МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Гоголева Виолетта Сергеевна

Нейроиммунные и гомеостатические функции лимфотоксина альфа

3.2.7. — Иммунология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Диссертация подготовлена в лаборатории молекулярных механизмов иммунитета Института молекулярной биологии имени В. А. Энгельгардта Российской академии наук.

Научный руководитель

Недоспасов Сергей Артурович

доктор биологических наук, профессор, академик РАН

Официальные оппоненты

Демидов Олег Николаевич

доктор медицинских наук,

Институт цитологии РАН, ведущий научный сотрудник, Университет Бургундии и Институт здоровья и медицинских исследований INSERM, ведущий научный сотрудник

Гривенников Игорь Анатольевич

доктор биологических наук, профессор, Национальный исследовательский центр «Курчатовский институт», Лаборатория молекулярной нейрогенетики и врожденного иммунитета, главный научный сотрудник

Ломакин Яков Анатольевич

кандидат биологических наук,

ФГБУ «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова» Российской академии наук, лаборатория биокатализа, старший научный сотрудник

Защита диссертации состоится 1 марта 2024 г. в 16 часов на заседании диссертационного совета МГУ.015.1 Московского государственного университета имени М.В. Ломоносова по адресу: Москва, Ленинские горы, д. 1, стр. 12, биологический факультет, ауд. М1.

E-mail: dkiselevs@mail.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на портале: https://dissovet.msu.ru/dissertation/015.1/2861.

Автореферат разослан «	»	2024 г.	
Ученый секретарь диссерт кандидат биологических на		/ // //	Д.Б. Киселевский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования

Лимфотоксин (LT) – цитокин суперсемейства фактора некроза опухоли (TNF), открытый более 50 лет назад, причем гены для обоих цитокинов были клонированы одновременно 40 лет назад. Несмотря на то, что лимфотоксин и TNF обладают сходствами в биологической активности, годы исследований, в генно-модифицированных первую очередь на мышах, показали, лимфотоксин имеет уникальные, не перекрывающиеся с TNF, функции в организме. Более того, лимфотоксин может существовать как в растворимой гомотримерной форме (LTa₃, далее LTa), так и в мембраносвязанной гетеротримерной форме — $LT\alpha_1\beta_2$ (далее memLT, или LTβ). Для исследования биологически значимых эффектов системы цитокинов TNF/LTα/LTβ были сконструированы мыши с полной или клеточно-специфичной инактивацией соответствующих молекул. Анализ фенотипа ЭТИХ мышей охарактеризовать физиологическую роль лимфотоксинов α и β, которая заключается в формировании и поддержании архитектуры лимфоидных органов, а также регуляции иммунного ответа. В дальнейших исследованиях было показано участие лимфотоксинов α и β в патогенезе аутоиммунных заболеваний, в основном за счет индукции формирования третичных лимфоидных органов – эктопических лимфоидных структур, образующихся в очагах хронического воспаления LTβR-опосредованным путем. Эти результаты послужили толчком для создания терапевтических препаратов, блокирующих сигнальный путь, опосредованный лимфотоксинами α и β, однако в клинических испытаниях ни один из исследованных препаратов не показал клиническую эффективность, что может указывать как на неоднозначную роль лимфотоксинов в патогенезе аутоиммунных заболеваний, так и на необходимость разработки новых вариантов фармакологических блокаторов.

Стоит отметить, что изучение функций лимфотоксинов α и β как в норме, так и при патологии является непростой задачей. Во-первых, конструирование нокаутных мышей усложняется близким расположением генов, кодирующих TNF, LTα и LTβ, что затрудняет прицельное удаление соответствующих генов без затрагивания регуляторных участков соседних генов. Во-вторых, лимфотоксины несколькими модальностями характеризуются передачи сигнала растворимого гомотримера LTα или мембранного гетеротримера LTβ, с участием минимум трех рецепторов, а именно TNFR1, TNFR2 и LTβR. В-третьих, лимфотоксины продуцируются различными клетками происхождения – лимфоцитами врожденного иммунитета типа 3 (ILC3), Т- и Вклетками. В-четвертых, при инактивации генов *Lta* или *Ltb* мыши не развивают

лимфатические узлы и Пейеровы бляшки, что затрудняет изучение функций лимфотоксинов в различных экспериментальных *in vivo* моделях аутоиммунных заболеваний.

В настоящей работе использовано несколько подходов к изучению иммунобиологии лимфотоксинов в норме и в модели экспериментально индуцированного аутоиммунного заболевания: 1) работу проводили, используя линию мышей с полной инактивацией гена *Lta* (т.е. гена, кодирующего субъединицу, присутствующую в LTa и в memLT; без разграничения индивидуальных вкладов растворимого гомотримера LTa или мембранного гетеротримера LTβ) и интактной экспрессией TNF, 2) результаты, полученные на мышах с генетическим удалением лимфотоксинов, были подтверждены независимо в экспериментах с фармакологической блокировкой LTa), 3) был невырожденный источников установлен вклад различных клеточных лимфотоксинов патогенез экспериментального аутоиммунного энцефаломиелита (EAE) – мышиной модели рассеянного склероза (PC), развитие которого напрямую не зависит от наличия лимфатических узлов.

Целью настоящей работы было определение нейроиммунных, а также некоторых гомеостатических функций молекулярных форм лимфотоксина α .

Для достижения этой цели были поставлены следующие задачи:

- 1. Определить роль лимфотоксина α в поддержании гомеостаза кишечника и дифференцировке миелоидных клеток *in vitro*.
- 2. Изучить роль лимфотоксина α в патогенезе экспериментального аутоиммунного энцефаломиелита с применением полной генетической и фармакологической инактивации лимфотоксина α.
- 3. Создать мышей с тканеспецифичным удалением *Lta* в CD19⁺B-клетках
- 4. Изучить вклад молекулярных форм лимфотоксина α, производимых ILC3, Т- и В-клетками, в развитие экспериментального аутоиммунного энцефаломиелита.

