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Общая характеристика работы 

 

Диссертация основана на результатах исследований, выполненных в 2000–

2024 гг. в рамках эксперимента «Компактный мюонный соленоид» (Compact 

muon solenoid – CMS) на Большом адронном коллайдере (LHC) в Европейской 

организации по ядерным исследованиям (CERN, Женева) и Лаборатории силь-

ных взаимодействий Отдела экспериментальной физики высоких энергий 

Научно-исследовательского института ядерной физики им. Д. В. Скобельцына 

Московского государственного университета им. М. В. Ломоносова. 

 

Актуальность темы и степень ее разработанности 

Открытие бозона Хиггса [1–3] с массой 125 ГэВ/с2 стало возможным благо-

даря наблюдению сигнала от его рождения в протон-протонных взаимодей-

ствиях в двух каналах его распада. Первым, идущим с вероятностью 0,2% [4], 

является канал распада бозона Хиггса (H) [5–7] на два гамма-кванта: H → γγ. 

Этот сигнал с трудом выделяется среди преобладающего фона от многочислен-

ных электромагнитных распадов адронов. Вторым каналом распада, названным 

«золотым», является идущий с вероятностью 2,7% [4] распад бозона Хиггса на 

два Z-бозона, один из которых является виртуальным, с последующими их рас-

падами на два противоположно заряженных лептона каждый: H → ZZ* → 4l. В 

данном случае под лептонами l имеются в виду электроны (позитроны) e и мю-

оны µ. При реконструкции инвариантной массы бозона Хиггса используются че-

тыре-импульсы лептонов, для чего необходимо не только измерить трёхмерные 

импульсы лептонов, но и надёжно идентифицировать данные частицы. 

Для измерения импульсов на начальных участках траекторий заряженных 

вторичных частиц, рождённых во взаимодействиях пучков первичных ускорен-

ных частиц, в современных детекторах на кольцевых ускорителях, в частности, 

на Большом адронном коллайдере (LHC) [8], используются прецизионные тре-

ковые детекторы, размещённые в магнитном поле, которое придаёт траекториям 

частиц кривизну [9], зависящую от плотности магнитного потока B (магнитной 

индукции) в трековом детекторе. Бóльшая плотность магнитного потока обеспе-

чивает бóльшую кривизну и, как следствие, более точное измерение импульса 

заряженной частицы. Идентификация электронов и мюонов производится с по-

мощью других систем экспериментальной установки: электромагнитного кало-

риметра и мюонного спектрометра [10, 11]. Как правило, в современных экспе-

риментальных установках на кольцевых ускорителях со сталкивающимися пуч-

ками первичных частиц для создания магнитного поля используются сверхпро-

водящие соленоиды с центральной плотностью магнитного потока 1,5–4 Тл [12–

18]. 
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В период подготовки предложений многоцелевых экспериментов [19–23] 

по поиску рождения бозона Хиггса на кольцевых ускорителях при энергиях 

столкновения пучков частиц 6–14 ТэВ в системе центра масс (с.ц.м.), автор изу-

чал процессы рождения бозона Хиггса с массой до 1 ТэВ/с2 [24–26] с распадом 

его на лептоны в конечном состоянии. При данной массе бозона Хиггса стати-

стическая значимость сигнала от его рождения остаётся постоянной в области 

поперечных импульсов лептонов 50–100 ГэВ/с, следовательно, измерение им-

пульса лептона в трековом детекторе должно происходить в данной области по-

перечных импульсов с высокой точностью. Было показано, что величина экспе-

риментального разрешения по поперечному импульсу заряженной частицы 

напрямую связана не только с величиной плотности магнитного потока в объёме 

трекового детектора, но также определяется деградацией двойных интегралов 

магнитного поля по траекториям частиц в торцевых областях цилиндрического 

объёма трекового детектора [27, 28]. 

Современные магнитные системы многоцелевых детекторов на кольцевых 

ускорителях сталкивающихся первичных частиц являются в большей степени ге-

терогенными [17, 18, 29, 30], т. е. создаваемый ими магнитный поток пронизы-

вает как немагнитные, так и ферромагнитные материалы экспериментальной 

установки. Стальное ярмо магнита установки (магнитопровод) используется, как 

правило, в качестве намагниченных слоёв, заворачивающих мюоны, что позво-

ляет идентифицировать их в мюонном спектрометре и измерять в нём их им-

пульсы. Большой объём стального ярма соленоидального магнита и неоднород-

ность плотности магнитного потока, проходящего через ярмо магнита, затруд-

няют прямые измерения магнитной индукции B внутри блоков ярма. Существу-

ющие методики измерения магнитного поля с помощью датчиков Холла или дат-

чиков ядерного магнитного резонанса успешно применяются внутри объёма со-

леноидального магнита и обеспечивают высокую точность измерений. Для при-

менения подобных датчиков в измерениях плотности магнитного потока B 

внутри блоков стального ярма магнита необходимы тонкие разрезы, секущие 

блоки в плоскостях, перпендикулярных к силовым линиям поля, что значительно 

усложняет несущую конструкцию ярма. Альтернативным вариантом является 

использование снижения или сброса тока магнита с операционного значения до 

нуля и интегрирование по времени электрических сигналов, индуцированных из-

менением магнитного потока в сечениях специальных потоковых катушек, уста-

новленных вокруг блоков ярма. В этом случае в результате интегрирования мо-

жет быть реконструирована начальная средняя плотность магнитного потока в 

сечении потоковой катушки.  
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Оба варианта позволяют провести только дискретные измерения распреде-

ления магнитного потока в стальном ярме магнита установки, что недостаточно 

для измерения импульсов мюонов в мюонном спектрометре.  

 

Цели и задачи работы 

Цель работы заключается в измерении импульсов мюонов, оставляющих 

траектории в станциях мюонных камер, расположенных между намагниченными 

блоками магнитопровода, для чего необходимо знать непрерывные значения 

плотности магнитного потока вдоль траекторий частиц, заворачиваемых магнит-

ным полем внутри стальных блоков. 

