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Введение

Актуальность работы обусловлена важностью рассматриваемых задач
во многих промышленных и научных областях, в частности в механике ударно-
волновых процессов в конденсированных средах [1], механике взрывов [2, 3],
технологии обработки металлов давлением [4, 5], а также во многих коммерче-
ских программных комплексах, таких как LS-DYNA [6] и AUTODYN [7]. Более
того, при моделировании динамики многоматериальных упругопластических
сред, эйлеровы модели, основанные на методе диффузной границы, в основ-
ном построены в рамках гиперупругости [8—10]. Следовательно, исследование
задач многокомпонентного течения с использованием гипоупругой модели
Уилкинса может восполнить пробел в научных исследованиях. Учитывая ши-
рокое применение этой модели, данное исследование является необходимым и
имеет большое значение.

Степень разработанности данной темы. Первые попытки современ-
ного описания упругопластичности при конечных деформациях восходят к
теории Прандтля-Рейсса (Prandtl-Reuss theory), в которой основная идея
заключается в разложении приращения деформации в единицу времени на
упругую и пластическую компоненты. Данная теория закладывает основу
для анализа реакции материалов, такой как упрочнение, и широко исполь-
зуется в инженерии, часто в сочетании с критерием текучести Мизеса [11—
13]. С этим тесно связано дальнейшее развитие теории, в которой Трусделл
(Truesdell) предложил теорию гипоупругости, связывающую объективную
производную напряжения Коши или Кирхгофа и скорость деформации через
тензор 4-го порядка, зависящий от напряжения [14—17]. Таким образом, упру-
гая часть в теории Прандтля-Рейсса обычно описывается этим гипоупругим
соотношением, содержащим объективную коротационную или некоротацион-
ную производную, предпочтительно производную Яуманна или производную
Грина-Нагди (Green-Naghdi) напряжения Коши или Кирхгофа.

В рамках данного теоретического направления в 1960-х годах была предло-
жена модель Уилкинса [18], которая первоначально использовалась для реше-
ния задач высокоскоростного удара и распространения упругопластических
волн. Подробные сведения об упругопластических материалах представлены,
например, в [19], где, в частности, приводятся описания материалов, включа-
ющие динамическую пластичность на основе теории дислокаций, упрочнение,
давление и влияние температуры на прочность материала. Математическая
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модель представлена таким образом, что переход от упругой и идеальной пла-
стической моделей к вышеупомянутой теоретической структуре возможен без
внесения каких-либо изменений в базовую программу, решающую уравнения
механики. Благодаря использованию явного интегрирования по времени и
простой стратегии обновления напряжений, вычислительные затраты на один
шаг времени очень низки. Среди численных методов для модели Уилкинса,
разработанных в эти годы, необходимо отметить [20], где модифицирован
классический метод расчёта пластичности — метод радиального возврата
Уилкинса (radial return method), [21], где разработан метод Годунова высо-
кого порядка. В последнее время интерес переключился на центрированные
конечно-объемные методы (cell-centered) [22—24] и методы конечных элементов
[25].

Классическая гипоупругая модель Уилкинса проста, но имеет ряд недо-
статков: выбор объективной производной в некоторой степени произволен,
модель не является термодинамически согласованной, поскольку она генери-
рует энтропию даже в упругом режиме, а из-за производной Яуманна система
не может быть записана в консервативной форме [26]. В общем случае конеч-
ной деформации высказывались разные мнения относительно надлежащего
разложения и формулировки определяющих отношений [27—30]. Однако в
настоящее время не существует единой теории, способной идеально решить
эти проблемы.

Другим подходом к описанию поведения материалов при конечной де-
формации является гиперупругая модель, основанная на концепции функции
энергии деформации [31—33]. Определяя энергию деформации на единицу
объема как функцию метрики деформации, получают соответствующую за-
висимость напряжения-деформации. Данное моделирование имеет прочную
математическую основу и обычно использует тензорный анализ и дифференци-
альную геометрию в качестве инструментов. К этому направлению относится
модель, предложенная Годуновым и Роменским [34] и усовершенствованная
Пешковым и Роменским [35]. Такое выражение естественным образом удовле-
творяет условиям объективности (инвариантности относительно поворота) и
термодинамической согласованности. Однако, большая часть усилий исследо-
вателей на современном этапе направлена на совершенствование определяю-
щих моделей, таких как формулировка поверхностей текучести в пространстве
напряжений. Таким образом, модель Уилкинса по-прежнему предпочтительна
во многих научных, инженерных и промышленных приложениях.

В практическом применении часто возникает задача о течении много-
компонентных гетерогенных сжимаемых сред, содержащих два или более
компонентов [36—38]. Для твердой части сплошной среды обычно исполь-
зуется вышеупомянутая гипоупругая или гиперупругая модель. В аспекте
численных методов альтернативой лагранжевым методам является эйлерова
формулировка механики деформируемых твердых тел с помощью так называ-
емого метода диффузной границы (diffuse interface method) [39, 40]. Данный
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метод представляет собой новый тип описания границы, отличающийся от
традиционных методов объема жидкости (volume-of-fluid method) [41] и опреде-
ления уровня (level set method) [42]. Межфазная граница в методе диффузной
границы представлена в виде узкой смешанной зоны разных фаз, а распределе-
ние фаз определяется функцией порядка (фазовой долей объема). Основным
недостатком метода диффузной границы является то, что интерфейс (грани-
ца) имеет тенденцию к диффузии со временем. Следовательно, для коротких
процессов, таких как большие деформации, вызванные высокоскоростными
ударами твердых тел, подходит эйлеровский метод диффузной границы. Дан-
ный метод широко используется в исследованиях вязкокапиллярных структур
и фазовых переходов [43, 44]. В области моделирования больших упругопла-
стических деформаций в работах [8—10] делается попытка смоделировать
такие процессы в рамках гиперупругой модели. В данном случае используется
простая смешанная модель, которая не может быть применима к другим
упругопластическим моделям, таким как гипоупругая модель Уилкинса.

Таким образом, целесообразно и необходимо создать гипоупругую эйлерову
математическую модель на основе метода диффузной границы. Среда состо-
ит из нескольких различных материалов (фаз), разделенных контактными
межфазными границами (интерфейсами). Предполагается, что каждая фаза
описывается в рамках гипоупругой модели (модели Уилкинса) с критерием
пластичности Мизеса. В дополнении, необходимо разработать соответствую-
щие численные методы для решения неконсервативных моделей. Для такого
типа задач стандартным подходом было использование стратегии «разделения
операторов» (operator splitting): разделение уравнения на консервативную
часть и неконсервативную часть (источник) [45—47]. Не учитывая источник,
консервативная часть решается с использованием схемы Русанова или дру-
гих подобных методов для получения промежуточного решения. Затем это
промежуточное решение используется в качестве начального значения для
решения системы обыкновенных дифференциальных уравнений. Данный под-
ход прост, но в значительной степени зависит от коммутативности операторов
и, как правило, имеет точность только первого порядка. Более того, он раз-
рушает связь между задачами и может некорректно отражать физические
явления, в которых доминируют неконсервативные члены. Для систематиче-
ского решения вышеуказанных проблем была предложена и разработана схема
консервативного пути (Path Conservative Scheme) [48], например, в рамках
метода конечных объемов [49]. Поэтому создание соответствующих численных
методов с использованием этого формата является еще одной важной пробле-
мой и направлением исследований. Следовательно, создание соответствующих
численных методов с использованием этой схемы является еще одной важной
задачей и направлением исследований.

Цели настоящей диссертационной работы
1. Исследовать решение биматериальной задачи Римана для гипоупругой

модели Уилкинса с учетом критерия пластичности Мизеса в упрощенном
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случае одноосной деформации.
2. Разработать эйлерову математическую модель, описывающую течение

разных гипоупругих сред, разделенных межфазными границами, в рам-
ках одной системы определяющих уравнений.

3. Построить численные методы для решения предложенной модели гете-
рогенной (многоматериальной) гипоупругой среды.

4. Создать комплекс программ на основе разработанной модели и числен-
ных методов для решения задач механики гетерогенных гипоупругих
сред. Провести верификационные расчеты с помощью разработанно-
го программного комплекса и сравнение с результатами, полученными
альтернативными методами.

5. Модифицировать гипоупругую модель Уилкинса, сделав ее термодина-
мически согласованной.

Объект и предмет исследования. В диссертации используются методы
вычислительной математики и математического моделирования. Комплекс
программ разработан на языке C.

Научная новизна представленных в диссертации результатов состоит в
следующем:

1. Разработана обобщенная эйлерова модель для неоднородной среды двух
разных гипоупругих материалов, разделенных контактным разрывом.

2. Построены численные методы для решения предложенной модели, обес-
печивающие гарантированное выполнение отсутствия нефизических
численных осцилляций, вызванных неконсервативными членами, на
основе консервативных вдоль пути в фазовом пространстве схем.

3. Предложена модификация модели Уилкинса, обеспечивающая безуслов-
ную термодинамическую согласованность (невозрастание энтропии).

Теоретическая ценность и практическая значимость диссертаци-
онной работы заключаются в разработанной дискретной модели течения
гипоупругих сред, соответствующих численных методах и программном ком-
плексе для расчета параметров течения многоматериальной гипоупругой
среды на эйлеровых сетках. Данная модель и программный комплекс откры-
вает возможность численного моделирования сложных физических процессов
с большими деформациями во многих промышленных задачах.

На защиту выносятся следующие положения:
1. Однородная (гомогенизированная) эйлерова модель Уилкинса для опи-

сания течения двух разных гипоупругих сред, разделенных контактным
разрывом.

2. Численные методы и алгоритмы для решения предложенной модели,
обеспечивающие гарантированное выполнение отсутствия нефизических
численных осцилляций, вызванных неконсервативными членами, на
основе консервативных вдоль пути в фазовом пространстве схем.
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3. Комплекс программ для решения задач механики гетерогенных гипо-
упругих сжимаемых сред.

4. Модификация модели Уилкинса, обеспечивающая безусловную термоди-
намическую согласованность (невозрастание энтропии).

Достоверность и обоснованность полученных результатов обеспече-
ны строгостью используемого математического аппарата и подтверждаются
сравнением результатов вычислительных экспериментов с известными в ли-
тературе экспериментальными и расчетными данными, а также данными,
полученными с помощью других методов.

Апробация работы. Результаты диссертационной работы апробированы
на следующих научных конференциях:

1. Международная научная конференция студентов, аспирантов и молодых
учёных “Ломоносов-2023”.

2. Международная научная конференция студентов, аспирантов и молодых
учёных “Ломоносов-2024”.

3. Конференция «Вычислительная классическая и многофазная гидро-
динамика и термомеханика сплошной среды» (Сочи, Международный
математический центр «Сириус», 2024 г.).

4. Международная научная конференция студентов, аспирантов и молодых
учёных “Ломоносов-2025”.

Публикации. Основные результаты по теме диссертации изложены в
3 печатных работах, изданных в журналах Scopus, WoS, RSCI, а также в
изданиях, рекомендованных для защиты в диссертационном совете МГУ по
специальности и отрасли наук.

Личный вклад соискателя. Основные положения, выносимые на за-
щиту, отражают персональный вклад соискателя в опубликованные работы.
Основные результаты, полученные в диссертации получены лично автором.

Структура и объем диссертации. Диссертация состоит из введения,
четырех глав, заключения и списка литературы. Работа представлена на
99 страницах, содержит 27 иллюстраций и 5 таблиц. Список литературы
содержит 101 наименования.
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Глава 1

Математический анализ
модели Уилкинса

Классическая гипоупругая модель Уилкинса [18] представляется простым
обобщением газодинамических уравнений. Поскольку давления недостаточно
для описания взаимодействия внутренних контактов, добавляются материаль-
ные уравнения для эволюции девиатора тензора напряжений, чтобы учесть
упругие и пластические процессы [50]. В классической модели Уилкинса [18]
внутренняя энергия связана только с термодинамическими параметрами, та-
кими как плотность и давление (аналогично случаю жидкостей). Однако, в
последние годы в ряде работ [50, 51] утверждается, что внутренняя энергия
должна быть связана также со вторым инвариантом девиаторного напряжения
(аналогично случаю гиперупругости). Последний вариант принят в данной
работе. Далее анализируются термодинамические свойства модели и решается
одномерная задача Римана со сдвиговыми напряжениями. Соответствующие
выводы используются при последующей разработке математических моделей
и численных методов.

1.1 Гипоупругая модель Уилкинса

Гипоупругая модель Уилкинса [18], нестационарная трехмерная система
уравнений изотропного твердого тела, в эйлеровой формулировке записывает-
ся следующим образом:
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𝜕𝜌

𝜕𝑡
+∇ · (𝜌𝑢) = 0 (1.1a)

𝜕𝜌𝑢

𝜕𝑡
+∇ · (𝜌𝑢⊗ 𝑢− 𝜎) = 0 (1.1b)

𝜕𝜌𝐸

𝜕𝑡
+∇ · (𝜌𝐸𝑢− 𝜎𝑢) = 0 (1.1c)

𝜕S

𝜕𝑡
+ 𝑢 · ∇S+ SΩ−ΩS− 2𝜇

(︂
D− 1

3
tr (D) I

)︂
= 𝑘S, (1.1d)

где 𝜌 — плотность, 𝑢 — вектор скорости, 𝜎 — тензор напряжений, 𝐸 — полная
энергия, Ω = 1/2

(︀
∇𝑢−∇𝑢T

)︀
— тензор вращения, D = 1/2

(︀
∇𝑢+∇𝑢T

)︀
—

тензор скоростей деформации, 𝜎 = −𝑝I + S, 𝑝 — давление, S — тензор
девиатора напряжения, tr (S) = 0, 𝜇 — модуль сдвига.

Приведенная система обобщает газодинамические уравнения Эйлера, до-
бавляя описание упругих и пластических процессов в деформируемом твердом
теле. Она записывается с помощью симметричного тензора напряжений Ко-
ши 𝜎. Первые три уравнения модели Уилкинса — это обычные уравнения
сохранения массы, импульса и энергии.

В предположении изотропии давление определяется как 𝑝 = −1/3tr (𝜎),
часто называемое гидродинамическим давлением, и считается термодинамиче-
ским параметром. Связь между 𝜌, 𝑝 и внутренней энергией 𝑒 называется урав-
нением состояния. В данной работе используются уравнения Ми-Грюнайзена:

𝑝 (𝜌, 𝑒) = 𝜌0𝑐
2
0𝑓 (𝜂) + 𝜌Γ𝑒

𝑓 (𝜂) =
(𝜂 − 1)

(︀
𝜂 − 1

2Γ (𝜂 − 1)
)︀

(𝜂 − 𝑠 (𝜂 − 1))2

𝜂 =
𝜌

𝜌0
,

(1.2)

где 𝜌0, 𝑐0, 𝑠 — константы и Γ = (𝜕𝑝/𝜕𝑒)𝜌

⧸︁
𝜌 — параметр Грюнайзена.

Стандартная форма полной энергии обычно согласуется с гидродинамикой
и имеет вид, 𝐸 = 𝑒+ 0.5𝑢2 [18, 22]. Однако, в некоторых последних исследо-
ваниях [50, 51] для улучшения термодинамических свойств модели Уилкинса
было предложено учитывать во внутренней энергии также упругие члены и
представлять полную энергию следующим образом:

𝐸 = 𝑒+ 0.5𝑢2 +
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌

. (1.3)

Для малых деформаций материальное уравнение (1.1d) выражает закон
Гука, который определяет линейную связь между тензором напряжений 𝜎 и
тензором малых деформаций 𝜀,

𝜎𝑖𝑗 = 𝜆tr (𝜀𝑖𝑗) 𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗, (1.4)
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где 𝜆, 𝜇 — так называемые коэффициенты Ламе. Используя соотношение
между давлением и тензором напряжений, закон Гука приводится к виду
девиаторных напряжений,

𝑆𝑖𝑗 = −2

3
𝜇tr (𝜀𝑖𝑗) 𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗. (1.5)

Дифференцируя (1.5) по времени (обычно производная Яуманна, 𝐷S/𝐷𝑡 =
𝜕S/𝜕𝑡 + 𝑢 · ∇S + SΩ − ΩS) и предполагая, что 𝜇 является константой,
получается материальное уравнение (1.1d).

Правая часть в уравнении (1.1d) определяет эффект пластических де-
формаций. Для определения пластического течения используется критерий
Мизеса, согласно которому значения компонентов тензора напряжений не
могут выходить за пределы так называемой поверхности текучести Мизеса.
Критерий Мизеса автоматически удовлетворяется, если 𝑘 имеет следующий
вид:

𝑘 = −3𝜇S:D
𝑌 2

𝐻

(︂
S:S
2

− 𝑌 2

3

)︂
, (1.6)

где 𝑌 — предел текучести материала, и 𝐻 (𝑥) — функция Хевисайда. Умножая
уравнение (1.1d) на S справа и слева и суммируя два полученных уравнения,
получаем

S :
𝐷S

𝐷𝑡
+
𝐷S

𝐷𝑡
: S− 2𝜇 (S : D+D : S) = 2𝑘S : S. (1.7)

Следовательно, если S : S ⩾ 2/3𝑌 2,

𝑑 (S : S)

𝑑𝑡
= 2 (S : D)

(︂
2𝜇− 3𝜇

𝑌 2
(S : S)𝐻

(︂
S:S
2

− 𝑌 2

3

)︂)︂
= 0. (1.8)

Это означает, что значения компонентов тензора напряжений увеличивается
только до поверхности текучести.

Учитывая, что производная Яуманна совпадает с материальной производ-
ной для потенциальных течений, для упрощения изложения в последующем
анализе в этой главе рассматривается только одномерная упругая модель без
производной Яуманна, которая записывается в следующем виде:
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𝜕𝜌

𝜕𝑡
+
𝜕 (𝜌𝑢)

𝜕𝑥
= 0

𝜕𝜌𝑢

𝜕𝑡
+
𝜕
(︀
𝜌𝑢2 + 𝑝− 𝑆11

)︀
𝜕𝑥

= 0

𝜕𝜌𝑣

𝜕𝑡
+
𝜕 (𝜌𝑢𝑣 − 𝑆12)

𝜕𝑥
= 0

𝜕𝜌𝑤

𝜕𝑡
+
𝜕 (𝜌𝑢𝑤 − 𝑆13)

𝜕𝑥
= 0

𝜕𝜌𝐸

𝜕𝑡
+
𝜕 (𝜌𝑢𝐸 + (𝑝− 𝑆11)𝑢− 𝑆12𝑣 − 𝑆13𝑤)

𝜕𝑥
= 0

𝜕𝜌𝑆11

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆11)

𝜕𝑥
− 4

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜌𝑆22

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆22)

𝜕𝑥
+

2

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜌𝑆33

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆33)

𝜕𝑥
+

2

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜌𝑆12

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆12)

𝜕𝑥
− 𝜇𝜌

𝜕𝑣

𝜕𝑥
= 0

𝜕𝜌𝑆13

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆13)

𝜕𝑥
− 𝜇𝜌

𝜕𝑤

𝜕𝑥
= 0

𝜕𝜌𝑆23

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆23)

𝜕𝑥
= 0.

(1.9)

1.2 Термодинамические свойства модели
Уилкинса

Мы начнем с рассмотрения модели (1.9) в качестве примера, чтобы объяс-
нить необходимость добавления упругого члена (часто также описываемого
как энергия сдвиговой упругой деформации [52—54]) в полную энергию, т.е. в
уравнение (1.3).

Для линейно-упругого материала энергия деформации рассчитывается
как

U =
3∑︁

𝑖,𝑗=1

∫︁ 𝜀𝑖𝑗

0

𝜎𝑖𝑗𝑑𝜀𝑖𝑗 =
1

2

3∑︁
𝑖,𝑗=1

𝜎𝑖𝑗𝜀𝑖𝑗. (1.10)

Она может быть выражена в терминах давления и девиаторных напряжений
следующим образом

U =
1

2
𝑆𝑖𝑗𝜀𝑖𝑗 −

𝑝

2
𝜀𝑘𝑘 =

𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇

+
𝑝2

2𝐾
, (1.11)

где 𝐾 — объемный модуль упругости. Первый член называется девиаторным
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членом энергии деформации на единицу объема, который сопровождает изме-
нение формы при постоянном объеме, а второй — объемным членом энергии
деформации на единицу объема, который сопровождает объемные изменения.

В отличие от гидродинамики, где внутренняя энергия обычно рассматрива-
ется как функция плотности и давления или только двух термодинамических
параметров, для твердых тел, особенно гиперупругих материалов [51, 55, 56]),
внутренняя энергия должна быть связана и с другими параметрами, такими
как деформация. Для рассматриваемой гипоупругой модели (1.1), используя
уравнения для сохранения массы (1.1a) и импульса (1.1b), и 𝐸 = 𝑒+ 0.5𝑢2,
уравнение(1.1c) переписывается как

𝜌
𝑑𝑒

𝑑𝑡
= 𝜎 : D = S : D− 𝑝tr (D) =

𝑝

𝜌

𝑑𝜌

𝑑𝑡
+ S : Ddev, (1.12)

где Ddev = D − 1
3tr (D) I. Подставляя (1.1d) в уравнение (1.12) и отмечая

производную Яуманна как 𝑑𝑗S/𝑑𝑡, получаем

S : Ddev = S :

(︂
1

2𝜇

𝑑𝑗S

𝑑𝑡

)︂
=

1

2𝜇
S :

(︂
𝑑S

𝑑𝑡
+ SΩ−ΩS

)︂
. (1.13)

Каждый член в уравнении (1.13) упрощается отдельно следующим образом,

S :
𝑑S

𝑑𝑡
=

1

2

𝑑 (S : S)

𝑑𝑡
(1.14a)

S : (SΩ) = tr
(︀
STSΩ

)︀
= tr

(︀
S2Ω

)︀
(1.14b)

S : (ΩS) = tr
(︀
STΩS

)︀
= tr (SΩS) = tr

(︀
ΩS2

)︀
. (1.14c)

Поскольку Ω — антисимметричный тензор, S2 — симметричный тензор,

tr
(︀
S2Ω

)︀
= tr

(︀
ΩS2

)︀
= 0. (1.15)

Таким образом, уравнение (1.12) можно записать в виде

𝑑𝑒

𝑑𝑡
=

𝑝

𝜌2
𝑑𝜌

𝑑𝑡
+

1

4𝜇𝜌

𝑑 (S : S)

𝑑𝑡
. (1.16)

Из этого следует, что для гипоупругой модели Уилкинса внутренняя энергия
должна быть связана не только с давлением и плотностью, но и со вторым
инвариантом девиаторного напряжения, S : S. Тот факт, что внутренняя
энергия является функцией одного или нескольких инвариантов напряжения
или деформации, широко принят в механике твердого тела, поскольку он
отражает объективность, не коррелируя с выбранной системой координат.
Для модели без производной Яуманна (1.9) 𝑑𝑒 имеет точно такой же вид, как
и (1.16).
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С другой точки зрения, включение или невключение упругого члена в
полную энергию в значительной степени влияет на структуру волны в моде-
ли (1.9). В статье [51] теоретический анализ гипоупругой модели с упругим
членом показывает, что в линейной теории, продольные и сдвиговые волны
разделены, и продольные параметры не изменяются под действием сдвиговой
волны, что широко принято в теории волн напряжения [57—59]. Используя
приведенный в статье [51] метод для анализа случая без упругого члена, пока-
зано, что сдвиговая волна в этом случае является нелинейной, причем каждый
параметр состояния среды изменяется при переходе через сдвиговую волну.
Например, в численных расчетах сдвигового слоя в статье [60] параметры,
такие как плотность, давление, и продольная компонента вектора скорости,
значительно изменяются при переходе через сдвиговую волну, когда гипоупру-
гая модель рассчитывается без упругого члена. При теоретическом решении
задачи Римана для модели (1.9) необходимо разобраться с неконсервативной
частью (1.9) на поверхности сильного разрыва, обработка которой требует
интегрирования в фазовом пространстве по определенному пути [49, 61, 62].
Различные варианты пути приводят, вообще говоря, к разным результатам.
То есть, решение задачи Римана для этой модели неединственно.

По этой причине в настоящей работе вместо исходной формы используется
форма полной энергии (1.3). То есть, внутренняя энергия 𝑒 в уравнении (1.16)
делится на термодинамическую часть, которая задается уравнением состояния
и в дальнейшем называется «внутренняя энергия», и упругую часть, которая
задается упругим членом. Уравнение (1.3) впервые было принято в [50], а
затем использовано в [51] для получения аналитического решения задачи
Римана для рассматриваемой модели. А в статье [60] введение упругого члена
объясняется как улучшение термодинамических свойств гипоупругой модели,
особенно энтропии. Более подробно остановимся на этом ниже.

