирания структур, а для изометричных структур ориентированы в радиальном и азимутальном направлениях. Для определения главных направлений может применяться метод ортогонализации Эггерса (Eggers, 1982), который, однако, неустойчив к влиянию ЛППН. На рисунке 5 крестиками показаны главные направления, определенные методами

Эггерса (слева) и Бара (справа) на периоде 10 с. Видно, что добавление в модель ЛППН влияет на главные направления по Эггерсу, в то время как главные направления по Бару и при этом почти не меняются.

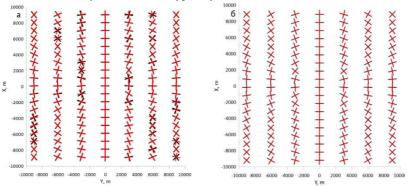


Рисунок 5 — Карты главных направлений тензора импеданса, определенных методами Эггерса (а) и Бара (б) на периоде 10 с. Черные крестики - для модели без ЛППН, красные – для модели с ЛППН. Период 10 с.

Во втором разделе (3.2) проводился анализ параметров асимметрии в различных точках МТЗ, в нем наглядно демонстрируется влияние ЛППН на параметры, определенные методами Свифта (Swift, 1967) и Эггерса, в то же время методы локально-регионального разложения, а именно Бара и фазового тензора, демонстрируют устойчивость к подобным искажениям.

В третьем разделе главы (3.3) строились и анализировались полярные диаграммы различных компонент тензора импеданса. Амплитудные полярные диаграммы главной и дополнительной компонент в точке МТЗ № 1 (см. рис. 3) показаны на рисунке 6. Точка располагается у угла глубинной неоднородности и попадает на вытянутую меридионально ЛППН. На периоде 1 с полярные диаграммы для варианта модели с неоднородным верхним слоем характерны для двухмерной среды и отражают влияние этой ЛППН. На больших периодах добавляется влияние проводящей впадины и наблюдается суперпозиция приповерхностного и глубинного эффектов.

Фазы компонент тензора импеданса менее подвержены влиянию ЛППН, поэтому полярные диаграммы фазы основной компоненты $arg(Z_{xy})$ для вариантов модели с однородным и неоднородным верхним слоем практически совпадают. На рисунке 7 приведены диаграммы фаз главной компоненты тензора импеданса для той же точки МТЗ №1. На коротких и длинных периодах диаграммы свидетельствуют об

одномерном характере среды, а на промежуточном периоде (10 с) вытягиваются под влиянием глубинной структуры. Так как точка расположена у ее угла, то диаграмма поворачивается. Таким образом, полярные диаграммы фаз огибают главную структуру, показывая контур ее границы. Полярные диаграммы фазы в общем случае параллельны или ортогональны амплитудным диаграммам главной компоненты, если последние не осложнены влиянием ЛППН.

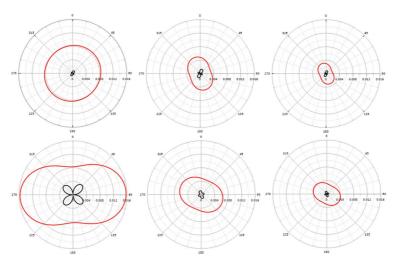


Рисунок 6 — Полярные диаграммы модулей компонент тензора импеданса в точке 1 на периодах 1, 10 и 100 с (слева направо) для двух моделей, сверху — без ЛППН, снизу - с ЛППН. Красный цвет — компонента $|Z_{xy}|$, черный — $|Z_{xx}|$.

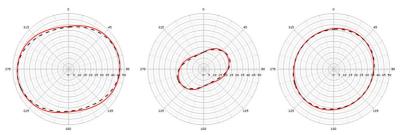


Рисунок 7 — Полярные диаграммы фазы основной компоненты тензора импеданса $arg(Z_{xy})$ на периодах 1, 10 и 100 с (слева направо) в точке МТЗ №1, черный пунктир — модель без ЛППН, красный цвет — с ЛППН.

Глава 4. Локально-региональное разложение теллурического тензора.