Научная новизна работы

Работу проводили на панели уникальных генетически модифицированных мышей с полным или тканеспецифичным удалением Lta (т.е. без разграничения индивидуальных вкладов растворимого гомотримера $LT\alpha$ и мембранного гетеротримера $LT\beta$), в результате чего были установлены некоторые новые аспекты иммунобиологии лимфотоксинов. Так, на Lta-дефицитных мышах с нормальной продукцией TNF миелоидными клетками показано, что полное удаление Lta влияет на поддержание гомеостаза ILC3 в тонком кишечнике

взрослого организма и на дифференцировку миелоидных клеток в моноциты *in* vitro, что, по-видимому, опосредовано TNF-подобной функцией растворимого лимфотоксина. На этих же мышах было обнаружено, что вопреки имеющимся в литературе данным, генетическая инактивация лимфотоксина альфа не влияет на клинические симптомы EAE. Было установлено, что мыши с дефицитом Lta в ILC3 развивают сильные симптомы EAE, скорее всего, за счет увеличения инфильтрации IFNγ-продуцирующих Т-клеток моноцитов, дифференцирующихся в эффекторные дендритные клетки, в центральную нервную систему (ЦНС). Экспериментально доказано, что инактивация *Lta* в Тклетках усугубляет динамику развития ЕАЕ путем контроля прайминга антигенспецифичных Т-клеток во вторичных лимфоидных органах. Впервые показано, что молекулярные формы лимфотоксина α, продуцируемые В-клетками, играют ключевую роль в патогенезе модели ЕАЕ, опосредованной аутоантителами.

Теоретическая и практическая значимость работы

Представленные результаты комплексного исследования имеют важное значение как для фундаментальной иммунологии и понимания молекулярных механизмов регуляции цитокинов суперсемейства TNF, так и для возможного объяснения неэффективности блокаторов сигнальных путей, опосредованных лимфотоксином, в клинических испытаниях. Так, на фоне дефицита LTa выявлено значимое увеличение доли ILC3 в тонком кишечнике и уменьшение дифференцировки миелоидных клеток в моноциты in vitro, что важно для прогнозирования возможных побочных эффектов при применении этанерцепта, блокатора $TNF/LT\alpha$, в терапии аутоиммунных заболеваний. В ходе работы были объяснены противоречия с ранее опубликованными результатами других авторов, касающихся функций лимфотоксинов в гомеостазе и в патогенезе рассеянного склероза, экспериментально индуцированного Полученные данные вкладе молекулярных форм лимфотоксина продуцируемых разными типами иммунных клеток в патогенез ЕАЕ, в значительной степени расширяют наше понимание молекулярных механизмов патологии нейровоспаления в контексте РС, а также демонстрируют разделение функций лимфотоксина α в трех модальностях: 1) в зависимости от клеточного источника, 2) во времени и 3) в локализации. Более того, результаты работы являются предпосылкой к переосмыслению возможности терапевтического применения блокаторов лимфотоксинов, В рассмотрению частности, фармакологической блокировки молекулярных форм лимфотоксина избирательного прозиводимых Т-клетками, качестве подхода для таргетирования этого цитокина в контексте аутоиммунных заболеваний. Наконец, полученные данные дают основание предположить, что в случае

аутоантитело-ассоциированного подтипа рассеянного склероза, В-клетки, экспрессирующие молекулярные формы лимфотоксина α, могут рассматриваться в качестве потенциальной иммунотерапевтической мишени. Однако еще предстоит выяснить индивидуальный вклад мембраносвязанной и растворимой форм лимфотоксинов.

Объектом исследования были мыши с полным удалением генов, кодирующих лимфотоксин α , TNF или TNFR1, а также мыши с тканеспецифичным удалением гена, кодирующего лимфотоксин α , в ILC3 (ROR γ t⁺), Т-клетках (CD4⁺) и В-клетках (CD19⁺) в возрасте 8-12 недель, полученные на генетической основе C57BL/6. Экспериментальные группы формировали с участием мышей обоих полов. В качестве контрольных мышей использовали мышей C57BL/6 в случае мышей с полным удалением LT α , TNF или TNFR1, или мышей, не несущих Cre-рекомбиназу из того же помета, что и мыши с генетическим удалением Lta в определенном типе клеток.

Методология и предмет исследования

Изучение роли лимфотоксина α в гомеостазе тонкого кишечника и дифференцировке миелоидных клеток проводили на мышах с полным удалением Lta или Tnf, полученных с помощью технологии Cre-loxP ($Lta^{\Delta/\Delta}$ и $Tnf^{-\Delta/\Delta}$). Исследование содержания ILC3 в собственной пластинке тонкого кишечника проводили с помощью цитофлуориметрического анализа. Дополнительно проводили анализ состояния иммунной системы $Lta^{\Delta/\Delta}$ мышей в норме с помощью мультиплексного анализа цитокинов и поляризации T-клеток $in\ vitro$.

Изучение роли лимфотоксинов в патогенезе аутоиммунных заболеваний проводили на мышах с полным ($Lta^{\Delta/\Delta}$) или тканеспецифичным удалением Lta в ILC3, Т- и В-клетках. Удаление *Lta* (т.е. гена, кодирующего субъединицу, присутствующую в LT а и в memLT) позволяет изучать эффекты от обеих форм лимфотоксинов, а именно LTa и memLT. В качестве модели аутоиммунного заболевания использовали широко распространенную модель рассеянного склероза на мышах – экспериментальный аутоиммунный энцефаломиелит (EAE). Индукцию заболевания осуществляли иммунизацией MOG₃₅₋₅₅-пептидом преимущественного развития Т-клеточнозависимого ответа) rhMOG₁₋₁₂₅ (для полноразмерным белком преимущественного аутоантительного ответа) в полном адъюванте Фрейнда с последующим двукратным введением коклюшного токсина для повышения проницаемости гематоэнцефалического барьера. Клинические симптомы заболевания оценивали по стандартной шкале, вклад клеточных источников лимфотоксина в патогенез

ЕАЕ оценивали с помощью проточной цитофлуориметрии, гистологического анализа, анализа экспрессии генов в ЦНС и иммуноферментного анализа.

Основные положения, выносимые на защиту

- 1. LTα важен для поддержания гомеостаза популяции лимфоцитов врожденного иммунитета типа 3 (ILC3) в тонком кишечнике и для дифференцировки миелоидных клеток в моноциты *in vitro*.
- 2. Полная генетическая и фармакологическая инактивация лимфотоксина α не влияет на чувствительность мышей к экспериментальному аутоиммунному энцефаломиелиту.
- 3. Отдельные функции молекулярных форм лимфотоксина α в модели нейровоспаления могут быть отнесены к конкретным клеткампродуцентам и различаются по локализации, а также по стадии заболевания.

Степень достоверности результатов

Результаты работы были воспроизведены в двух или более независимых экспериментах. Перед опытами мышей содержали совместно для выравнивания состава микробиоты. Методы исследования, экспериментальные модели заболеваний, а также статистическая обработка данных, приведенные в работе, соответствуют общепринятым международным стандартам.