На протяжении более 15 лет работы установки CMS [11] задачей автора яв-

ляется математическое моделирование магнитной системы методом конечных 

элементов, позволяющее получить точное распределение магнитного потока во 

всём объёме экспериментальной установки. Описание данной методики, разра-

батываемой автором с 1990 года, и методов проверки значений плотности маг-

нитного потока B, полученных в результате моделирования, результатами спе-

циально проведённых измерений составляют превалирующий объём данной дис-

сертации. Итогом применения моделирования магнитного потока установки 

CMS явилось создание карты магнитного поля во всём объёме установки и пре-

цизионное измерение импульсов электронов (позитронов) и мюонов, что позво-

лило с высокой точностью реконструировать инвариантную массу бозона Хиггса 

– последнего кирпичика Стандартной модели (СМ) элементарных частиц. Авто-

ром проведено исследования влияние неоднородности магнитного поля в треко-

вой системе экспериментальной установки на точность измерения импульсов за-

ряженных частиц, в частности, заряженных лептонов e и µ, происходящих из 

лептонных распадов бозона Хиггса. Данная оценка очень важна для понимания 

величины систематической ошибки при измерении массы бозона Хиггса. 

 

Объект и предмет исследования 

Объектом исследования является установка «Компактный мюонный соле-

ноид» (Compact muon solenoid – CMS) на Большом адронном коллайдере в Евро-

пейской организации по ядерным исследованиям.  

Предметом исследования является карта магнитного поля установки CMS, 

определяющая значения плотности магнитного потока в каждой пространствен-

ной точке установки. Эта процедура соответствия трех компонент плотности 

магнитного потока B пространственным координатам вдоль траектории заря-

женной частицы является необходимым условием успешной реконструкции тре-

ков заряженных частиц в трековом детекторе установки CMS. Чем сильнее маг-
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нитное поле, тем больше прогиб траектории частицы и тем точнее восстанавли-

вается импульс частицы, а значит, тем точнее реконструируется масса резонанса, 

распадающегося на заряженные частицы. В настоящем исследовании таким ре-

зонансом, подлежащим изучению, является бозон Хиггса, распадающийся на че-

тыре энергичных изолированных лептона. 

 

Научная новизна работы 

Для большого гетерогенного магнита с центральной плотностью магнит-

ного потока 3,8 Тл разработана компьютерная трехмерная модель, позволившая 

описать распределение магнитного потока во всём объёме магнитной системы 

установки CMS. С помощью специально созданной автоматизированной  пнев-

матической  машины плотность магнитного потока измерена внутри сверхпро-

водящего соленоида диаметром 6 м и длиной 12,5 м в цилиндрическом объёме 

диаметром 3,448 м и длиной 7 м с точностью 7×10−4. За пределами данного из-

меренного объема магнитный поток впервые рассчитан с помощью трехмерной 

модели магнита CMS. Внутри сверхпроводящего соленоида с центральной плот-

ностью магнитного потока 3,8 Тл создана стационарная система измерения плот-

ности магнитного потока с помощью 6 датчиков ядерного магнитного резонанса, 

установленных на границе центрального адронного калориметра и на границе 

трекового детектора, а также проведено мониторирование плотности магнитного 

потока с помощью 4 трехмерных датчиков Холла, стационарно установленных 

на границе трекового детектора. С помощью оригинальной техники измерения 

плотности магнитного потока в сечениях стальных блоков ярма магнита с ис-

пользованием потоковых катушек измерены и сравнены с расчетными значения 

магнитной индукции внутри магнитопровода, используемого для определения 

импульсов мюонов. В цилиндрическом объёме диаметром 18 и длиной 48 м на 

основе 11 136 трехмерных примитивных объёмов, содержащих компоненты 

плотности магнитного потока в 6 215 592 узлах пространственной сетки, создана 

карта магнитного поля установки CMS, используемая в программах моделиро-

вания и реконструкции событий протон-протонных взаимодействий при энер-

гиях 7 – 13,6 ТэВ. Для оценки влияния неоднородности магнитного поля в тре-

ковом детекторе экспериментальной установки разработан метод двойных инте-

гралов магнитного поля, позволяющий оценить вклад деградации магнитного 

поля в трековом детекторе в разрешение по поперечному импульсу заряженной 

частицы. В спектре инвариантной массы димюонов в событиях, отобранных с 

помощью димюонного триггера, достигнуто разрешение по массе резонансов, 

проявивших себя в области 0,3–300 ГэВ/c2, на уровне 100 МэВ/c2 во всем диапа-

зоне псевдобыстроты мюонных треков и 70 МэВ/c2 в центральной области псев-
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добыстроты обоих мюонов. Точностью карты магнитного поля обеспечено раз-

решение по поперечному импульсу мюонов pT в области 20 < pT < 100 ГэВ/с на 

уровне от 1,3% до 2% в центральной области и не более 6% в торцевой области 

мюонной системы CMS. В наблюдаемом распределении по массе четырех заря-

женных лептонов (4e, 4μ, 2e2μ) хорошее разрешение по поперечному импульсу 

лептонов и, в частности, мюонов, достигнутое благодаря точности карты магнит-

ного поля, обеспечило малую систематическую ошибку в измерении массы уз-

кого резонанса, совместимого с рождением бозона Хиггса Стандартной модели, 

при полученном значении инвариантной массы mH = 125,6 ± 0,4(стат.) ± 

0,2(сист.) ГэВ/c2. 

 

Теоретическая и практическая значимость работы 

Теоретическая значимость работы связана с разработанным методом двой-

ных интегралов магнитного поля, применимым к оценкам влияния неоднород-

ности магнитного поля в трековых системах на разрешение по импульсам заря-

женных частиц, измеренным в магнитном поле. В частности, метод был много-

кратно использован при разработке нескольких типов магнитных систем для де-

тектора FCC-hh на предлагаемом Будущем кольцевом коллайдере. Практическая 

значимость работы заключается в разработке методов моделирования гетероген-

ных магнитных систем для экспериментальных установок на современных уско-

рителях частиц, а также в разработке методики измерения магнитного поля с вы-

сокой точностью, в том числе и в стальных магнитопроводах. 

 

Методология и методы исследования 

Методология исследования материала, представленного в диссертации, ос-

нована на сравнении экспериментально измеренных величин с результатами мо-

делирования. Для расчета модели магнита CMS использована хорошо зареко-

мендовавшая себя программа TOSCA (TwO SCAlar potential method) [31], разра-

ботанная в 1979 г. [32] в лаборатории Резерфорда – Эплтона. Основной идеей 

программы TOSCA является использование для решения задач магнитостатики 

нелинейных дифференциальных уравнений в частных производных с двумя ска-

лярными магнитными потенциалами: полным (в уравнении Лапласа) и непол-

ным (в уравнении Пуассона) [33]. Оба уравнения решаются в программе TOSCA 

методом конечных элементов [34] в узлах сетки, которая разбивает всю область 

модели магнитной системы на четырёхугольные и треугольные призмы. 