Четвертая глава посвящена возможностям применения теллурического тензора [T], определяемого из линейных соотношений электрического поля в рядовой и базовой точках. Базовая точка располагалась в области без неоднородностей вне карты, показанной на рисунке 3. Подходы, применяемые при анализе тензора импеданса, рассмотренные в предыдущей главе, были адаптированы для анализа [T]и опробованы на данных для той же модели. В первых двух разделах главы (4.1 и 4.2) описывается суть метода теллурических токов и поведение [T] в средах различной размерности, а в третьем разделе (4.3) особое внимание уделено теории локально-регионального разложения [T], которое, как и в случае с тензором импеданса, позволяет разделить влияние приповерхностных и глубинных структур. Четвертый раздел (4.4) описывает определяемый по [T] фазовый тензор $[\Phi^T]$, свободный от приповерхностных эффектов.

В пятом разделе (4.5) рассматриваются кривые компонент [T]. На рисунке 8 представлены кривые модулей и фаз главных и дополнительных компонент [T] в точке 1. В случае модели с однородным верхним слоем, кривые модулей главных компонент начинаются с единицы, а в правой части выходят на пониженный уровень, так как точка находится над проводящей впадиной. Также стоит обратить внимание, что смещение по уровню происходит только для одной кривой, что связано с меридиональным простиранием ЛППН.

В шестом разделе (4.6) рассмотрены карты инвариантов [T] — эффективной компоненты $|T_{eff}|$ и ее фазы, теллурических параметров асимметрии Свифта и Бара, а также инвариантов фазового тензора $[\Phi^T]$ — параметров α^T и β^T . Параметр α^T имеет смысл направления, связанного с глубинными структурами. Как видно из рисунка 9, оно ориентировано вдоль или вкрест границ глубинной неоднородности на центральных меридиональном и широтном профилях. По углам планшета, вокруг проводящей впадины, оно ориентировано радиально или азимутально по отношению к ней. Параметр β^T по своему смыслу является параметром асимметрии (аналогом $skew_B^T$), хотя измеряется в градусах, поэтому его значения взяты по модулю и показаны изолиниями. Следует отметить, что полученный по [T] результат очень близок к результату, полученному по тензору импеданса.

Рисунок 8 — Кривые модулей и фаз компонент теллурического тензора в точке 1 для обеих моделей: а — модули главных компонент $|T_{xx}|$ и $|T_{yy}|$, б — фазы главных компонент $arg(T_{xx})$ и $arg(T_{yy})$, в — модули дополнительных компонент $|T_{xy}|$ и $|T_{yx}|$, г — фазы дополнительных компонент $arg(T_{xy})$ и $arg(T_{yx})$.

Наконец в седьмом разделе (4.7) описываются полярные диаграммы компонент [T] и фазового теллурического тензора $[\Phi^T]$. В целом их поведение аналогично диаграммам компонент тензора импеданса. На рисунке 10 приведены полярные диаграммы основной и дополнительной компонент теллурического фазового тензора Φ^T_{xx} и Φ^T_{xy} в точке 1. Диаграммы основной компоненты не зависят от наличия ЛППН и вытягиваются в направлениях, соответствующих азимутальному углу α^T . На рисунке также показаны направления α^T и $\alpha^T_1 = \alpha^T - \beta^T$. В исследуемой точке значения β^T достаточно существенные, особенно на периоде 10 с, и связаны с региональной структурой.

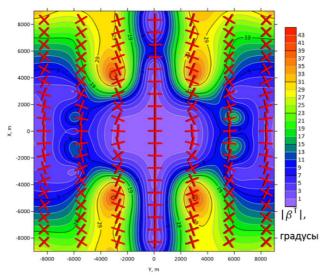


Рисунок 9 — Карта азимутального угла α^T (показан крестиком вместе с α^T +90 0) на фоне значений модуля параметра $[\![|\beta]\!]$ T $[\![|\beta]\!]$ T $[\![|\beta]\!]$ модели с однородным верхним слоем, красный — модели с ЛППН.

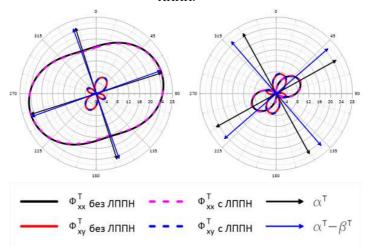


Рисунок 10 — Полярные диаграммы фазового теллурического тензора на периодах 1 и 10 с (слева направо) в точке 1. Черная и красная линии – основная и дополнительная компоненты для модели без ЛППН, фиолетовый и синий пунктир – они же для модели с ЛППН. Черными и синими стрелками показаны (с точностью до 90^0) направления α^T и $\alpha^T - \beta^T$.