Апробация результатов

Результаты работы были представлены и обсуждены на международных и отечественных конференциях и научных школах: Конференция молодых ученых Института молекулярной биологии имени В. А. Энгельгардта РАН, 19-20 сентября 2023, Москва, Россия, Weizmann-Washington University Joint Meeting to Advance Neuroimmunology, 29-31 мая 2023, Реховот, Израиль, 18th International TNF Superfamily Conference, Ле Дьяблере, Швейцария, 10-14 октября 2021, Школа-конференция «Молекулярные медиаторы иммунитета», Сириус, Россия, 30 ноября-3 декабря 2019, 15th Spring School on Immunology, Этталь, Германия, 10-15 марта 2019.

Личный вклад автора

В настоящей работе автором были выполнены эксперименты, связанные с изучением роли LTα в гомеостазе иммунной системы и в патогенезе экспериментального аутоиммунного энцефаломиелита. Личный вклад автора состоит в непосредственном участии в планировании и выполнении

экспериментов, обработке и анализе результатов, подготовке публикаций и текста диссертации.

Структура и объем диссертации

Диссертационная работа состоит из введения, обзора литературы, материалов и методов исследования, результатов и обсуждения, заключения, выводов и списка литературы, который включает 239 источников. Работа изложена на 96 страницах, содержит 21 рисунок и 4 таблицы.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

CCL – хемокиновый лиганд

ЕАЕ – экспериментальный аутоиммунный энцефаломиелит

GM-CSF – гранулоцитарно-макрофагальный колониестимулирующий фактор

IFNγ – интерферон γ

IL – интерлейкин

ILC – лимфоциты врожденного иммунитета

 $LT\alpha$, лимфотоксин α — растворимая гомотримерная форма лимфотоксина ($LT\alpha_3$)

 $LT\beta$, memLT — мембраносвязанная гетеротримерная форма лимфотоксина ($LT\alpha_1\beta_2$)

LTβR – лимфотоксин-β рецептор

MOG – миелин-олигодендроцитарный гликопротеин

 $T_H - T$ -хелпер

TNF – фактор некроза опухоли

TNFR – рецептор фактора некроза опухоли

 T_{reg} — регуляторная T-клетка

моДК — моноциты, дифференцирующиеся в эффекторные дендритные клетки

РС – рассеянный склероз

ЦНС – центральная нервная система

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

посвящена Настоящая работа изучению физиологических нейроиммунных функций молекулярных форм лимфотоксина α. На первом этапе была исследована роль лимфотоксина α в гомеостазе кишечника и в дифференцировке миелоидных клеток – процессов, для которых относительно недавно была установлена роль сигнальных путей, опосредованных лимфотоксином. В описанных в работе результатах была предпринята попытка сравнения биологической активности лимфотоксина α, TNF и TNFR1 в качестве альтернативного подхода установлению TNF-подобной ПО активности лимфотоксина α (то есть растворимой формы LTα₃). Второй важной проблемой, исследованию которой и посвящена основная часть работы, является роль молекулярных форм лимфотоксина α в различных экспериментальных моделях заболеваний. В аутоиммунных качестве экспериментальной аутоиммунного заболевания, в контексте которой можно изучать функции лимфотоксинов, была выбрана модель МОС35-55-индуцированного ЕАЕ.

1. Роль лимфотоксина α в гомеостазе иммунной системы

В рамках настоящей работы была исследована роль лимфотоксина α в гомеостазе кишечника и в дифференцировке миелоидных клеток – процессов, для которых относительно недавно была установлена роль сигнальных путей, опосредованных лимфотоксином.

Для четкого разграничения функций лимфотоксина α и TNF использовали Lta-дефицитных мышей без кассеты, ответственной за резистентность к неомицину (*neo*-кассеты) ($Lta^{\Delta/\Delta}$) (Liepinsh et al., 2006) (Рисунок 1A). У таких мышей отсутствуют как мембраносвязанная, так и растворимая формы лимфотоксинов. Предположительно, пео-кассета, присутствующая таргетирующей конструкции мышей с конвенциональным удалением Lta, способна влиять на экспрессию соседних генов, в частности, *Tnf*. Так, для *Lta*дефицитных мышей без пео-кассеты был описан нормальный уровень продукции TNF миелоидными клетками при ex vivo активации LPS по сравнению с мышами с конвенциональным удалением *Lta* (Liepinsh et al., 2006). Кроме этого, в инфекционной модели $Lta^{\Delta/\Delta}$ мыши без neo-кассеты были менее восприимчивы к заражению Mycobacterium tuberculosis ПО сравнению конвенциональным удалением Lta и мышами с удалением Tnf (Allie et al., 2010). Дополнительным контролем для разграничения функций лимфотоксина а и TNF служили мыши, дефицитные по Tnf ($Tnf^{\Delta/\Delta}$) (Kuprash et al., 2005) и мыши с удалением TNFR1 ($Tnfrsf1a^{-/-}$, далее $Tnfr1^{-/-}$) (Pfeffer et al., 1993).

Поскольку основным клеточным источником лимфотоксинов, участвующим как в образовании лимфоидных органов, так и в регуляции иммунитета слизистых, являются $ROR\gamma t^+$ ILC3, было проанализировано содержание ILC3 в собственной пластинке тонкого кишечника с помощью цитофлуориметрического анализа. Оказалось, что у $Lta^{\Delta/\Delta}$ мышей повышено процентное содержание $ROR\gamma t^+$ ILC3 в тонком кишечнике (Рисунок 1Б). При этом такой же фенотип наблюдался у мышей с удалением TNF и TNFR1 (Рисунок 1Б), что позволяет заключить, что TNF и лимфотоксин α необходимы и для поддержания гомеостаза ILC3 в тонком кишечнике взрослого организма.

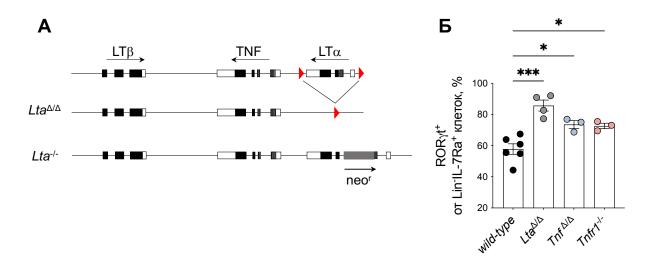


Рисунок 1. Лимфотоксин α важен для поддержания гомеостаза ILC3 в тонком кишечнике. (A) Сравнение различных способов генетического таргетирования LTα. Сверху – схема локуса дикого типа, в центре – получение мышей без *пео*-кассеты ($Lta^{\Delta/\Delta}$), снизу – получение мышей с конвенциональным удалением Lta, у которых сохраняется пео-кассета ($Lta^{-/-}$). (Б) Процентное содержание RORγt⁺ ILC3 клеток, выделенных как VD⁻ CD45⁺Lin⁻IL-7Rα⁺ среди клеток собственной пластинки тонкого кишечника, выделенных из из мышей дикого типа (wild-type) или с удалением Lta, Tnf или Tnfr1. Каждый символ соответствует индивидуальной мыши, результаты представлены как среднее значение ± SEM и подтверждены в 3 независимых экспериментах. *P < 0.05, *** P < 0.001, one-way ANOVA.