Отношение Гиббса обычно имеет следующий вид:

𝑇𝑑𝑠 = 𝑑𝑒+ 𝑝𝑑

(︂
1

𝜌

)︂
, (1.17)

где 𝑇 — температура, 𝑠 — энтропия. В связи с переопределением внутренней
энергии и принятием уравнения (1.3), (1.16) следует переписать как

𝑑𝑒

𝑑𝑡
=

(︂
𝑝

𝜌2
+
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2

)︂
𝑑𝜌

𝑑𝑡
. (1.18)

Согласно уравнению состояния, внутренняя энергия может быть записана
следующим образом,

𝑑𝑒 = (𝑒𝑝)𝜌𝑑𝑝+ (𝑒𝜌)𝑝𝑑𝜌. (1.19)
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Подставляя уравнение (1.19) в (1.18), получаем, что

𝑑𝑝 =

(︂
𝑝

𝜌2
− (𝑒𝜌)𝑝 +

𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2

)︂⧸︂
(𝑒𝑝)𝜌𝑑𝜌. (1.20)

Термодинамическая скорость звука 𝑎 обычно определяется как

𝑑𝑝 = (𝑝𝜌)𝑠𝑑𝜌+ (𝑝𝑠)𝜌𝑑𝑠 = 𝑎2𝑑𝜌+ (𝑝𝑠)𝜌𝑑𝑠. (1.21)

Комбинируя уравнения (1.17), (1.19) и (1.21), получаем, что

(𝑝𝑠)𝜌 = 𝑇
⧸︁
(𝑒𝑝)𝜌 (1.22a)

𝑑𝑝 = 1
⧸︁
(𝑒𝑝)𝜌𝑑𝑒+

(︁
𝑎2 − 𝑝

⧸︁(︁
(𝑒𝑝)𝜌𝜌

2
)︁)︁

𝑑𝜌 (1.22b)

𝑎2 =
(︁
𝑝
⧸︁
𝜌2 − (𝑒𝜌)𝑝

)︁⧸︁
(𝑒𝑝)𝜌. (1.22c)

Следовательно, уравнение (1.20) также записывается в виде

𝑑𝑝 =

(︃
𝑎2 +

𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2(𝑒𝑝)𝜌

)︃
𝑑𝜌. (1.23)

Сравнивая уравнения (1.21), (1.23) и (1.22a) получаем, что

𝑇𝑑𝑠 =
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2

𝑑𝜌. (1.24)

Это доказывает, что даже в упругом обратимом процессе без ударной волны
скорость изменения энтропии все еще не равна 0 из-за наличия девиаторно-
го напряжения. Та же проблема остается и для случая, когда внутренняя
энергия равна 𝐸 = 𝑒+ 0.5𝑢2. Гаврилюк и другие [51] предлагают для стро-
гого математического анализа этой модели модифицировать ее с помощью
предположения,

𝑑 (𝜇𝜌)

𝑑𝑡
= 0. (1.25)

По тем же причинам Депре [63] предлагает более сильное предположение,
что 𝜇𝜌 остается постоянным. Это является одним из способов согласовать
модель Уилкинса со вторым законом термодинамики, но когда 𝜇 считается
непостоянной, она обычно является функцией плотности и температуры [50]
или напряжения [64], и обычно не удовлетворяет уравнению (1.25). Однако в
настоящее время в теории постоянный модуль сдвига может быть и использу-
ется на практике [65—67], когда деформация мала и материал деформируется
в линейной упругой стадии. Учитывая упрощенный анализ и модель, 𝜇 в
данной работе рассматривается как константа. Таким образом, мы сталкива-
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емся с моделью Уилкинса с нефизическим диссипативным поведением из-за
изменения энтропии. Учитывая, что материальными уравнениями (1.1d) яв-
ляются законом Гука для линейной упругости (1.4), и определение давления
𝑝 = −1/3tr (𝜎), то при малых деформациях

𝑑𝑝 = −1

3
𝑑𝜎𝑘𝑘 = −

(︂
𝜆+

2

3
𝜇

)︂
𝑑𝜀𝑘𝑘 =

(︂
𝜆+

2

3
𝜇

)︂
𝑑𝜌

𝜌0
, (1.26)

где 𝜌0 — начальная плотность. Определив скорость звука 𝑐 для модели
Уилкинса (1.1) как

𝑑𝑝 =

(︃
𝑎2 +

𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2(𝑒𝑝)𝜌

)︃
𝑑𝜌 = 𝑐2𝑑𝜌, (1.27)

и сравнивая с уравнением (1.26),

𝜌𝑐2 = 𝜆+
2

3
𝜇. (1.28)

Обычно дается уравнение состояния, поэтому коэффициенты в уравнении
(1.19) считаются известными величинами, так что связь между внутренней
энергией и давлением может быть выражена как

𝑑𝑒 =
(︁
(𝑒𝑝)𝜌 + (𝑒𝜌)𝑝

⧸︁
𝑐2
)︁
𝑑𝑝. (1.29)

Уравнения (1.26 – 1.29) получены на основе определения 𝑝 и предположения,
что 𝑝 является термодинамическим параметром. Эти выводы используются в
работе над моделью в Главе 2.

1.3 Задача Римана

Мы рассматриваем одномерную модель Уилкинса (1.9), в которой все
параметры состояния изменяются только вдоль оси x, т.е. как функция от
(𝑡, 𝑥). Для малых вращательных деформаций производная Яуманна также
может быть заменена материальной производной. При решении задачи Римана
для модели Уилкинса (1.9) мы будем использовать вектор W примитивных
переменных вместо вектора Q консервативных переменных:

𝜕W

𝜕𝑡
+A (W)

𝜕W

𝜕𝑥
= 0, (1.30)
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где

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌
𝑢
𝑣
𝑤
𝑝
𝑆11

𝑆22

𝑆33

𝑆12

𝑆13

𝑆23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢 𝜌 0 0 0 0 0 0 0 0 0
0 𝑢 0 0 1

𝜌 −1
𝜌 0 0 0 0 0

0 0 𝑢 0 0 0 0 0 −1
𝜌 0 0

0 0 0 𝑢 0 0 0 0 0 −1
𝜌 0

0 𝜌𝑐2 0 0 𝑢 0 0 0 0 0 0
0 −4

3𝜇 0 0 0 𝑢 0 0 0 0 0
0 2

3𝜇 0 0 0 0 𝑢 0 0 0 0
0 2

3𝜇 0 0 0 0 0 𝑢 0 0 0
0 0 −𝜇 0 0 0 0 0 𝑢 0 0
0 0 0 −𝜇 0 0 0 0 0 𝑢 0
0 0 0 0 0 0 0 0 0 0 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.31)

Здесь 𝑐 — скорость звука, которая определяется по уравнению (1.27), 𝑎 — гид-
родинамическая скорость звука, которая определяется по уравнению (1.22c).

Задача Римана для модели Уилкинса, математически формулируется как
задача Коши для системы уравнений (1.30) и (1.31), с начальными данными

W′ (𝑥, 0) = [W, 𝜇] =

{︂
[W1𝐿,W2𝐿, 𝜇𝐿] , 𝑥 < 0

[W1𝑅,W2𝑅, 𝜇𝑅] , 𝑥 > 0,
(1.32)

где W1 = [𝜌, 𝑢, 𝑝, 𝑆11, 𝑆22, 𝑆33]
T,W2 = [𝑣, 𝑤, 𝑆12, 𝑆13, 𝑆23]

T.
В силу автомодельности решение задачи Римана зависит только от пере-

менной подобия 𝜉 = 𝑥/𝑡, и, поэтому

(A− 𝜉I)
𝑑W

𝑑𝜉
= 0. (1.33)

Таким образом, 𝜉 — должно совпадать с собственным значением A, а 𝑑W/𝑑𝜉 —
с соответствующим правым собственным вектором A.

Тривиальным решением уравнения (1.33) является случай, когда 𝑑W/𝑑𝜉 =
0, что соответствует кусочно постоянным решениям. В разных областях могут
быть разные значения констант. Нетривиальным решением уравнения (1.33)
является случай, когда det (A− 𝜉I) = 0, что соответствует двум возможным
разрывным решениям, а именно слабому разрыву (волна разрежения) и силь-
ному разрыву (ударная и контактная волна). Для сильного разрыва ударных
и контактных волн, поскольку W является разрывным, мы используем символ
[W] вместо 𝑑W.

Исходя из собственных значений, мы называем различные волны следую-
щим образом: 𝜆1−5 = 𝑢 соответствует контактной волне, 𝜆6,7 = 𝑢±

√︁
𝑐2 + 4𝜇

3𝜌

соответствует продольной волне, 𝜆8−11 = 𝑢 ±
√︁

𝜇
𝜌 соответствует сдвиговой
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волне. Полный набор соответствующих собственных векторов показан ниже,

𝜆 = 𝑢,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 𝑢±
√︂
𝑐2 +

4𝜇

3𝜌
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝜌
2𝜇

3
2𝜇

√︁
𝑐2 + 4𝜇

3𝜌

0
0

3𝜌𝑐2

2𝜇

−2
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝜌
2𝜇

− 3
2𝜇

√︁
𝑐2 + 4𝜇

3𝜌

0
0

3𝜌𝑐2

2𝜇

−2
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 𝑢±
√︂
𝜇

𝜌
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0
0
0

−√
𝜇𝜌

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
1
0
0

−√
𝜇𝜌

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0
0
0√
𝜇𝜌
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
0
0√
𝜇𝜌
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(1.34)

где для сдвиговой волны первые два собственных вектора соответствуют
правым движущимся волнам, а последние два — левым.

Стандартная процедура расчетов, как и в [68], показывает, что характери-
стические поля контактной и сдвиговой волны линейно вырождены, в отличие
от продольной волны, которая является действительно нелинейной. Волны
действительно нелинейного поля - это либо ударные волны, либо волны разре-
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жения, в зависимости от того, сходятся или расходятся характеристики, в то
время как волны линейно вырожденного поля - это исключительно контакт-
ные разрывы [69]. Таким образом, без учета вакуумной ситуации существует
четыре возможных структуры волн в задаче Римана, как показано на рисунке
1.1.

 

контактная 

волна 

сдвиговая 

волна 

 

ударная  

волна 

 

сдвиговая 

волна 

ударная  

волна 

𝐖𝐿, 𝜇𝐿 𝐖𝑅 , 𝜇𝑅 

𝐖𝐿
∗, 𝜇𝐿 

𝐖𝐿
∗∗, 𝜇𝐿 𝐖𝑅

∗∗, 𝜇𝑅 
𝐖𝑅

∗, 𝜇𝑅 

 

волна 

разрежения 

 

волна 

разрежения 

 

волна 

разрежения 
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волна 

 

 

 

ударная  

волна 

 

волна 

разрежения 

Рисунок 1.1 — Возможные волновые конфигурации задачи Римана.

Сначала исследуется изменение параметров среды перед и за контактными
и сдвиговыми волнами. Характеристики параллельны таким разрывам, что
совпадает с линейными гиперболическими системами с постоянными коэф-
фициентами, а собственные значения матрицы Якоби слева и справа от этих
разрывов равны скорости cамой волны. Обобщенные инварианты Римана
показывают, какие величины не меняются при переходе через волну [68]. Оче-
видно, для этого можно использовать также соотношения Ранкина-Гюгонио
на сильном разрыве. Используя (1.31) и правые собственные векторы (1.34),
для контактной волны получим

[𝑢] = [𝑣] = [𝑤] = 0

[𝑆12] = [𝑆13] = 0

[𝑝− 𝑆11] = 0.

(1.35)

Для сдвиговой волны,
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[𝜌] = 0, [𝑢] = 0, [𝑝] = 0

[𝑆11] = [𝑆22] = [𝑆33] = 0

[𝑆23] = 0

𝑆**
12𝑅 − 𝑆*

12𝑅 =
√︀
𝜇𝑅𝜌*𝑅 (𝑣

*
𝑅 − 𝑣**𝑅 )

𝑆**
12𝐿 − 𝑆*

12𝐿 = −
√︀
𝜇𝐿𝜌*𝐿 (𝑣

*
𝐿 − 𝑣**𝐿 )

𝑆**
13𝑅 − 𝑆*

13𝑅 =
√︀
𝜇𝑅𝜌*𝑅 (𝑤

*
𝑅 − 𝑤**

𝑅 )

𝑆**
13𝐿 − 𝑆*

13𝐿 = −
√︀
𝜇𝐿𝜌*𝐿 (𝑤

*
𝐿 − 𝑤**

𝐿 ) .

(1.36)

Далее рассматриваются свойства продольных волн. Если продольная волна
является волной разрежения, то используя (1.31) и (1.34), получаем

𝑑𝑣 = 𝑑𝑤 = 0

𝑑𝑆12 = 𝑑𝑆13 = 𝑑𝑆23 = 0

𝑑𝑆11 = −2𝑑𝑆22 = −2𝑑𝑆33

𝑑𝑝 = 𝑐2𝑑𝜌 = 𝑎2𝑑𝜌+
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2𝑒𝑝

𝑑𝜌

𝑑𝑢 = ±

√︁
𝑐2 + 4𝜇

3𝜌

𝜌
𝑑𝜌

𝑑𝑆11 = −4𝜇

3𝜌
𝑑𝜌,

(1.37)

где верхний знак берется для волны, расположенной справа от контактного
разрыва, а нижний — для волны слева от разрыва. Параметр 𝜇 также берется
для соответствующего материала.

Заметим, что последнее уравнение в (1.37) показывает, что 𝑆11 является
функцией только плотности. Следовательно, 𝑑𝑝 = 𝐹 (𝑝, 𝜌)𝑑𝜌, что обычно
может быть решено только численно. Из соотношения между 𝑑𝑝 и 𝑑𝜌 следует,
что модель Уилкинса не является изоэнтропийной даже в упругой стадии,
когда ударная волна не возникает. Согласно выводам из раздела 1.2, стро-
гая изэнтропия требует условия (1.25). Когда 𝜇 может рассматриваться как
константа, условие (1.25) может быть интерпретировано как случай малых
деформаций, что разумно для модели Уилкинса. Таким образом, в пред-
положении малых деформаций, если пренебречь членом в 𝑐2, содержащим
девиаторное напряжение, получается

𝑑𝑝 = 𝑐2𝑑𝜌 = 𝑎2𝑑𝜌 =

(︂
𝜕𝑝

𝜕𝜌

)︂
𝑠

, 𝑑𝑠 = 0. (1.38)

Интегрирование (1.38) дает 𝑝 = 𝑝 (𝜌) и, подставив его в уравнения (1.37),
мы получим остальные примитивные переменные, как функции от 𝑝 или 𝜌.
Для случая двучленного уравнения состояния это приводит к уравнениям
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(10)—(12) из [51].
Рассмотрим теперь случай, когда продольная волна является ударной.

Перепишем уравнения для 𝑆11, 𝑆22, 𝑆33 в консервативной форме как

𝜕 (𝜌𝑆11 + 4/3𝜇𝜌ln𝜌)
𝜕𝑡

+
𝜕 (𝜌𝑆11 + 4/3𝜇𝜌ln𝜌)𝑢

𝜕𝑥
= 0

𝜕 (𝜌𝑆22 − 2/3𝜇𝜌ln𝜌)
𝜕𝑡

+
𝜕 (𝜌𝑆22 − 2/3𝜇𝜌ln𝜌)𝑢

𝜕𝑥
= 0

𝜕 (𝜌𝑆33 − 2/3𝜇𝜌ln𝜌)
𝜕𝑡

+
𝜕 (𝜌𝑆33 − 2/3𝜇𝜌ln𝜌)𝑢

𝜕𝑥
= 0.

(1.39)

Для тангенциальных девиаторных напряжений 𝑆12, 𝑆13 уравнения являют-
ся, в общем случае, неконсервативными. Однако, если положить, скорости 𝑣 и
𝑤 не меняются при переходе через ударную волну, то неконсервативный член
исчезает, и можно записать для этого случая соотношения Ранкина-Гюгонио:

[𝑣] = [𝑤] = 0

[𝑆12] = [𝑆13] = 0.
(1.40)

Использование соотношений Ранкина-Гюгонио для (1.39) дает

𝑆*
11 = 𝑆11 +

4

3
𝜇ln
(︂
𝜌

𝜌*

)︂
𝑆*
22 = 𝑆22 −

2

3
𝜇ln
(︂
𝜌

𝜌*

)︂
𝑆*
33 = 𝑆33 −

2

3
𝜇ln
(︂
𝜌

𝜌*

)︂
,

(1.41)

Используя соотношения Ранкина-Гюгонио для остальных уравнений в (1.9),
получаем линию Рэлея-Михельсона и ударную адиабату Гюгонио, записанные
в следующем виде:

𝜎*11 − 𝜎11 = (𝜌 (𝑢−𝐷))2
(︂

1

𝜌*
− 1

𝜌

)︂
= 𝑚2

(︂
1

𝜌*
− 1

𝜌

)︂
𝑒* − 𝑒+

𝑆*2
11 + 𝑆*2

22 + 𝑆*2
33

4𝜇𝜌*

− 𝑆2
11 + 𝑆2

22 + 𝑆2
33

4𝜇𝜌
=

1

2
(𝜎*11 + 𝜎11)

(︂
1

𝜌*
− 1

𝜌

)︂
,

(1.42)

где 𝐷 — скорость ударной волны. Разложив функцию ln (𝜌/𝜌*) и оставив
только член первого порядка (малое изменение плотности), второе уравнение
в (1.42) может быть изменено на
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𝑒* − 𝑒+
𝑆2
11 + 𝑆2

22 + 𝑆2
33

4𝜇

(︂
1

𝜌*
− 1

𝜌

)︂
=

1

2
(𝑝* + 𝑝)

(︂
1

𝜌
− 1

𝜌*

)︂
. (1.43)

Дальше для решения требуется конкретное уравнение состояния 𝑒 (𝑝, 𝜌).
После алгебраических вычислений получается, что параметры за ударной
волной 𝑆*

11, 𝑆
*
22, 𝑆

*
33, 𝑝

*,𝑚*, 𝑢* являются однозначными функциями от 𝜌*.
Отметим, что при упрощении (1.40), (1.41) – (1.43) являются одним из воз-

можных решений задачи Римана. Когда (1.40) не выполняется, существование
других решений требует дальнейшего математического анализа.

Таким образом, получены соотношения параметров перед и за каждой
волной в задаче Римана. Оказывается, что W2 не меняется на продольных
волнах, а W1 не меняется на сдвиговых волнах. Определения W1 и W2 при-
ведены в уравнении (1.32). Следовательно, соотношения между параметрами
на рисунке 1.1 могут быть упрощены, как показано на рисунке 1.2.
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Рисунок 1.2 — Волновая структура в решении задачи Римана.

После рассмотрения начального условия (1.32), согласно (1.35) и (1.36)
получаем

W*
2𝐿 = W*

2𝑅

𝑣* =
−𝑆12𝐿 + 𝑆12𝑅 +

√︀
𝜇𝑅𝜌*𝑅𝑣𝑅 +

√︀
𝜇𝐿𝜌*𝐿𝑣𝐿√︀

𝜇𝑅𝜌*𝑅 +
√︀
𝜇𝐿𝜌*𝐿

𝑆*
12 =

√︀
𝜇𝑅𝜌*𝑅𝑆12𝐿 +

√︀
𝜇𝐿𝜌*𝐿𝑆12𝑅 +

√︀
𝜇𝐿𝜌*𝐿𝜇𝑅𝜌

*
𝑅 (𝑣𝑅 − 𝑣𝐿)√︀

𝜇𝑅𝜌*𝑅 +
√︀
𝜇𝐿𝜌*𝐿

𝑤* =
−𝑆13𝐿 + 𝑆13𝑅 +

√︀
𝜇𝑅𝜌*𝑅𝑤𝑅 +

√︀
𝜇𝐿𝜌*𝐿𝑤𝐿√︀

𝜇𝑅𝜌*𝑅 +
√︀
𝜇𝐿𝜌*𝐿

𝑆*
13 =

√︀
𝜇𝑅𝜌*𝑅𝑆13𝐿 +

√︀
𝜇𝐿𝜌*𝐿𝑆13𝑅 +

√︀
𝜇𝐿𝜌*𝐿𝜇𝑅𝜌

*
𝑅 (𝑤𝑅 − 𝑤𝐿)√︀

𝜇𝑅𝜌*𝑅 +
√︀
𝜇𝐿𝜌*𝐿

.

(1.44)

Используя соотношения (1.37) и (1.40)—(1.43), получаем W*
1 как функцию

плотности, W*
1𝐿 (𝜌

*
𝐿) и W*

1𝑅 (𝜌
*
𝑅), что зависит от случая ударных волн или

волн разрежения. Согласно (1.35), 𝑢*𝐿 = 𝑢*𝑅 = 𝑢*. Следовательно, W*
1 может



22

быть условно преобразовано в нелинейную систему уравнений для скорости
контактной волны 𝑢*, которая затем итерационно решается методом Ньютона-
Рафсона. Начальное значение для 𝑢* может быть оценено как

𝑢* =
𝜌𝑅𝑢𝑅 (𝑢𝑅 − 𝑠𝑅)− 𝜌𝐿𝑢𝐿 (𝑢𝐿 − 𝑠𝐿)− 𝜎11𝑅 + 𝜎11𝐿

𝜌𝑅 (𝑢𝑅 − 𝑠𝑅)− 𝜌𝐿 (𝑢𝐿 − 𝑠𝐿)
. (1.45)

Если 𝑢* > 𝑢𝑅, то используются соотношения ударной волны (1.40)—(1.43).
Если 𝑢* ⩽ 𝑢𝑅, то используются соотношения для волн разрежения (1.37).
Согласно (1.35), условием окончания итерации является то, что разность 𝜎11
по обе стороны контактной волны меньше порогового значения, то есть,

−𝑝*𝐿 (𝑢*) + 𝑆*
11𝐿 (𝑢

*) = −𝑝*𝑅 (𝑢*) + 𝑆*
11𝑅 (𝑢

*) . (1.46)

Теоретическое решение задачи Римана с критерием пластичности еще
требует дальнейшего математического анализа. Тем не менее, для некото-
рых конкретных случаев решение оказывается проще. В случае, когда в
начальном условии (1.32) W2 = 0, т.е. соответствует случаю одноосной де-
формации, приведенные выше результаты вырождаются и согласуются с
выводами, представленными в статьях [70—72], где решение пластической
волны приводится. Например, когда генерируется ударная волна, для ситуа-
ции упруго-пластического перехода существует критический предел интен-
сивности удара, который выражается плотностью за ударной волной. Если
интенсивность ударной волны ниже этого значения, то возникает двухвол-
новая структура, и скорость упругой волны больше скорости пластической
волны. Напротив, если интенсивность удара выше критического значения,
возникает одиночная волна. Параметры перед и за упругой и пластической
волнами по-прежнему задаются уравнениями (1.42) и (1.43), за исключением
того, что они соответствуют разным 𝑚. В случае одиночной пластической
волны при переходе через нее изменяются плотность, скорость 𝑢, давление
и девиаторное напряжение 𝑆11. В силу критерия пластичности абсолютное
значение 𝑆11 за волной достигает максимального значения, определяемого
данным критерием. В случае двухволновой структуры за упругой волной 𝑆11

изменяется от начального значения до максимального, а остальные парамет-
ры изменяются соответственно. При переходе через пластическую волну 𝑆11

остается неизменным, а другие параметры продолжают изменяться. Однако,
когда W2 ̸= 0, и за продольной волной материал достигает пластической
фазы, введение и описание сдвиговой пластической волны остаются пока
неизвестными.
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Глава 2

Одномерная биматериальная
математическая модель
Уилкинса

В главе 1 мы исследовали математические свойства одноматериальной
модели Уилкинса, как для особого случая одноосной деформации, так и
для общего случая со сдвиговыми напряжениями. В этой главе на основе
метода диффузной границы разработана одномерная эйлерова модель для
двухматериальных гипоупругих сред. Эта модель представляет собой рав-
новесную редуцированную модель, которая получается путем применения
асимптотического анализа к неравновесной модели диффузной границы раз-
дела биматериалов. Эта неравновесная модель, в свою очередь, получена с
помощью процедуры усреднения по по пространству, примененной к гипоупру-
гой модели Уилкинса. В частном случае одноосной деформации девиаторное
напряжение является однозначной функцией плотности. Поэтому определя-
ющие уравнения фактически совпадают с уравнениями гидродинамики. В
этом случае мы можем рассматривать упругопластический материал как
псевдожидкость и по аналогии с гидродинамическими результатами (модель
Байера-Нунциато и ее редуцированная равновесная версия) непосредственно
получить биматериальную модель для случая одноосной деформации. Этот
результат полностью согласуется с результатом, получающимся из общего
случая, к рассмотрению которого мы переходим ниже после вырождения в
общем случае.
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2.1 Неравновесная биматериальная модель
диффузной границы

Наша задача — обобщить модель Уилкинса на случай двух различных
материалов, то есть 𝛼 и 𝛽, разделенных интерфейсом, используя метод диф-
фузной границы. Мы вводим характеристическую функцию 𝜒 (𝑡,𝑥) = 1, если
𝑥 лежит в области материала 𝛼, и 𝜒 (𝑡,𝑥) = 0, если 𝑥 находится в материале
𝛽. Эта функция удовлетворяет уравнению переноса

𝜕𝜒

𝜕𝑡
+ 𝑢𝐼

𝜕𝜒

𝜕𝑥
= 0, (2.1)

где 𝑢𝐼 — скорость на границе. Это и есть топологическое уравнение, кон-
кретное доказательство которого приведено в главе 9 работы [73]. Введем
фильтр, то есть небольшую область 𝑉 с центром в точке 𝑥. В общем случае
она состоит из подобластей, занятых двумя материалами. Для удобства мы
введем функцию фильтра 𝜓, принимающую значение 1 в этой малой области
и 0 на остальном пространстве. Вначале мы докажем две важные формулы,
которые понадобятся позже.

• Лемма 1

∫︁
𝑉

𝑓
𝜕𝜒

𝜕𝑡
𝑑𝑉 = −

∫︁
𝑆𝑉

𝑓𝑢𝐼 · n𝑑𝑆, (2.2a)∫︁
𝑉

𝑓∇𝜒𝑑𝑉 =

∫︁
𝑆𝑉

𝑓n𝑑𝑆, (2.2b)

где 𝑓 — произвольная пробная функция 𝑓 = 𝑓(𝑡,𝑥), 𝑆𝑉 — интерфейс между
компонентами, n — единичная внешняя нормаль к 𝑆𝑉 , направленная в сторону
материала 𝛼.

Рассматривается множество пробных функций, 𝜑 (𝑥, 𝑡) ∈ Φ, имеющих
компактный носитель и производные всех порядков. Если 𝑔 (𝑥, 𝑡) является
разрывной функцией, производные 𝑔 определяются следующим образом:∫︁

Ω

𝜑 (𝑥, 𝑡)
𝜕𝑔 (𝑥, 𝑡)

𝜕𝑡
𝑑𝑣𝑑𝑡 = −

∫︁
Ω

𝜕𝜑 (𝑥, 𝑡)

𝜕𝑡
𝑔 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡, (2.3a)∫︁

Ω

𝜑 (𝑥, 𝑡)∇𝑔 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡 = −
∫︁
Ω

∇𝜑 (𝑥, 𝑡) 𝑔 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡, (2.3b)

для любого 𝜑 ∈ Φ, где Ω является компактным множеством в пространстве и
времени, таким, что носитель 𝜑 лежит в Ω. Следовательно,
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∫︁
Ω

𝜑 (𝑥, 𝑡)∇𝜒 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡 = −
∫︁
Ω

∇𝜑 (𝑥, 𝑡)𝜒 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡

= −
∫︁
Ω𝛼

∇𝜑 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡 = −
∫︁
𝜕Ω𝛼

n𝛼𝜑 (𝑥, 𝑡) 𝑑𝑠𝑑𝑡

= −
∫︁
Ω

n𝛼𝛿 (𝑥− 𝑥𝑖, 𝑡)𝜑 (𝑥, 𝑡) 𝑑𝑣𝑑𝑡,

(2.4)

где Ω𝛼 — пересечение Ω с компонентой 𝛼, 𝜕Ω𝛼 — интерфейс между ком-
понентами, n𝛼 — единичный нормальный вектор в направлении, внешнем
по отношению к компоненту 𝛼, 𝛿 (𝑥− 𝑥𝑖, 𝑡) — дельта-функция Дирака для
интерфейса. Таким образом,

∇𝜒 = −n𝛼𝛿 (𝑥− 𝑥𝑖, 𝑡) . (2.5)

Комбинируя уравнения (2.1), (2.4) и (2.5) и учитывая, что n𝛼 и n направлены
в противоположные стороны, получаем (2.2).