В выводах к главе 4 сказано, что переход от теллурического тензора [T] к его фазовому тензору $[\Phi^T]$ позволяет избавиться от влияния ЛППН, сильно искажающих электрическое поле. Карта определяемых по $[\Phi^T]$ направлений α^T характеризует азимуты, связанные с региональной структурой. Сравнивая представленные здесь результаты с полученными в главе 3, можно сделать вывод, что для используемой геоэлектрической модели информативность [Z] и [T] близка. Однако, этот вывод не следует распространять на все случаи, в частности, магнитная составляющая поля весьма информативна при изучении глубинных (коровых и мантийных) проводящих структур.

Глава 5. Нормализация кривых МТЗ с помощью пространственной низкочастотной фильтрации.

В заключительной главе для подавления искажающего эффекта ЛППН была проведена нормализация кривых МТЗ с использованием сглаживающих фильтров в скользящем окне с разными радиусами на периоде $T_0=10$ с. Этот период был выбран после анализа кривых МТЗ, карт и псевдоразрезов МТ параметров на периодах 1, 10 и 100 с, выполненного во второй главе, и показавшего, что искажающее влияние ЛППН на всех этих периодах практически одинаково, даже при увеличении мощности ЛППН.

В первом разделе главы (5.1) рассматривается математическая основа нормализации. Пространственный сглаживающий фильтр, применяемый для расчета значений $f^{\text{сглаж}}(T_{\theta})$, обычно строится таким образом, что текущая точка зондирования имеет при осреднении максимальный вес, а вес соседних точек тем меньше, чем больше расстояние до них R. В диссертации были протестированы две такие весовые характеристики. Первая представляет собой простую линейную зависимость, при этом вес текущей точки W_{lin}^R равен 1, далее он линейно убывает до 0 при увеличении R вплоть до значения R_{θ} (радиус фильтра или радиус скользящего окна). Вторая весовая функция основана на экспоненциальной зависимости от R:

$$W_{exp}^R = e^{-(\frac{|R|}{R_0})^q}.$$

Здесь R_0 принято называть полушириной фильтра (Бердичевский и Дмитриев, 2009). Это регулирующий множитель в показателе экспоненциального фильтра, подбираемый опытным путем и задаваемый соизмеримым с шагом наблюдений или в несколько раз больше в зависимости от размера ЛППН, чье влияние мы хотим подавить. Оптимальная величина параметра крутизны q определяется также опытным путем, в данной работе использовалось значение 3.

Помимо весовых характеристик, отражающих удаление точки от центра скользящего окна, был введен для каждой точки вес W^A ,

«штрафующий» за большое отклонение уровня кривой в точке МТЗ от уровня соседних кривых. Он будет тем меньше, чем сильнее значение f для данной точки отличается от среднегеометрического значения $f^{\text{средн.}}$, вычисленного в пределах круга, ограниченного радиусом фильтра R_{θ} .

Наконец, был введен вес W^D , «штрафующий» за искажающее влияние ЛППН, проявляющееся в разной ориентации амплитудных и фазовых полярных диаграмм. В третьей и четвертой главах был получен вывод, что амплитудные полярные диаграммы как тензора импеданса, так и теллурического тензора сильно подвержены искажениям от ЛППН, в то время как их фазовые диаграммы слабо подвержены влиянию ЛППН, а диаграммы фазового тензора вовсе свободны от таких искажающих эффектов. То есть, сравнивая, например, ориентацию диаграмм модуля главной компоненты $|Z_{xy}|$ и главной компоненты фазового тензора Φ_{xx} можно оценить степень искажающего влияния ЛППН.

Таким образом, общий вес в точке МТЗ определялся по следующей формуле:

$$W = W^R \cdot W^A \cdot W^D$$

Определив веса W, для получения искомого сглаженного значения $f^{\text{сглаж}}(T_0)$ в некоторой точке MT3 выполнялось осреднение по всем точкам в пределах окна:

$$f^{ ext{cглаж}}(T_0) = \prod_{i=1}^M \sqrt[L]{f(T_0, i)^{W_i}}$$

где i — индекс точки, M — число точек в пределах окна, степень корня L — сумма всех использованных весов.