Поскольку в последнее время появилось много данных о роли лимфотоксина (в основном memLT) в дифференцировке миелоидных клеток в различных иммунных компартментах, было решено оценить развитие незрелых миелоидных клеток в культурах костного мозга *in vitro* (Рисунок 2A). Было выявлено, что генетическое удаление Lta, Tnf или Tnfr1 приводит к уменьшению дифференцировки миелоидных клеток в $Ly6C^{hi}$ моноциты (Рисунок 2Б). Эти результаты согласуются с ранее полученными данными об уменьшении количества миеломонобластов в культурах костного мозга, полученных из мышей с дефицитом Tnf или Lta (Drize et al., 2000). Предположительно, такой

фенотип может наблюдаться за счет ключевой роли сигнального пути, опосредованного TNFR1, в выживании моноцитов (Wolf et al., 2017).

Таким образом, лимфотоксин α, предположительно, за счет своей TNFподобной функции, необходим для поддержания гомеостаза ILC3 в тонком кишечнике, а также может участвовать в дифференцировке миелоидных клеток в моноциты *in vitro*.

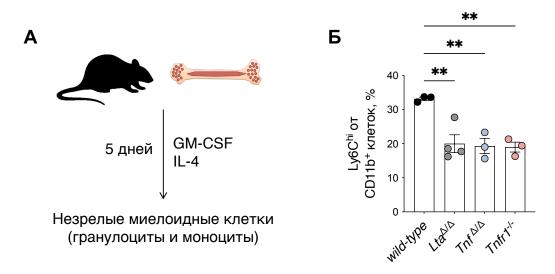


Рисунок 2. Удаление лимфотоксина α и TNF влияет на дифференцировку незрелых миелоидных клеток *in vitro*. (A) Схема эксперимента: клетки костного мозга, выделенные из мышей дикого типа (wild-type) или с удалением Lta, Tnf или Tnfr1 культивировали в течение 5 дней в присутствии GM-CSF и IL-4. На 5-й день культивирования состав клеток анализировали методом проточной цитофлуориметрии с использованием антител к маркерам CD11b, Ly6G, Ly6C. (Б) Процентное содержание Ly6Chi клеток среди CD11b+ клеток, полученных по схеме (A). Каждый символ соответствует индивидуальной мыши, результаты представлены как среднее значение \pm SEM и подтверждены в 2 независимых экспериментах. **P < 0.01, one-way ANOVA.

- 2. Роль молекулярных форм лимфотоксина α в патогенезе экспериментального аутоиммунного энцефаломиелита
- 2.1. Генетическая и фармакологическая нейтрализация лимфотоксина α не приводит к усугублению симптомов EAE

На первом этапе для исследования функций молекулярных форм лимфотоксина α были проведены эксперименты на мышах с полным удалением Lta (то есть с полным удалением $LT\alpha$, входящим в состав как растворимого $LT\alpha$, так и memLT) и интактной экспрессией TNF ($Lta^{\Delta/\Delta}$ мыши). Для этого мышей подвергали MOG_{35-55} -индуцированному EAE. Было обнаружено, что $Lta^{\Delta/\Delta}$ мыши восприимчивы к EAE и развивали заболевание, схожее по динамике с заболеванием мышей дикого типа (Рисунок 3A), что прямо противоречило имеющимся в литературе данным об абсолютной резистентности мышей с

удалением Lta (Suen et al., 1997), но подтверждало результаты о нормальном развитии EAE у Lta-дефицитных мышей с нормальной продукцией TNF (Sean Riminton et al., 1998).

Иммунная система *Lta*-дефицитных мышей характеризуется отсутствием лимфатических узлов. В связи с этим для валидации полученных результатов динамику развития EAE, наблюдаемую у *Lta*-дефицитных мышей, сравнивали с таковой в экспериментах с фармакологической блокировкой LTα, которые блокируют как мембраносвязанную, так и растворимую формы лимфотоксина. Для этого мышам дикого типа (C57BL/6) вводили нейтрализующие антитела к LTα (Chiang et al., 2009) каждые 3 дня, начиная с 4-го дня после индукции EAE. Параллельно, для определения TNF-подобной активности лимфотоксина α, другой экспериментальной группе вводили антитела к TNF, контрольные мыши получали инъекции PBS. Было обнаружено, что при фармакологической блокировке LTa мыши развивали заболевание, схожее по симптоматике с мышами дикого типа (Рисунок 3Б), что совпадало с результатами, полученными на мышах с генетическим удалением *Lta*. В то же время при фармакологической блокировке TNF мыши демонстрировали отложенное начало и более тяжелое течение заболевания (Рисунок 3Б), что согласуется с имеющимися в литературе данными (Batoulis et al., 2014; Kassiotis et al., 1999), однако говорит о том, что в контексте EAE, предположительно, не реализуется TNF-подобная функция LTa. Более того, эти результаты согласуются с данными об отсутствии ухудшения мембраносвязанной клинических симптомов при блокировке лимфотоксина в модели EAE (Gommerman et al. 2003).

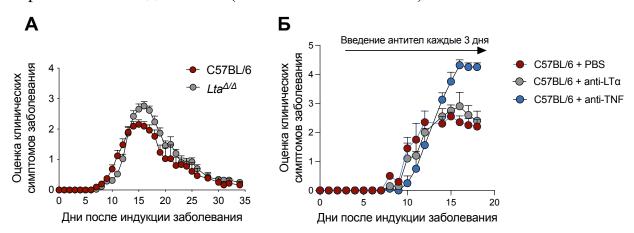
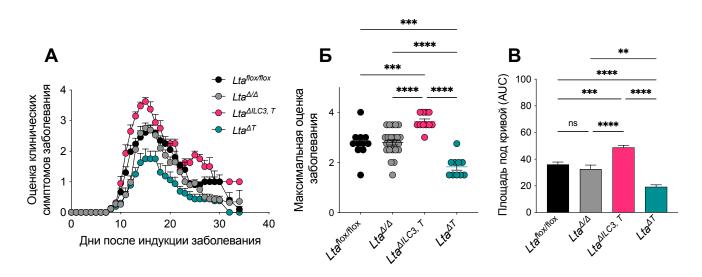



Рисунок 3. Генетическая или фармакологическая нейтрализация лимфотоксинов не приводит к ухудшению симптомов EAE.