• Лемма 2 Для произвольной пробной функции 𝑓 = 𝑓(𝑡,𝑥),

𝜕

𝜕𝑡

∫︁
𝑉

𝑓𝑑𝑉 =

∫︁
𝑉

𝜕𝑓

𝜕𝑡
𝑑𝑉 (2.6a)

∇
∫︁
𝑉

𝑓𝑑𝑉 =

∫︁
𝑉

∇𝑓𝑑𝑉 (2.6b)

Поскольку фильтр 𝑉 = 𝑉 (𝑥) не зависят от времени, порядок интегрирования и
дифференцирования можно поменять местами. По определению производной,

𝜕

𝜕𝑥𝑘

∫︁
𝑉

𝑓𝑑𝑉 =

∫︁
𝜕𝑉

𝑓𝑛𝑘𝑑𝑆, (2.7)

где 𝑛𝑘 обозначают компоненты единичной внешней нормали на границе филь-
тра, 𝜕𝑉 обозначает поверхность фильтра. По теореме Остроградского-Гаусса,
определению производной,∫︁

𝑉

𝜕𝑓

𝜕𝑥𝑘
𝑑𝑉 =

∫︁
𝜕𝑉

𝑓𝑛𝑘𝑑𝑆. (2.8)

Комбинируя уравнения (2.7) и (2.8), получаем (2.6).
Далее мы рассмотрим одномерную гипоупругую модель Уилкинса (1.9).

Обозначения соответствуют тем, что даны в главе 1, и полная энергия 𝐸 =
𝑒+ 0.5𝑢2 +

𝑆𝑖𝑗𝑆𝑖𝑗

4𝜇𝜌 . Перепишем ее в следующем виде:

𝜕Q

𝜕𝑡
+
𝜕F(Q)

𝜕𝑥
+B(Q)

𝜕Q

𝜕𝑥
= 0, (2.9)
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где Q — вектор консервативных переменных, F — вектор потока, а третий
член представляет собой неконсервативную часть. Для упрощения рассматри-
ваемой процедуры усреднения мы опускаем коррекцию производной Яуманна
в приведенных выше уравнениях; однако, эта коррекция может быть включена
в результирующую многоматериальную модель. Усредним (2.1) по фильтру
𝜓, то есть, домножим (2.1) на 𝜓 и проинтегрируем по всему пространству. С
учетом Леммы 1 и 2 получим

𝜕𝜙

𝜕𝑡
+

1

𝑉

∫︁
𝑆𝑉

𝑢𝐼 · n𝑑𝑠 = 0. (2.10)

где 𝜙 — объемная доля, 𝜙 = 1
𝑉

∫︀
𝜓𝜒𝑑𝑉 = 1

𝑉

∫︀
𝑉 𝜒𝑑𝑉 , 𝑉 — объем фильтра.

Используя уравнение (2.5), получаем, что

1

𝑉

∫︁
𝑆𝑉

𝑛𝑘𝑑𝑆 =
1

𝑉

∫︁
𝑉

𝜕𝜒

𝜕𝑥𝑘
𝑑𝑉 =

𝜕

𝜕𝑥𝑘

(︂
1

𝑉

∫︁
𝑉

𝜒𝑑𝑉

)︂
=

𝜕𝜙

𝜕𝑥𝑘
. (2.11)

Уменьшая фильтр и стягивая его фактически к точке, можно получить пре-
дельное выражение для интеграла по поверхности тела:

lim
𝑉→0

1

𝑉

∫︁
𝑆𝑉

𝑓n𝑑𝑆 = 𝑓∇𝜙. (2.12)

Таким образом, уравнение (2.10) может быть в пределе приведено к виду

𝜕𝜙

𝜕𝑡
+ 𝑢𝐼 · ∇𝜙 = 0. (2.13)

Аналогично, домножим уравнение вида

𝜕Q

𝜕𝑡
+
𝜕F𝑚

𝜕𝑥𝑚
= 0, (2.14)

на 𝜓𝜒, и проинтегрируем по всему пространству, результатом будет следующая
система уравнений:

𝜕𝜙̃︀Q
𝜕𝑡

+
𝜕𝜙̃︀F𝑚

𝜕𝑥𝑚
− 1

𝑉

∫︁
𝑆𝑉

[︀
𝑛𝑘F𝑘 −Q

(︀
𝑢𝐼 · n

)︀]︀
𝑑𝑆 = 0, (2.15)

где ̃︀Q обозначает усредненную переменную по области ненулевого значения
фильтра, что имеет вид, ̃︀Q =

∫︀
𝑉 𝜒Q𝑑𝑉

⧸︀∫︀
𝑉 𝜒𝑑𝑉 . Третий член уравнения (2.15)

можно записать в следующем виде:
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1

𝑉

∫︁
𝑆𝑉

[︀
𝑛𝑘F𝑘 −Q

(︀
𝑢𝐼 · n

)︀]︀
𝑑𝑆 = Q̄

𝜕𝜙

𝜕𝑡
+ F̄𝑚

𝜕𝜙

𝜕𝑥𝑚

=
(︀
−Q̄𝑢𝐼𝑚 + F̄𝑚

)︀ 𝜕𝜙
𝜕𝑥𝑚

,

(2.16)

где Q̄ обозначает усредненную переменную по интерфейсу. Применение усред-
нения в одномерном случае дает

𝜕𝜙̃︀Q
𝜕𝑡

− Q̄
𝜕𝜙

𝜕𝑡
+
𝜕𝜙̃︀F
𝜕𝑥

− F̄
𝜕𝜙

𝜕𝑥
+

1

𝐿

∫︁
𝜓=1

(︂
𝜒B

𝜕Q

𝜕𝑥

)︂
𝑑𝑥 = 0, (2.17)

(объем 𝑉 вырождается в длину 𝐿). Для неконсервативного члена трудно
получить усредненное значение из-за функции Дирака, поэтому принимается
следующее предположение

1

𝐿

∫︁
𝜓=1

(︂
𝜒B

𝜕Q

𝜕𝑥

)︂
𝑑𝑥 ≈ 1

𝐿
̃︀B∫︁

𝜓=1

(︂
𝜕𝜒Q

𝜕𝑥
−Q

𝜕𝜒

𝜕𝑥

)︂
𝑑𝑥

= ̃︀B𝜕𝜙̃︀Q
𝜕𝑥

− ̃︀BQ̄
𝜕𝜙

𝜕𝑥

= 𝜙̃︀B𝜕 ̃︀Q
𝜕𝑥

+ ̃︀B(︁̃︀Q− Q̄
)︁ 𝜕𝜙
𝜕𝑥
.

(2.18)

Таким образом, для уравнения (2.9) после усреднения получаются следующие
результаты∫︁

𝜓=1

𝜒

(︂
𝜕Q

𝜕𝑡
+
𝜕F

𝜕𝑥
+B

𝜕Q

𝜕𝑥

)︂
𝑑𝑥

=

∫︁
𝜓=1

(︂
𝜕𝜒Q

𝜕𝑡
−Q

𝜕𝜒

𝜕𝑡
+
𝜕𝜒F

𝜕𝑥
− F

𝜕𝜒

𝜕𝑥
+ 𝜒B

𝜕Q

𝜕𝑥

)︂
𝑑𝑥

≈ 𝜕𝜙̃︀Q
𝜕𝑡

+
𝜕𝜙̃︀F
𝜕𝑥

− Q̄
𝜕𝜙

𝜕𝑡
− F̄

𝜕𝜙

𝜕𝑥
+ 𝜙̃︀B𝜕 ̃︀Q

𝜕𝑥
+ ̃︀B(︁̃︀Q− Q̄

)︁ 𝜕𝜙
𝜕𝑥
.

(2.19)

При стремлении фильтра 𝐿 в уравнении (2.19) к нулю, получается следующее
уравнение:

𝜕𝜙Q

𝜕𝑡
+
𝜕𝜙F

𝜕𝑥
+
(︀
Q𝐼𝑢𝐼 − F𝐼

)︀ 𝜕𝜙
𝜕𝑥

+ 𝜙B
𝜕Q

𝜕𝑥
+B

(︀
Q−Q𝐼

)︀ 𝜕𝜙
𝜕𝑥

= 0, (2.20)

где Q𝐼 обозначает Q в точке интерфейса. Здесь мы предполагаем, что значения̃︀Q и ̃︀F после взятия предела и уравнение состояния такие же, как в исходной
задаче (1.9). Таким образом, одномерная модель диффузной границы на основе
пространственного осреднения по малому фильтру определяется следующей
системой определяющих уравнений:
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𝜕𝜙𝑘𝜌𝑘

𝜕𝑡
+
𝜕
(︀
𝜙𝑘𝜌𝑘𝑢𝑘

)︀
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑢𝑘

𝜕𝑡
+
𝜕
(︀
𝜙𝑘𝜌𝑘𝑢𝑘2 − 𝜙𝑘𝜎𝑘11

)︀
𝜕𝑥

+ 𝜎𝑘𝐼11
𝜕𝜙𝑘

𝜕𝑥
= 0

𝜕𝜙𝑘𝜌𝑘𝑣𝑘

𝜕𝑡
+
𝜕
(︀
𝜙𝑘𝜌𝑘𝑢𝑘𝑣𝑘 − 𝜙𝑘𝜎𝑘12

)︀
𝜕𝑥

+ 𝜎𝑘𝐼12
𝜕𝜙𝑘

𝜕𝑥
= 0

𝜕𝜙𝑘𝜌𝑘𝑤𝑘

𝜕𝑡
+
𝜕
(︀
𝜙𝑘𝜌𝑘𝑢𝑘𝑤𝑘 − 𝜙𝑘𝜎𝑘13

)︀
𝜕𝑥

+ 𝜎𝑘𝐼13
𝜕𝜙𝑘

𝜕𝑥
= 0

𝜕𝜙𝑘𝜌𝑘𝐸𝑘

𝜕𝑡
+
𝜕
(︀
𝜙𝑘
(︀
𝜌𝑘𝐸𝑘𝑢𝑘 − 𝜎𝑘11𝑢

𝑘 − 𝜎𝑘12𝑣
𝑘 − 𝜎𝑘13𝑤

𝑘
)︀)︀

𝜕𝑥

+
(︀
𝜎𝑘𝐼11𝑢

𝑘𝐼 + 𝜎𝑘𝐼12𝑣
𝑘𝐼 + 𝜎𝑘𝐼13𝑤

𝑘𝐼
)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘11
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘11𝑢

𝑘

𝜕𝑥
− 4

3
𝜙𝑘𝜌𝑘𝜇𝑘

𝜕𝑢𝑘

𝜕𝑥
+

4

3
𝜇𝑘𝜌𝑘𝐼

(︀
𝑢𝑘𝐼 − 𝑢𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘22
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘22𝑢

𝑘

𝜕𝑥
+

2

3
𝜙𝑘𝜌𝑘𝜇𝑘

𝜕𝑢𝑘

𝜕𝑥
− 2

3
𝜇𝑘𝜌𝑘𝐼

(︀
𝑢𝑘𝐼 − 𝑢𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘33
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘33𝑢

𝑘

𝜕𝑥
+

2

3
𝜙𝑘𝜌𝑘𝜇𝑘

𝜕𝑢𝑘

𝜕𝑥
− 2

3
𝜇𝑘𝜌𝑘𝐼

(︀
𝑢𝑘𝐼 − 𝑢𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘12
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘12𝑢

𝑘

𝜕𝑥
− 𝜙𝑘𝜌𝑘𝜇𝑘

𝜕𝑣𝑘

𝜕𝑥
+ 𝜇𝑘𝜌𝑘𝐼

(︀
𝑣𝑘𝐼 − 𝑣𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘13
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘13𝑢

𝑘

𝜕𝑥
− 𝜙𝑘𝜌𝑘𝜇𝑘

𝜕𝑤𝑘

𝜕𝑥
+ 𝜇𝑘𝜌𝑘𝐼

(︀
𝑤𝑘𝐼 − 𝑤𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

= 0

𝜕𝜙𝑘𝜌𝑘𝑆𝑘23
𝜕𝑡

+
𝜕𝜙𝑘𝜌𝑘𝑆𝑘23𝑢

𝑘

𝜕𝑥
= 0

𝜕𝜙𝑘

𝜕𝑡
+ 𝑢𝑘𝐼

𝜕𝜙𝑘

𝜕𝑥
= 0,

(2.21)

где 𝑘 = 𝛼,𝛽. Верхний индекс 𝐼 обозначает значение на интерфейсе. Учиты-
вая условие непрерывности перемещения и совместимость деформации на
границе, имеем 𝑢𝛼𝐼 = 𝑢𝛽𝐼 , 𝜎𝛼𝐼1𝑖 = 𝜎𝛽𝐼1𝑖 . Для неравновесной твердо-жидкостной
двухфазной модели значение давления на границе принимается за давление
жидкости, а значение скорости интерфейса — за скорость твердого тела [74—
77]. Однако возможны и альтернативные варианты [47]. Различные варианты
интерфейсных значений приводят к различным моделям. В общем случае член
B
(︀
Q−Q𝐼

)︀
𝜕𝜙
𝜕𝑥 не равен 0. Таким образом, использование модели (2.21) приво-

дит к необходимости определения значения плотности на границе 𝜌𝑘𝐼 . Модель
является аналогом неравновесной модели 7-ми уравнений Баера-Нунциато,
которая обладает хорошими математическими свойствами: безусловной гипер-
боличностью [47]. Однако из-за большого числа волн в этой модели и высокой
чувствительности к процессу релаксации приводит к большим трудностям при
численном решении [78—81]. В данной работе мы не ставим целью охватить эту
область, а также разобраться с этими трудностями, а скорее сосредоточимся
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на модели из пяти уравнений, аналогичной сокращенной модели [82]. В этом
случае, учитывая уравнение (2.40), B

(︀
Q−Q𝐼

)︀
𝜕𝜙
𝜕𝑥 = 0. В дальнейшем этот

элемент будет рассматриваться как 0.
Уравнения для девиаторных напряжений 𝑆𝑖𝑖 после алгебраических опера-

ций могут быть преобразованы к консервативным формам, например,

𝜕 (𝜌𝑆11 + 4/3𝜇𝜌 ln 𝜌)

𝜕𝑡
+
𝜕 (𝜌𝑆11 + 4/3𝜇𝜌 ln 𝜌)𝑢

𝜕𝑥
= 0, (2.22)

подставляя его в уравнение (2.20) без приближенного предположения, то есть,
B = 0, получаем

𝜕𝜙𝑘
(︀
𝜌𝑘𝑆𝑘11 + 4/3𝜇𝑘𝜌𝑘 ln 𝜌𝑘

)︀
𝜕𝑡

+
𝜕𝜙𝑘

(︀
𝜌𝑘𝑆𝑘11 + 4/3𝜇𝑘𝜌𝑘 ln 𝜌𝑘

)︀
𝑢𝑘

𝜕𝑥
= 0. (2.23)

Учитывая первое и последнее уравнение в модель (2.21), вычитание уравнения
для 𝑆𝑘11 в (2.21) из (2.23) дает

4

3
𝜇𝑘
(︀
𝜌𝑘 − 𝜌𝑘𝐼

)︀ (︀
𝑢𝑘𝐼 − 𝑢𝑘

)︀ 𝜕𝜙𝑘
𝜕𝑥

. (2.24)

В редуцированных уравнениях в разделе 2.2 обе фазы имеют одинаковую ско-
рость и равны скорости на границе (уравнение (2.40)). Поэтому он зануляется.
Но оценка этой разницы для 𝑆𝑖𝑗, 𝑖 ̸= 𝑗 очень сложна или даже невозможна.

2.2 Редуцированная равновесная модель
методом асимптотического анализа

Явление, при котором неравновесие между фазами уменьшается со вре-
менем, называется релаксацией. Например, в газо-пылевом течении, когда
частицы в газе имеют скорости и температуры, отличные от скоростей и
температур газа, взаимодействие между двумя фазами происходит с течением
времени, частицы подвергаются сопротивлению и теплообмену с газом, и су-
ществует тенденция к приближению их скоростей и температур друг к другу.
Мгновенная скорость этой релаксации зависит от мгновенной разности скоро-
стей и температур. Величина отклонения режима движения от равновесия
зависит от скорости протекания макроскопического процесса и от скорости
перехода режима из неравновесного в равновесный (процесс релаксации).
Первое называется характерным временем макроскопического процесса, а
второе может быть охарактеризовано временем релаксации.

По аналогии с классической BN моделью с семью уравнениями [74], числен-
ное поведение и решение уравнений (2.21) в значительной степени обусловлено
процедурой релаксации, используемой для различных масштабов длины и



30

времени для равновесия скорости и напряжения [83]. Следуя идеям и методам
(асимптотический анализ), описанным в статье [82, 84], о том, что времен-
ные масштабы уравнивания скоростей и напряжений малы по сравнению с
характерным временем течения, получена аппроксимация нулевого порядка
уравнений (2.21). В общем случае асимптотический анализ — это та область
анализа, которая занимается как разработкой методов, так и получением при-
ближенных аналитических решений задач, в которых параметр или некоторая
переменная становится либо большой, либо малой, либо находится в окрестно-
сти значения параметра или точки, где решение не является аналитическим
[85].

Для дальнейшего анализа перепишем уравнения импульса, материальные
уравнения для компонент девиаторного напряжения и уравнение объемной
доли в модели (2.21) следующим образом:

𝜕𝑢𝑘

𝜕𝑡
+ 𝑢𝑘

𝜕𝑢𝑘

𝜕𝑥
− 1

𝜌𝑘
𝜕𝜎𝑘11
𝜕𝑥

+
1

𝜙𝑘𝜌𝑘
(︀
𝜎𝑘𝐼11 − 𝜎𝑘11

)︀ 𝜕𝜙𝑘
𝜕𝑥

=
𝐹 𝑘
𝑢1

𝜙𝑘𝜌𝑘

𝜕𝑣𝑘

𝜕𝑡
+ 𝑢𝑘

𝜕𝑣𝑘

𝜕𝑥
− 1

𝜌𝑘
𝜕𝜎𝑘12
𝜕𝑥

+
1

𝜙𝑘𝜌𝑘
(︀
𝜎𝑘𝐼12 − 𝜎𝑘12

)︀ 𝜕𝜙𝑘
𝜕𝑥

=
𝐹 𝑘
𝑢2

𝜙𝑘𝜌𝑘

𝜕𝑤𝑘

𝜕𝑡
+ 𝑢𝑘

𝜕𝑤𝑘

𝜕𝑥
− 1

𝜌𝑘
𝜕𝜎𝑘13
𝜕𝑥

+
1

𝜙𝑘𝜌𝑘
(︀
𝜎𝑘𝐼13 − 𝜎𝑘13

)︀ 𝜕𝜙𝑘
𝜕𝑥

=
𝐹 𝑘
𝑢3

𝜙𝑘𝜌𝑘

𝜕𝜎𝑘11
𝜕𝑡

+ 𝑢𝑘
𝜕𝜎𝑘11
𝜕𝑥

−
(︂
𝜌𝑘𝑐𝑘2 +

4

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥
= 𝐹 𝑘

𝜎11

𝜕𝜎𝑘22
𝜕𝑡

+ 𝑢𝑘
𝜕𝜎𝑘22
𝜕𝑥

−
(︂
𝜌𝑘𝑐𝑘2 − 2

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥
= 𝐹 𝑘

𝜎22

𝜕𝜎𝑘33
𝜕𝑡

+ 𝑢𝑘
𝜕𝜎𝑘33
𝜕𝑥

−
(︂
𝜌𝑘𝑐𝑘2 − 2

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥
= 𝐹 𝑘

𝜎33

𝜕𝜎𝑘12
𝜕𝑡

+ 𝑢𝑘
𝜕𝜎𝑘12
𝜕𝑥

− 𝜇𝑘
𝜕𝑣𝑘

𝜕𝑥
= 𝐹 𝑘

𝜎12

𝜕𝜎𝑘13
𝜕𝑡

+ 𝑢𝑘
𝜕𝜎𝑘13
𝜕𝑥

− 𝜇𝑘
𝜕𝑤𝑘

𝜕𝑥
= 𝐹 𝑘

𝜎13

𝜕𝜙𝑘

𝜕𝑡
+ 𝑢𝑘𝐼

𝜕𝜙𝑘

𝜕𝑥
= 𝐹 𝑘

𝜙 .

(2.25)

К уравнениям (2.25) есть два комментария:

1. Скорости звука 𝑐𝑘2

В общем случае уравнения для полной энергии и плотности преобразуются
в уравнения для энтропии и давления [82, 84]. Предполагая, что каждая фаза
удовлетворяет термодинамическим соотношениям (1.17), (1.19), (1.21), (1.22),
скорость звука каждой фазы определяются.
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Однако здесь только уравнение полной энергии из уравнений (2.21) преобра-
зуется в уравнение давления, что требует использования уравнений импульса
и девиаторных напряжений. Тогда давление неявно включается в выражение
для 𝜎𝑖𝑗 с помощью 𝑆𝑖𝑗 = 𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗.

С учетом уравнений импульса и материальных уравнений в (2.21), из
выражения для полной энергии (1.3) получим

𝑑𝐸 = 𝑑𝑒+ 𝑢𝑑𝑢+ 𝑣𝑑𝑣 + 𝑤𝑑𝑤 +
𝑆𝑖𝑗
2𝜇𝜌

𝑑𝑆𝑖𝑗 −
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇𝜌2

𝑑𝜌

𝑑𝑢𝑖 =
1

𝜙𝜌

(︂
𝜕 (𝜙𝜎1𝑖)

𝜕𝑥
− 𝜎𝐼1𝑖

𝜕𝜙

𝜕𝑥

)︂
, (𝑖 = 1, 2, 3)

𝑑𝑆11 =
4

3
𝜇
𝜕𝑢

𝜕𝑥
, 𝑑𝑆22 = 𝑑𝑆33 = −2

3
𝜇
𝜕𝑢

𝜕𝑥

𝑑𝑆1𝑖 = 𝜇
𝜕𝑢𝑖
𝜕𝑥

, (𝑖 = 1, 2) , 𝑑𝑆23 = 0,

(2.26)

где 𝑢1 = 𝑢, 𝑢2 = 𝑣, 𝑢3 = 𝑤. Верхний индекс 𝑘 здесь опущен, поскольку
процесс вывода и результаты идентичны для обоих материалов. И здесь
B
(︀
Q−Q𝐼

)︀
𝜕𝜙
𝜕𝑥 и член релаксации становятся нулевыми, по причинам, соот-

ветствующим тем, что описаны в разделе 2.1. Точная форма релаксационного
члена подробно описана в следующем комментарии. С физической точки
зрения, когда времена релаксации скоростей и напряжений стремятся к нулю,
это обязательно приводит к тому, что вся область имеет единое поле скорости
и соответствующее напряжение. С математической точки зрения уравнение
(2.40) определяется формой релаксационного члена. Примем, что этот член
пропорционален 𝑢𝑖 − 𝑢𝐼𝑖 , и будет равен нулю при полной релаксации. Разуме-
ется, эти члены допустимо не опускать и получить точно такой же результат.
Используя уравнение сохранения массы и энергии и уравнение объемной доли
в (2.21) и уравнение (1.29), уравнение (2.26) упрощается следующим образом,

𝑑𝑝 = −

(︁
𝑝
𝜌 +

𝑆𝑖𝑗𝑆𝑖𝑗

4𝜇𝜌

)︁
(︀
𝑒𝑝 + 𝑒𝜌

⧸︀
𝑐2
)︀ 𝜕𝑢
𝜕𝑥

= −𝜌𝑐2𝜕𝑢
𝜕𝑥
. (2.27)

Заметим, что определяемая уравнением (1.27) скорость звука 𝑐 , которая
отличается от термодинамической скорости звука 𝑎, определяемой уравнением
(1.22c).
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2. Релаксационные члены вводятся в правую часть уравнений (2.25)

Члены релаксации скорости принимаются в обычной форме как

𝐹 𝛼
𝑢𝑖 = 𝐾𝛼

𝑢

(︁
𝑢𝛽𝑖 − 𝑢𝛼𝑖

)︁
𝐹 𝛽
𝑢𝑖 = 𝐾𝛽

𝑢

(︁
𝑢𝛼𝑖 − 𝑢𝛽𝑖

)︁
,

(2.28)

где 𝐾𝑘
𝑢 — параметр релаксации. В связи с сохранением импульса, 𝐹 𝛼

𝑢𝑖+𝐹
𝛽
𝑢𝑖 = 0,

то есть 𝐾𝛼
𝑢 = 𝐾𝛽

𝑢 , в литературе обычно называется балансовым соотношением.
Для определения связи между коэффициентами релаксации напряжений
делается следующее предположение: при малых деформациях компоненты
напряжения имеют определенную связь друг с другом в соответствии с законом
Гука, поэтому предполагается, что такая же связь существует и между этими
коэффициентами релаксации напряжений. Из закона Гука уравнения (1.4) и
уравнения (1.28) можно получить

𝑑𝜎𝑘𝑖𝑗
𝑑𝑡

= 𝜆𝑘𝑡𝑟
(︀
𝜖𝑘𝑖𝑗
)︀
𝛿𝑖𝑗 + 2𝜇𝑘𝜖𝑘𝑖𝑗

=

(︂
𝜌𝑘𝑐𝑘2 − 2

3
𝜇𝑘
)︂
𝜕𝑢𝑘𝑚
𝜕𝑥𝑚

𝛿𝑖𝑗 + 𝜇𝑘

(︃
𝜕𝑢𝑘𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑘𝑗
𝜕𝑥𝑖

)︃
.

(2.29)

Рассматривается внутренняя часть элемента бесконечно малого объема,

𝑑𝜙𝑘

𝑑𝑡
=
𝑑
(︀
𝑉 𝑘/𝑉

)︀
𝑑𝑡

=
𝜙𝑘

𝑉 𝑘

𝑑
(︀
𝑉 𝑘
)︀

𝑑𝑡
= 𝜙𝑘∇ · 𝑢𝑘. (2.30)

Для одномерной деформации, уравнения (2.29) и (2.30) становятся:

𝑑𝜎𝑘11
𝑑𝑡

=

(︂
𝜌𝑘𝑐𝑘2 +

4

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥

𝑑𝜎𝑘22
𝑑𝑡

=

(︂
𝜌𝑘𝑐𝑘2 − 2

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥

𝑑𝜎𝑘33
𝑑𝑡

=

(︂
𝜌𝑘𝑐𝑘2 − 2

3
𝜇𝑘
)︂
𝜕𝑢𝑘

𝜕𝑥

𝑑𝜎𝑘12
𝑑𝑡

= 𝜇𝑘
𝜕𝑣𝑘

𝜕𝑥
𝑑𝜎𝑘13
𝑑𝑡

= 𝜇𝑘
𝜕𝑤𝑘

𝜕𝑥
𝑑𝜙𝑘

𝑑𝑡
= 𝜙𝑘

𝜕𝑢𝑘

𝜕𝑥
.