Все экспериментальные измерения были проведены на основе требований 

и методов, принятых в коллаборации CMS. 
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Положения, выносимые на защиту 

1. Точность описания распределения плотности магнитного потока внутри 

сверхпроводящего соленоида диаметром 6 м и длиной 12,5 м находится в преде-

лах 0,1%, а в стальном магнитопроводе, используемом в мюонном спектрометре, 

– в среднем на уровне 3%. 

2. Методика измерения магнитного поля датчиками ядерного магнитного 

резонанса, трехмерными датчиками Холла и специализированными потоковыми 

катушками является достаточной для проверки расчетов, выполненных с помо-

щью трехмерной модели магнита установки CMS. 

3. Измерение плотности магнитного потока трехмерными датчиками 

Холла, перемещаемыми с помощью созданной автоматизированной пневматиче-

ской машины внутри цилиндра диаметром 3,448 м и длиной 7 м, позволяет обес-

печить относительную точность определения магнитного поля в трековой си-

стеме установки CMS на уровне 0,07%. 

4. Измерение плотности магнитного потока в ярме магнита CMS с помощью 

специализированных потоковых катушек и трехмерных датчиков Холла, позво-

ляет подтвердить на уровне 3% корректность распределения магнитного потока 

в мюонном спектрометре, полученного с помощью трехмерной модели магнита 

CMS. 

5. Трехмерная карта магнитного поля установки CMS, созданная для обес-

печения программ моделирования событий и реконструкции треков заряженных 

частиц значениями плотности магнитного потока в каждой требуемой точке 

установки, позволяет достигнуть относительного разрешения по поперечному 

импульсу мюонов в интервале 20 – 100 ГэВ/с на уровне 1,3% – 2% в центральной 

области и не хуже 6% в торцевой области мюонного спектрометра CMS, что 

определяет массовое разрешение в канале распада Хиггса на четыре заряженных 

мюона на уровне 1–2%. 

6. Разработанный метод оценки влияния неоднородности магнитного поля 

в трековой системе экспериментальной установки на разрешение по попереч-

ному импульсу заряженной частицы позволяет оценить вклад магнитного поля в 

деградацию разрешения по поперечному импульсу заряженной частицы на 

уровне существенно меньшем 1,25% при значениях псевдобыстроты частицы, 

меньших 1,63 и не превышающем 1,31% при значения псевдобыстроты, мень-

ших 2,4, что что говорит о близости магнитного поля в трековой системе CMS к 

идеальному однородному полю. 

7. Анализ метода регистрации бозона Хиггса по его распаду на четыре за-

ряженных лептона (4e, 4μ, 2e2μ) позволяет сделать вывод о том, что системати-

ческая ошибка реконструкции массы бозона Хиггса в данном канале, равная 
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0,2 ГэВ/c2 при массе бозона 125,6 ГэВ/c2, меньше систематической ошибки, рав-

ной 0,5 ГэВ/c2 при массе бозона 125,3 ГэВ/c2, полученной в комбинации каналов 

распада бозона Хиггса на два гамма-кванта и на четыре лептона, что свидетель-

ствуем о лучшей точности метода регистрации бозона Хиггса по его распаду на 

четыре заряженных лептона. 

 

Личный вклад автора 

Автор диссертации принимал активное участие в эксперименте CMS на 

всех этапах его проведения: в разработке технического проекта магнитной си-

стемы установки, в расчёте её параметров, в создании автоматизированной ма-

шины для измерения плотности магнитного потока B внутри сверхпроводящего 

соленоида, в разработке системы измерений магнитного поля в стальных блоках 

ярма магнита CMS, в проведении измерений магнитного поля с помощью датчи-

ков Холла, датчиков ядерного магнитного резонанса и потоковых катушек, в со-

здании карты магнитного поля во всём объёме установки, в оптимизации работы 

мюонного спектрометра и трекового детектора, включая улучшение разрешения 

по поперечному импульсу мюонов, в физическом анализе экспериментальных 

данных. Лидирующее участие автора в перечисленных этапах работы подтвер-

ждается письмом руководителя коллаборации CMS. 

 

Степень достоверности и апробация результатов 

В основу диссертации положены 25 работ, выполненные в 1990–2024 гг. и 

опубликованные в рецензируемых научных изданиях, рекомендованных для за-

щиты в диссертационном совете МГУ по специальности и отрасли наук, а также 

главы в книгах “Current Perspective to Physical Science Research” (Kolkata: Book 

Publisher International, 2024) [35–37] и “Science and Technology: Recent Updates 

and Future Prospects” (Kolkata: Book Publisher International, 2024) [38]. 

Эти работы докладывались на международных конференциях CHEP’92 

(1992, Annecy, France), CHEP’94 (1994, San Francisco, CA, USA), CHEP’95 (1995, 

Rio de Janeiro, Brazil), CHEP’98 (1998, Chicago, IL, USA), MT-16 (1999, Ponte 

Vedra Beach, FL, USA), CHEP’01 (2001, Beijing, China), MT-17 (2001, Geneva, 

Switzerland), IMMW-12 (2001, Grenoble, France), MT-18 (2003, Marioka City, Iwate 

Prefecture, Japan), IEEE NSS/MIC 2003 (2003, Portland, OR, USA), CHEP’04 (2004, 

Interlaken, Switzerland), IEEE NSS/MIC 2004 (2004, Rome, Italy), ASC’06 (2006, 

Seattle, WA, USA), MT-20 (2007, Philadelphia, PA, USA), IEEE NSS/MIC 2008 

(2008, Dresden, Germany), MT-21 (2009, Hefei, China), ICSM-2012 (2012, Istanbul, 

Turkey), ISCM-2014 (2014, Antalya, Turkey), 17 Ежегодной конференции сотруд-

ничества RDMS и CMS (2014,  Дубна, Россия), IEEE NSS/MIC 2015 (2015, San 

Diego, CA, USA), ICSM-2016 (2016, Fethiye, Turkey), IEEE NSS/MIC 2016 (2016, 
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Strasbourg, France), ICSM-2018 (2018, Antalya, Turkey), IEEE ICM2018 (2018, San 

Francisco, CA, USA), ISCM-2021 (2021, Milas-Bodrum, Turkey), 4 International 

Conference on Symmetry (2023, Barcelona, Spain). 

 

Объем и структура диссертации 

Диссертация состоит из введения, пяти глав и заключения. Полный объём 

диссертации составляет 176 страниц, включая 48 рисунков и 2 таблицы. Список 

литературы содержит 149 наименований. 