(A) Развитие клинических симптомов EAE у мышей дикого типа (C57BL/6) и мышей с удалением Lta. Результаты представлены как среднее значение \pm SEM и подтверждены в 7 независимых экспериментах. (Б) Динамика развития клинических симптомов EAE у мышей дикого типа на фоне нейтрализации LT α или TNF с введением PBS в качестве контроля. Антитела вводили каждые 3 дня, начиная с 4-го дня после иммунизации MOG₃₅₋₅₅-пептидом. Результаты представлены как среднее значение \pm SEM и подтверждены в 2 независимых экспериментах.

2.2. Мыши с удалением *Lta* в ILC3 или в Т-клетках развивают различные по динамике симптомы EAE

На следующем этапе работы изучали роль основных клеточных источников лимфотоксинов, а именно ILC3 и Т-клеток, в патогенезе EAE, поскольку для ILC3 (Grigg et al., 2021) и Т-клеток (Chiang et al., 2009) показан высокий уровень экспрессии *Lta* в модели EAE. Для этого проводили иммунизацию МОС35-55-пептидом в полном адъюванте Фрейнда ранее полученных мышей с тканеспецифичной инактивацией *Lta* в RORyt⁺ ILC3 и Тклетках ($Lta^{\Delta ILC3,T}$) или только Т-клетках ($Lta^{\Delta T}$), в качестве контрольных мышей использовали $Lta^{flox/flox}$ мышей (Kruglov et al., 2013). Кроме этого, в качестве дополнительного контроля использовали мышей с полным лимфотоксина ($Lta^{\Delta/\Delta}$). Было обнаружено, что у $Lta^{\Delta ILC3,T}$ мышей происходит увеличение как максимальной оценки заболевания (Рисунок 9Б), так и общей тяжести заболевания по сравнению с $Lta^{flox/flox}$ и $Lta^{\Delta T}$ мышами (Рисунок 4В). При этом мыши с инактивацией *Lta* только в Т-клетках демонстрировали умеренную тяжесть заболевания (Рисунок 4Б) и относительно легкое течение ЕАЕ (Рисунок 4B).

Рисунок 4. У *Lta*^{ΔILC3,T} и *Lta*^{ΔT} мышей наблюдается различное течение EAE. (A) Развитие клинических симптомов EAE у мышей дикого типа ($Lta^{flox/flox}$) (n=15), мышей с полным удалением Lta ($Lta^{\Delta/\Delta}$) (n=17), мышей с удалением Lta в ILC3 и Т-клетках ($Lta^{\Delta ILC3,T}$) (n=15) и с удалением Lta только в Т-клетках ($Lta^{\Delta T}$) (n=11). (Б) Максимальная оценка клинических симптомов EAE. (В) Площадь под кривой (area under the curve, AUC), рассчитанная для (А). Результаты представлены как среднее значение \pm SEM и подтверждены в 4 независимых экспериментах. ***P < 0.001, ****P < 0.0001, one-way ANOVA.

2.3. У мышей с удалением *Lta* в ILC3 клетках происходит накопление моноцитов, дифференцирующихся в эффекторные дендритные клетки, опосредующие демиелинизацию

На следующем этапе были изучены механизмы, за счет которых мыши с кондиционным удалением *Lta* в ILC3 развивают тяжелые симптомы EAE. Анализ миелоидных клеток в ЦНС на пике заболевания выявил, что как у мышей с полным, так и с ILC3-специфичным удалением *Lta* наблюдалось повышенное накопление в ЦНС Ly6ChiCD11c+MHCII+ моноцитов, дифференцирующихся в дендритные клетки (моДК), играющих патогенетическую роль в модели EAE (Croxford et al., 2015) (Рисунок 5A).

Известно, что для приобретения моноцитами зрелого воспалительного фенотипа моДК необходим IFNу, тогда как GM-CSF необходим для выполнения ими эффекторных функций (Amorim et al., 2022). В соответствии с этим именно у $Lta^{\Delta ILC3,T}$, но не у $Lta^{\Delta/\Delta}$ мышей происходило накопление IFN γ - и GM-CSF-ЦНС (Рисунок продуцирующих Т-клеток В 5Б, B). функциональной активности моДК (Yamasaki et al., 2014) был проведен гистологический анализ демиелинизации LFB/PAS образцов спинного мозга мышей. Обнаружено, что у мышей с удалением Lta в ILC3 сильнее выражена демиелинизация, что коррелирует с развитием тяжелых симптомов ЕАЕ (Рисунок 5Γ). Интересно, что у мышей с полным удалением Lta, несмотря на повышенную инфильтрацию Ly6ChiCD11c+MHCII+ моноцитов, которая также наблюдалась в гомеостазе в крови таких мышей (Рисунок 5Б), не наблюдалось ни увеличения инфильтрации $IFN\gamma^+$ и $GM\text{-}CSF^+$ T_H -клеток, ни очагов демиелинизации, что может говорить об отсутствии созревания моДК и объяснять симптоматику ЕАЕ (Рисунок 5).

Таким образом, полученные результаты свидетельствуют о том, что молекулярные формы лимфотоксина α из ILC3 выполняют протективную роль в развитии EAE за счет подавления инфильтрации эффекторных моДК и IFN γ - и GM-CSF-продуцирующих CD4 $^+$ T-клеток в ЦНС.

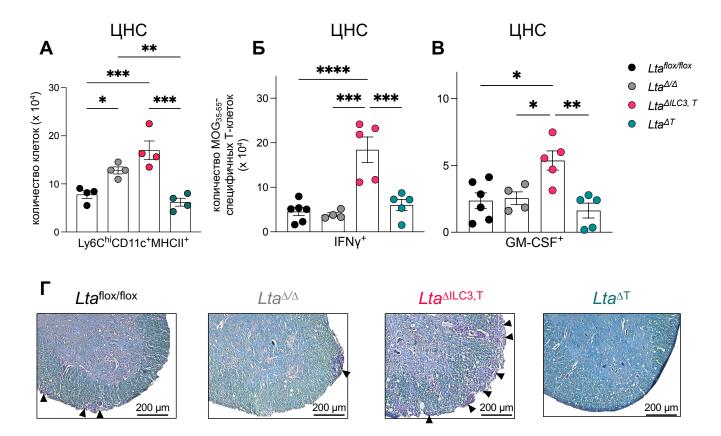
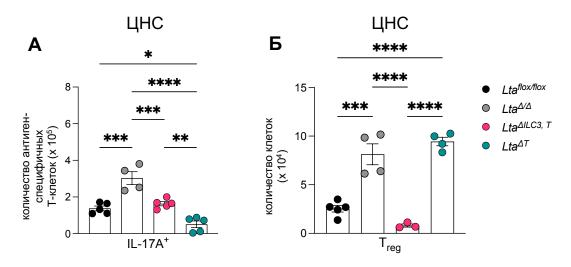