(2.31)
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Предполагается, что для компонентов напряжения и объемной доли релакса-
ция имеет следующий вид:

𝑑𝜎𝛼11
𝑑𝑡

= 𝐹 𝛼
𝜎11 = 𝐾𝛼

𝜎

(︁
𝜎𝛽11 − 𝜎𝛼11

)︁
𝑑𝜎𝛽11
𝑑𝑡

= 𝐹 𝛽
𝜎11 = 𝐾𝛽

𝜎

(︁
𝜎𝛼11 − 𝜎𝛽11

)︁
𝑑𝜎𝛼1𝑗
𝑑𝑡

= 𝐹 𝛼
𝜎1𝑗 = 𝐾𝛼

𝜎𝑇𝑗

(︁
𝜎𝛽1𝑗 − 𝜎𝛼1𝑗

)︁
𝑑𝜎𝛽1𝑗
𝑑𝑡

= 𝐹 𝛽
𝜎1𝑗 = 𝐾𝛽

𝜎𝑇𝑗

(︁
𝜎𝛼1𝑗 − 𝜎𝛽1𝑗

)︁
, 𝑗 ̸= 1

𝑑𝜙𝛼

𝑑𝑡
= 𝐹 𝛼

𝜙 = 𝐾𝛼
𝜙

(︁
𝜎𝛽11 − 𝜎𝛼11

)︁
,

(2.32)

где 𝐾𝑘
𝜎 , 𝐾𝑘

𝜎𝑇𝑗 и 𝐾𝛼
𝜙 — параметры релаксации для девиаторных напряжений

и объемной доли. Заметим, что 𝑑·
𝑑𝑡 в (2.31) и в (2.32) имеют разный смысл: в

(2.31) речь идет об изменении напряжения в результате изменения деформа-
ции, определяемой законом Гука, а в (2.32) — об изменении напряжения в
результате релаксационного процесса. Сравнивая уравнения (2.32) с (2.31),
приходим к выводу, что должны быть справедливы следующие соотношения:

𝐹 𝛼
𝜎𝑖𝑖 =

𝐾𝛼
𝜎

(︁
𝜎𝛽11 − 𝜎𝛼11

)︁ (︀
𝜌𝛼𝑐𝛼2 − 2

3𝜇
𝛼
)︀(︀

𝜌𝛼𝑐𝛼2 + 4
3𝜇

𝛼
)︀

𝐹 𝛽
𝜎𝑖𝑖 =

𝐾𝛽
𝜎

(︁
𝜎𝛼11 − 𝜎𝛽11

)︁ (︀
𝜌𝛽𝑐𝛽2 − 2

3𝜇
𝛽
)︀(︀

𝜌𝛽𝑐𝛽2 + 4
3𝜇

𝛽
)︀ , 𝑖 ̸= 1

𝐹 𝛼
𝜙 = 𝜙𝛼

𝐾𝛼
𝜎

(︁
𝜎𝛽11 − 𝜎𝛼11

)︁
(︀
𝜌𝛼𝑐𝛼2 + 4

3𝜇
𝛼
)︀ .

(2.33)

Кроме того, параметры 𝐾𝛼
𝜎 и 𝐾𝛽

𝜎 должны быть связаны, в силу условия
совместимости деформаций, следующим образом:

𝜙𝛼𝜖𝛼𝑛𝑛 + 𝜙𝛽𝜖𝛽𝑛𝑛 = 0, (2.34)

то есть,
𝐾𝛼
𝜎𝜙

𝛼(︀
𝜌𝛼𝑐𝛼2 + 4

3𝜇
𝛼
)︀ = 𝐾𝛽

𝜎𝜙
𝛽(︀

𝜌𝛽𝑐𝛽2 + 4
3𝜇

𝛽
)︀ . (2.35)

В самом деле, учитывая уравнение (2.30), (2.34) совпадает с 𝑑𝜙𝛼

𝑑𝑡 + 𝑑𝜙𝛽

𝑑𝑡 = 0.
Аналогично, коэффициент релаксации для девиаторных напряжений сдвига
имеет следующие формы,
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𝜙𝛼𝐾𝛼
𝜎𝑇𝑗

𝜇𝛼
=
𝜙𝛽𝐾

𝛽
𝜎𝑇𝑗

𝜇𝛽
. (2.36)

Для асимптотического анализа удобно записать систему (2.25) в векторной
форме:

𝜕U

𝜕𝑡
+C (U)

𝜕U

𝜕𝑥
=

1

𝜏
H (U) , (2.37)

где 𝜏 → 0+ — время релаксации, H (U) — вектор, содержащий релаксационные
члены, U =

(︀
𝜙𝑘𝜌𝑘,𝑢𝑘, 𝜎𝑘1𝑖 , 𝜎

𝑘
𝑗𝑗, 𝜙

𝛼
)︀T
, 𝑖 = 1, 2, 3, 𝑗 = 2, 3. Предполагается, что

асимптотическое решение (2.37) может быть выражено как

U = U(0) + 𝜏U(1) +O
(︀
𝜏 2
)︀
. (2.38)

Подставляя (2.38) в (2.37), получается

𝜕U(0)

𝜕𝑡
+ L

(︁
U(0)

)︁
−M

(︁
U(0)

)︁
U(1) = 0

H
(︁
U(0)

)︁
= 0,

L (U) = C (U)
𝜕U

𝜕𝑥
,M (U) =

𝜕H (U)

𝜕U
.

(2.39)

Для простоты обозначений в дальнейшем верхний индекс (0) опущен. Из
второго уравнения в (2.39) следует, что

𝑢𝛼 = 𝑢𝛽 = 𝑢𝛼𝐼 = 𝑢𝛽𝐼 , 𝜎𝛼1𝑖 = 𝜎𝛽1𝑖 = 𝜎𝛼𝐼1𝑖 = 𝜎𝛽𝐼1𝑖 . (2.40)

Это хорошо понятно с физической точки зрения, поскольку процесс релакса-
ции скорости и напряжения происходит быстро, и когда смесь находится в
равновесном состоянии, на границе должны выполняться условия непрерывно-
сти перемещения и равновесия напряжений, а значения скорости, нормального
напряжения и касательного напряжения двух материалов должны быть равны
на границе соответственно, в противном случае смесь не достигает равновесия,
и существует тенденция к дальнейшему движению и изменению.

Матрица M (U) является матрицей размером 19 × 19. Она находится
простым дифференцированием релаксационных членов. Вместо того, чтобы
приводить здесь точную форму M (U), мы выведем уравнения для скорости
𝑢𝑘 и 𝜙𝛼 используются в качестве примера решения первого уравнения в (2.39).
Уравнения для остальных равновесных переменных могут быть получены
аналогичными способами. Учитывая 𝐾𝛼

𝑢 = 𝐾𝛽
𝑢 и уравнение (2.40), конкретная

форма уравнения, связанного с 𝑢𝑘, имеет вид
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 1

𝜌𝛼
𝜕𝜎11
𝜕𝑥

= − 𝐾𝑢

𝜙𝛼𝜌𝛼
𝑢𝛼(1) +

𝐾𝑢

𝜙𝛼𝜌𝛼
𝑢𝛽(1),

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 1

𝜌𝛽
𝜕𝜎11
𝜕𝑥

=
𝐾𝑢

𝜙𝛽𝜌𝛽
𝑢𝛼(1) − 𝐾𝑢

𝜙𝛽𝜌𝛽
𝑢𝛽(1).

(2.41)

Умножив первое уравнение в (2.41) на 𝜙𝛼𝜌𝛼, а второе на 𝜙𝛽𝜌𝛽, и сложив их
вместе, получим

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0. (2.42)

Аналогичным образом, уравнение, связанное с 𝜎𝛼11 в уравнении (2.39), имеет
следующий вид,

𝜕𝜎11
𝜕𝑡

+ 𝑢
𝜕𝜎11
𝜕𝑥

−
(︂
𝜌𝛼𝑐𝛼2 +

4

3
𝜇𝛼
)︂
𝜕𝑢

𝜕𝑥
= 𝐾𝛼

𝜎

(︁
−𝜎𝛼(1)11 + 𝜎

𝛽(1)
11

)︁
,

𝜕𝜎11
𝜕𝑡

+ 𝑢
𝜕𝜎11
𝜕𝑥

−
(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂
𝜕𝑢

𝜕𝑥
= 𝐾𝛽

𝜎

(︁
𝜎
𝛼(1)
11 − 𝜎

𝛽(1)
11

)︁
.

(2.43)

Используя уравнение (2.35), следует, что

𝜕𝜎11
𝜕𝑡

+ 𝑢
𝜕𝜎11
𝜕𝑥

−
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
Λ𝛽 +

(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂
Λ𝛼
)︂
𝜕𝑢

𝜕𝑥
= 0

Λ𝛼 =
𝜙𝛽
(︀
𝜌𝛼𝑐𝛼2 + 4/3𝜇𝛼

)︀
𝜙𝛽 (𝜌𝛼𝑐𝛼2 + 4/3𝜇𝛼) + 𝜙𝛼 (𝜌𝛽𝑐𝛽2 + 4/3𝜇𝛽)

Λ𝛽 =
𝜙𝛼
(︀
𝜌𝛽𝑐𝛽2 + 4/3𝜇𝛽

)︀
𝜙𝛽 (𝜌𝛼𝑐𝛼2 + 4/3𝜇𝛼) + 𝜙𝛼 (𝜌𝛽𝑐𝛽2 + 4/3𝜇𝛽)

.

(2.44)

Уравнение, связанное с объемной долей в уравнении (2.39), имеет следующий
вид,

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
= 𝑘𝜙

(︁
−𝐾𝛼

𝜎𝜎
𝛼(1)
11 +𝐾𝛼

𝜎𝜎
𝛽(1)
11

)︁
𝑘𝜙 =

𝜙𝛼(︀
𝜌𝛼𝑐𝛼2 + 4

3𝜇
𝛼
)︀ . (2.45)

Комбинируя уравнения (2.43) и (2.44) и исключая член первого порядка в
правой части уравнения (2.45), получается, что

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
−
(︀
𝜙𝛽Λ𝛽 − 𝜙𝛼Λ𝛼

)︀ 𝜕𝑢
𝜕𝑥

= 0. (2.46)

Применив подобный подход для первого уравнения в уравнении (2.39),
исключение члена первого порядка U(1) дает
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𝜕𝜙𝛼𝜌𝛼

𝜕𝑡
+
𝜕𝜙𝛼𝜌𝛼𝑢

𝜕𝑥
= 0

𝜕𝜙𝛽𝜌𝛽

𝜕𝑡
+
𝜕𝜙𝛽𝜌𝛽𝑢

𝜕𝑥
= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑣

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢𝑣 − 𝜎12

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑤

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢𝑤 − 𝜎13

)︀
𝜕𝑥

= 0

𝜕𝜎11
𝜕𝑡

+ 𝑢
𝜕𝜎11
𝜕𝑥

−
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
Λ𝛽 +

(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂
Λ𝛼
)︂
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜎12
𝜕𝑡

+ 𝑢
𝜕𝜎12
𝜕𝑥

−
(︁
𝜇𝛼Λ𝛽𝑇 + 𝜇𝛽Λ𝛼𝑇

)︁ 𝜕𝑣
𝜕𝑥

= 0

𝜕𝜎13
𝜕𝑡

+ 𝑢
𝜕𝜎13
𝜕𝑥

−
(︁
𝜇𝛼Λ𝛽𝑇 + 𝜇𝛽Λ𝛼𝑇

)︁ 𝜕𝑤
𝜕𝑥

= 0

𝜕𝜎𝛼22
𝜕𝑡

+ 𝑢
𝜕𝜎𝛼22
𝜕𝑥

+ Λ𝛼𝜅𝛼
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
−
(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂)︂

𝜕𝑢

𝜕𝑥

−
(︂
𝜌𝛼𝑐𝛼2 − 2

3
𝜇𝛼
)︂
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜎𝛽22
𝜕𝑡

+ 𝑢
𝜕𝜎𝛽22
𝜕𝑥

− Λ𝛽𝜅𝛽
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
−
(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂)︂

𝜕𝑢

𝜕𝑥

−
(︂
𝜌𝛽𝑐𝛽2 − 2

3
𝜇𝛽
)︂
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜎𝛼33
𝜕𝑡

+ 𝑢
𝜕𝜎𝛼33
𝜕𝑥

+ Λ𝛼𝜅𝛼
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
−
(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂)︂

𝜕𝑢

𝜕𝑥

−
(︂
𝜌𝛼𝑐𝛼2 − 2

3
𝜇𝛼
)︂
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜎𝛽33
𝜕𝑡

+ 𝑢
𝜕𝜎𝛽33
𝜕𝑥

− Λ𝛽𝜅𝛽
(︂(︂

𝜌𝛼𝑐𝛼2 +
4

3
𝜇𝛼
)︂
−
(︂
𝜌𝛽𝑐𝛽2 +

4

3
𝜇𝛽
)︂)︂

𝜕𝑢

𝜕𝑥

−
(︂
𝜌𝛽𝑐𝛽2 − 2

3
𝜇𝛽
)︂
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
−
(︀
𝜙𝛽Λ𝛽 − 𝜙𝛼Λ𝛼

)︀ 𝜕𝑢
𝜕𝑥

= 0

Λ𝛼𝑇 =
𝜙𝛽𝜇𝛼

𝜙𝛽𝜇𝛼 + 𝜙𝛼𝜇𝛽
, Λ𝛽𝑇 =

𝜙𝛼𝜇𝛽

𝜙𝛽𝜇𝛼 + 𝜙𝛼𝜇𝛽

𝜅𝛼 =
𝜌𝛼𝑐𝛼2 − 2

3𝜇
𝛼

𝜌𝛼𝑐𝛼2 + 4
3𝜇

𝛼
, 𝜅𝛽 =

𝜌𝛽𝑐𝛽2 − 2
3𝜇

𝛽

𝜌𝛽𝑐𝛽2 + 4
3𝜇

𝛽
.

(2.47)
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Определим давление 𝑝𝑘 = −1/3𝜎𝑘𝑖𝑖, так что девиаторные напряжения
𝑆𝑘𝑖𝑗 = 𝑝𝑘𝛿𝑖𝑗+𝜎

𝑘
𝑖𝑗. Из уравнения напряжений в (2.47) следует, что материальные

производные давления фаз равны

𝑑𝑝𝛼

𝑑𝑡
= −Λ𝛽

𝜙𝛼
𝜌𝛼𝑐𝛼2

𝜕𝑢

𝜕𝑥
(2.48a)

𝑑𝑝𝛽

𝑑𝑡
= −Λ𝛼

𝜙𝛽
𝜌𝛽𝑐𝛽2

𝜕𝑢

𝜕𝑥
. (2.48b)

А

𝑑𝑆𝛼11
𝑑𝑡

=
4𝜇𝛼Λ𝛽

3𝜙𝛼
𝜕𝑢

𝜕𝑥
(2.49a)

𝑑𝑑𝑆𝛽11
𝑑𝑡

=
4𝜇𝛽Λ𝛼

3𝜙𝛽
𝜕𝑢

𝜕𝑥
. (2.49b)

Из уравнений (2.48), (1.29) и (2.27) следует, что

𝑑𝑒𝛼

𝑑𝑡
= −

(︂
𝑝𝛼

𝜌𝛼
+
𝑆𝛼𝑖𝑗𝑆

𝛼
𝑖𝑗

4𝜇𝛼𝜌𝛼

)︂
Λ𝛽

𝜙𝛼
𝜕𝑢

𝜕𝑥
(2.50a)

𝑑𝑒𝛽

𝑑𝑡
= −

(︃
𝑝𝛽

𝜌𝛽
+
𝑆𝛽𝑖𝑗𝑆

𝛽
𝑖𝑗

4𝜇𝛽𝜌𝛽

)︃
Λ𝛼

𝜙𝛽
𝜕𝑢

𝜕𝑥
. (2.50b)

Определяем полную энергию,

𝜌𝐸 = 𝜙𝛼𝜌𝛼𝑒𝛼 + 𝜙𝛽𝜌𝛽𝑒𝛽 +
1

2
𝜌𝑢2 + 𝜙𝛼𝜌𝛼

𝑆𝛼𝑖𝑗𝑆
𝛼
𝑖𝑗

4𝜇𝛼𝜌𝛼
+ 𝜙𝛽𝜌𝛽

𝑆𝛽𝑖𝑗𝑆
𝛽
𝑖𝑗

4𝜇𝛽𝜌𝛽
(2.51a)

𝜌 = 𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽. (2.51b)

Следовательно,

𝜌
𝑑𝐸

𝑑𝑡
=
𝑑 (𝜌𝐸)

𝑑𝑡
− 𝐸

𝑑𝜌

𝑑𝑡
=

= −

(︃
𝑝𝛼Λ𝛽 +

𝑆𝛼𝑖𝑗𝑆
𝛼
𝑖𝑗

4𝜇𝛼
Λ𝛽 + 𝑝𝛽Λ𝛼 +

𝑆𝛽𝑖𝑗𝑆
𝛽
𝑖𝑗

4𝜇𝛽
Λ𝛼

)︃
𝜕𝑢

𝜕𝑥

+ 𝑢
𝜕𝜎11
𝜕𝑥

+ 𝑣
𝜕𝜎12
𝜕𝑥

+ 𝑤
𝜕𝜎13
𝜕𝑥

+ 𝜙𝛼𝜌𝛼
(︂
−
𝑆𝛼𝑖𝑗𝑆

𝛼
𝑖𝑗

4𝜇𝛼𝜌𝛼2
𝑑𝜌𝛼

𝑑𝑡
+

𝑆𝛼𝑖𝑗
2𝜇𝛼𝜌𝛼

𝑑𝑆𝛼𝑖𝑗
𝑑𝑡

)︂
+ 𝜙𝛽𝜌𝛽

(︃
−
𝑆𝛽𝑖𝑗𝑆

𝛽
𝑖𝑗

4𝜇𝛽𝜌𝛽2
𝑑𝜌𝛽

𝑑𝑡
+

𝑆𝛽𝑖𝑗
2𝜇𝛽𝜌𝛽

𝑑𝑆𝛽𝑖𝑗
𝑑𝑡

)︃
.

(2.52)
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Подставляя уравнение сдвигового напряжения в (2.47) и уравнение (2.49) в
(2.52), и учитывая, что Λ𝛼 + Λ𝛽 = 1, получаем, что

𝜌𝑑𝐸 =
𝜕 (𝜎11𝑢)

𝜕𝑥
+
𝜕 (𝜎12𝑣)

𝜕𝑥
+
𝜕 (𝜎13𝑤)

𝜕𝑥
. (2.53)

Таким образом, уравнения (2.47) могут быть записаны в альтернативной
(квазиконсервативной) форме как

𝜕𝜙𝛼𝜌𝛼

𝜕𝑡
+
𝜕𝜙𝛼𝜌𝛼𝑢

𝜕𝑥
= 0

𝜕𝜙𝛽𝜌𝛽

𝜕𝑡
+
𝜕𝜙𝛽𝜌𝛽𝑢

𝜕𝑥
= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑣

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢𝑣 − 𝜎12

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑤

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢𝑤 − 𝜎13

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸𝑢− 𝜎11𝑢− 𝜎12𝑣 − 𝜎13𝑤

)︀
𝜕𝑥

= 0

𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼 ln 𝜌𝛼)

𝜕𝑡
+
𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼 ln 𝜌𝛼)𝑢

𝜕𝑥
= 0

𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽11 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽 ln 𝜌𝛽

)︁
𝜕𝑡

+
𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽12 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽 ln 𝜌𝛽

)︁
𝑢

𝜕𝑥
= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑆12

𝜕𝑡
+
𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑆12𝑢

𝜕𝑥
−
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝜇𝛼𝜇𝛽

𝜙𝛼𝜇𝛽 + 𝜙𝛽𝜇𝛼
𝜕𝑣

𝜕𝑥
= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑆13

𝜕𝑡
+
𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑆13𝑢

𝜕𝑥
−
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝜇𝛼𝜇𝛽

𝜙𝛼𝜇𝛽 + 𝜙𝛽𝜇𝛼
𝜕𝑤

𝜕𝑥
= 0

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
−
(︀
𝜙𝛽Λ𝛽 − 𝜙𝛼Λ𝛼

)︀ 𝜕𝑢
𝜕𝑥

= 0.

(2.54)
Проанализируем математические свойства полученной системы уравнений.

Не ограничивая общности, анализ будем делать для 2D случая. Выражая

уравнения в переменных
(︁
𝜙𝛼𝜌𝛼, 𝜙𝛽𝜌𝛽, 𝑢, 𝑣, 𝜎11, 𝜎12, 𝜎

𝛼
22, 𝜎

𝛽
22, 𝜙

𝛼
)︁T

, и решая для
собственных значений и собственных векторов матрицы Якоби, получаем,
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𝜆 = 𝑢, 𝐼1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜆 = 𝑢± 𝑎1, 𝐼6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜙𝛼𝜌𝛼
−𝜙𝛽𝜌𝛽
𝑎1
0
−1
𝜌

0
−
(︀
𝜌𝑐2
)︀𝛼
2
− 𝑎𝛼2

−
(︀
𝜌𝑐2
)︀𝛽
2
+ 𝑎𝛽2

−𝜙𝛼𝜙𝛽𝑎3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜙𝛼𝜌𝛼

𝜙𝛽𝜌𝛽

𝑎1
0
1
𝜌

0(︀
𝜌𝑐2
)︀𝛼
2
− 𝑎𝛼2(︀

𝜌𝑐2
)︀𝛽
2
+ 𝑎𝛽2

𝜙𝛼𝜙𝛽𝑎3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜆 = 𝑢± 𝑎4, 𝐼8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
𝑎4
0
1
𝜌

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
𝑎4
0
−1
𝜌

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑎1 =

⎯⎸⎸⎷ (𝜌𝑐2)𝛼1 (𝜌𝑐
2)𝛽1

𝜌
(︁
𝜙𝛽 (𝜌𝑐2)𝛼1 + 𝜙𝛼 (𝜌𝑐2)𝛽1

)︁ , 𝑎𝑘2 = Λ𝑘𝜅𝑘
(︁(︀
𝜌𝑐2
)︀𝛼
1
−
(︀
𝜌𝑐2
)︀𝛽
1

)︁
, 𝑘 = 𝛼, 𝛽

𝑎3 =

(︀
𝜌𝑐2
)︀𝛽
1
−
(︀
𝜌𝑐2
)︀𝛼
1

𝜙𝛽 (𝜌𝑐2)𝛼1 + 𝜙𝛼 (𝜌𝑐2)𝛽1
,
(︀
𝜌𝑐2
)︀𝑘
1
= 𝜌𝑘𝑐𝑘

2
+ 4
⧸︀
3𝜇𝑘,

(︀
𝜌𝑐2
)︀𝑘
2
= 𝜌𝑘𝑐𝑘

2 − 2
⧸︀
3𝜇𝑘

𝑎4 =

√︃
𝜇𝛼𝜇𝛽

𝜌 (𝜙𝛽𝜇𝛼 + 𝜙𝛼𝜇𝛽)
,

где плотность 𝜌 определяется в (2.51b). Это показывает, что уравнения (2.47)
и (2.54) являются гиперболическими.
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2.3 Случай одноосной деформации

В приближении одноосной деформации (случай отсутствия сдвиговой
деформации) одноматериальная модель (1.9) может быть упрощена до следу-
ющей формы:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢

𝜕𝑥
= 0,

𝜕𝜌𝑢

𝜕𝑡
+
𝜕
(︀
𝜌𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0,

𝜕𝜌𝐸

𝜕𝑡
+
𝜕 (𝜌𝐸 − 𝜎11)𝑢

𝜕𝑥
= 0,

𝜕𝜌𝑆11

𝜕𝑡
+
𝜕𝜌𝑢𝑆11

𝜕𝑥
− 4

3
𝜌𝜇
𝜕𝑢

𝜕𝑥
= 0.

(2.55)

Модель одноосной деформации (2.55) может быть проанализирована анали-
тически. За подробностями, такими как структура ударной волны и волны
разрежения, а также решение задачи Римана, мы обращаемся к статье [70].
Последнее уравнение в (2.55) может быть переформулировано в следующем
виде:

𝜕 (𝑆11 + 4/3𝜇 ln 𝜌)

𝜕𝑡
+ 𝑢

𝜕 (𝑆11 + 4/3𝜇 ln 𝜌)

𝜕𝑥
= 0, (2.56)

которое представляет собой обыкновенное дифференциальное уравнение вдоль
траектории движения материала и подразумевает, что девиаторное напряже-
ние является однозначной функцией плотности. Другими словами, в (2.55) есть
только три независимых уравнения, которые идентичны гидродинамическим
уравнениям, и поэтому их соответствующие выводы могут быть использованы
для твердого тела.