 

Основное содержание работы 

 

Во введении представлена актуальность темы и степень ее разработанно-

сти, сформулированы цели и задачи работы, основные положения, выносимые 

на защиту, описаны объект и предмет исследования, методология и методы ис-

следования, изложены научная новизна, теоретическая и практическая значи-

мость работы, а также достоверность полученных результатов, представлена ин-

формация об апробации работы и отмечен личный вклад автора. 

В первой главе кратко описан состав детектора CMS и подробно описана 

методика моделирования гетерогенной магнитной системы CMS, начиная с фор-

мулирования задачи магнитостатики по моделированию магнитного потока 

сверхпроводящего соленоида установки CMS, заключённого в стальной магни-

топровод. В главу включены разделы о кривых намагничивания различных ти-

пов стали, использованных в ярме магнита CMS, и об эволюции модели магнит-

ной системы на протяжении 25 лет. 

Основной трудностью при описании широко апертурных магнитных си-

стем с возвратным ярмом большого объёма является описание распределения 

магнитного потока в стальных блоках ярма магнита (магнитопровода). Прямые 

непрерывные измерения плотности магнитного потока в стальных блоках ярма 

невозможны, и в обычной практике используется математическое моделирова-

ние магнитной системы с помощью специальных трехмерных компьютерных 

программ. 

Созданная автором трехмерная модель магнитной системы установки CMS 

воспроизводит магнитный поток, создаваемый системой, в цилиндрическом объ-

ёме диаметром 100 м и длиной 120 м [35]. В качестве инструмента для создания 

модели магнитной системы была выбрана хорошо зарекомендовавшая себя про-

грамма TOSCA (TwO SCAlar potential method) [31], разработанная в 1979ْг. [32] 

в лаборатории Резерфорда – Эплтона.  
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Хорошо известно [39], что задача об определении магнитного поля линей-

ных токов, в пренебрежении объёмом проводников, может быть решена как за-

дача теории потенциала. Основной идеей программы TOSCA является использо-

вание для решения задач магнитостатики нелинейных дифференциальных урав-

нений в частных производных с двумя скалярными магнитными потенциалами: 

полным ψ (в уравнении Лапласа) и неполным φ (в уравнении Пуассона) [33]. Для 

этого в модели магнитной системы выделяются две области: в одной, Ωj, содер-

жащей проводники с постоянным током, для решения используется неполный 

скалярный магнитный потенциал φ, а также закон Био – Савара для учёта маг-

нитного поля проводников с током; в другой, Ωk, не содержащей проводников с 

током, но содержащей ферромагнитные изотропные или анизотропные матери-

алы, для решения используется полный скалярный магнитный потенциал ψ, а на 

границе между двумя областями нормальные компоненты плотности магнитного 

потока Bn и тангенциальные компоненты напряжённости магнитного поля Ht 

удовлетворяют условию их непрерывности [39, 40]: 

𝐵𝑛𝑘 = 𝐵𝑛𝑗,                                                         (1) 

𝐻𝑡𝑘 = 𝐻𝑡𝑗.                                                          (2) 

При этом на удалённых внешних границах области Ωk в зависимости от конфи-

гурации магнитной системы используются граничные условия Дирихле ψْ= 0 или 

Неймана 
𝜕𝜓

𝜕𝒏
= 0, где n – внешняя единичная нормаль к границе области Ωk. 

Базовыми уравнениями для решения нелинейной магнитостатической за-

дачи служат уравнения Максвелла [39] 

∇ ∙ 𝑩 = 0,                                                          (3) 

∇ × 𝑯 = 𝑱,                                                         (4) 

где вектором B обозначена плотность магнитного потока, вектором Н – напря-

жённость магнитного поля, а J является вектором заданной плотности тока в то-

ковых элементах магнитной системы. При этом векторы B и H связаны между 

собой соотношением 

𝑩 = 𝜇(𝑯)(𝑯 − 𝑯𝑐),                                                (5) 

где µ(H) – магнитная проницаемость среды, в которой определятся магнитное 

поле, a Нс – коэрцитивная сила в среде. Для нелинейной задачи µ(H) является 

функцией напряжённости магнитного поля в среде и в общем случае может быть 

тензором. Для изотропных материалов, таких, как конструкционная сталь, ис-

пользованная в ярме магнита CMS, 

𝜇(|𝑯|) = 𝜇𝑟(|𝑯|)𝜇0,                                                (6) 

где µ0 – магнитная проницаемость вакуума, а µr(|H|) – относительная магнитная 

проницаемость, которая в магнитной среде является безразмерной нелинейной 

функцией величины напряжённости магнитного поля и в стальных материалах 
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достигает значения около 2000 единиц. Соотношение (5) представляет собой так 

называемую кривую намагничивания материала. При этом коэрцитивная сила Нс 

в большинстве магнитных материалов полагается равной нулю, но играет суще-

ственную роль в постоянных магнитах. 

По теореме разложения Гельмгольца, если дивергенция и ротор векторного 

поля определены в каждой точке конечной открытой области пространства, то 

всюду в данной области векторное поле может быть представлено в виде суммы 

безвихревого и соленоидального полей. Тогда в области Ωk, где нет токовых эле-

ментов, вихревая часть напряжённости магнитного поля отсутствует, поле H яв-

ляется соленоидальным и может быть представлено, как градиент полного ска-

лярного потенциала ψ в любой точке данной области: 

𝑯 =  −∇𝜓,                                                        (7) 

а уравнение (3) с учётом соотношений (5), (6) переходит в уравнение Лапласа 

для скалярного потенциала ψ: 

∇ ∙ 𝜇𝑟∇𝜓 = 0.                                                      (8) 

В области Ωj, содержащей проводники с постоянным током, вектор напря-

жённости магнитного поля разбивается на две части: соленоидальное поле Hm, 

представляемое, как градиент неполного скалярного потенциала φ 

𝑯𝑚 =  −∇𝜑,                                                       (9) 

и вихревое поле токовых элементов Hs, которое на расстоянии R от источника 

тока определяется по закону Био – Савара: 

𝑯𝑠 =  ∫
𝑱 × 𝑹

|𝑹|3

Ω𝑗

𝑑Ω𝑗 .                                                    (10) 

Теперь уравнение (3) с учётом соотношений (5), (6), (9) и (10) переходит в 

уравнение Пуассона для неполного скалярного магнитного потенциала φ: 

∇ ∙ 𝜇𝑟∇𝜑 = ∇ ∙ 𝜇𝑟𝑯𝑠.                                              (11) 

Оба уравнения (8) и (11) решаются в программе TOSCA методом конечных 

элементов [34] в узлах сетки, которая разбивает всю область модели магнитной 

системы на четырёхугольные и треугольные призмы. Компоненты напряженно-

сти магнитного поля H вычисляются затем как градиенты скалярного потенци-

ала (7), (9), при этом в области неполного скалярного потенциала к ним добавля-

ются компоненты напряженности магнитного поля, создаваемой проводниками 

с током, определяемые по закону Био – Савара (10). Компоненты плотности маг-

нитного потока B вычисляются с помощью уравнений (5), (6) при соблюдении 

условий непрерывности компонент (1) и (2). 
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В модели магнитной системы установки CMS область неполного скаляр-

ного потенциала Ωj представляет собой систему пяти цилиндров с полной дли-

ной по оси соленоида, равной 12,666 м, и диаметрами от 6,94625 до 6,95625 м. 