Далее в каждой точке наблюдения рассчитывался коэффициент:

$$k(T_0) = f^{\text{сглаж.}}(T_0)/f(T_0),$$

где $f(T_0)$ – исходное значение поля в данной точке МТЗ на периоде T_0 . Затем вся кривая приводится к сглаженному уровню путем умножения на коэффициент k.

Во втором разделе главы (5.2) для примера приведены результаты нормализации в точке МТЗ, обведенной на рисунке 3 фиолетовым кружком. На рисунке 11а черным цветом обозначена кривая, соответствующая модели с однородным верхнем слоем, красным — модели с ЛППН. Поскольку точка МТЗ находится над высокоомной приповерхностной неоднородностью, наблюдается статическое смещение кривой вверх по уровню. Применение нормализации позволяет уменьшить это смещение (кривые зеленого и синего цветов). Наилучший результат получается при использовании радиуса нормализации 4,5 км.

Далее в главе демонстрируются результаты нормализации эффективного кажущегося сопротивления вдоль третьего профиля (см. рис. 3) на периоде 10 с. Также вычислялись отклонения σ нормализованных данных от данных для модели с однородным верхним слоем по формуле:

$$\sigma = \sqrt{\frac{1}{K} \sum_{k=1}^{K} (\frac{f_k - f_k^{\text{HOPM}}}{f_k})^2},$$

где $f_{\rm k}$ — значение в k-й точке для модели с однородным верхнем слоем, $f_{\rm k}^{\rm Hopm}$ — значение в k-й точке для модели с множеством ЛППН после нормализации. Изначальное отклонение модели с однородным верхним слоем и модели с ЛППН $\sigma_{\rm minh}$ рассчитывалось по той же формуле, только вместо нормализованного значения подставлялось исходное. Соответствующие значения отклонений от неискаженных данных (вычисленные по данным на этом профиле и периоде) приведены в таблице 1.

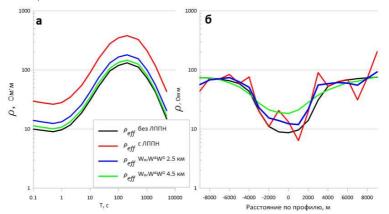


Рисунок 11 — Результаты нормализации эффективного кажущегося сопротивления: а — в точке МТЗ на профиле 3 (см. рис. 3); б — на периоде 10 с вдоль профиля 3. Черные линии отвечают модели без ЛППН, красные – с ЛППН. Зеленые и синие кривые соответствуют различным фильтрам и радиусам скользящего окна (см. легенду, одинаковую для обоих рисунков).

Таблица 1 — Отклонения нормализованных данных от неискаженных (σ) на примере кажущегося сопротивления вдоль профиля 3 (в %), период 10 с.

Используемые	Радиусы скользящего окна (км)			
веса	$R_0 = 2.5$	$R_0 = 3.5$	$R_0 = 4.5$	$R_0 = 5.5$
W_{lin}^R	37.39	48.96	63.24	77.32
W_{exp}^R	49.24	54.24	60.26	62.28
$W_{lin}^RW^{ m A}$	33.89	45.04	59.78	73.34
$W_{exp}^R W^A$	36.13	49.24	57.25	62.59
$W_{lin}^R W^A W^D$	29.67	38.46	54.97	71.11
$W_{exp}^R W^A W^D$	30.11	43.44	50.44	60.33

Наилучший результат здесь наблюдается при использовании наименьшего радиуса $R_0=2,5\,$ км, при больших значениях начинает сглаживаться эффект не только от ЛППН, но и от глубинной структуры. При добавлении весов W^A и W^D ситуация улучшается, что говорит об эффективности их применения. Графики, изображенные на рисунке 11б, построены для обеспечивших наименьшие отклонения случаев с радиусом окна 2,5 км и использованием всех весов. Видно, что над фоновым разрезом нормализация работает хорошо, но над глубинной неоднородностью, размер которой сопоставим с радиусом окна, наблюдается сглаживание аномалии от исследуемой структуры и завышение значений. Графики главных компонент [Z] и [T] ведут себя схожим образом с кажущимся сопротивлением.