В самом деле, если рассматривать −𝜎11 в (2.55) как эффективное дав-
ление в гидродинамических уравнениях Эйлера и обозначить его через 𝜋,
то (2.55) становится в математической форме идентичным системе уравне-
ний Эйлера. Что касается уравнения состояния, то внутренняя энергия 𝑒
является функцией плотности и давления и поэтому может быть преобра-
зована как 𝑒 = 𝑒 (𝑝, 𝜌) = 𝑒 (𝑆11 (𝜌)− 𝜎11, 𝜌) = 𝑒 (𝜋, 𝜌). Это означает, что и
в математическом, и в физическом смысле мы можем рассматривать (2.55)
как псевдогидродинамические уравнения с давлением 𝜋. Для моделирования
двухфазного течения жидкостей, применяя обычный асимптотический анализ,
когда время релаксации стремится к нулю, и пренебрегая эффектами массо-
и теплообмена, неравновесная гидродинамическая модель Баера-Нунциато
меняет свой вид на редуцированную равновесную модель [86, 87],
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𝜕𝜙𝑘𝜌𝑘

𝜕𝑡
+∇ ·

(︀
𝜙𝑘𝜌𝑘𝑢

)︀
= 0

𝜕𝜌𝑢

𝜕𝑡
+∇ · (𝜌𝑢⊗ 𝑢+ 𝑝𝐼) = 0

𝜕𝜌𝐸

𝜕𝑡
+∇ · (𝜌𝐸𝑢+ 𝑝𝑢) = 0

𝜕𝜙𝑘

𝜕𝑡
+ 𝑢 · ∇𝜙𝑘 = 𝜙𝑘

𝐴− 𝐴𝑘

𝐴𝑘
∇ · 𝑢,

(2.57)

где 𝐴𝑘 = 𝜌𝑘𝑎𝑘2, 1/𝐴 =
∑︀(︀

𝜙𝑘
⧸︀
𝐴𝑘
)︀
. Из предыдущих анализов известно, что

уравнение (2.57) может быть использовано непосредственно для построения
двухматериальной равновесной модели Уилкинса для случая одноосной де-
формации, однако термодинамическая скорость звука 𝑎 в исходной модели
должна быть изменена. Из уравнения сохранения энергии в уравнениях гид-
родинамики Эйлера, состава полной энергии 𝐸 = 𝑒+ 0.5𝑢2, и определения
скорости звука (1.22c), получается

𝑑𝑝 = −𝜌𝑎2𝜕𝑢
𝜕𝑥

∼ 𝑑𝜋 = −𝜌𝑎2𝜕𝑢
𝜕𝑥
, (2.58)

это связано с тем, что 𝜋 = −𝜎11 должно иметь то же отношение, что и 𝑝.
Используя ту же форму полной энергии, что и в модели (2.57), из модели
(2.55) следует, что

𝑑𝑝 =
𝜎11/𝜌

𝑒𝑝 + 𝑒𝜌
⧸︀
𝑐2
𝜕𝑢

𝜕𝑥
= −𝜌𝑐2𝜕𝑢

𝜕𝑥
(2.59a)

𝑐2 = 𝑎2 − 𝑆11

𝜌2𝑒𝑝
(2.59b)

𝑑𝜎11 =

(︂
𝜌𝑐2 +

4

3
𝜇

)︂
𝜕𝑢

𝜕𝑥
. (2.59c)

Сравнивая уравнения (2.58) и (2.59c), следует, что 𝑎𝑘2 в модели (2.57) заме-
нить на 𝑐2 + 4𝜇/(3𝜌). Тогда модель (2.57) переписана как двухматериальная
равновесная модель Уилкинса в случае одноосной деформации,
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𝜕𝜙𝛼𝜌𝛼

𝜕𝑡
+
𝜕𝜙𝛼𝜌𝛼𝑢

𝜕𝑥
= 0

𝜕𝜙𝛽𝜌𝛽

𝜕𝑡
+
𝜕𝜙𝛽𝜌𝛽𝑢

𝜕𝑥
= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸 − 𝜎11

)︀
𝑢

𝜕𝑥
= 0

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
−
(︀
𝜙𝛽Λ𝛽 − 𝜙𝛼Λ𝛼

)︀ 𝜕𝑢
𝜕𝑥

= 0

𝑆𝑘11 (𝜌) =

⎧⎪⎨⎪⎩
2𝑌 𝑘

3 , 𝜌
𝑘 < 𝜌𝑘−𝑌

𝑆𝑘0 − 4
3𝜇

𝑘 ln
(︁
𝜌𝑘

𝜌𝑘0

)︁
−2𝑌 𝑘

3 , 𝜌
𝑘 > 𝜌𝑘+𝑌

, 𝜌𝑘−𝑌 ⩽ 𝜌𝑘 ⩽ 𝜌𝑘+𝑌 ,

(2.60)

где подстрочный индекс «0» обозначает начальное (невозмущенное) состо-
яние,

(︀
𝜌𝑘𝑌
)︀±

= 𝜌𝑘0 exp
(︀(︀
±2𝑌 𝑘 + 3𝑆𝑘0

)︀⧸︀
4𝜇𝑘
)︀
, здесь рассматривается критерий

пластичности.
С другой стороны, используя методы в разделах 2.1 и 2.2, скорость звука

в уравнении (2.27) заменяется на (2.59b) в связи с изменением формы полной
энергии. Таким образом, неравновесная модель (2.21) из раздела 2.1 может
быть использована непосредственно, поскольку для вывода не требуется кон-
кретная форма полной энергии. Повторяя процесс, описанный в разделе 2.2,
модель (2.54) при одноосной деформации имеет вид,

𝜕𝜙𝛼𝜌𝛼

𝜕𝑡
+
𝜕𝜙𝛼𝜌𝛼𝑢

𝜕𝑥
= 0,

𝜕𝜙𝛽𝜌𝛽

𝜕𝑡
+
𝜕𝜙𝛽𝜌𝛽𝑢

𝜕𝑥
= 0,

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝑢2 − 𝜎11

)︀
𝜕𝑥

= 0,

𝜕
(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸

𝜕𝑡
+
𝜕
(︀(︀
𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

)︀
𝐸 − 𝜎11

)︀
𝑢

𝜕𝑥
= 0,

𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼𝑙𝑛𝜌𝛼)

𝜕𝑡
+
𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼𝑙𝑛𝜌𝛼)𝑢

𝜕𝑥
= 0

𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽11 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽𝑙𝑛𝜌𝛽

)︁
𝜕𝑡

+
𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽12 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽𝑙𝑛𝜌𝛽

)︁
𝑢

𝜕𝑥
= 0

𝜕𝜙𝛼

𝜕𝑡
+ 𝑢

𝜕𝜙𝛼

𝜕𝑥
−
(︀
𝜙𝛽Λ𝛽 − 𝜙𝛼Λ𝛼

)︀ 𝜕𝑢
𝜕𝑥

= 0,

(2.61)

Определения знаков совпадают с определениями в уравнениях (2.47) и (2.54).
Модели (2.60) и (2.61) эквивалентны в связи с тем, что консервативная часть
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модели Уилкинса представляет собой уравнения Эйлера в гидродинамике.
Для консервативной части используется тот же метод усреднения и асимпто-
тический анализ, и поэтому результаты должны быть согласованными. Для
неконсервативных материальных уравнений в конце раздела 2.1 показано, что
для равновесной модели предположение (2.18) не вносит погрешности.
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Глава 3

Численные методы для
решения редуцированной
модели

Основной целью данной главы является численное решение редукционной
равновесной модели, представленной в главе 2. В связи с тем, что классические
соотношения Ранкина-Гюгонио не применимы к неконсервативным системам,
то мы используем идею из статьи [48], в которой неконсервативный продукт
определяется как ограниченная мера Бореля, зависящая от семейства путей.
А вместе с условием энтропии возможно установить физически согласован-
ные слабые решения неконсервативных уравнений. В следующих разделах
предлагается специальный выбор пути, который сводит двухволновое HLL а
также трехволновое HLLC приближенное решение задачи Римана к линейным
уравнениям. Затем эта схема обобщается на случай биматериальной модели
Уилкинса. В присутствии разрывов численные решения иногда могут оказать-
ся с ошибкой сходимости [88]. Поэтому сравнение численных результатов с
аналитическим решением задачи Римана из главы 1 становится необходимым.

3.1 Приближенный солвер типа Римана для
одномерной модели Уилкинса

Для разработки численной схемы гиперболического закона сохранения
используется метод Годунова на основе приближенных решателей Римана
HLL и HLLC [89—91]. Мы следуем основной идее, изложенной в [62, 92],
обобщая классические HLL и HLLC римановские решатели на неконсерва-
тивные упруго-пластические уравнения с помощью консервативных по пути
схем. Рассматривая модель (1.9) и добавляя поправку производной Яуманна,
получаем
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𝜕𝜌

𝜕𝑡
+
𝜕 (𝜌𝑢)

𝜕𝑥
= 0

𝜕𝜌𝑢

𝜕𝑡
+
𝜕
(︀
𝜌𝑢2 + 𝑝− 𝑆11

)︀
𝜕𝑥

= 0

𝜕𝜌𝑣

𝜕𝑡
+
𝜕 (𝜌𝑢𝑣 − 𝑆12)

𝜕𝑥
= 0

𝜕𝜌𝑤

𝜕𝑡
+
𝜕 (𝜌𝑢𝑤 − 𝑆13)

𝜕𝑥
= 0

𝜕𝜌𝐸

𝜕𝑡
+
𝜕 (𝜌𝑢𝐸 + (𝑝− 𝑆11)𝑢− 𝑆12𝑣 − 𝑆13𝑤)

𝜕𝑥
= 0

𝜕 (𝜌𝑆11)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆11)

𝜕𝑥
− 4

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
+ 𝜌𝑆12

𝜕𝑣

𝜕𝑥
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑥
= 0

𝜕 (𝜌𝑆22)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆22)

𝜕𝑥
+

2

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
− 𝜌𝑆12

𝜕𝑣

𝜕𝑥
= 0

𝜕 (𝜌𝑆33)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆33)

𝜕𝑥
+

2

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
− 𝜌𝑆13

𝜕𝑤

𝜕𝑥
= 0

𝜕 (𝜌𝑆12)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆12)

𝜕𝑥
− 𝜇𝜌

𝜕𝑣

𝜕𝑥
+

1

2
𝜌

(︂
(𝑆22 − 𝑆11)

𝜕𝑣

𝜕𝑥
+ 𝑆23

𝜕𝑤

𝜕𝑥

)︂
= 0

𝜕 (𝜌𝑆13)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆13)

𝜕𝑥
− 𝜇𝜌

𝜕𝑤

𝜕𝑥
+

1

2
𝜌

(︂
(𝑆33 − 𝑆11)

𝜕𝑤

𝜕𝑥
+ 𝑆23

𝜕𝑣

𝜕𝑥

)︂
= 0

𝜕 (𝜌𝑆23)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆23)

𝜕𝑥
+

1

2
𝜌

(︂
−𝑆13

𝜕𝑣

𝜕𝑥
− 𝑆12

𝜕𝑤

𝜕𝑥

)︂
= 0.

(3.1)

Аппроксимация решения задачи о распаде разрыва типа HLL характери-
зуется тем, что учитываются только самые крайние волны со скоростями
𝑠𝐿 и 𝑠𝑅, ограничивающие возмущенную область слева и справа, соответ-
ственно. Скорости этих волн определяются максимальным и минимальным
собственным значением матрицы Якоби линеаризованной системы уравне-
ний. Для рассматриваемой системы уравнений эти значения равны 𝜆min =
𝑢−

√︀
𝑐2 + 4𝜇/3𝜌, 𝜆m ax = 𝑢+

√︀
𝑐2 + 4𝜇/3𝜌 , где 𝑐2 определяется по уравнению

(1.27), когда полная энергия по уравнению (1.3).Скорости ограничивающих
возмущенную область характеристик рассчитываются по предложенной Эн-
филдом методике [93] следующим образом:

𝑠𝐿 = min

(︂
0, 𝜆min (Q𝐿) , 𝜆min

(︂
1

2
(Q𝐿 +Q𝑅)

)︂)︂
(3.2a)

𝑠𝑅 = max

(︂
0, 𝜆max (Q𝑅) , 𝜆max

(︂
1

2
(Q𝐿 +Q𝑅)

)︂)︂
, (3.2b)

где Q определяется по уравнению (2.9). Структура приближенного решения
задачи о распаде разрыва имеет вид постоянного распределения параметров
между левой и правой границами возмущенной зоны. Обозначим данное со-
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стояние как Q*. Состояние слева от начального разрыва обозначается как
Q𝐿 состояние справа как Q𝑅. Состояния Q𝐿 и Q*, а так же Q* и Q𝑅 свя-
заны обобщенными соотношениями Ранкина-Гюгонио на соответствующих
разрывах. С этой целью, запишем модель (3.1) в виде (2.9) в автомодельной
переменной 𝜆 = 𝑥/𝑡,

Q− 𝜕 (𝜆Q)

𝜕𝜆
+
𝜕F

𝜕𝜆
+B (Q)

𝜕Q

𝜕𝜆
= 0 (3.3)

Интегрируя (3.3) по 𝜆 ∈ [𝑠𝐿, 𝑠𝑅], получаем

Q* (𝑠𝑅 − 𝑠𝐿)− (Q𝑅𝑠𝑅 −Q𝐿𝑠𝐿) + (F𝑅 − F𝐿)

+

∫︁ Q*

Q𝐿

B (Q)𝑑Q+

∫︁ Q𝑅

Q*

B (Q)𝑑Q = 0∫︁ Q*

Q𝐿

B (Q)𝑑Q =

∫︁ 1

0

B (𝜓 (Q𝐿,Q*, 𝑠))
𝜕𝜓

𝜕𝑠
𝑑𝑠∫︁ Q𝑅

Q*

B (Q)𝑑Q =

∫︁ 1

0

B (𝜓 (Q*,Q𝑅, 𝑠))
𝜕𝜓

𝜕𝑠
𝑑𝑠,

(3.4)

где 𝜓 (𝑠) — непрерывная параметризуемая кривая в фазовом пространстве
(путь), 0 ⩽ 𝑠 ⩽ 1 — параметр вдоль кривой. Следовательно, результат интегри-
рования неконсервативной части зависит от выбора пути. В большинстве схем
в качестве пути выбирается прямолинейный отрезок, соединяющий состояние
слева и справа от разрыва:

𝜓 (Q𝐿,Q*, 𝑠) = Q𝐿 + (Q* −Q𝐿) 𝑠

𝜓 (Q*,Q𝑅, 𝑠) = Q* + (Q𝑅 −Q*) 𝑠.
(3.5)

Учитывая результаты, полученные в разделе 1.3, в данной работе выбран
альтернативный путь, позволяющий упростить вычисление интегралов и
избежать итерационного процесса определения параметров возмущенного
состояния. Во-первых, консервативная часть системы (3.1) вычисляется с
применением уравнения (3.4), и поскольку неконсервативный член равен нулю,
результат согласуется с классическими соотношениями Ранкина-Гюгонио,
который дает следующие значения параметров в возмущенной зоне:

𝜌* =
𝜌𝑅 (𝑠𝑅 − 𝑢𝑅)− 𝜌𝐿 (𝑠𝐿 − 𝑢𝐿)

𝑠𝑅 − 𝑠𝐿
(3.6a)

𝑢*𝑖 =
𝜌𝑅𝑢𝑖𝑅 (𝑠𝑅 − 𝑢𝑅) + 𝜎1𝑖𝑅 − 𝜌𝐿𝑢𝑖𝐿 (𝑠𝐿 − 𝑢𝐿)− 𝜎1𝑖𝐿

𝜌* (𝑠𝑅 − 𝑠𝐿)
, 𝑖 = 1, 2, 3 (3.6b)

𝐸* =
𝜌𝑅𝐸𝑅 (𝑠𝑅 − 𝑢𝑅) + 𝜎1𝑚𝑅𝑢𝑚𝑅 − 𝜌𝐿𝐸𝐿 (𝑠𝐿 − 𝑢𝐿)− 𝜎1𝑛𝐿𝑢𝑛𝑅

𝜌* (𝑠𝑅 − 𝑠𝐿)
, (3.6c)
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где 𝑢1 = 𝑢, 𝑢2 = 𝑣, 𝑢3 = 𝑤, суммирование 𝑚 и 𝑛 в уравнении (3.6c). Используя
уравнение сохранения массы, шестое уравнение в (3.1) переписывается как

𝜕 (𝜌𝑆11 + 4/3𝜇𝜌ln𝜌)
𝜕𝑡

+
𝜕 (𝜌𝑢𝑆11 + 4/3𝜇𝜌𝑢ln𝜌)

𝜕𝑥
+ 𝜌𝑆12

𝜕𝑣

𝜕𝑥
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑥
= 0. (3.7)

При решении задачи Римана в разделе 1.3 наиболее быстро распространяю-
щиеся продольные волны не меняют тангенциальных параметров, т.е. 𝑣, 𝑤 и
𝑆12, 𝑆13, а сдвиговые волны не меняют продольных параметров, т.е. 𝜌, 𝑢, 𝑝 и
𝑆11, 𝑆22, 𝑆33. Таким образом, мы можем выбрать аналогичные пути в уравне-
нии (3.4), то есть существует два этапа, на первом из которых изменяются
продольные параметры, а на втором — тангенциальные. Используя (3.4) и
(3.6a) для уравнения (3.7),

𝜌* (𝑠𝑅 − 𝑠𝐿)𝑆
*
11 = 𝜌* (𝑠𝑅 − 𝑢*)𝑆

′
11𝑅 − 𝜌* (𝑠𝐿 − 𝑢*)𝑆

′
11𝐿 −𝐵

𝑆 ′
11𝐿 = 𝑆11𝐿 +

4

3
𝜇 ln

(︂
𝜌𝐿
𝜌*

)︂
, 𝑆 ′

11𝑅 = 𝑆11𝑅 +
4

3
𝜇 ln

(︂
𝜌𝑅
𝜌*

)︂
𝐵 =

∫︁ 1

0

(︂
𝜌𝑆12

𝜕𝑣

𝜕𝑠
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑠

)︂
𝑑𝑠 (Q𝐿 → Q*)

+

∫︁ 1

0

(︂
𝜌𝑆12

𝜕𝑣

𝜕𝑠
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑠

)︂
𝑑𝑠 (Q* → Q𝑅) .

(3.8)

Неконсервативная часть вычисляется следующим образом

(Q𝐿 → Q*)

1.𝜌𝐿 → 𝜌*

2.𝑣𝐿, 𝑤𝐿, 𝑆12𝐿, 𝑆13𝐿 → 𝑣*, 𝑤*, 𝑆*
12, 𝑆

*
13

𝑞 = 𝑞𝐿 + (𝑞* − 𝑞𝐿) 𝑠, 𝑞 = 𝑣, 𝑤, 𝑆12, 𝑆13∫︁ 1

0

(︂
𝜌𝑆12

𝜕𝑣

𝜕𝑠
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑠

)︂
𝑑𝑠 =

𝜌*

2
(𝑆12𝐿 + 𝑆*

12) (𝑣
* − 𝑣𝐿) +

𝜌*

2
(𝑆13𝐿 + 𝑆*

13) (𝑤
* − 𝑤𝐿) .

(3.9)

Аналогично,∫︁ 1

0

(︂
𝜌𝑆12

𝜕𝑣

𝜕𝑠
+ 𝜌𝑆13

𝜕𝑤

𝜕𝑠

)︂
𝑑𝑠 (Q* → Q𝑅) =

−𝜌
*

2
(𝑆12𝑅 + 𝑆*

12) (𝑣
* − 𝑣𝑅)−

𝜌*

2
(𝑆13𝑅 + 𝑆*

13) (𝑤
* − 𝑤𝑅) .

(3.10)

Аналогично, используя уравнение (3.4) для остальных уравнений в модели
(3.1) и следуя тому же пути, что и в уравнении (3.9), в результате простых
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алгебраических вычислений получается,

MS = A1 −A2

M =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑠𝑅 − 𝑠𝐿 0 0 𝑣𝑅−𝑣𝐿

2
𝑤𝑅−𝑤𝐿

2 0
0 𝑠𝑅 − 𝑠𝐿 0 𝑣𝐿−𝑣𝑅

2 0 0
0 0 𝑠𝑅 − 𝑠𝐿 0 𝑤𝐿−𝑤𝑅

2 0
𝑣𝐿−𝑣𝑅

4
𝑣𝑅−𝑣𝐿

4 0 𝑠𝑅 − 𝑠𝐿 0 𝑤𝑅−𝑤𝐿

4
𝑤𝐿−𝑤𝑅

4 0 𝑤𝑅−𝑤𝐿

4 0 𝑠𝑅 − 𝑠𝐿
𝑣𝑅−𝑣𝐿

4
0 0 0 𝑤𝐿−𝑤𝑅

4
𝑣𝐿−𝑣𝑅

4 𝑠𝑅 − 𝑠𝐿

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

A1 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑆 ′
11𝑅 (𝑠𝑅 − 𝑢*)− 𝑆 ′

11𝐿 (𝑠𝐿 − 𝑢*)
𝑆 ′
22𝑅 (𝑠𝑅 − 𝑢*)− 𝑆 ′

22𝐿 (𝑠𝐿 − 𝑢*)
𝑆 ′
33𝑅 (𝑠𝑅 − 𝑢*)− 𝑆 ′

33𝐿 (𝑠𝐿 − 𝑢*)
𝑆12𝑅 (𝑠𝑅 − 𝑢*)− 𝑆12𝐿 (𝑠𝐿 − 𝑢*) + 𝜇 (𝑣𝑅 − 𝑣𝐿)
𝑆13𝑅 (𝑠𝑅 − 𝑢*)− 𝑆13𝐿 (𝑠𝐿 − 𝑢*) + 𝜇 (𝑤𝑅 − 𝑤𝐿)

𝑆23𝑅 (𝑠𝑅 − 𝑢*)− 𝑆23𝐿 (𝑠𝐿 − 𝑢*)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

A2 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑣*−𝑣𝐿
2 𝑆12𝐿 +

𝑤*−𝑤𝐿

2 𝑆13𝐿 +
𝑣𝑅−𝑣*

2 𝑆12𝑅 + 𝑤𝑅−𝑤*

2 𝑆13𝑅

−𝑣*−𝑣𝐿
2 𝑆12𝐿 − 𝑣𝑅−𝑣*

2 𝑆12𝑅

−𝑤*−𝑤𝐿

2 𝑆13𝐿 − 𝑤𝑅−𝑤*

2 𝑆13𝑅
𝑣*−𝑣𝐿

4 (𝑆 ′
22𝐿 − 𝑆 ′

11𝐿) +
𝑤*−𝑤𝐿

4 𝑆23𝐿 +
𝑣𝑅−𝑣*

4 (𝑆 ′
22𝑅 − 𝑆 ′

11𝑅) +
𝑤𝑅−𝑤*

4 𝑆23𝑅
𝑤𝑅−𝑤*

4 (𝑆 ′
33𝑅 − 𝑆 ′

11𝑅) +
𝑣𝑅−𝑣*

4 𝑆23𝑅 + 𝑤*−𝑤𝐿

4 (𝑆 ′
33𝐿 − 𝑆 ′

11𝐿) +
𝑣*−𝑣𝐿

4 𝑆23𝐿

−𝑣*−𝑣𝐿
4 𝑆13𝐿 − 𝑤*−𝑤𝐿

4 𝑆12𝐿 − 𝑣𝑅−𝑣*
4 𝑆13𝑅 − 𝑤𝑅−𝑤*

4 𝑆12𝑅

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑆 ′
22𝐿 = 𝑆22𝐿 −

2

3
𝜇 ln

(︂
𝜌𝐿
𝜌*

)︂
, 𝑆 ′

22𝑅 = 𝑆22𝑅 − 2

3
𝜇 ln

(︂
𝜌𝑅
𝜌*

)︂
𝑆 ′
33𝐿 = 𝑆33𝐿 −

2

3
𝜇 ln

(︂
𝜌𝐿
𝜌*

)︂
, 𝑆 ′

33𝑅 = 𝑆33𝑅 − 2

3
𝜇 ln

(︂
𝜌𝑅
𝜌*

)︂
,

(3.11)
где S = (𝑆*

11, 𝑆
*
22, 𝑆

*
33, 𝑆

*
12, 𝑆

*
13, 𝑆

*
23)

T. Таким образом, для алгоритма HLL пере-
менные в возмущенной области вычисляются по уравнениям (3.6) и (3.11).

Аппроксимация решения типа HLLC добавляет контактную волну к HLL
в возмущенной области, а возмущенные области слева и справа от контактной
волны обозначаются как Q*

𝐿 и Q*
𝑅, соответственно. В разделе 1.3 скорости

на левой и правой сторонах контактной волны не меняются, что соответ-
ствует условию отсутствия скольжения на границе. Таким образом, в HLLC
предполагается следующее соотношение,

𝑢*𝑖𝐿 = 𝑢*𝑖𝑅 = 𝑢*𝑖 . (3.12)

Аналогично, используя соотношения Ранкина-Гюгонио для консервативной
части, получается, что
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𝜌*𝑘 = 𝜌𝑘
𝑠𝑘 − 𝑢𝑘
𝑠𝑘 − 𝑢*

(3.13a)

𝑢*𝑖 =
𝜌𝑅𝑢𝑖𝑅 (𝑠𝑅 − 𝑢𝑅) + 𝜎1𝑖𝑅 − 𝜌𝐿𝑢𝑖𝐿 (𝑠𝐿 − 𝑢𝐿)− 𝜎1𝑖𝐿

𝜌𝑅 (𝑠𝑅 − 𝑢𝑅)− 𝜌𝐿 (𝑠𝐿 − 𝑢𝐿)
(3.13b)

𝐸*
𝑘 = 𝐸𝑘 +

𝜎1𝑚𝑘𝑢𝑚𝑘 − 𝜎*
1𝑛𝑘
𝑢*𝑛

𝜌𝑘 (𝑠𝑘 − 𝑢𝑘)
(3.13c)

𝜎*
1𝑖𝐿

= 𝜎*
1𝑖𝑅

= 𝜎1𝑖𝑘 + 𝜌𝑘 (𝑢𝑖𝑘 − 𝑢*𝑖 ) (𝑠𝑘 − 𝑢𝑘) , 𝑖, 𝑛,𝑚 = 1, 2, 3.𝑘 = 𝐿,𝑅, (3.13d)

где суммирование 𝑚 и 𝑛 в уравнении (3.13c). Для неконсервативной части, ис-
пользуя тот же путь, что и в уравнениях (3.9) и (3.10), и опустив утомительный
промежуточный процесс алгебраических вычислений, получаем

MS = R1 +R2

M =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑠𝑘 − 𝑢* 0 0 𝑣𝑘−𝑣*

2
𝑤𝑘−𝑤*

2 0
0 𝑠𝑘 − 𝑢* 0 𝑣*−𝑣𝑘

2 0 0
0 0 𝑠𝑘 − 𝑢* 0 𝑤*−𝑤𝑘

2 0
𝑣*−𝑣𝑘

4
𝑣𝑘−𝑣*

4 0 𝑠𝑘 − 𝑢* 0 𝑤𝑘−𝑤*

4
𝑤*−𝑤𝑘

4 0 𝑤𝑘−𝑤*

4 0 𝑠𝑘 − 𝑢* 𝑣𝑘−𝑣*
4

0 0 0 𝑤*−𝑤𝑘

4
𝑣*−𝑣𝑘

4 𝑠𝑘 − 𝑢*

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

R1 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑆 ′
11𝑘 (𝑠𝑘 − 𝑢*)
𝑆 ′
22𝑘 (𝑠𝑘 − 𝑢*)
𝑆 ′
33𝑘 (𝑠𝑘 − 𝑢*)
𝑆12𝑘 (𝑠𝑘 − 𝑢*)
𝑆13𝑘 (𝑠𝑘 − 𝑢*)
𝑆23𝑘 (𝑠𝑘 − 𝑢*)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

R2 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

1
2 (𝑆12𝑘 (𝑣

* − 𝑣𝑘) + 𝑆13𝑘 (𝑤
* − 𝑤𝑘))

−1
2𝑆12𝑘 (𝑣

* − 𝑣𝑘)
−1

2𝑆13𝑘 (𝑤
* − 𝑤𝑘)

−𝜇 (𝑣* − 𝑣𝑘) +
1
4 ((𝑆

′
22𝑘 − 𝑆 ′

11𝑘) (𝑣
* − 𝑣𝑘) + 𝑆23𝑘 (𝑤

* − 𝑤𝑘))
−𝜇 (𝑤* − 𝑤𝑘) +

1
4 ((𝑆

′
33𝑘 − 𝑆 ′

11𝑘) (𝑤
* − 𝑤𝑘) + 𝑆23𝑘 (𝑣

* − 𝑣𝑘))
−1

4 (𝑆13𝑘 (𝑣
* − 𝑣𝑘) + 𝑆12𝑘 (𝑤

* − 𝑤𝑘))

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ ,

(3.14)

где S = (𝑆*
11𝑘, 𝑆

*
22𝑘, 𝑆

*
33𝑘, 𝑆

*
12𝑘, 𝑆

*
13𝑘, 𝑆

*
23𝑘)

T, 𝑘 = 𝐿,𝑅. Такие определения, как
𝑆 ′
11𝑘, согласуются с уравнением (3.8) и (3.11). Заметим, что учитывая форму

уравнения (3.8), выбор пути в уравнениях (3.11) и (3.14) несколько отли-
чается от ранее описанных для параметров 𝑆11, 𝑆22, 𝑆33, т.е. на первом эта-
пе линейно изменяются от 𝑆11𝑘, 𝑆22𝑘, 𝑆33𝑘 до 𝑆 ′

11𝑘, 𝑆
′

22𝑘, 𝑆
′

33𝑘, а затем линейно
от 𝑆 ′

11𝑘, 𝑆
′

22𝑘, 𝑆
′

33𝑘 до 𝑆*
11𝑘, 𝑆

*
22𝑘, 𝑆

*
33𝑘 на втором этапе. Если выбирается исход-

ный путь, то есть на первом этапе линейно изменяются от 𝑆11𝑘, 𝑆22𝑘, 𝑆33𝑘 до
𝑆*
11𝑘, 𝑆

*
22𝑘, 𝑆

*
33𝑘, просто замены 𝑆

′

𝑖𝑖𝑘 в A2 (3.11) и R2 (3.14) на 𝑆𝑖𝑖𝑘.
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Расчет потоков в HLLC производится следующим образом,

Q𝑛+1
𝑖 = Q𝑛

𝑖 +
Δ𝑡

Δ𝑥

(︁
F+
𝑖− 1

2

− F−
𝑖+ 1

2

)︁
(3.15a)

F+
𝑖−1/2 = 𝐻

(︀
𝐶1,𝑖−1/2

)︀
𝐶1,𝑖−1/2Q

*
𝑖−1/2,𝐿

+
(︀
𝑠𝑅,𝑖−1/2 +

(︀
𝐻
(︀
−𝐶1,𝑖−1/2

)︀
− 1
)︀
𝐶1,𝑖−1/2

)︀
Q*
𝑖−1/2,𝑅 − 𝑠𝑅,𝑖−1/2Q

𝑛
𝑖

F−
𝑖+1/2 = 𝐻

(︀
−𝐶1,𝑖+1/2

)︀
𝐶1,𝑖+1/2Q

*
𝑖+1/2,𝑅

+
(︀
𝑠𝐿,𝑖+1/2 +

(︀
𝐻
(︀
𝐶1,𝑖+1/2

)︀
− 1
)︀
𝐶1,𝑖+1/2

)︀
Q*
𝑖+1/2,𝐿 − 𝑠𝐿,𝑖+1/2Q

𝑛
𝑖 ,

(3.15b)

где Δ𝑥 — длина сетки, Δ𝑡 — шаг времени, 𝐻(𝑥) — функция Хевисайда,
𝐶1,𝑖−1/2 — 𝑢* при решении задачи Римана между сетками 𝑖−1 и 𝑖. Для случая
HLL пусть 𝐶1 = 0.