Подобная конфигурация объёма, содержащего в себе сверхпроводящую ка-

тушку, отражает деформацию соленоида под действием электромагнитных сил 

при рабочем токе 18,164 кА. Весь остальной объём модели магнита CMS пред-

ставляет собой область Ωk полного скалярного потенциала ψ, в том числе и 

внутри ферромагнитных элементов системы. Вся модель магнита CMS разбита 

на линейные конечные элементы с длинами по азимутальному направлению, со-

ответствующими углу 3,75°. В области неполного скалярного потенциала φ сред-

няя длина конечного элемента по радиальному направлению составляет 65,5 мм, 

а по аксиальному направлению – 86,8 мм. При описании соленоида в модели маг-

нита CMS учтены геометрические размеры и расположение при температуре 

жидкого гелия только сверхпроводящего кабеля, поскольку при достижении 

сверхпроводимости можно считать, что весь ток протекает через него. Каждый 

модуль катушки, за исключением одного, в котором по технологическим причи-

нам отсутствует один виток кабеля, представлен в виде четырёх концентриче-

ских цилиндров длиной 2,4532 м и толщиной 20,54 мм со средними диаметрами, 

соответствующими деформации соленоида при достижении рабочего тока 

18,164 кА. Плотность тока в цилиндрах рассчитана из числа Ампер-витков в се-

чении каждого цилиндра. 

Начало системы координат установки CMS расположено в центре сверх-

проводящего соленоида, ось X лежит в плоскости LHC и направлена к центру его 

кольца, ось Y направлена вверх и перпендикулярна к плоскости LHC, ось Z со-

ставляет с осями X и Y правую тройку и направлена вдоль вектора магнитной 

индукции, создаваемой на оси сверхпроводящей катушки. 

На рис. 1-а представлена изометрическая проекция модели магнитопровода 

установки CMS. В качестве ферромагнитных элементов ярма магнита в модель 

включены пять многослойных стальных колец вокруг криостата соленоида, 

стальные носовые диски, четыре торцевых диска с каждой стороны криостата 

соленоида, стальные скобы крепления слоёв колец, стальные опоры колец и те-

лежки торцевых дисков, стальные поглотители и воротники переднего адрон-

ного калориметра, стальные элементы радиационной защиты и коллиматоров 

протонных пучков, а также стальной пол экспериментального подземного зала 

площадью 48×9,9 м2 и толщиной 40 мм [35]. 

По числу граней кольца и торцевые диски разделены на 12 азимутальных 

секторов по 30° каждый. Нумерация секторов идёт в сторону увеличения значе-

ний азимутального угла и начинается с горизонтально расположенного сектора 

S1, середина которого совпадает с осью X. 
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(а) (б) 

Рисунок 1: (а) Трёхмерная модель магнита CMS, использующая программу TOSCA [31] для 

расчёта магнитного потока при токе соленоида 18,164 кА. Различными цветовыми оттенками 

выделены ферромагнитные материалы магнитопровода, в которых использованы три различ-

ные кривые намагничивания; (б) Сеть конечных элементов в плоскости XY в присутствии че-

тырёх слоёв сверхпроводящего кабеля и двух линейных проводников для ввода-вывода тока. 

 

Каждый из секторов колец состоит из трёх слоёв, соединённых между со-

бой стальными скобами: одного (L1) толщиной 0,285 м и двух (L2 и L3) толщи-

ной 0,62 м каждый. Толстые слои состоят из стали двух типов: стали G – в об-

кладках толщиной 0,085 м и стали I – в сердцевине толщиной 0,45 м. В централь-

ном кольце на расстоянии 3,868 м от оси соленоида находится дополнительный 

четвёртый слой TC толщиной 0,18 м, состоящий, как и слой L1, из стали G. Тот 

же тип стали используется в соединительных скобах и опорах колец.  

Материалом пола экспериментального зала служит сталь S. Сталь S исполь-

зуется в больших и малом торцевых дисках, замыкающих магнитопровод с каж-

дой стороны криостата соленоида, а также в соединительных кольцах между 

ними и пластинах тележек дисков. Наращенная часть четвёртых дисков состоит 

из двух стальных пластин толщиной 25 мм и специализированного бетона между 

ними, содержащего окислы бора и железа, при этом содержание железа состав-

ляет 57%. В модели магнитной системы CMS для пластин использована кривая 

намагничивания стали G, а бетон описан той же кривой с фактором упаковки 

0,57. 

При построении трёхмерной модели первоначально в плоскости XY созда-

ётся двумерная сетка конечных элементов, представленная на рис. 1-б, в которой 

обозначаются размеры и расположение всех ферромагнитных элементов, ис-

пользуемых в модели. Затем эта сетка послойно экструдируется в направлении 

оси Z, при этом координаты узлов сети трансформируются для описания слож-

ных геометрических объёмов, в основном, цилиндрических и конических, мини-

мально возможным количеством узлов плоскостной сети. Слои в направлении 
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оси Z и расположение элементов в плоскостях XY между ними используется для 

описания материалов элементов модели. В настоящее время модель магнитной 

системы CMS содержит 140 слоёв и 8 759 730 узлов пространственной сетки в 

цилиндрическом объёме диаметром 100 м и длиной 120 м и требует для расчета 

13 часов процессорного времени. 

Для описания свойств ферромагнитных элементов магнитной системы 

установки CMS  в модели использованы три кривые изотропной нелинейной за- 

висимости плотности магнитного потока B от напряжённости магнитного поля 

Н [35], представленные на рис. 2-а в полулогарифмическом масштабе. 