Дополнительные компоненты [Z] и [T] ведут себя иначе. При нормализации с фильтром с полушириной 2.5 км отклонения от неискаженных влиянием ЛППН данных получаются больше, чем отклонение ненормализованных данных. Использование же фильтров с большей полушириной, при которых в окно осреднения попадают точки с соседних профилей, еще сильнее искажают полученный результат. Это хорошо видно на рис. 12, где зеленая кривая отвечает результату нормализации с полушириной фильтра 4,5 км. Связанно это с тем, что максимальные значения $|Z_{xx}|$ наблюдаются у углов исследуемой впадины, а в остальных точках МТЗ значения этой компоненты невелики. Дополнительная компонента теллурического тензора ведет себя аналогично. Говоря в общем, важным отличием дополнительных компонент от основных является то, что они более резко меняются в

пространстве, достигая больших значений вблизи неоднородностей и быстро убывая при удалении от них.

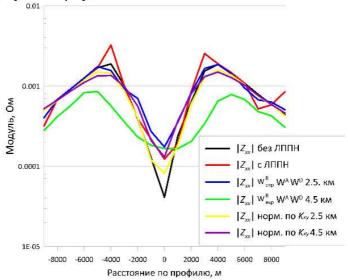


Рисунок 12 — Графики модулей дополнительных компонент [Z] и [T] вдоль профиля 3 (период 10 с): а – компонента | Z_{xx} |, 6 – | T_{xy} |.

Эта ситуация неблагоприятна для нормализации с помощью низкочастотной фильтрации, поэтому в работе предложено выполнять нормализацию кривых по дополнительным компонентам [Z] и [T] с использованием коэффициентов нормализации, вычисленных для основных компонент, связанных с той же составляющей электрического поля (рисунок 13). То есть, например, для $|Z_{xx}|$ использовать коэффициент, определенный для $|Z_{xy}|$, для $|T_{xy}|$ — коэффициент, определенный для $|T_{xx}|$. Результаты, полученные таким способом, также приведены на рис. 12 (желтые и фиолетовые кривые). Видно, что такая нормализация сработала лучше, особенно для широкого фильтра.

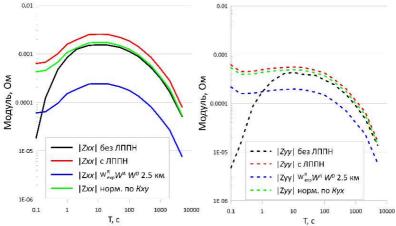


Рисунок 13 — Графики модулей дополнительных компонент тензора импеданса в точке на профиле 3 (см. рис. 3). а – компонента $|Z_{xx}|$, б – компонента $|Z_{yy}|$. Черные линии отвечают модели без ЛППН, красные – с ЛППН. Зеленые кривые – результат нормализации с радиусом 2.5 км, синие кривые соответствуют результату нормализации с радиусом 2.5 км по коэффициентам от главных компонент.

ЗАКЛЮЧЕНИЕ

Оценить эффективность методов подавления приповерхностных искажений по наблюденным МТ данным сложно, поскольку истинные геоэлектрические модели неизвестны. Поэтому в работе использованы синтетические МТ данные, рассчитанные для характерной геоэлектрической модели, содержащей глубинную структуру и неоднородный верхний слой (Суконкин и Пушкарев, 2023).

Рассмотрены методы, основанные на локально-региональном разложении тензора импеданса [Z] и выделении характеристик, связанных с глубинными структурами (методы Бара, фазового тензора). Продемонстрирована их эффективность на данных для нашей модели (Суконкин и Пушкарев, 2024), также они адаптированы для теллурического тензора [T] (Суконкин и Пушкарев, 2025).

Широко применяемым методом нормализации амплитудных кривых МТЗ является пространственная низкочастотная фильтрация. При выборе коэффициента смещения кривой в работе предложено использовать веса за отклонение уровня кривой МТЗ от среднего в скользящем окне, а также за расхождение между осями амплитудных и фазовых полярных диаграмм. Показано, что для дополнительных компонент [Z] и [T] эффективнее использовать коэффициенты

смещения, определенные для соответствующих им главных компонент, связанных с той же составляющей электрического поля.