3.2 Солвер HLLC для биматериальной
равновесной модели Уилкинса

Этот раздел представляет собой приближенный римановский солвер типа
HLLC для модели (2.54), и основная идея та же, что и в разделе 3.1. Скорости
волн рассчитываются следующим образом,

𝑠𝐿 = min
(︁
0, 𝜆min (Q

𝛼
𝐿) , 𝜆min

(︁
Q𝛽
𝐿

)︁)︁
𝑠𝑅 = max

(︁
0, 𝜆max (Q

𝛼
𝑅) , 𝜆min

(︁
Q𝛽
𝑅

)︁)︁
𝜆min = 𝑢−

√︀
𝑐2 + 4𝜇/3𝜌, 𝜆max = 𝑢+

√︀
𝑐2 + 4𝜇/3𝜌.

(3.16)

Предполагая, что уравнение (3.12) выполняется, используя соотношения
Ранкина-Гюгонио для консервативной части (2.54), получаем,

(𝜙𝑚𝜌𝑚)*𝑘 = (𝜙𝑚𝜌𝑚)𝑘
(𝑢𝑘 − 𝑠𝑘)

𝑢* − 𝑠𝑘
,𝑚 = 𝛼, 𝛽.𝑘 = 𝐿,𝑅. (3.17a)

𝑢*𝑖 =
𝜌𝑅𝑢𝑖𝑅 (𝑠𝑅 − 𝑢𝑅) + 𝜎1𝑖𝑅 − 𝜌𝐿𝑢𝑖𝐿 (𝑠𝐿 − 𝑢𝐿)− 𝜎1𝑖𝐿

𝜌𝑅 (𝑠𝑅 − 𝑢𝑅)− 𝜌𝐿 (𝑠𝐿 − 𝑢𝐿)
(3.17b)

𝐸*
𝑘 = 𝐸𝑘 +

𝜎1𝑠𝑘𝑢𝑠𝑘 − 𝜎*1𝑛𝑘𝑢
*
𝑛

𝜌𝑘 (𝑠𝑘 − 𝑢𝑘)
, 𝑖, 𝑠, 𝑛 = 1, 2, 3. (3.17c)

𝜎*1𝑖𝐿 = 𝜎*1𝑖𝑅 = 𝜎1𝑖𝑘 + 𝜌𝑘 (𝑢𝑖𝑘 − 𝑢*𝑖 ) (𝑠𝑘 − 𝑢𝑘) (3.17d)

𝜌𝑘 = (𝜙𝛼𝜌𝛼)𝑘 +
(︀
𝜙𝛽𝜌𝛽

)︀
𝑘
, 𝜌*𝑘 = (𝜙𝛼𝜌𝛼)*𝑘 +

(︀
𝜙𝛽𝜌𝛽

)︀*
𝑘
, (3.17e)
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где суммирование 𝑠 и 𝑛 в уравнении (3.17c). Переписав уравнение объемной
доли в модели (2.54), получим следующее,

𝜕𝜙𝛼

𝜕𝑡
+
𝜕 (𝜙𝛼𝑢)

𝜕𝑥
− Λ𝛽

𝜕𝑢

𝜕𝑥
= 0. (3.18)

Для неконсервативной части можно по-прежнему использовать метод инте-
грирования по определенному пути в фазовом пространстве, как в разделе
3.1. Учитывая уравнение (1.28), следует предположить, что 𝜌𝛼𝑐𝛼2 + 4/3𝜇𝛼

и 𝜌𝛽𝑐𝛽2 + 4/3𝜇𝛽 в Λ𝛽 являются константами при интегрировании по пути,
и что объемная доля по-прежнему линейно изменяется. Здесь, однако, мы
используем другой широко используемый метод при решении неконсерва-
тивных членов в уравнении объемной доли, то есть рассматриваем их как
источниковые члены. Классическая схема HLLC с источниковыми членами
имеет вид,

Q𝑛+1
𝑖 = Q𝑛

𝑖 +
Δ𝑡

Δ𝑥

(︁(︁
F𝑖− 1

2
− F𝑖+ 1

2

)︁
+ s𝑖

)︁
F =

1 + sgn(𝑢*)
2

[F𝐿 + 𝑠𝐿(Q
*
𝐿 −Q𝐿)] +

1− sgn(𝑢*)
2

[F𝑅 + 𝑠𝑅(Q
*
𝑅 −Q𝑅)]

Q𝑘 = 𝜙𝛼𝑘 , F𝑘 = 𝜙𝛼𝑘𝑢𝑘,Q
*
𝑘 =

𝑠𝑘 − 𝑢𝑘
𝑠𝑘 − 𝑢*

𝜙𝛼𝑘 , 𝑘 = 𝐿,𝑅

s𝑖 = Λ𝛽(𝐶𝑖+1/2 − 𝐶𝑖−1/2)

𝐶 =
1 + sgn(𝑢*)

2

[︂
𝑢𝐿 + 𝑠𝐿(

𝑠𝐿 − 𝑢𝐿
𝑠𝐿 − 𝑢*

− 1)

]︂
+
1− sgn(𝑢*)

2

[︂
𝑢𝑅 + 𝑠𝑅(

𝑠𝑅 − 𝑢𝑅
𝑠𝑅 − 𝑢*

− 1)

]︂
,

(3.19)
где sgn(𝑥) — функция знака. Для девиаторной части в модели (2.54) с целью
упрощения расчетов предполагается, что объемная доля изменяется только
на контактной волне, т.е.

𝜙𝛼𝑘 = 𝜙𝛼*𝑘 . (3.20)

Следовательно, используя тот же метод, что и в разделе 3.1, получаем,

𝑆𝑚*
11𝑘 = 𝑆𝑚11𝑘 +

4

3
𝜇𝑚 ln

(︂
𝑢* − 𝑠𝑘
𝑢𝑘 − 𝑠𝑘

)︂
𝑆*
12𝑘 = 𝑆12𝑘 +

(𝑣* − 𝑣𝑘)𝜇
𝛽𝜇𝛼

(𝑢* − 𝑠𝑘)
(︁
𝜙𝛼𝑘𝜇

𝛽 + 𝜙𝛽𝑘𝜇
𝛼
)︁

𝑆*
13𝑘 = 𝑆13𝑘 +

(𝑤* − 𝑤𝑘)𝜇
𝛽𝜇𝛼

(𝑢* − 𝑠𝑘)
(︁
𝜙𝛼𝑘𝜇

𝛽 + 𝜙𝛽𝑘𝜇
𝛼
)︁ ,𝑚 = 𝛼, 𝛽.𝑘 = 𝐿,𝑅.

(3.21)
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При рассмотрении производных Яуманна, заменяя материальные про-
изводные в соответствующих уравнениях в модели (2.54) на производные
Яуманна, получаем,

𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼 ln 𝜌𝛼)

𝜕𝑡
+
𝜕 (𝜙𝛼𝜌𝛼𝑆𝛼11 + 4/3𝜇𝛼𝜙𝛼𝜌𝛼 ln 𝜌𝛼)𝑢

𝜕𝑥

+𝜙𝛼𝜌𝛼𝑆12
𝜕𝑣

𝜕𝑥
+ 𝜙𝛼𝜌𝛼𝑆13

𝜕𝑤

𝜕𝑥
= 0

𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽11 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽 ln 𝜌𝛽

)︁
𝜕𝑡

+
𝜕
(︁
𝜙𝛽𝜌𝛽𝑆𝛽12 + 4/3𝜇𝛽𝜙𝛽𝜌𝛽 ln 𝜌𝛽

)︁
𝑢

𝜕𝑥

+𝜙𝛽𝜌𝛽𝑆12
𝜕𝑣

𝜕𝑥
+ 𝜙𝛽𝜌𝛽𝑆13

𝜕𝑤

𝜕𝑥
= 0

𝜕 (𝜌𝑆12)

𝜕𝑡
+
𝜕 (𝜌𝑆12𝑢)

𝜕𝑥
− 𝜌𝜇𝛼𝜇𝛽

𝜙𝛼𝜇𝛽 + 𝜙𝛽𝜇𝛼
𝜕𝑣

𝜕𝑥
+

1

2
𝜌

(︂
(𝑆22 − 𝑆11)

𝜕𝑣

𝜕𝑥
+ 𝑆23

𝜕𝑤

𝜕𝑥

)︂
= 0

𝜕 (𝜌𝑆13)

𝜕𝑡
+
𝜕 (𝜌𝑆13𝑢)

𝜕𝑥
− 𝜌𝜇𝛼𝜇𝛽

𝜙𝛼𝜇𝛽 + 𝜙𝛽𝜇𝛼
𝜕𝑤

𝜕𝑥
+

1

2
𝜌

(︂
(𝑆33 − 𝑆11)

𝜕𝑤

𝜕𝑥
+ 𝑆23

𝜕𝑣

𝜕𝑥

)︂
= 0

𝜕 (𝜌𝑆23)

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆23)

𝜕𝑥
+

1

2
𝜌

(︂
−𝑆13

𝜕𝑣

𝜕𝑥
− 𝑆12

𝜕𝑤

𝜕𝑥

)︂
= 0.

𝜌 = 𝜙𝛼𝜌𝛼 + 𝜙𝛽𝜌𝛽

(𝑆22 − 𝑆11) = 1/2
(︁
(𝑆22 − 𝑆11)

𝛼 + (𝑆22 − 𝑆11)
𝛽
)︁

(𝑆33 − 𝑆11) = 1/2
(︁
(𝑆33 − 𝑆11)

𝛼 + (𝑆33 − 𝑆11)
𝛽
)︁

(3.22)
Используя уравнение (3.4), интегрируя по тому же пути, что и в (3.9), получаем(︁

𝑆𝑚*
11𝑘 − 𝑆𝑚

′

11𝑘

)︁
(𝑠𝑘 − 𝑢*)− 1

2
(𝑆𝑚*

12𝑘 + 𝑆𝑚12𝑘) (𝑣
* − 𝑣𝑘)

−1

2
(𝑆𝑚*

13𝑘 + 𝑆𝑚*
13𝑘) (𝑤

* − 𝑤𝑘) = 0(︁
𝑆𝑚*
22𝑘 − 𝑆𝑚

′

22𝑘

)︁
(𝑠𝑘 − 𝑢*) +

1

2
(𝑆𝑚*

12𝑘 + 𝑆𝑚12𝑘) (𝑣
* − 𝑣𝑘) = 0(︁

𝑆𝑚*
33𝑘 − 𝑆𝑚

′

33𝑘

)︁
(𝑠𝑘 − 𝑢*) +

1

2
(𝑆𝑚*

13𝑘 + 𝑆𝑚*
13𝑘) (𝑤

* − 𝑤𝑘) = 0,𝑚 = 𝛼, 𝛽.𝑘 = 𝐿,𝑅

𝑆𝑚
′

11𝑘 = 𝑆𝑚11𝑘 +
4

3
𝜇𝑚 ln

(︂
𝑢* − 𝑠𝑘
𝑢𝑘 − 𝑠𝑘

)︂
𝑆𝑚

′

22𝑘 = 𝑆𝑚22𝑘 −
2

3
𝜇𝑚 ln

(︂
𝑢* − 𝑠𝑘
𝑢𝑘 − 𝑠𝑘

)︂
𝑆𝑚

′

33𝑘 = 𝑆𝑚33𝑘 −
2

3
𝜇𝑚 ln

(︂
𝑢* − 𝑠𝑘
𝑢𝑘 − 𝑠𝑘

)︂
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(𝑆*
12𝑘 − 𝑆12𝑘) (𝑠𝑘 − 𝑢*) +

𝜇𝛽𝜇𝛼(︁
𝜙𝛼𝑘𝜇

𝛽 + 𝜙𝛽𝑘𝜇
𝛼
)︁ (𝑣* − 𝑣𝑘)

−1

4

(︁
(𝑆22 − 𝑆11)

′

𝑘 + (𝑆22 − 𝑆11)
*
𝑘

)︁
(𝑣* − 𝑣𝑘)−

1

4
(𝑆*

23𝑘 + 𝑆23𝑘) (𝑤
* − 𝑤𝑘) = 0

(𝑆*
13𝑘 − 𝑆13𝑘) (𝑠𝑘 − 𝑢*) +

𝜇𝛽𝜇𝛼(︁
𝜙𝛼𝑘𝜇

𝛽 + 𝜙𝛽𝑘𝜇
𝛼
)︁ (𝑤* − 𝑤𝑘)

−1

4

(︁
(𝑆33 − 𝑆11)

′

𝑘 + (𝑆33 − 𝑆11)
*
𝑘

)︁
(𝑤* − 𝑤𝑘)−

1

4
(𝑆*

23𝑘 + 𝑆23𝑘) (𝑣
* − 𝑣𝑘) = 0

(𝑆*
23𝑘 − 𝑆23𝑘) (𝑠𝑘 − 𝑢*) +

1

4
(𝑆*

13𝑘 + 𝑆13𝑘) (𝑣
* − 𝑣𝑘)

+
1

4
(𝑆*

12𝑘 + 𝑆12𝑘) (𝑤
* − 𝑤𝑘) = 0

(𝑆22 − 𝑆11)
′

𝑘 =
1

2

(︁(︁
𝑆𝛼

′

22𝑘 − 𝑆𝛼
′

11𝑘

)︁
+
(︁
𝑆𝛽

′

22𝑘 − 𝑆𝛽
′

11𝑘

)︁)︁
(𝑆22 − 𝑆11)

*
𝑘 =

1

2

(︁
(𝑆𝛼*22𝑘 − 𝑆𝛼*11𝑘) +

(︁
𝑆𝛽*22𝑘 − 𝑆𝛽*11𝑘

)︁)︁
(3.23)

Перепишем (3.23) в форме, аналогичной матричному уравнению (3.14),

где S =
(︁
𝑆𝛼*11𝑘, 𝑆

𝛽*
11𝑘, 𝑆

𝛼*
22𝑘, 𝑆

𝛽*
22𝑘, 𝑆

𝛼*
33𝑘, 𝑆

𝛽*
33𝑘, 𝑆

*
12𝑘, 𝑆

*
13𝑘, 𝑆

*
23𝑘

)︁T
, 𝑘 = 𝐿,𝑅, что может

быть решено с применением методов линейной алгебры. Поток консервативной
части может быть рассчитан в виде уравнения (3.19). Для удобства программи-
рования уравнение (3.15), которое используется для расчета неконсервативных
потоков, также может быть одновременно применено и для консервативных.

3.3 Сравнение численных и теоретических
результатов для одноосных деформаций

В разделе 1.3 теоретически анализируется структура сильных и слабых
волн в упругой фазе. При включении критерия пластичности, структура волны
проявляет новые свойства; соответствующие анализы в случае одномерных
деформаций представлены в [70]. Несмотря на то, что в данных статьях
полная энергия имеет вид 𝐸 = 𝑒+ 0.5𝑢2, упругий член 𝑆𝑖𝑗𝑆𝑖𝑗/(4𝜇𝜌) в полной
энергии в области одноосной деформации дает настолько малый эффект, что
в численных расчетах оба результата почти равны. Как и в теоретическом
анализе, оба результата обладают совершенно одинаковыми свойствами. Таким
образом, во всем этом разделе используются результаты с полной энергией
𝐸 = 𝑒+ 0.5𝑢2.
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3.3.1 Случай одинаковых материалов
Далее для полноты изложения результаты кратко суммированы. Подроб-

ности этого анализа приведены в [70].
В предположении одноосной деформации в модели (1.1), 𝑣, 𝑤, 𝑆12, 𝑆13, 𝑆23

равны 0 и соответствующие уравнения исчезают, а уравнение для девиаторного
напряжения 𝑆11 превращается в обыкновенное дифференциальное уравнение,
интегрирование которого приводит к однозначной аналитической зависимости
этой компоненты от плотности.

Для случая ударных волн с большой амплитудой примером одноосной
деформации служит бесконечная плоская пластина (считающаяся бесконеч-
ной в направлениях 𝑦 и 𝑧), подвергнутая внезапному удару вдоль ее нормали
(направление 𝑥) (например, столкновение с недеформируемой преградой с
определенной начальной скоростью или сильный взрыв, создающий давление
на поверхности). Используя соотношения Ранкина-Гюгонио на разрыве, полу-
чают два известных соотношения - адиабату Гюгонио и линию Михельсона-
Релея,

𝑒− 𝑒0 =
1

2
(𝜈 − 𝜈0) (𝜎 + 𝜎0) (3.24a)

𝜎11 − 𝜎110 = 𝑚̇2 (𝜈 − 𝜈0) (3.24b)
𝑚̇ = 𝜌 (𝑢−𝐷) = 𝜌0 (𝑢0 −𝐷) , (3.24c)

где 𝜈 = 1/𝜌, аналогично уравнению (1.42).
Таким образом, состояния после прохождения ударных волн описываются

точкой пересечения этих двух кривых. Анализ взаимного пересечения кри-
вых показывает, что в зависимости от скорости удара, возможны три типа
ударно-волновой структуры в упругопластическом материале: одноволновой
упругий режим, двухволновой режим с упругим предвестником и одноволно-
вой пластический режим.

Рассмотрим отдельно двухволновой режим течения. Пусть критическое
значение перехода от одноволнового упругого режима к двухволновому ре-
жиму определяется величиной массовой скорости 𝑚̇𝑌 . При возникновении
двухволнового режима, первая ударная волна, называемая упругим пред-
вестником, распространяется с интенсивностью 𝑚̇ = 𝑚̇𝑌 . За этой волной
параметры изменяются от начального значения до значения, определяемого
пределом текучести. Скорости по обе стороны волны должны удовлетворять
следующим условиям:

𝑚̇𝑌 = 𝜌𝑌 (𝑢−𝐷1) = 𝜌0 (𝑢0 −𝐷1) (3.25)

где подстрочный индекс 𝑌 характеризует величину поверхности текучести.
Вторая волна распространяется по состоянию, определяемому пределом теку-
чести. Массовая скорость в этой волне меньше предельного значения 𝑚̇𝑌 . С ро-
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стом интенсивности массовая скорость второй волны и ее скорость возрастают.
При достижении значения 𝑚̇𝑌 скорости обеих волн становятся одинаковыми
и начинается переход к одноволновому пластическому режиму.

Кратко опишем свойства ударной волны в упругопластическом материале:

• По мере увеличения скорости удара, структура проходит три фазы, а
именно, одноволновый упругий режим, двухволновый режим с упругим
предвестником и одноволновый пластический режим.

• В двухволновом режиме, при переходе через первую волну параметры
состояния изменяются от начальных значений до значений, соответству-
ющих точке текучести. Величина изменения скорости за фронтом волны
определяется параметрами текучести материала.

• В двухволновом режиме, по мере увеличения интенсивности (скорости
удара, если ударно-волновой процесс возникает в результате удара о
недеформируемую преграду) вторая волна распространяется со все
большей скоростью относительно неподвижной лабораторной системы
координат, пока ее скорость не сравняется со скоростью первой волны,
и процесс перейдет из двухволнового режима в одноволновой.

Слабые волны возникают при растяжении упругопластического материала.
В отличие от процесса генерации ударной волны, пусть имеется бесконечная
плоская пластина, жестко прикрепленная к неподвижной недеформируемой
преграде, скорость плоской пластины нормальна к ее собственной плоскости
и направлена в сторону от преграды. В результате внутри пластины распро-
страняется центрированная волна разрежения, которая может иметь разную
структуру в зависимости от величины начальной скорости.

В вышеприведенной постановке все физические величины зависят только
от одной автомодельной переменной , и задача сводится к системе обыкновен-
ных дифференциальных уравнений с начальными данными:

𝑑𝜎

𝑑𝜈
= 𝑓1 (𝜎, 𝜈) (3.26a)

𝑑𝑢

𝑑𝜈
= 𝑓2 (𝜎, 𝜈) (3.26b)

𝜎11|𝜈=𝜈0 = 𝜎110, 𝑢𝜈=𝜈0 = 𝑢0, (3.26c)

которая аналогично уравнению (1.37) и может быть проинтегрирована числен-
но, например, с помощью метода Рунге Кутты. Особенностью этой системы
является слабый разрыв на решении 𝜎 = 𝜎(𝜈) в точке, соответствующей пара-
метрам текучести. Таким образом, при растяжении возможно формирование
как одной центрированной волны растяжения, так и двух центрированных
волн растяжения в зависимости от интенсивности (скорости) растяжения.
Основные свойства возникающих при растяжении центрированных волн раз-
грузки следующие.
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• Структура слабых волн при увеличении скорости растяжения упруго-
пластического материала меняется от одноволновой к двухволновой.
Одноволновая структура (одна центрированная волна) возникает при
небольших скоростях растяжения, когда изменения параметров в волне
происходят в упругой области.

• В двухволновом режиме (две центрированные волны), при переходе
через первую волну параметры состояния изменяются от начальных
значений до состояния, определяемого параметрами текучести. Даль-
нейшее изменение параметров происходит уже в пластической области
во второй волне. Даже при больших скоростях растяжения не возникает
ситуации, подобной ударной волне, когда двухволновый режим меняется
на одноволновый.

Ниже приводятся результаты численных экспериментов в упругопласти-
ческом материале в приближении одномерной одноосной деформации. Пред-
ставленные результаты соответствуют следующей постановке задачи.

• В качестве материала выбирается алюминий с УРС Ми-Грюнайзена (1.2).
Соответствующие параметры УРС указаны в таблице 3.1. Используется
критерий Мизеса: если 𝑄 = 𝑆𝑖𝑗𝑆𝑖𝑗 ⩾ 2

3𝑌
2, то 𝑆𝑖𝑗 → 𝑆𝑖𝑗

√︁
2
3
𝑌
𝑄 .

• Граничные условия: левая граница материала 𝑥 = 0 соответствует
граничному условию жесткой недеформируемой стенки 𝑢 = 0, правая
𝑥 = 0.1m — свободной лагранжевой границе с нулевым напряжением и
давлением.

• Начальные параметры — плотность 𝜌0, скорость 𝑢0, давление 𝑝0 = 0,
девиатор напряжений 𝑆110 = 0. Графики на рисунках отвечают моменту
времени 10−5𝑠.

• В расчетах используется равномерная неподвижная сетка, состоящая из
1000 или 2000 ячеек. Вычисления проводятся с переменным шагом по
времени, соответствующему условию устойчивости численного метода
(условию CFL).

В таблице 3.1 слева приведены константы УРС для алюминия, в середине —
соответствующие критические параметры для ударной волны, а справа — для
волны разрежения. Индекс * и ** обозначают критические значения для
перехода от одноволнового к двухволновому режиму и от двухволнового к
одноволновому режиму, соответственно.
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Таблица 3.1 — Константы алюминия и критические значения для случаев ударной волны
и волны разрежения

Параметры УРС Крит. Удар. Разр.

𝜌0, kg/m3 2780 𝑢*0,m/s −34.02 33.82
Γ 2.13 𝜌*, kg/m3 2794.64 2765.43
𝑠 1.338 𝑝*,GPa 0.42 −0.41

𝑎0,m/s 5330 𝑢**0 ,m/s −794.69 /
𝜇,GPa 27.6 𝜌**, kg/m3 3167.70 /
Y,GPa 0.29 𝑝**,GPa 14.15 /

Рассмотрим следующие два случая. Первый случай является примером
ударной волны, когда объект ударяется о стену слева с определенной отрица-
тельной начальной скоростью. Второй случай является примером центриро-
ванной волны растяжения, когда левая сторона объекта прикреплена к стене,
а правая растягивается с положительной начальной скоростью.

На рисунке 3.1 и 3.2 показано распределение давления, когда начальная
скорость находится около первого критического значения. Видно, что численно
рассчитанные критические значения должны лежать между 34 − 35 м/с,
что очень близко к данным, приведенным в таблице 3.1. Соответствующие
теоретические и численные значения приведены в таблице 3.2. Индекс 1
обозначает параметр состояния за первой волной, а индекс 2 — параметр
состояния за второй волной. В этой таблице 𝜌1 и 𝑝1 являются 𝜌* и 𝑝*, 𝑢1 =
𝑢0 − 𝑢*0, потому что, как уже отмечено, значение изменения скорости через
первую волну фиксировано и величина равна 𝑢*0.

Таблица 3.2 — Теоретические и численные значения в случае ударной и разреженной волн
вокруг первого критического значения

Параметры Теор.
(ударн.)

Теор.
(разр.)

Числ.
(𝑢 = −35m/s)

Числ.
(𝑢 = 35m/s)

𝑢1,m/s −0.98 1.18 −1.00 1.18
𝜌1, kg/m3 2794.64 2765.43 2794.64 2765.43
𝑝1,GPa 0.42 −0.41 0.42 −0.41
𝑢2,m/s 0 0 0.00 0.00
𝜌2, kg/m3 2795.17 2764.82 2795.17 2764.81
𝑝2,GPa 0.436 −0.428 0.435 −0.427
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Рисунок 3.1 — Валидация критических значений для ударной волны (количество ячеек —
2000).
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Рисунок 3.2 — Валидация критических значений для волны разрежения (количество ячеек —
2000).