 

  

(а) (б) 

Рисунок 2: (а) Кривые намагничивания стали, использованной в ярме магнита установки CMS. 

Из стали I (пунктирная линия) выполнены блоки сердцевины толстых слоёв колец вокруг 

криостата соленоида. Сталь S (точечная линия) использована для производства носовых и тор-

цевых дисков ярма; этой же кривой намагничивания в модели описаны свойства тележек дис-

ков и пола экспериментального зала. Для всех остальных элементов магнитопровода исполь-

зуется кривая намагничивания стали G (сплошная линия).; (б) Модель магнита CMS версии 

1103_090322. Цветовая шкала описывает распределение плотности магнитного потока B и со-

ответствует интервалу B от нуля до 5 Тл с шагом 0,5 Тл. 

 

Каждая кривая была получена усреднением кривых намагничивания, изме-

ренных для образцов, соответствующих различным плавкам данного типа стали, 

использованных в элементах магнитопровода. Для кривой намагничивания 

стали G усреднение произведено по 33 образцам, при этом разброс между кри-

выми намагничивания образцов составил, в среднем, (11,5 ± 9,1)%. Для кривой 

намагничивания стали I усреднение произведено по 65 образцам, а разброс 

между кривыми намагничивания образцов составил, в среднем, (8,7 ± 8,0)%. Для 

кривой намагничивания стали S усреднение произведено по 72 образцам, при 

этом разброс между кривыми намагничивания образцов составил, в среднем, (8,2 

± 7,8)%. Кривые намагничивания стальных образцов измерены в интервале B от 

0,003 до 2 Тл. Для значений плотности магнитного потока, превышающих 
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2,15 Тл, во всех кривых используется кривая намагничивания стали I, измерен-

ная до значения B 7,4887 Тл. В этом интервале зависимость B от H становится 

линейной с коэффициентом наклона, бóльшим величины магнитной проницае-

мости вакуума на 0,42%. 

Развитие модели магнитной системы CMS шло параллельно с развитием 

возможностей вычислительной техники: от первой модели с числом узлов про-

странственной сетки 81 863, созданной в июне 1997 г., до специализированной 

модели 2023 года с числом узлов пространственной сетки 12 858 342, потребо-

вавшей для расчета 23,5 часа процессорного времени. 

На рис. 2-б представлена модель версии 1103_090322 с числом узлов про-

странственной сетки 1 993 452. Карта магнитного поля, созданная на основе дан-

ной модели, была использована на установке CMS на протяжении всего первого 

сеанса работы LHC в 2009–12 гг., и именно с этим описанием распределения маг-

нитного потока в объёме установки был открыт бозон Хиггса [2, 3]. 

Во второй главе описана разработка методики измерения и мониторирова-

ния магнитного поля установки CMS, основанная, в частности, на использовании 

датчиков ядерного магнитного резонанса и трехмерных датчиков Холла для из-

мерения магнитного поля внутри сверхпроводящего соленоида и на использова-

нии потоковых катушек, специально разработанных для измерения магнитной 

индукции в стальных блоках магнитопровода. 

Проверка распределения магнитного потока, полученного с помощью мо-

дели магнитной системы CMS, была проведена с помощью четырёх систем из-

мерения магнитного поля установки.  

Первая система включает в себя датчики ядерного магнитного резонанса 

(ЯМР), разработанные компанией METROLAB и подключённые через мульти-

плексор к тесламетру PT 2025 [36], произведенному той же компанией. Четыре 

датчика ЯМР (A, B, E, F) были стационарно установлены на радиусе 2,9148 м за 

пределами адронного калориметра на расстояниях ±0,006 м от срединной XY-

плоскости установки [36]. Ещё два датчика ЯМР (C, D) установлены в области 

положительных X-координат на торцах трековой системы при значениях Z-

координат −2,835 и +2,831 м на радиусе 0,651 м от оси соленоида. Датчики были 

связаны с мультиплексором, установленным в экспериментальном зале, коакси-

альными кабелями длиной 30–35 м, а затем – с тесламетром, установленным в 

измерительном зале,  коаксиальными кабелями длиной 64 м. В системе исполь-

зованы датчики трёх типов: один (B) – с твердотельным активным объёмом, обо-

гащённым водородом, – для измерения магнитной индукции в интервале от 0,7 

до 2,1 Тл, один (F) – со стеклянной ампулой, заполненной тяжёлой водой, – для 

измерения магнитного поля в интервале от 1,5 до 3,4 Тл и четыре датчика ЯМР 
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(A, C, D, E) – с аналогичной ампулой, заполненной D2O, – для измерения плот-

ности магнитного потока в интервале от 3 до 6,8 Тл. Диапазон измерений плот-

ности магнитного потока B, проведённых датчиками ЯМР, охватывает интервал 

от 0,85 до 4 Тл. В этом интервале измеренная зависимость B от тока соленоида, 

изменяющегося от 4 до 19,14 кА, является линейной. 

Второй измерительной системой явилась автоматизированная пневматиче-

ская машина, спроектированная и изготовленная в FNAL для измерения магнит-

ного поля во внутреннем объеме криостата сверхпроводящего соленоида диа-

метром 6 м и длиной 12,5 м до того, как он был заполнен детекторами частиц. 

Измерительная машина, показанная на рис. 3-а, использует десять трехмерных 

B-сенсоров [36], разработанных в Национальном институте субатомной физики 

(NIKHEF, Амстердам, Нидерланды) и откалиброванных в CERN с точностью 

0,03% при максимальном значении плотности магнитного потока 4,5 Тл. B-сен-

соры, каждый из которых содержит три одномерных взаимо-ортогональных дат-

чика Холла с чувствительным монокристаллом GaAs, были установлены на рас-

стоянии 0,092; 0,5; 0,908; 1,316 и 1,724 м от оси соленоида на каждом из двух 

крыльев пропеллера автоматизированной измерительной машины. Вращение 

пропеллера происходило с шагом 7,5° по азимутальному углу, а измерения вы-

полнялись одновременно в двух XY-плоскостях, разделённых расстоянием 

0,95 м, при движении измерительной машины вдоль оси Z с шагом 0,05 м внутри 

цилиндра диаметром 3,448 м и длиной 7 м, т. е.  в объёме 65 м3 [36]. 

Третья система использовалась для мониторирования магнитного поля на 

торцах трекового детектора, на поверхностях носовых дисков, в зазорах между 

центральными кольцами магнитопровода и на поверхностях торцевых дисков 

ярма магнита с помощью 86 трехмерных В-сенсоров, аналогичных тем, которые 

применялись в автоматизированной измерительной машине. 