Рисунок 5. У мышей с удалением Lta в ILC3 происходит накопление моДК в ЦНС на пике EAE, предположительно, IFN γ - и GM-CSF-опосредованным путем. (A) Количество моДК в ЦНС на пике клинических симптомов EAE. (Б) Количество IFN γ ⁺ и (В) GM-CSF⁺ CD4⁺ Т-клеток, рестимулированных MOG₃₅₋₅₅, в ЦНС на 16 день после иммунизации. (Г) Репрезентативные фотографии гистологического окрашивания LFB/PAS срезов спинного мозга мышей дикого типа ($Lta^{flox/flox}$), с полным удалением Lta ($Lta^{\Delta/\Delta}$), удалением Lta в ILC3 и Т-клетках ($Lta^{\Delta ILC3,T}$) и удалением Lta только в Т-клетках ($Lta^{\Delta T}$), выделенных на пике EAE. Увеличение 10X, масштаб – 200 мкм, стрелки указывают на очаги демиелинизации (окрашены фиолетовым). Результаты представлены как среднее значение \pm SEM и подтверждены хотя бы в 2 независимых экспериментах. Каждый символ на (A), (Б) и (В) соответствует значению для индивидуальной мыши. *P < 0.05, ** P < 0.01, *** P < 0.001, *** P < 0.001, ns – недостоверные отличия, one-way ANOVA.

2.4. Молекулярные формы лимфотоксина α, экспрессирующиеся Тклетками, выполняют патогенетическую роль в EAE за счет контроля прайминга Т_н-клеток на периферии

Ранее было обнаружено, что у $Lta^{\Delta T}$ мышей симптомы EAE были выражены слабее, чем у $Lta^{flox/flox}$ мышей, $Lta^{\Delta I}$ мышей и $Lta^{\Delta ILC3,T}$ мышей (Рисунок 4). В соответствии с этим у $Lta^{\Delta T}$ мышей не было выявлено очагов демиелинизации в ЦНС (Рисунок 5Г). Кроме того, ЦНС $Lta^{\Delta T}$ мышей характеризовалась уменьшением инфильтрации $T_{H}17$ на пике EAE (Рисунок 6A). В то же время в ЦНС $Lta^{\Delta I}$ и $Lta^{\Delta T}$ мышей было повышено абсолютное количество регуляторных T-клеток (Рисунок 6Б), что может объяснять более слабые симптомы развития EAE у мышей с полным удалением Lta по сравнению

с мышами с ILC3-специфичным удалением, а также слабую восприимчивость к индукции EAE у мышей с удалением *Lta* в T-клетках.

Рисунок 6. В ЦНС $Lta^{\Delta T}$ мышей на пике EAE снижена инфильтрация $T_{reg.}$ (A) Количество IL-17A⁺ CD4⁺ Т-клеток, рестимулированных MOG₃₅₋₅₅ и (Б) Количество регуляторных Т-клеток в ЦНС мышей дикого типа ($Lta^{flox/flox}$), с полным удалением Lta ($Lta^{\Delta/\Delta}$), удалением Lta в ILC3 и Т-клетках ($Lta^{\Delta ILC3,T}$) и удалением Lta только в Т-клетках ($Lta^{\Delta T}$) в ЦНС на 16 день после иммунизации. Каждый символ соответствует значению для индивидуальной мыши. Результаты представлены как среднее значение \pm SEM и подтверждены в 3 независимых экспериментах. *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, oneway ANOVA.

Поскольку известно, что экспрессия мембраносвязанного лимфотоксина на антиген-специфичных Т-клетках необходима для их прайминга дендритными клетками (Summers-DeLuca et al., 2007), было выдвинуто предположение, что снижение тяжести EAE у $Lta^{\Delta T}$ мышей связано с изменениями в антигенспецифичном прайминге Т-клеток на периферии. Для изучения прайминга CD4⁺ T-клеток в лимфатических узлах и селезенке $Lta^{\mathrm{flox/flox}}$ и $Lta^{\Delta T}$ мышей МОG₃₅₋₅₅-пептидом адъюванте иммунизировали В полном Фрейнда последующими двухкратным введением коклюшного токсина и исследовали иммунный ответ в лимфоидных органах через 9 дней после иммунизации. Было выявлено, что у $Lta^{\Delta T}$ мышей происходит снижение общего количества МОG₃₅₋₅₅специфичных CD4⁺ Т-клеток, продуцирующих IL-17A (Рисунок 7A) и GM-CSF (Рисунок 7Б), в селезенке и лимфатических узлах на начальном этапе развития EAE.

Таким образом, полученные результаты свидетельствуют о нарушении прайминга T-клеток во вторичных лимфоидных органах на фоне генетической инактивации Lta и дают основание предположить, что это опосредовано дефицитом мембранного LT комплекса.

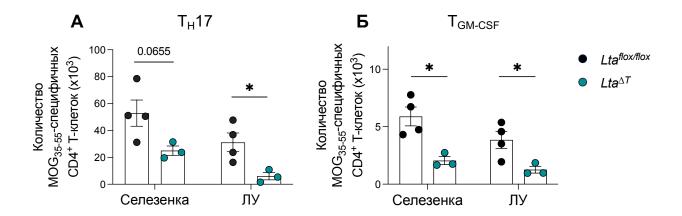
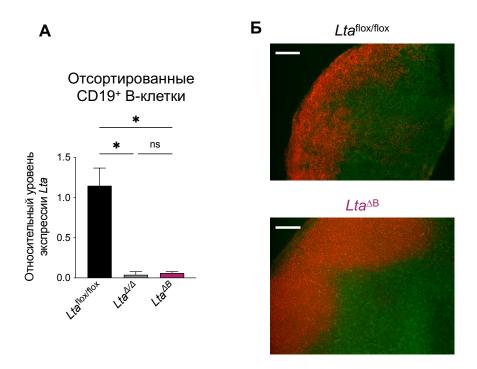



Рисунок 7. В селезенке $Lta^{\Delta T}$ мышей на начальной фазе EAE снижена продукция эффекторных цитокинов.