При изменении начальной скорости соответственно меняется и режим
волны. На рисунках 3.3 и 3.4 показаны численные результаты и теоретические
значения для различных волновых режимов в случае ударных и центрирован-
ных волн. Соответствующие конкретные значения указаны в таблицах 3.3 и
3.4.
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Рисунок 3.3 — Распределение давления при нескольких различных скоростях для ударной
волны.
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Рисунок 3.4 — Распределение давления при нескольких различных скоростях для волны
разрежения.
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Таблица 3.3 — Теоретические значения в различных режимах

Параметры 𝑢 = −10 𝑢 = −100 𝑢 = −1300 𝑢 = 10 𝑢 = 100 m/s

𝑢1,m/s 0 −65.98 / 0 66.18
𝜌1, kg/m3 2784.31 2794.64 / 2775.69 2765.43
𝑝1,GPa 0.123 0.42 / −0.122 −0.41

𝑥1,m 0.0645 0.06394 / 0.06445 —
0.06463

0.06490 —
0.06553

𝑢2,m/s / 0 0 / 0
𝜌2, kg/m3 / 2828.74 3388.46 / 2730.82
𝑝2,GPa / 1.430 25.970 / −1.366

𝑥2,m / 0.05407 0.05940 / 0.05220 —
0.05354

Таблица 3.4 — Численные значения в различных режимах

Параметры 𝑢 = −10 𝑢 = −100 𝑢 = −1300 𝑢 = 10 𝑢 = 100 m/s

𝑢1,m/s 0.00 −66.01 / 0 66.18
𝜌1, kg/m3 2784.31 2794.64 / 2775.69 2765.43
𝑝1,GPa 0.123 0.420 / −0.122 −0.410

𝑥1,m 0.0644 0.06455 / 0.05835 —
0.07015

0.06105 —
0.07075

𝑢2,m/s / 0.00 0.00 / 0
𝜌2, kg/m3 / 2828.72 3393.77 / 2730.54
𝑝2,GPa / 1.431 26.173 / −1.358

𝑥2,m / 0.05385 0.05888 / 0.04635 —
0.05775

В двухволновом режиме начальная скорость продолжает увеличиваться,
как показано на рисунках 3.5 и 3.6. Независимо от величины начальной ско-
рости, при переходе через первую волну параметры состояния изменяются от
своего начального значения до значений, точно соответствующим параметрам
текучести. Величина изменения скорости также фиксирована, и является
первым критическим значением. По мере увеличения начальной скорости в
случае центрированной волны разрежения дальнейшего перехода к одновол-
новому режиму не происходит. Для ударной волны, скорость распространения
первой ударной волны уменьшается. При больших скоростях численная дисси-
пация первой волны достаточно большая. Это может быть связано с тем, что
начальная скорость близка ко второму критическому значению и что первая
волна скоро начнет исчезать. Возможно, эту волну можно описать точнее,
используя более точный алгоритм и большее число сеток. Однако сравнение
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здесь только качественное с теоретическими выводами, поэтому конкретные
значения не приводятся.
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Рисунок 3.5 — Распределение скорости для ударной волны при нескольких различных
скоростях в пределах двухволнового режима (количество сеток — 2000).
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Рисунок 3.6 — Распределение скорости для волны разрежения при нескольких различных
скоростях в пределах двухволнового режима (количество сеток — 2000).
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3.3.2 Случай биматериалов
Применяя свойства упругопластических волн, описанные в разделе 3.3.1,

получается обобщение задачи Римана в разделе 1.3 на двухматериальный
случай с критерием пластичности в ситуации одноосных деформаций. До-
казательства соответствующих свойств и конкретная процедура решения
приведены в [72, 94]. В этом разделе мы используем метод отслеживания
границы, для точного вычисления положения интерфейса, и рассматриваем
его численные результаты в качестве опорного решения для проверки точно-
сти сокращенной формы ((2.60) и (2.61) в разделе 2.3) новой предложенной
модели ((2.54) в разделе 2.2), а также для оценки величины размазывания
интерфейса методом диффузной границы в этом случае.

Существующие методы для вычисления многофазных течений с разрешен-
ными межфазными границами разделяются на два основных типа: методы
отслеживания границы (или front tracking methods, surface-based methods)
и методы захватывания границы (volume-based methods). К последним от-
носится эйлерова формулировка механики деформируемого твердого тела с
моделированием границы методом диффузной границы в главе 2. Метод от-
слеживания границы представляет собой численный метод, в котором класси-
ческий эйлеровский решатель используется для точек, удаленных от границы,
а специальная схема применяется для точек вблизи границы [95]. Прямой
способ вычисления движущихся границ заключается в использовании движу-
щейся сетки, которая закреплена на границе и деформируется в зависимости
от течения по обе стороны границы. Это реализуется чисто лагранжевыми
или произвольно-лагранжево-эйлеровыми (arbitrary-Lagrangian-Eulerian, ALE)
методами [96], которые лучше всего подходят для отслеживания разрывов в
параметрах течения. Разрешение разрывов в этих методах является точным и
бездиссипативным, однако их распространение на двух- и трехмерные задачи
является довольно сложным и трудным [97]. Более того, обработка больших
деформаций с использованием этого метода представляет собой сложную
вычислительную задачу из-за сильных искажений сетки [60].

В сочетании с основной идеей отслеживания границы, она может быть лег-
ко обобщена на случай биматериалов. А именно, граница материалов задается
в виде узла𝑁 , и к этому узлу применяется решатель HLLC для аппроксимации
численного потока. Скорость контактной волны HLLC является скоростью, с
которой движется граница материалов, и она используется для обновления
координат узла 𝑁 . Затем точки сетки перераспределяются таким образом,
чтобы обеспечить плавное изменение размера ячеек. Для аппроксимации
численного потока во всех остальных точках сетки применяется решатель
HLL. При таком методе в каждой расчетной ячейке присутствует только один
материал, а граница остается четкой с течением времени.

Вычисление компонент вектора состояния в возмущенной зоне в римановых
решателях HLL и HLLC описано в разделе 3.1. Оценки скорости волны и
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расчет потока в HLLC приведены ниже:
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где определения знаков совпадают с теми, что даны в уравнении (3.15), 𝑣′ —
скорость точек сетки, Δ𝑥𝑛+1

𝑖 — длина 𝑖-й ячейки на временном шаге 𝑛+ 1.
В случае HLL, F+

𝑖−1/2 и F−
𝑖+1/2 записываются в следующем виде:
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Для неподвижных сеток задано 𝑣′ = 0, таким образом, в уравнении
(3.28), 𝑠′𝐿,𝑖−1/2 = 𝑠𝐿,𝑖−1/2, 𝐶 ′

1,𝑖−1/2 = 𝐶1,𝑖−1/2, 𝑠′𝑅,𝑖−1/2 = 𝑠𝑅,𝑖−1/2, 𝐻 (𝑠′𝑅) = 1 и
𝐻 (𝑠′𝐿) = 0, по той причине, что согласно уравнению (3.27), 𝑠𝐿 всегда мень-
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ше или равно нулю, а 𝑠𝑅 всегда больше или равно нулю, тогда получается
уравнение (3.15).

Далее мы рассмотрим двухматериальный случай численных эксперимен-
тов в разделе 3.3.1. Материал слева (примыкающий к стене) — алюминий,
а материал справа от границы — медь. Для обоих материалов используется
уравнение состояния Ми-Грюнайзена (1.2). Граничное условие слева — жест-
кая недеформируемая стенка, а справа — лагранжева граница с нулевым
напряжением и давлением. Начальные давление и напряжение равны нулю,
начальная скорость отрицательна для случая удара и положительна для
случая растяжения. Вычислительный алгоритм основан на методе, описанном
в данном разделе и разделе 3.2, с переменным шагом по времени, выбираемым
в соответствии с обычным условием устойчивости Куранта-Фридрихса-Льюи
(CFL). Сетка состоит из 1000 расчетных ячеек, по 500 ячеек отведено для каж-
дого из двух материалов. В случае неподвижной сетки для объемных долей
материалов во всех расчетных ячейках задаются ненулевые начальные значе-
ния. Начальное значение отсечки 10−9 принимается для алюминия в области
меди и, соответственно, для меди в области алюминия. Соответствующие
параметры УРС указаны в таблице 3.5.

Таблица 3.5 — Константы алюминия и меди

Параметры Алюминий Медь

𝜌0, kg/m3 2780 8930
Γ 2.13 2
𝑠 1.338 1.49

𝑎0,m/s 5330 3970
𝜇,GPa 27.6 45
Y,GPa 0.29 0.09

В данном разделе используются критерий Мизеса: если𝑄𝑘 = 𝑆𝑘𝑖𝑗𝑆
𝑘
𝑖𝑗 ⩾

2
3𝑌

𝑘2,

то 𝑆𝑘𝑖𝑗 → 𝑆𝑘𝑖𝑗

√︁
2
3
𝑌 𝑘

𝑄𝑘 . Сначала рассмотрим проблему удара. Обе критические
скорости переходов волновых режимов для меди меньше, чем для алюминия
[70]. Следовательно, когда скорость удара не очень велика, алюминий может
находиться в режиме одной упругой волны, а медь в режиме одной упругой
волны или в режиме двойной упругопластической волны (рисунок 3.7). Когда
скорость удара увеличивается выше первой критической скорости алюминия, в
алюминии распространяются двойные упругопластические волны, в то время
как в меди возникает трехволновый (рисунок 3.8) или двухволновый режим.
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Рисунок 3.7 — Распределения скорости и давления при 10−5 с для скорости удара 20
м/с. При ударе о стенку сначала возникает упругая ударная волна в алюминии. Она
распространяется к границе и затем создает двойную упругопластическую волну в меди, в
то же время отраженная волна распространяется обратно в алюминий.
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Рисунок 3.8 — Распределения скорости и давления при 10−5 с для скорости удара 100
м/с. Двойные упругопластические волны распространяются в алюминии. Упругая пред-
вестниковая волна алюминия достигает границы и заставляет медь генерировать двойные
упругопластические волны. Затем вторая пластическая волна алюминия достигает границы
и порождает еще одну пластическую волну в меди.

Режим волны зависит от величины скорости удара. Первая упругая пред-
вестниковая волна алюминия достигает границы и может вызвать в меди
двойные упругопластические волны, или медь может сразу перейти в пласти-
ческое состояние и генерировать только одну пластическую волну на границе.
Когда вторая пластическая волна алюминия достигнет границы, она вызо-
вет еще одну пластическую волну в меди. В обоих случаях первая упругая
предвестниковая волна алюминия, достигающая границы материалов, вы-
зывает отраженную волну, распространяющуюся обратно к алюминию. Эта
отраженная волна встречается с первоначальной пластической волной, кото-
рая движется со скоростью, меньшей, чем скорость первоначальной упругой
предвестниковой волны. Теоретического анализа того, что происходит при
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встрече этих двух волн, не существует. Тем не менее, численные результаты
показывают, что не происходит наложения двух волн для формирования
единой волны, или что более сильная пластическая волна поглощает более
слабую отраженную волну.

Когда скорость удара увеличивается выше второй критической скорости
алюминия, в алюминии возникает одиночная пластическая волна, вызванная
ударом о стенку. Как только эта волна достигает границы материалов, в
меди возникает передаваемая ударная волна, также в режиме одиночной
пластической волны, как показано на рисунке 3.9.

Задача о растяжении материалов по постановке аналогична задаче об
ударе. При растяжении не существует одиночной пластической волны; в ма-
териале могут возникать только упругие или двойные упругопластические
волны разрежения. Каждая волна разрежения ограничена двумя характери-
стиками. Количество волн, требующих анализа при численном моделировании,
удваивается по сравнению с задачей удара, что значительно усложняет анализ
взаимодействия волн с границей. Таким образом, выбираются только случаи
с малыми скоростями растяжения, когда и алюминий, и медь находятся в
режиме одиночной упругой волны разрежения (рисунок 3.10) и когда алюми-
ний находится в режиме одиночной упругой волны, а медь в режиме двойной
упругопластической волны (рисунок 3.11).

Время выхода для рисунков 3.7 – 3.11 — все 10−5 с, что соответствует
моменту, когда волны проходят в медь и остаются одна или две отраженные
волны в алюминии. Для модели (2.60) существует одна общая скорость, но
фазовые давления различны. Следовательно, распределения давления для
двух материалов показаны на рисунках 3.7 – 3.11. Из этих рисунков видно, что
результаты отслеживания границ на движущихся сетках хорошо согласуются
с данными, полученными при захватывании границ на неподвижных сетках.
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Рисунок 3.9 — Распределения скорости и давления при 10−5 с для скорости удара 1300 м/с.
Поскольку скорость удара достаточно велика, и алюминий, и медь достигают пластического
состояния непосредственно.
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Рисунок 3.10 — Распределения скорости и давления при 10−5 с для скорости растяжения 2
м/с. Поскольку скорость растяжения достаточно мала, и алюминий, и медь находятся в
упругом состоянии.
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Рисунок 3.11 — Распределения скорости и давления при 10−5 с для скорости растяжения
20 м/с. Аналогично ситуации на рисунке 3.7, за исключением того, что вместо ударных
волн теперь появляются волны разрежения.

3.4 Сравнение численных и теоретических
результатов для общего случая

По сравнению с разделом 3.3, в этом разделе мы рассматриваем более
общий случай, включающий напряжение сдвига и эволюцию деформации. Мы
используем численные методы в разделе 3.2 для модели (2.54), где полная
энергия имеет вид уравнения (1.3). Когда критерий пластичности не учитыва-
ется, теоретическое решение, полученное в разделе 1.3, хорошо согласуется
с соответствующими численными результатами, что указывает на то, что в
рамках рассматриваемой модели продольные и сдвиговые волны полностью
независимы. Однако теоретический анализ упругопластического течения при
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любых начальных условиях является весьма сложным и трудным. Таким
образом, в данном разделе представлены только численные результаты. На-
блюдается, что в присутствии сдвига материал проявляет множество новых
характеристик на пластической фазе.

3.4.1 Без учета модификации критерия пластичности
В качестве численных тестов рассматривается биматериальная задача

Римана, в которой граница разделяет два упругих материала. Описание и
постановка численных тестов точно такие же, как в разделе 3.3.2, а соот-
ветствующие параметры приведены в таблице 3.5. Даже если материалы
одинаковы с обеих сторон, численный метод для двух материалов в разделе
3.2 все еще используется, только параметры для обоих материалов устанавли-
ваются на один и тот же материал. Соответственно, теоретическое решение
задачи Римана (в разделе 1.3) используется как эталонное. Поскольку в на-
стоящее время имеется только теоретическое решение для упругой фазы, в
численных расчетах предел текучести 𝑌 материалов задается очень большим
числом, чтобы критерий пластичности не оказывал никакого влияния.

На рисунках 3.12 и 3.13 рассмотрены случаи, когда существуют только
сдвиговые волны. Слева и справа начальные значения скоростей 𝑢 и 𝑤, давле-
ния 𝑝 и всех девиаторных напряжений равны 0, а скорость 𝑣 составляет −10
м/с слева и 10 м/с справа. На рисунке 3.12 , слева и справа — алюминий, а
на рисунке 3.13 слева — алюминий, справа — медь. Согласно результатам
решения задачи Римана, величина изменения девиаторного напряжения 𝑆12

перед и за волной связана с величиной изменения скорости 𝑣. Когда матери-
алы с обеих сторон одинаковы, как показано на рисунке 3.12, скорость 𝑣 за
волной равна 0. Когда материалы с обеих сторон различны, как показано на
рисунке 3.13, скорость 𝑣 за волной не падает до 0.

Далее рассматривается общий случай, когда одновременно присутствуют
продольные и сдвиговые волны. На рисунках 3.14 и 3.15 слева и справа началь-
ные значения скоростей 𝑢 и 𝑤, а также все девиаторные напряжения равны 0,
а скорость 𝑣 составляет −10 м/с и давление 𝑝 — 108 Па слева и 𝑣 составляет
10 м/с и давление 𝑝 — 105 Па справа. На рисунке 3.14, и слева, и справа —
алюминий. На рисунке 3.15 , слева — алюминий, а справа — медь. В этом
случае продольная волна слева является волной разрежения, а справа ударной
волной. Выбор разрыва по давлению, а не по скорости в дислокациях сделан
для того, чтобы показать, что продольные волны слева и справа также могут
быть разных типов. Согласно анализу задачи Римана, результаты в общем
случае могут быть рассмотрены как простая суперпозиция случая одноосной
деформации и случая сдвига. Например, в случае, показанном на рисунке 3.14,
сначала решим задачу для случая, когда начальные значения левой и правой
сторон отличаются только давлением, чтобы получить продольные перемен-
ные за продольной волной, а затем решим задачу для случая, когда отличается
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только скорость 𝑣, чтобы получить тангенциальные переменные за сдвиговой
волной, и сумма этих двух результатов будет результатом, показанным на
рисунке 3.14.
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Рисунок 3.12 — Распределения параметров состояния при 0.25 × 10−5 с в случае сдвига
одинаковых материалов.
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Рисунок 3.13 — Распределения параметров состояния при 0.25 × 10−5 с в случае сдвига
различных материалов.
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Рисунок 3.14 — Распределения параметров состояния при 0.25 × 10−5 с в общем случае
одинаковых материалов.
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Рисунок 3.15 — Распределения параметров состояния при 0.25 × 10−5 с в общем случае
различных материалов.
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3.4.2 Численные результаты для упругопластического
течения

При учете критерия пластичности количество волн увеличивается по
сравнению с упругими случаями. Для четкого отображения сдвиговых волн
исходная длина увеличена с 0.1 м до 0.2 м, и, соответственно, количество сеток
увеличено до 4000. Плотность является средней, определяемой уравнением
(2.51b).

В отличие от случая одноосной деформации, две модели с упругим членом
в полной энергии и без него имеют существенные различия в описании про-
цесса сдвига. На рисунке 3.16 показаны соответствующие численные расчеты,
которые согласуются с результатами в численных расчетах сдвигового слоя в
статье [60]. Следует отметить, что в данном случае разрыв начальной скорости
𝑣 все еще настолько мал, что за волной материал еще не достиг пластического
состояния. Несмотря на то, что теоретические результаты, приведенные в
разделе 1.3, свидетельствуют о том, сдвиговые волны не вызывают изменений
продольных параметров в модели с упругим членом, в численных резуль-
татах все же наблюдаются незначительные колебания, амплитуда которых
уменьшается с увеличением количества узлов сетки.
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Рисунок 3.16 — Распределения параметров состояния двух моделей при 10−5 с в случае
сдвига алюминия. Начальные условия отличаются только скоростью 𝑣, которая составляет
10 м/с в левой части и −10 м/с в правой.
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Когда начальная скорость 𝑢 также является разрывной, для модели без
упругого члена, хотя разрыв в начальной скорости 𝑣 вызывает изменения
продольных параметров как в продольных, так и в сдвиговых волнах (рисунок
3.16), этот эффект пренебрежимо мал по сравнению с эффектом, вызванным
разрывами продольного параметра 𝑢, как показано на рисунке 3.17. При малой
скорости удара 𝑢 материалы остаются в упругом состоянии за продольной
волной. При достаточно большой скорости 𝑣 за сдвиговой волной достигается
пластическое состояние. Наблюдается, что, аналогично ситуации в разделе
3.3, сдвиговая волна также разделяется на упругую предвестниковую волну
и пластическую волну. За упругой сдвиговой волной материалы переходят
в пластическое состояние. Для модели без упругого члена продольные па-
раметры, такие как плотность, скорость 𝑢 и девиаторное напряжение 𝑆11

демонстрируют незначительные изменения перед и за волной; для моделей с
упругим членом эти параметры остаются неизменными. Учитывая близкое
совпадение двух результатов, для удобства это различие не акцентируется
в оставшейся части данного раздела, и предполагается, что оба результата
практически эквивалентные.
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Рисунок 3.17 — Распределения параметров состояния двух моделей при 10−5 с в общем
случае с критерием пластичности. Материалы с обеих сторон представляют собой алюминий.
Начальные условия отличаются только скоростями 𝑢 и 𝑣, которые составляют 20 м/с, 20
м/с для левой стороны, и −20 м/с, −20 м/с для правой стороны, соответственно.
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Когда скорость удара 𝑢 увеличивается до такой степени, что за продоль-
ной волной достигается пластическое состояние, в этот момент существует
только одна пластическая сдвиговая волна, как показано на рисунке 3.18. При
этом в материале присутствуют упругая предвестниковая продольная волна,
пластическая продольная волна и пластическая сдвиговая волна.
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Рисунок 3.18 — Распределения параметров состояния двух моделей при 10−5 с в общем
случае с критерием пластичности. Материалы с обеих сторон представляют собой алюминий.
Начальные условия отличаются только скоростями 𝑢 и 𝑣, которые составляют 100 м/с, 20
м/с для левой стороны, и −100 м/с, −20 м/с для правой стороны, соответственно.

Однако при дальнейшем увеличении амплитуды разрыва начальной ско-
рости 𝑣, на контактном разрыве скорость 𝑣 перестает быть непрерывной, что
означает, что материал больше не может сопротивляться сдвиговой дефор-
мации. Сравнивая рисунки 3.17—3.19, данное явление может объясняться
следующим образом. Когда до сдвиговой волны находится в упругом со-
стоянии, материал за упругой сдвиговой волной переходит в пластическое
состояние. В этот момент разность скоростей 𝑣 между двумя сторонами умень-
шается, а абсолютное значение девиаторного напряжения 𝑆12 увеличивается.
Это неизбежный результат сопротивления материала сдвиговой деформации.
Однако скорости 𝑣 по обе стороны остаются неравными, что приводит к воз-
никновению пластической сдвиговой волны, которая пытается уменьшить эту
разницу скоростей. Следовательно, абсолютное значение 𝑆12 будет дальше
увеличиваться. Тем не менее, поскольку 𝑄 = 𝑆𝑖𝑗𝑆𝑖𝑗 ⩽ 2

3𝑌
2 и в этот момент
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выполняется равенство, абсолютное значение 𝑆11 должно уменьшаться. Сте-
пень этого уменьшения конечна. Когда абсолютное значение 𝑆11 достигает 0,
абсолютное значение 𝑆12 больше не может увеличиваться. Если скорости 𝑣 по
обе стороны остаются неравными в этот момент, то на контактном разрыве
проявится явление, напоминающее течение жидкости.
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Рисунок 3.19 — Распределения параметров состояния двух моделей при 10−5 с в общем
случае с критерием пластичности. Материалы с обеих сторон представляют собой алюминий.
Начальные условия отличаются только скоростями 𝑢 и 𝑣, которые составляют 100 м/с, 40
м/с для левой стороны, и −100 м/с, −40 м/с для правой стороны, соответственно.

Следовательно, если начальная скорость 𝑣 фиксируется, как на рисун-
ках 3.19 и 3.20, и интенсивность удара уменьшается, то есть скорость 𝑢
уменьшается, как показано на последнем диаграмме рисунка 3.21, амплитуда
пластической сдвиговой волны также визуально уменьшится. Это связано с
тем, что чем меньше скорость удара 𝑢, тем больше увеличивается абсолют-
ное значение 𝑆12 за упругой сдвиговой волной. В результате у пластической
сдвиговой волны меньше пространства для увеличения абсолютного значения
𝑆12, которое ограничено условием 𝑄 = 𝑆𝑖𝑗𝑆𝑖𝑗 ⩽ 2

3𝑌
2. Таким образом, когда

скорость 𝑢 равна нулю, поведение соответствует изображению на рисунке
3.22.

Когда скорость 𝑢 уменьшается до нуля, амплитуда пластической сдвиговой
волны присутствует, хотя и настолько мала, что ее не видно на диаграмме
𝑆12 на рисунке 3.22. За пластической сдвиговой волной, на контактном раз-
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рыве скорости 𝑢 по обе стороны достигают равных значений; однако разрыв
скорости 𝑣 всё ещё существует. Как показано на рисунке 3.22, когда 𝑣 до-
статочно велико для того, чтобы материал достиг пластического состояния,
сдвиговые волны в обеих моделях перестают быть независимыми. В модели с
упругим членом неизбежно генерируется продольная волна. Как следует из
предыдущего анализа, пластическая сдвиговая волна изменяет все параметры.
Для обеспечения непрерывности скорости 𝑢 на контактном разрыве должна
существовать другая волна, которая компенсирует изменения, вызванные пла-
стической сдвиговой волной. Однако для моделей без упругого члена скорость
𝑢 также изменяется при упругой сдвиговой волне. Следовательно, когда 𝑣
достаточно велико для того, чтобы материал достиг пластического состоя-
ния, сдвиговые волны в обеих моделях не являются независимыми. Волновая
структура представляет собой сначала упругую продольную волну, затем
упругую сдвиговую волну, а затем пластическую сдвиговую волну. Это отли-
чается от ситуации, когда материал находится в упругом состоянии, где только
сдвиговые волны в модели без упругого члена не являются независимыми.
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Рисунок 3.20 — Распределения параметров состояния двух моделей при 10−5 с в общем
случае с критерием пластичности. Материалы с обеих сторон представляют собой алюминий.
Начальные условия отличаются только скоростями 𝑢 и 𝑣, которые составляют 20 м/с, 40
м/с для левой стороны, и −20 м/с, −40 м/с для правой стороны, соответственно.
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Рисунок 3.21 — Распределения параметров состояния двух моделей при 10−5 с в общем
случае с критерием пластичности. Материалы с обеих сторон представляют собой алюминий.
Начальные условия отличаются только скоростями 𝑢 и 𝑣, которые составляют 10 м/с, 40
м/с для левой стороны, и −10 м/с, −40 м/с для правой стороны, соответственно.
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Рисунок 3.22 — Распределения параметров состояния двух моделей при 10−5 с в случае
сдвига алюминия. Начальные условия отличаются только скоростью 𝑣, которая составляет
40 м/с в левой части и −40 м/с в правой.
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Глава 4

Термодинамически
согласованная модель
Уилкинса

Как классическая гипоупругая модель Уилкинса [18], так и недавно широко
используемая модифицированная модель [50, 51], которая также используется
в данной работе, страдают от двух недостатков: термодинамической несогла-
сованности и произвола в выборе объективной производной. В данной главе
рассматривается первая проблема. В механике давление определяется как
𝑝 = −1/3tr (𝜎), а в модели Уилкинса оно предполагается термодинамическим
параметром. Однако анализ, представленный в данной главе, показывает,
что эти два понятия не являются полностью идентичными. На основе этого
предлагается новая модель, согласующаяся с законами термодинамики, и
анализируются ее соответствующие математические свойства.

4.1 Анализ возможности термодинамической
согласованности

Определяющие соотношения упругих тел могут быть классифицированы
по трем типам: упругость Коши, гиперупругость и гипоупругость. В изотерми-
ческом процессе, если состояние напряжения в любой данный момент времени
полностью определяется состоянием деформации в этот момент и не зависит
от истории градиентов деформации до текущего момента, то такие модели
обычно называют упругими моделями Коши. Гипоупругие модели определяют
соотношение между производной напряжения (обычно объективной, такой
как производная Яуманна, производная Трусделла, производная Олдройда и
т. д.) и тензором скорости деформации D (симметричной частью градиента
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скорости). Общая форма имеет вид,

∇
𝜎 = C (𝜎) : D, (4.1)

где
∇
𝜎 — выбранная объективная производная напряжения, например, в

данной работе используется производная Яуманна, C (𝜎) — тензор четвертого
порядка, который может зависеть от текущего состояния напряжения 𝜎
и других переменных, но не зависит явно от истории деформации. Связь
между упругостью Коши и гипоупругостью, например, изотропные упругие
материалы Коши с обратимыми определяющими уравнениями составляют
особый подкласс гипоупругих материалов, подробнее в разделе 75 в [98].