Наконец, четвертая система измерения магнитного поля состояла 22 пото-

ковых катушек, стационарно расположенных, как показано на рис. 3-б, вокруг 10 

стальных блоков вертикального 30° азимутального сектора центральных колец 

магнитопровода и вокруг блоков вертикального 18° азимутального сектора двух 

торцевых дисков толщиной 0,592 м.  

Для разработки техники измерения плотности магнитного потока с помо-

щью потоковых катушек содержащих 7–10 витков 45-жильного плоского лен-

точного кабеля и охватывавших области поперечных сечений от 0,3 до 1,59 м2 в 

блоках колец магнитопровода W0, W−1, W−2 и от 0,5 до 1,12 м2 в секторах тор-

цевых дисков D−1, D−2 ярма магнита была проведена специальная программа 

НИОКР. Для проведения измерения необходимо снижать ток магнита с опера-

ционного значения 18,164 кА до нуля либо стандартным способом со скоростью 

1–1,5 А/с, либо с помощью быстрого сброса тока с постоянной времени 190 с. 
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Рисунок 3: (а) Автоматизированная машина для измерения магнитного поля CMS, установ-

ленная внутри центрального адронного калориметра; (б) Распределение плотности магнит-

ного потока в вертикальной плоскости в области размещения 22 потоковых катушек. Цветовая 

шкала имеет границы от нуля до 4 Тл с интервалом изменения 0,5 Тл. Черными линиями по-

казаны сечения потоковых катушек. Черными квадратами обозначены проекции положений 

трехмерных датчиков Холла на вертикальную плоскость YZ.  

 

В первом случае изменение величины магнитного потока индуцирует в по-

токовых катушках электродвижущую силу (ЭДС) с амплитудой 20–250 мВ, во 

втором случае амплитуда сигнала достигает величины 0,5–4,5 В, но при этом 

необходимо корректно учитывать вклад в сигнал вихревых токов, генерируемых 

в сечениях стальных блоков, где размещены потоковые катушки. Реконструкция 

плотности магнитного потока в сечении блока, соответствующей операцион-

ному значению тока, происходит с помощью автономного интегрирования ЭДС, 

наведенной в потоковой катушке, по времени снижения тока. Поскольку стан-

дартное снижение тока магнита CMS длится 15000–17000 с, то для получения 

хорошей точности при интегрировании необходимо измерять аналоговую ам-

плитуду наведенного сигнала прецизионно. Специальная программа НИОКР, 

выполненная автором в 1999-2002 гг. в FNAL параллельно с разработкой авто-

матизированной измерительной машины, послужила основой для отработки ме-

тодики измерения плотности магнитной индукции с помощью потоковых кату-

шек, что подробно описано в данной главе. 

В третьей главе приведены результаты измерения плотности магнитного 

потока внутри объема сверхпроводящего соленоида CMS, выполненные с помо-

щью специально разработанной измерительной машины, использующей отка-

либрованные трехмерные датчики Холла и датчики ядерного магнитного резо-

нанса. Большой объём посвящён различным проверкам расчетного магнитного 
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поля в магнитопроводе CMS  с помощью дискретных измерений, проведённых с 

использованием трехмерных датчиков Холла и потоковых катушек.  

Плотность магнитного потока в центральной части детектора CMS была из-

мерена в 2006 г. в 33840 пространственных точках цилиндрического объема диа-

метром 3,448 м и длиной 7 м с точностью 7×10−4 при пяти различных значениях 

центральной плотности магнитного потока (магнитной индукции) B0: 2,02; 3,02; 

3,52; 3,81 (дважды) и 4,01 Тл [36]. Измерения проведены с помощью 10 трёхмер-

ных В-сенсоров, установленных на двух крыльях автоматизированной пневма-

тической измерительной машины, перемещающейся вдоль оси сверхпроводя-

щего соленоида. Расстояние между датчиками Холла, размещёнными на крыльях 

пропеллера со стороны отрицательных и положительных Z-координат (на отри-

цательном и положительном крыльях пропеллера), составляет 0,95 м вдоль оси 

Z. После первых 19 шагов измерительной машины вдоль оси соленоида в любом 

направлении датчики Холла одного крыла перемещаются в то же положение на 

оси Z, где раньше находились датчики Холла другого крыла. Таким образом, в 

каждой точке во внутреннем объёме соленоида в диапазоне Z-координат ± 2,55 м 

по отношению к средней плоскости катушки магнитное поле измеряется дважды 

за один и тот же проход измерительной машины. Разница между измерениями 

плотности магнитного потока B, произведёнными в одной и той же точке B-сен-

сорами различных крыл, не превышает 1 мТл. На рис. 4-a показана зависимость 

измеренной плотности магнитного потока B от значений координаты Z и азиму-

тального угла φ при центральном значении B0, равном 4,01 Тл. Измерения про-

изведены вблизи оси соленоида с помощью трехмерных B-сенсоров, располо-

женных на радиусе 0,092 м от оси, и представлены без каких-либо поправок на 

ошибки в позиционировании датчиков. Представленные измерения отличаются 

высоким качеством и демонстрируют гладкость значений плотности магнитного 

потока вдоль азимутального угла.  

В то же время магнитный поток во всем объёме детектора CMS рассчитан 

с помощью трехмерной модели магнитного поля [35], использующей для расчёта 

программу TOSCA [31]. Модель воспроизводит распределение плотности маг-

нитного потока, измеренное с помощью автоматизированной машины внутри со-

леноида CMS, с точностью в пределах 0,1% [35]. Для проверки точности модели 

при значении B0, равном 4,01 Тл, расчетные и измеренные значения плотности 

магнитной индукции на радиусе 0,092 м были усреднены по азимутальному углу 

φ и сравнены между собой. Типичное стандартное отклонение при усреднении 

измерений составляет 4×10−5 Тл, что даёт относительную ошибку ~1×10−5, в 

среднем. Относительная ошибка усреднения по азимутальному углу расчетных 

значений составляет, в среднем, ~1×10−6. На рис. 4-б представлена зависимость 

данной плотности магнитного потока от координаты Z.  
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Рисунок 4: (а) Плотность магнитного потока, измеренная вдоль оси соленоида на радиусе 

0,092 м в интервале координат Z ±3,5 м относительно средней плоскости катушки; (б) Левая 

шкала: сравнение расчетной (пунктирная красная кривая) и измеренной (сплошные голубая и 

жёлтая линии) плотности магнитного потока, усредненных по всему диапазону азимутальных 

углов на радиусе 0,092 м. Кривые измерений отрицательного и положительного крыл пере-

крывают друг друга в области Z = ±2,55 м. Правая шкала: различие между измеренными и 

рассчитанными значениями для В-сенсора на отрицательном крыле (прямоугольные голубые 

штрихи) и для В-сенсора на положительном крыле пропеллера измерительной машины (жёл-

тые точки). 