Рекомендации, перспективы дальнейшей разработки темы:

В заключение можно определить место методов подавления приповерхностных искажений в общем графе МТ исследований.

Прежде всего, их рационально применять на этапе анализа МТ данных, на котором принято выявлять основные аномалии, оценивать размерность среды и простирание структур, оценивать уровень приповерхностных искажений.

Далее рассмотренные методы целесообразно использовать при подготовке данных к инверсии. В зависимости от выбранной размерности среды эта методика может быть следующей:

В 1D случае обычно используется эффективный импеданс, при этом целесообразно выполнить его нормализацию и дальнейшую 1D инверсию.

В 2D случае представляется полезным использовать методы декомпозиции [Z] и [T], например, метод фазового тензора, для определения простирания глубинных структур. Далее можно применить вращение [Z] и [T] для получения квазипродольных и квазипоперечных по отношению к этим структурам характеристик. Затем остается провести нормализацию этих характеристик и их 2D инверсию.

В 3D случае можно рекомендовать процедуру нормализации всех компонент [Z] и [T], причем с использованием коэффициентов, определенных для основных компонент, для нормализации соответствующих дополнительных. Далее можно переходить к 3D инверсии.

Некоторые программы 2D и 3D инверсии позволяют использовать фазовый тензор. Представляется полезным проведение такой инверсии и дальнейшее сравнение с результатами инверсии нормализованных данных.

ІІІ. ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Научные статьи, опубликованные в рецензируемых научных изданиях, индексируемых в базе ядра Российского индекса научного цитирования eLibrary Science index:

- 1. **Суконкин М.А.**, Пушкарев П.Ю. Анализ синтетических магнитотеллурических данных, рассчитанных для геоэлектрической модели с приповерхностными неоднородностями // Геофизика. 2023. № 6. С. 65-69. EDN: <u>GVVAUW</u> (1,5 п.л, вклад автора 60%), Импакт-фактор 0,342 (РИНЦ).
- 2. **Суконкин М.А.**, Пушкарев П.Ю. Использование синтетических магнитотеллурических данных для оценки эффективности методов, основанных на локально-региональном разложении тензора импеданса // Вестник Московского университета. Сер. 4: Геология. 2024. Т. 63, № 6. С. 185-196. EDN: <u>FKGNJL</u> (2,5 п.л, вклад автора 65%), Импакт-фактор 0,288 (РИНЦ).
- 3. **Суконкин М.А.**, Пушкарев П.Ю. Эффекты локальных приповерхностных неоднородностей в магнитотеллурических данных и методы их подавления (обзор) // Гелиогеофизические исследования. $2025 N_{\odot}$. 47. С. 37-51. EDN: <u>DLYVAF</u> (2 п.л, вклад автора 55%), Импакт-фактор 0,370 (РИНЦ).
- 4. **Суконкин М.А.**, Пушкарев П.Ю. Локально-региональное разложение теллурического тензора // Физика Земли. 2025. № 3. С. 54-69. EDN: <u>FFAISM</u> (2,2 п.л, вклад автора 60%), Импакт-фактор 1,176. (РИНЦ).
- 5. **Суконкин М.А.**, Пушкарев П.Ю. Нормализация кривых магнитотеллурического зондирования с помощью пространственной низкочастотной фильтрации // Геология и геофизика. 2025. Т.66 № 10. С. 1376-1390. EDN: TDJATR (3,6 п.л, вклад автора 60%), Импакт-фактор 1,490 (РИНЦ).

Иные публикации

6. **Суконкин М.А.**, Пушкарев П.Ю. Приповерхностные искажения в магнитотеллурических данных на примере грабена // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. — Материалы 50-й юбилейной сессии Международного семинара им. Д.Г. Успенского - В.Н. Страхова, 29 января — 2 февраля 2024 г. Москва: ИФЗ РАН. — Москва: Издательство Перо, 2024. — С. 324—328. (0,56 п.л).

7. **Суконкин М.А.**, Пушкарев П.Ю. Нормализация кривых магнитотеллурического зондирования с учетом фазового тензора // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей: Сборник научных трудов. — Пермь: ГИ УрО РАН, 2025. —Т. 51. — С. 308–312. (0,56 п.л).