Для гиперупругих моделей существует скалярная потенциальная функция
(функция плотности энергии деформации) 𝑊 , которая является функцией
тензора градиента деформации F или его инварианта. Напряжение полу-
чается непосредственно из производной этой функции энергии деформации
по тензору, характеризующему изменение деформации в теле (обычно пра-
вому тензору Коши-Грина или тензору деформации Грина), что приводит
к гиперупругой модели, имеющей консервативную форму законов сохране-
ния. В изотермических условиях энергия сохраняется во время деформации.
Нагрузка и разгрузка следуют по одному и тому же пути, и напряжение
зависит только от текущего состояния деформации, а не от того, как это
состояние было достигнуто. Объективность производной напряжения удовле-
творяется естественным образом, без необходимости введения дополнительных
слагаемых, таких как производная Яуманна. Однако, гипоупругие модели
определяют только мгновенную реакцию напряжения на скорость деформа-
ции, не гарантируя сохранение энергии. В главе 1 анализ показывает, что
рассеивание энергии является неявным в модели Уилкинса. Кроме того, вы-
бор объективной производной напряжения не может быть основан на единых
стандартах, основанных на физических принципах [60]. Например, в случае
простого сдвига производная Яуманна приводит к появлению нефизических
колебательных решений, однако при деформации ниже 0.5 погрешность прак-
тически отсутствует [99]. К сожалению, для гипоупругих моделей, таких
как модель Уилкинса, соответствующая скалярная потенциальная функция
обычно отсутствует. Следовательно, в настоящее время основным методом
улучшения математических и термодинамических свойств гипоупругих моде-
лей является вывод гипоупругих моделей изотропных твердых тел из экви-
валентных гиперупругих моделей. Например, модель Уилкинса в условиях
небольших деформаций может быть выведена из гиперупругой модели, но
соответствующая объективная производная напряжения отличается от произ-
водной Яуманна [100], однако в пределе линейной упругости разница между
ними в численных результатах очень мала [60]. Однако этот метод требует
предварительно задать уравнение состояния, особенно расчет энергии упругой
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части [60, 100]. Следовательно, возможность того, что для любого уравнения
состояния улучшенная модель Уилкинса может удовлетворять второму закону
термодинамики и возвращаться к исходному состоянию после обратного цикла,
то есть в упругой фазе и при отсутствии ударных волн изменение энтропии
𝑑𝑠 будет равно нулю, становится предметом дальнейшего изучения. В раз-
деле 1.2 принимается форма общей энергии, представленная в виде (1.3), и
уравнение Гиббса, представленное в виде (1.17), и делается вывод, что только
при выполнении уравнения (1.25) в упругой фазе без ударных волн, 𝑑𝑠 = 0.
Такой процесс анализа и вывод принят в [22, 51, 60], что кажется разумным,
поскольку в уравнении (1.3) часть энергии, соответствующая девиаторным
напряжениям, отделена от внутренней энергии, поэтому (1.17) не включает
часть работы, выполняемую девиаторными напряжениями. Далее, на основе
первого и второго законов термодинамики, проанализируем достоверность
такого подхода. По первому закону термодинамики,

𝛿𝑞 = 𝑑𝑒− 𝛿𝑤, (4.2)

где 𝑞 и 𝑤 — тепло и работа на единицу массы соответственно. Из уравнений
(1.12 – 1.16) следует, что

𝑑𝑤 = −𝑝𝑑1
𝜌
+

1

𝜌
𝑑
𝑆𝑖𝑗𝑆𝑖𝑗
4𝜇

. (4.3)

Согласно второму закону термодинамики, для обратимых процессов, уравне-
ние (4.2) может быть записано в виде,

𝑑𝑒 = 𝑇𝑑𝑠− 𝑝𝑑
1

𝜌
+

1

4𝜇𝜌
𝑑𝑄, (4.4)

где 𝑇 — температура, 𝑠 — энтропия. Обозначим 𝑆𝑖𝑗𝑆𝑖𝑗 через 𝑄. Из уравнения
(4.4) следует, что

𝜕𝑒

𝜕𝑄
=

1

4𝜇𝜌
. (4.5)

Если рассматривать 𝑒 как функцию плотности, энтропии и 𝑄, то оно должно
иметь вид

𝑒 = 𝑒0 (𝜌, 𝑠) +
𝑄

4𝜇𝜌
. (4.6)

Объединяя уравнения (4.4) и (4.6), получаем

𝑇𝑑𝑠 = 𝑑𝑒0 + 𝑝𝑑
1

𝜌
− 𝑄

4𝜇𝜌2
𝑑𝜌. (4.7)

По сравнению с уравнением (1.17), в правую часть уравнения добавлены
члены, связанные с 𝑄. Необходимым условием для того, чтобы 𝑑𝑒 в уравнении
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(4.4) было точным дифференциалом (полным дифференциалом), является вы-
полнение условия интегрируемости (смешанные частные производные равны),
то есть,

𝜕 (−𝑝)
𝜕𝑄

=
𝜕
(︁

1
4𝜇𝜌

)︁
𝜕
(︁
1
𝜌

)︁
𝜕 (−𝑝)
𝜕𝑠

=
𝜕𝑇

𝜕
(︁
1
𝜌

)︁
𝜕
(︁

1
4𝜇𝜌

)︁
𝜕𝑠

=
𝜕𝑇

𝜕𝑄
.

(4.8)

Уравнение (4.8) эквивалентно

−
(︂
𝜕𝑝

𝜕𝑄

)︂
𝑣,𝑠

=
1

4𝜇

−
(︂
𝜕𝑝

𝜕𝑠

)︂
𝑣,𝑄

=

(︂
𝜕𝑇

𝜕𝑣

)︂
𝑠,𝑄(︂

𝜕𝑇

𝜕𝑄

)︂
𝑣,𝑠

= 0,

(4.9)

где 𝑣 — удельный объем. Из первого уравнения следует, что если 𝑑𝑒 является
полным дифференциалом, то необходимо, чтобы 𝑝 явно зависело от 𝑄, то есть

𝑝 = Π(𝜌, 𝑠)− 𝑄

4𝜇
. (4.10)

Это означает, что термодинамическое давление Π и механическое давление 𝑝
не равны. Следовательно, для сохранения согласованности с обозначениями,
использованными в предыдущих разделах, термодинамическая часть внутрен-
ней энергии 𝑒0 сокращенно называется внутренней энергией и по-прежнему
обозначается символом 𝑒, а упругий член 𝑄/(4𝜇𝜌) удаляется из состава внут-
ренней энергии, что идентично уравнению (1.3). Уравнение состояния 𝑒 (𝜌, 𝑠)
также должно быть функцией плотности и термодинамического давления,
𝑒 (𝜌,Π). Это существенное отличие от модели, представленной в главе 1.

Подставляя уравнение (1.18) в уравнение (4.7), получаем 𝑑𝑠 = 0. Таким
образом, на основе модификации Гаврилюком модели Уилкинса (включение
упругого члена в полную энергию) получается термодинамически согласован-
ная гипоупругая модель, не зависящая от конкретного уравнения состояния,
путем определения нового термодинамического давления. Однако, как упоми-
налось ранее, выбор производной Яуманна в качестве объективной производ-
ной напряжения может привести к появлению нефизических ошибок в случаях
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больших деформаций. Тем не менее, в пределах области применимости модели
Уилкинса результаты мало отличаются от результатов гиперупругой модели.

4.2 Математические свойства и численные
результаты

Поскольку модель Уилкинса (1.1) основана на законах сохранения и законе
линейной упругости Гука, которые не изменяются, требуется заменить только
давление в (1.9) с использованием уравнения (4.10), и получается

𝜕𝜌

𝜕𝑡
+
𝜕 (𝜌𝑢)

𝜕𝑥
= 0

𝜕𝜌𝑢
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𝜕𝑥
+

2

3
𝜇𝜌
𝜕𝑢

𝜕𝑥
= 0

𝜕𝜌𝑆12

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆12)

𝜕𝑥
− 𝜇𝜌

𝜕𝑣

𝜕𝑥
= 0

𝜕𝜌𝑆13

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆13)

𝜕𝑥
− 𝜇𝜌

𝜕𝑤

𝜕𝑥
= 0

𝜕𝜌𝑆23

𝜕𝑡
+
𝜕 (𝜌𝑢𝑆23)

𝜕𝑥
= 0.

(4.11)

Перепишем уравнение (4.11) в виде (1.30),



82

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢 𝜌 0 0 0 0 0 0 0 0 0

0 𝑢 0 0 1
𝜌 −1

𝜌

(︁
1 + 𝑆11

2𝜇

)︁
− 𝑆22

2𝜇𝜌 − 𝑆33

2𝜇𝜌 −𝑆12

𝜇𝜌 −𝑆13

𝜇𝜌 −𝑆23

𝜇𝜌

0 0 𝑢 0 0 0 0 0 −1
𝜌 0 0

0 0 0 𝑢 0 0 0 0 0 −1
𝜌 0

0 𝜌𝑐2 0 0 𝑢 0 0 0 0 0 0
0 −4

3𝜇 0 0 0 𝑢 0 0 0 0 0
0 2

3𝜇 0 0 0 0 𝑢 0 0 0 0
0 2

3𝜇 0 0 0 0 0 𝑢 0 0 0
0 0 −𝜇 0 0 0 0 0 𝑢 0 0
0 0 0 −𝜇 0 0 0 0 0 𝑢 0
0 0 0 0 0 0 0 0 0 0 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.12)

Здесь, W = [𝜌, 𝑢, 𝑣, 𝑤,Π, 𝑆11, 𝑆22, 𝑆33, 𝑆12, 𝑆13, 𝑆23]
T,

𝑐2 =

Π
𝜌2 −

𝜕𝑒
𝜕𝜌

𝜕𝑒
𝜕Π

. (4.13)

Собственные значения и правые собственные векторы матрицы A соответ-
ственно следующие,

𝜆1−5 = 𝑢,

r1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

1 +
𝑆11

2𝜇
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
𝑆22

2𝜇
0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
𝑆33

2𝜇
0
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
𝑆23

𝜇
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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𝜆6,7 = 𝑢+ 𝑎, 𝜆8,9 = 𝑢− 𝑎, 𝑎 =
√︀
𝜇/𝜌,𝐷 = 3𝜌𝑐2 + 3𝑆11 + 𝜇,

r6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑆12𝜌

𝜇𝐷
3𝑆12𝑎

𝜇𝐷

−𝑎
𝜇
0

3𝑆12𝑐
2𝜌

𝜇𝐷

−4𝑆12

𝐷
2𝑆12

𝐷
2𝑆12

𝐷
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑆13𝜌

𝜇𝐷
3𝑆13𝑎

𝜇𝐷
0

−𝑎
𝜇

3𝑆13𝑐
2𝜌

𝜇𝐷

−4𝑆13

𝐷
2𝑆13

𝐷
2𝑆13

𝐷
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑆12𝜌

𝜇𝐷

−3𝑆12𝑎

𝜇𝐷
𝑎

𝜇
0

3𝑆12𝑐
2𝜌

𝜇𝐷

−4𝑆12

𝐷
2𝑆12

𝐷
2𝑆12

𝐷
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑆13𝜌

𝜇𝐷

−3𝑆13𝑎

𝜇𝐷
0
𝑎

𝜇
3𝑆13𝑐

2𝜌

𝜇𝐷

−4𝑆13

𝐷
2𝑆13

𝐷
2𝑆13

𝐷
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝜆10,11 = 𝑢± 𝑏, 𝑏 =

√︃
𝑐2 +

4𝜇

3𝜌
+
𝑆11

𝜌
,

r10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝜌

2𝜇
3𝑏

2𝜇
0
0

3𝑐2𝜌

2𝜇
−2
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝜌

2𝜇

− 3𝑏

2𝜇
0
0

3𝑐2𝜌

2𝜇
−2
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.14)
В качестве примера возьмем медь и алюминий. Соответствующие па-

раметры приведены в таблице 3.5. При рассмотрении критерия Мизеса,
|𝑆𝑖𝑗| ⩽

√︀
2/3𝑌 , тогда 𝜆10,11 является действительным, т. е. модель (4.11)

является гиперболической.
В этой главе мы больше не используем такие названия, как продольные

волны и сдвиговые волны, а вместо них используем быстрые волны (соответ-
ствующие 𝜆10,11) и медленные волны (соответствующие 𝜆6−9). Тип каждого
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характеристического поля определяется путем ∇W𝜆𝑖 · r𝑖. Контактная волна
является линейно вырожденной, а быстрая и медленная волны являются
действительно нелинейными, что отличается от модели (1.9) и от случая,
когда полная энергия выражается уравнением (1.3), но ситуация аналогична
случаю, когда полная энергия выражается как 𝐸 = 𝑒+ 0.5𝑢2. Собственные
значения (4.14) показывают, что медленные волны изменяют не только тан-
генциальные параметры, но и продольные параметры, что означает, что в
случаях, подобных показанным на рисунках 3.12 и 3.13, использование модели
(4.11) больше не приводит к появлению независимых медленных волн, то есть,
для обеспечения непрерывности скорости и соответствующего напряжения
на контактной волне должны существовать также быстрые волны. Таким
образом, мы больше не используем термин «сдвиговая волна».

Однако решение соответствующей задачи Римана для модели (4.11) в
настоящее время является очень сложным. Поскольку при рассмотрении
слабых разрывов 𝜆6,7 и 𝜆8,9 являются двойными собственными значениями, что
уменьшает количество дифференциальных уравнений, задающих соотношения
перед и за волной, на одно, становится невозможным однозначно определить
состояние за волной. Для сильных разрывов неконсервативная часть должна
обрабатываться с использованием обобщенных соотношений Ранкина-Гюгонио,
и в настоящее время нет единого мнения относительно выбора путей в фазовом
пространстве. В этом случае возникает та же проблема, что и в случае, когда
полная энергия имеет форму как 𝐸 = 𝑒+0.5𝑢2. Тем не менее, линейная теория
может быть использована для качественного анализа некоторых упрощенных
ситуаций.

Решение системы (1.30) представляет волну Римана, или простую волну,
если W являются функциями одной величины 𝜃 = 𝜃 (𝑥, 𝑡). Здесь прини-
мается 𝜃 = 𝜉 = 𝑥/𝑡. Согласно уравнению (1.33), интегральные кривые в
пространстве W в каждой точке касаются собственного вектора [101]. Таким
образом, для малых разрывов соответствующие свойства могут быть иссле-
дованы путем интегрирования правого собственного вектора. Рассмотрим
следующую ситуацию, в которой отличается только начальная скорость 𝑣,

𝑣𝐿 = −Δ𝑣

2
, 𝜌𝐿 = 𝜌0;𝑢𝐿, 𝑤𝐿,Π𝐿, 𝑆𝑖𝑗𝐿 = 0

𝑣𝑅 =
Δ𝑣

2
, 𝜌𝑅 = 𝜌0;𝑢𝑅, 𝑤𝑅,Π𝑅, 𝑆𝑖𝑗𝑅 = 0.

(4.15)

Учитывая симметричность проблемы и r1−5 в уравнении (4.14), на контактном
разрыве выполняется следующее условие,

𝑢𝑐 = 0, 𝑣𝑐 = 0, 𝑆12,𝑐 = 𝑆𝑐. (4.16)

Для медленной волны, распространяющейся влево, скорость 𝑣 перед и за
волной должна измениться с −Δ𝑣/2 до 0. Вдоль собственного вектора r8,
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𝑑𝑢

𝑑𝜉
= −3𝑆12𝑎

𝜇𝐷
,
𝑑𝑣

𝑑𝜉
=
𝑎

𝜇
,
𝑑𝑆12

𝑑𝜉
= 1, (4.17)

т. е.,

𝑑𝑣 =
𝑎

𝜇
𝑑𝑆12 ⇒

∫︁ 0

−Δ𝑣/2

𝑑𝑣 =

∫︁ 𝑆𝑐

0

𝑎

𝜇
𝑑𝑆12 ⇒ 𝑆𝑐 =

𝜇

𝑎
· Δ𝑣

2
, (4.18a)

𝑑𝑢 = −3𝑎𝑆12

𝜇𝐷
𝑑𝑆12 ⇒ Δ𝑢𝐿 =

∫︁ 𝑆𝑐

0

−3𝑎𝑆12

𝜇𝐷
𝑑𝑆12 = − 3𝑎

2𝜇𝐷
𝑆2
𝑐 . (4.18b)

Следовательно,

Δ𝑢𝐿 = −3𝜇(Δ𝑣)2

8𝑎𝐷
. (4.19)

Аналогично, для медленной волны, распространяющейся влево, скорость 𝑣
должна уменьшаться от +Δ𝑣/2 до 0. Вдоль собственного вектора r6,

𝑑𝑣 = −𝑎
𝜇
𝑑𝑆12 ⇒

∫︁ 0

Δ𝑣/2

𝑑𝑣 =

∫︁ 𝑆𝑐

0

−𝑎
𝜇
𝑑𝑆12 ⇒ 𝑆𝑐 =

𝜇

𝑎
· Δ𝑣

2
(4.20a)

𝑑𝑢 =
3𝑎𝑆12

𝜇𝐷
𝑑𝑆12 ⇒ Δ𝑢𝑅 =

3𝜇(Δ𝑣)2

8𝑎𝐷
. (4.20b)

Учитывая уравнение (4.16), за быстрыми волнами, движущимися влево и
вправо, должны быть выполнены следующие условия,

𝑢𝐿1 = −Δ𝑢𝐿 = +
3𝜇(Δ𝑣)2

8𝑎𝐷
(4.21a)

𝑢𝑅1 = −Δ𝑢𝑅 = −3𝜇(Δ𝑣)2

8𝑎𝐷
. (4.21b)

Для быстрой волны, распространяющейся влево, вдоль собственного вектора
r11,

𝑑𝑢 = − 3𝑏

2𝜇
𝑑𝜉. (4.22)

Поскольку изменения состояния малы, предположим, что 𝑏 приблизительно
постоянна,

𝑢𝐿1 − 0 =

∫︁ 𝜉𝐿1

0

− 3𝑏

2𝜇
𝑑𝜉 ⇒ 𝜉𝐿1 = −2𝜇

3𝑏
𝑢𝐿1 = −𝜇

2(Δ𝑣)2

4𝑎𝑏𝐷
. (4.23)

Аналогично, для быстрой волны, распространяющейся вправо, вдоль собствен-
ного вектора r10,
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𝑑𝑢 =
3𝑏

2𝜇
𝑑𝜉 (4.24a)

𝑢𝑅1 − 0 =

∫︁ 𝜉𝑅1

0

3𝑏

2𝜇
𝑑𝜉 ⇒ 𝜉𝑅1 = −𝜇

2(Δ𝑣)2

4𝑎𝑏𝐷
. (4.24b)

Следовательно, вдоль собственного вектора r10 и r11, за быстрыми волнами
изменение плотности составляет,

𝑑𝜌 =
3𝜌

2𝜇
𝑑𝜉 ⇒ ln

𝜌𝐿1
𝜌0

=
3

2𝜇
𝜉𝐿1 = −3𝜇(Δ𝑣)2

8𝑎𝑏𝐷
= ln

𝜌𝑅1
𝜌0
. (4.25)

Это означает, что плотность уменьшается. Вдоль собственного вектора r6 и
r8, за медленными волнами изменение плотности составляет,

𝑑𝜌 =
3𝜌𝑆12

𝜇𝐷
𝑑𝑆12 ⇒ ln

𝜌𝐿*

𝜌𝐿1
=

3

2𝜇𝐷
𝑆2
𝑐 =

3𝜇(Δ𝑣)2

8𝑎2𝐷
= ln

𝜌𝑅*

𝜌𝑅1
. (4.26)

Следовательно, общее изменение плотности составляет,

ln
𝜌𝐿*

𝜌0
= −3𝜇(Δ𝑣)2

8𝑎𝑏𝐷
+

3𝜇(Δ𝑣)2

8𝑎2𝐷
=

3𝜇(Δ𝑣)2

8𝑎𝐷

(︂
1

𝑎
− 1

𝑏

)︂
= ln

𝜌𝑅*

𝜌0
. (4.27)

Учитывая, что

𝑏 =

√︃
𝑐2 +

4𝜇

3𝜌
+
𝑆11

𝜌
> 𝑎 =

√︀
𝜇/𝜌, (4.28)

плотность увеличивается по сравнению с начальным состоянием после перехо-
да через быстрые и медленные волны,

𝜌𝐿* = 𝜌𝑅* > 𝜌0. (4.29)

Далее для проверки вывода (4.29), использованы результаты численных
экспериментов. Численные методы и формулы для соответствующих парамет-
ров идентичны тем, которые приведены в разделах 3.1, поскольку параметры
после обновления временного шага и в зоне возмущения рассчитываются с ис-
пользованием консервативной переменной 𝐸, а не давления 𝑝. При численном
решении модели (4.11), после получения термодинамического давления Π из
уравнения состояния, давление 𝑝 может быть получено по уравнению (4.10).
Оценивание скорости волны (3.2) требует соответствующих корректировок,
поскольку также изменяются характерные значения продольной волны. Опи-
сание и постановка численных тестов точно такие же, как в разделе 3.3 и 3.4,
а соответствующие параметры приведены в таблице 3.5.

На рисунке 4.1 рассмотрены случай, когда только скорость 𝑣 имеет началь-
ный разрыв, что согласуется с уравнением (4.29). По сравнению с рисунком
3.16, сдвиговые волны или медленные волны в трех моделях обладают совер-
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шенно отличными, даже противоположными свойствами: они не изменяют
продольные параметры, вызывают продольное растяжение или сжатие при
сдвиге.
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Рисунок 4.1 — Распределения параметров состояния термодинамически согласованной
модели при 5× 10−6 с в случае сдвига алюминия. Начальные условия отличаются только
скоростью 𝑣, которая составляет −10 м/с в левой части и 10 м/с в правой (количество
сеток — 40000).

Для случая продольного растяжения или удара результаты, полученные
в модели (4.11), не отличаются значительно от результатов, полученных в
модели (1.1) с упругим членом в полной энергии или без него, даже для
больших начальных разрывов скорости 𝑢, как показано на рисунках 4.2 и 4.3.
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Рисунок 4.2 — Распределения параметров состояния термодинамически согласованной
модели при 5× 10−6 с в случае удара алюминия. Начальные условия отличаются только
скоростью 𝑢, которая составляет 1000 м/с в левой части и −1000 м/с в правой (количество
сеток — 1000).
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Рисунок 4.3 — Распределения параметров состояния термодинамически согласованной
модели при 5× 10−6 с в случае растяжения алюминия. Начальные условия отличаются
только скоростью 𝑢, которая составляет −1000 м/с в левой части и 1000 м/с в правой
(количество сеток — 1000).
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Заключение

В диссертации получены следующие основные результаты
1. Проанализированы математические, механические и термодинамические

характеристики широко известной гипоупругой модели Уилкинса. Данная
модель может быть расширена до упругопластического течения, где пласти-
ческая часть может быть добавлена стандартным способом с использованием
уравнения релаксации типа Максвелла для девиаторной части тензора напря-
жений. Для упрощения в литературе часто используется критерий Мизеса,
который также применяется в данной работе. В исходной модели Уилкинса
используется полная энергия в виде, применяемой в гидродинамике, а именно
сумма внутренней энергии и кинетической энергии. Однако в последние годы
в литературе рекомендуется включать энергию сдвиговой упругой дефор-
мации в полную энергию без дополнительных объяснений. В данной работе
используется последняя формула для полной энергии. Утверждается, что
включение упругого члена в полную энергию не только отражает отличи-
тельные характеристики твердых тел по сравнению с жидкостями, но и дает
возможность сдвиговым волнам в данной модели существовать независимо
с математической и механической точки зрения. В результате упрощается
решение задачи Римана даже для неконсервативных моделей Уилкинса, что
создает основу для последующей разработки численных методов.

2. На основе метода диффузной границы и усреднения по пространству
создана неравновесная биматериальная модель упругого тела, которую можно
рассматривать как аналог гидродинамической двухфазной модели Баера-
Нунциато. Усреднение консервативной части уравнения Уилкинса осуществ-
ляется в соответствии со стандартными процедурами, тогда как усредне-
ние неконсервативной части требует определенных предположений. Методом
асимптотического анализа в предельном случае малых времен релаксации вы-
ведена равновесная односкоростная модель для течений гетерогенных упругих
сред с разрешенными межфазными интерфейсами. В приближении одноосной
деформации построенная модель совпадает с моделью, получаемой на основе
принципа гидродинамической аналогии.

3. Разработан новый численный метод решения предложенной гипоупругой
модели гетерогенных сред на фиксированной Эйлеровой сетке, основанный на
консервативных вдоль пути в фазовом пространстве схемах (path-conservative
schemes). Однако, в настоящее время не существует единой теории выбора
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пути, и разные выборы пути могут приводить к различным результатам или
даже к не сходящимся решениям. Обычно в качестве пути выбирается отрезок
прямой линии, что приводит в случае гипоупругой модели к нелинейной систе-
ме уравнений. В работе предложен специальный путь, который преобразует
задачу в решение линейного матричного уравнения. Выбор этого пути имеет
понятную физическую интерпретацию, его достоверность подтверждается
сравнением результатов, полученных с использованием различных методов,
таких как теоретические решения и другие численные решения. Используя
предложенный численный метод, проанализированы гомогенные и гетероген-
ные упругопластические течения в случае одноосной деформации. В этом
случае численные результаты для двух моделей — одной с упругим членом
в полной энергии и другой без него оказались очень близки. Исследовано
различие между двумя моделями в общем случае, включающем сдвиговую
деформацию. В частности показано, что, в модели, включающей упругие
члены может существовать изолированная линейно-вырожденная сдвиговая
волна, тогда как в модели без упругих членов сдвиговые волны нелинейные и
обязательно сопровождаются возникновением продольных волн. Проведены
численные исследования вопросов, не обсуждавшихся ранее в литературе,
а именно упругопластические течения в расширенной одномерной модели.
Показано, что материалы могут оставаться устойчивыми к сдвиговой деформа-
ции даже на пластической стадии. Непрерывность скорости 𝑣 на контактном
разрыве зависит от размера начальной скорости разрыва.

4. Обе модели Уилкинса, широко используемые в настоящее время, имеют
свои недостатки, главным из которых является термодинамическая несогласо-
ванность. Исходя из предположения, что внутренняя энергия является функ-
цией плотности, энтропии и второго инварианта девиаторного напряжения,
делается вывод, что термодинамическое давление и механическое давление не
являются идентичными физическими параметрами. На основе этого предло-
жена новая термодинамически согласованная модель, и проанализированы ее
отличия от предыдущих моделей.
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