(A) Количество T_H17 -клеток, рестимулированных MOG_{35-55} , в селезенке и лимфатических узлах (ЛУ) на 9 день после иммунизации MOG_{35-55} в полном адъюванте Фрейнда. (Б) Количество T_{GM-CSF} -клеток, рестимулированных MOG_{35-55} , в селезенке и лимфатических узлах (ЛУ) на 9 день после иммунизации. Результаты представлены как среднее значение \pm SEM и подтверждены в 3 независимых экспериментах. Каждый символ соответствует значению для индивидуальной мыши. *P < 0.05, t-критерий Стьюдента

2.5. Молекулярные формы лимфотоксина α, экспрессирующиеся на Вклетках, выполняют патогенетическую роль в модели rhMOG₁₋₁₂₅индуцированного EAE, но не в модели MOG₃₅₋₅₅-зависимого EAE

Известно, что В-клетки пациентов с РС характеризуются повышенной продукцией LT α (Ваг-Ог et al., 2010; McWilliam et al., 2018; Stein et al., 2018). В связи с этим была изучена динамика EAE у мышей с тканеспецифичным удалением Lta в В-клетках ($Lta^{\Delta B}$). Для этого скрещивали $Lta^{flox/flox}$ мышей с мышами, несущими специфичный для В-клеток Сге-делитер CD19^{Cre} (Rickert et al., 1997). Делецию подтверждали путем анализа экспрессии Lta в отсортированных CD19⁺ В-клетках, стимулированных анти-CD40, с помощью количественной ПЦР в реальном времени (Рисунок 8A). Дополнительно оценивали разделение Т- и В-зон в лимфатических узлах $Lta^{\Delta B}$ мышей и обнаружили, что, как и у $Ltb^{\Delta B}$ мышей (Титапоv et al., 2002), в ЛУ $Lta^{\Delta B}$ мышей сохранялись сегрегированные Т- и В-зоны (Рисунок 8Б).

Рисунок 8. Характеристика $Lta^{\Delta B}$ **мышей.** (**A**) Относительный уровень экспрессии Lta в отсортированных CD19⁺ B-клетках, выделенных из селезенок мышей дикого типа ($Lta^{flox/flox}$), с полным удалением Lta ($Lta^{\Delta/\Delta}$) и с удалением Lta только в CD19⁺ B-клетках ($Lta^{\Delta B}$) и активированных с помощью anti-CD40 в течение 7 часов. В качестве референсного гена использовали β -актин. (**Б**) Репрезентативные фотографии иммунофлуоресцентного окрашивания CD3 (зеленый) и B220 (красный) в лимфатических узлах. Масштаб – 50 мкм. Результаты представлены как среднее значение \pm SEM и подтверждены в 2 независимых экспериментах. *P < 0.05, ns – недостоверные отличия, t-критерий Стьюдента.

Поскольку у $Lta^{\Delta B}$ мышей в лимфатических узлах сохраняется сегрегация Т- и В-зон, что, согласно имеющимся в литературе данным, не влияет на созревание аффинности и переключение изотипов антител при подкожной иммунизации (Greter et al., 2009), на следующем этапе исследования мышей иммунизировали полноразмерным рекомбинантным человеческим белком МОG (rhMOG₁₋₁₂₅). Этот белок индуцирует образование патогенетических анти-МОG аутоантител, способствующих индукции демиелинизации в ЦНС (Galicia et al., 2013).

Оказалось, что в модели rhMOG₁₋₁₂₅-индуцированного EAE $Lta^{\Delta B}$ мыши были менее восприимчивы к индукции заболевания, чем контрольные мыши дикого типа (Рисунок 9A, Б). Это могло быть связано с нарушением синтеза аутоантител, однако анализ содержания rhMOG₁₋₁₂₅-специфичных IgG в сыворотке крови $Lta^{flox/flox}$ и $Lta^{\Delta B}$ мышей в динамике после иммунизации не выявил различий в выработке rhMOG₁₋₁₂₅-специфичных аутоантител (Рисунок 9B). Анализ сыворотки крови мышей с удалением Lta в В-клетках выявил уменьшение концентрации IL-6 (Рисунок 9Г), для которого показана патогенетическая роль в модели EAE (Barr et al., 2012). Поскольку известно, что

Т-клетки необходимы для индукции заболевания при иммунизации $rhMOG_{1-125}$ (Wang et al., 2021), была изучена продукция цитокинов $CD4^+$ T_H -клетками на пике EAE. В результате этого анализа снижение провоспалительного ответа на системном уровне было подтверждено уменьшение процентного содержания $IFN\gamma$ -продуцирующих T-клеток в лимфатических узлах (Рисунок 9Д).

Таким образом, полученные нами результаты свидетельствуют о том, что B-клетки являются критически важным источником молекулярных форм лимфотоксина α только в модели $rhMOG_{1-125}$ -зависимого EAE.

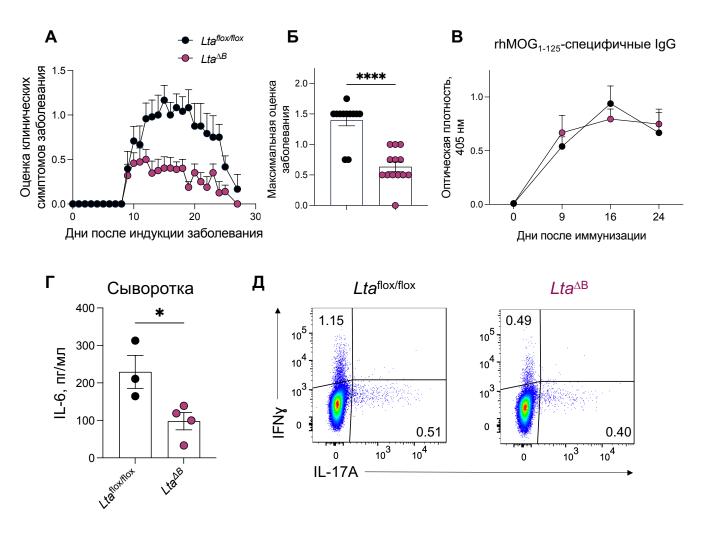


Рисунок 9. Молекулярные формы лимфотоксина α из В-клеток выполняют патогенетическую роль в модели rhMOG₁₋₁₂₅-индуцированного EAE. (A) Развитие клинических симптомов EAE у мышей дикого типа ($Lta^{flox/flox}$) (n=12) и мышей с удалением Lta в В-клетках ($Lta^{\Delta B}$) (n=13), иммунизированных белком rhMOG₁₋₁₂₅ в полном адъюванте Фрейнда. (Б) Максимальная оценка клинических симптомов EAE. (В) Значения оптической плотности rhMOG₁₋₁₂₅-специфичных IgG в сыворотке крови мышей, иммунизированных rhMOG₁₋₁₂₅ в полном адъюванте Фрейнда, на 0, 9, 16 и 24 дни после иммунизации. (Г) Концентрация IL-6 в сыворотке крови на пике заболевания. (Д) Репрезентативные поточечные диаграммы IFN γ ⁺ и IL-17A⁺ Т-клеток, выделенных из лимфатических узлов $Lta^{flox/flox}$ и $Lta^{\Delta B}$ мышей, рестимулированных ФМА/иономицином. Результаты представлены как среднее значение ± SEM и подтверждены в 2 независимых экспериментах. *P < 0.05, ****P < 0.0001, t-критерий Стьюдента.

ЗАКЛЮЧЕНИЕ

В ходе настоящей работы с помощью ранее полученных уникальных линий мышей были изучены некоторые аспекты иммунобиологии лимфотоксинов. Основная часть работы была посвящена исследованию роли молекулярных форм лимфотоксина α в мышиной модели рассеянного склероза, экспериментальном аутоиммунном энцефаломиелите. Было показано, что *Lta*-дефицитные мыши с нормальной продукцией TNF миелоидными клетками восприимчивы к индукции MOG₃₅₋₅₅-индуцированного EAE. Эти результаты были подтверждены в экспериментах с фармакологической блокировкой с помощью уникального реагента – антител к LTα.

В работе впервые установлена роль различных клеточных источников (ILC3, Т- и В-клеток) молекулярных форм лимфотоксина α в патогенезе EAE. Так, было выявлено, что защитную роль выполняют молекулярные формы лимфотоксина α из ILC3, тогда как их экспрессия Т-клетками усугубляет динамику развития ЕАЕ. Для В-клеток, продуцирующих молекулярные формы лимфотоксина α, показана ключевая роль в патогенезе аутоантитело-зависимой модели ЕАЕ. Результаты работы вносят вклад в понимание молекулярных механизмов патологии нейровоспаления, а также демонстрируют различные функции лимфотоксинов, зависимые от 3 составляющих: 1) клеточного источника, 2) времени и 3) локализации. Такая неоднозначная молекулярных форм лимфотоксина α может объяснять отсутствие эффективности блокаторов лимфотоксинов терапии аутоиммунных заболеваний, а также свидетельствует о необходимости разработки новых подходов к фармакологической нейтрализации лимфотоксинов из конкретных типов клеток.

Полученные результаты о TNF-подобной функции лимфотоксина α в гомеостазе дополняют имеющиеся сведения о физиологической роли лимфотоксинов, а также могут быть использованы для прогнозирования возможных побочных эффектов при применении Этанерцепта, блокатора TNF и растворимой формы LTα, в терапии аутоиммунных заболеваний. С точки зрения фундаментальной иммунобиологии лимфотоксинов результаты настоящей работы подтверждают, что в контексте роли лимфотоксинов в слизистых оболочках и экспериментальных условиях *in vitro* реализуется именно TNF-подобная функция лимфотоксина α. Кроме этого, в дополнение к данным о роли лимфотоксинов в аутоиммунитете, результаты по изучению эффектов полного удаления TNF/LT в гомеостазе иммунной системы подтверждают гипотезу о необходимости разработки клеточно-специфичных терапевтических подходов.

По результатам работы были сформулированы следующие выводы:

- 1. LTα в норме участвует в поддержании гомеостаза лимфоцитов врожденного иммунитета типа 3 (ILC3) в собственной пластинке тонкого кишечника и в дифференцировке миелоидных клеток в моноциты *in vitro*.
- 2. Генетическая или фармакологическая инактивация LTα не влияет на чувствительность мышей к MOG₃₅₋₅₅₋зависимому экспериментальному аутоиммунному энцефаломиелиту (EAE).
- 3. У мышей с удалением *Lta* из ILC3 клеток наблюдается тяжелое течение EAE с интенсивной демиелинизацией, инфильтрацией моноцитов, дифференцирующихся в дендритные клетки, а также IFNγ- и GM-CSF-продуцирующих Т-клеток в ЦНС.
- 4. На фоне генетической инактивации *Lta* в Т-клетках происходит нарушение продукции цитокинов антиген-специфичными Т-клетками во вторичных лимфоидных органах на раннем этапе развития экспериментального аутоиммунного энцефаломиелита.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых научных изданиях, индексируемых в Web of Science, Scopus или РИНЦ:

- 1. **Гоголева В.С.**, Друцкая М.С., Недоспасов С.А. Иммунобиология лимфотоксина: роль в мышиной модели рассеянного склероза. // Российский иммунологический журнал. 2023. Т. 26, №4. С. 437-442. Двухлетний импакт-фактор РИНЦ = 0.123 (0.93/0.74)ⁱ.
- 2. **Gogoleva V.S.**, Kuprash D.V., Grivennikov S.I., Tumanov A.V., Kruglov A.A., Nedospasov S.A. LTα, TNF, and ILC3 in Peyer's Patch Organogenesis // Cells. 2022. Vol. 11. P. 1970. Импакт-фактор WoS (JIF) = 7.666 (1.27/0.76).
- 3. **Gogoleva V.S.,** Atretkhany K.N., Dygay A.P., Yurakova T.R., Drutskaya M.S., Nedospasov S.A. Current Perspectives on the Role of TNF in Hematopoiesis Using Mice With Humanization of TNF/LT System // Frontiers in Immunology. 2021. Vol. 12. P. 661900. Импакт-фактор WoS (JIF) = 8.786 (1.62/1.1).
- 4. Atretkhany K.N., **Gogoleva V.S.**, Drutskaya M.S., Nedospasov S.A. Distinct modes of TNF signaling through its two receptors in health and disease // Journal of Leukocyte Biology. 2020. Vol. 107. Р. 893-905. Импакт-фактор WoS (JIF) = 6.011 (1.5/0.5).
- Гоголева В.С., Атретханы К.-С.Н., Друцкая М.С., Муфазалов И.А., Круглов А.А., Недоспасов С.А. Цитокины как медиаторы нейровоспаления в экспериментальном аутоиммунном энцефаломиелите. // Биохимия. 2018. Т. 83, №9. С. 1368 1384. Импакт-фактор WoS (JIF) = 2.824 (1.96/1.25).

22

^і В скобках приведен объем публикации в условных печатных листах и вклад автора в условных печатных листах