 

Измерения отличаются от расчетных значений, в среднем, на 2,1 ± 2,0 мТл 

для B-сенсора, расположенного на отрицательном крыле пропеллера, и на 1,4 ± 

1,6 мТл для B-сенсора, расположенного на положительном крыле пропеллера из-

мерительной машины.  

На максимальном радиусе 1,724 м в горизонтальной плоскости при значе-

нии B0, равном 4,01 Тл, измерения при были проведены с помощью датчика ЯМР 

и с помощью В-сенсоров обоих крыльев пропеллера измерительной машины. Из-

мерения отличаются, в среднем, от расчетных значений на 4,0 ± 1,0 мТл для дат-

чика ЯМР, на 2,9 ± 2,2 мТл для B-сенсора, расположенного на отрицательном 

крыле пропеллера, и на 3,5 ± 1,4 мТл для B-сенсора, расположенного на положи-

тельном крыле пропеллера измерительной машины. Данные всех типов измере-

ний хорошо согласуются между собой. 

Для перекрестной проверки расчёта магнитного потока в последней версии 

модели магнита CMS 18_170812 при рабочем токе 18,164 кА, соответствующем 

B0 = 3,81 Тл, было проведено сравнение расчётной плотности магнитного потока 

с её измерениями, выполненными с помощью четырех датчиков ЯМР и четырех 

трехмерных B-сенсоров, установленных внутри соленоида [36]. Два датчика 

ЯМР расположены при значениях координат Z ± 0,006 м около средней плоско-

сти катушки на радиусе 2,9148 м; еще два датчика установлены на торцах треко-

вого детектора CMS при значениях координатах Z  −2,835 и +2,831 м на радиусе 
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0,651 м. Четыре трехмерных датчика Холла расположены на торцах трекового 

детектора CMS при значениях координат Z −2,899 и +2,895 м на радиусе 0,959 м. 

Усредненная точность измерений, выполненных с помощью датчика ЯМР, со-

ставляет (4,4 ± 1,0)×10-5 Тл, а точность измерений B-сенсоров составляет (3,5 ± 

0,5)×10-5 Тл. Усредненная относительная разница расчётных и измеренных зна-

чений плотности магнитного потока, составляет (−5,4 ± 1,6)×10-4 в местах распо-

ложения датчиков ЯМР и (−2,4 ± 4,0)×10-4 в местах расположения B-сенсоров. 

Столь малая разница этих значений подтверждает хорошее описание распреде-

ления магнитного потока внутри объема сверхпроводящего соленоида с помо-

щью модели магнита CMS. 

Для проверки расчёта распределения магнитного потока в стальных блоках 

ярма в 2006 году во время испытаний магнита CMS были проведены измерения 

плотности магнитного потока в плоскостях специальных потоковых катушек во 

время быстрых проверочных сбросов тока соленоида CMS с постоянной времени 

190 с. Эти изменения магнитного потока индуцировали в 22 потоковых катуш-

ках, размещённых на блоках ярма магнита в специальных пазах шириной 30 мм 

и глубиной 12–13 мм, ЭДС напряжением 0,5–4,5 В. Корректный учет вклада вих-

ревых токов в сигналы потоковых катушек позволил получить усреднённые от-

ношения (Meas − Calc)/Calc в слоях центральных колец на уровне (3,0 ± 3,5)% 

при токе магнита 17,55 кА (B0 = 3,68 Тл) и (1,5 ± 2,9)% при 19,14 кА (B0 = 4,01 

Тл). Здесь Meas – значения плотности магнитного потока, измеренные в сечении 

каждой потоковой катушки, а Calc – значения, рассчитанные с помощью трех-

мерной модели магнита CMS. В торцевых дисках усреднённые отношения (Meas 

− Calc)/Calc составили (1,1 ± 2,7)% при токе 17,55 кА и (0,005 ± 2,8)% при токе 

19,14 кА. Данные значения тока не соответствуют значению операционного тока 

магнита CMS 18,164 кА, но близки к нему, и проведенное сравнение результатов 

измерений с расчетами подтверждает корректность использования для наведе-

ния ЭДС в потоковых катушках быстрых сбросов тока соленоида. 

Измерение плотности магнитного потока в стальных блоках магнитопро-

вода CMS при операционном значении тока соленоида 18,164 кА (B0 = 3,81 Тл) 

проведено с использованием семи стандартных линейных снижений рабочего 

тока соленоида со скоростью не более 1–1,5 А/с, которые индуцировали в пото-

ковых катушках ЭДС с амплитудами 20–250 мВ. Для реконструкции изначаль-

ного магнитного потока в сечениях катушек наведённые ЭДС были оцифрованы 

16-битными модулями системы сбора данных и затем интегрированы по времени 

снижения тока [36]. На рис. 5 и 6 представлены результаты сравнения значений 

измеренной плотности магнитного потока с расчетом в блоках центральных ко-

лец магнитопровода W0, W−1, W−2 и в секторах торцевых дисков D−1 и D−2.  
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(а) (б) 

Рисунок 5: Магнитная индукция, измеренная при B0 3,81 Тл (сплошные маркеры) и рассчитан-

ная в модели (открытые маркеры), в зависимости от координаты Z: (а) в блоках TC (квадраты) 

, L1 (ромбы), L2 (треугольники), и L3 (кружки) колец на ближней к LHC стороне ярма и (б) в 

блоках слоёв L1 (ромбы), L2 (треугольники) и L3 (кружки) на дальней от LHC стороне ярма. 

Кривые соответствуют магнитной индукции, рассчитанной вдоль рядов B-сенсоров в плоско-

стях, имеющих Y-координаты −4,805 м (сплошная линия), −5,66 м (пунктирная линия), и 

−6,685 м (пунктирная линия с короткими штрихами). 

 

 
Рисунок 6: Магнитная индукция, измеренная при B0 3,81 Тл (сплошные маркеры) и рассчитан-

ная в модели (открытые маркеры), в зависимости от координаты Y в секторах торцевых дисков 

D−1 (ромбы) и D−2 (треугольники). Кривые соответствуют расчётным значения магнитной 

индукции вдоль линий, пересекающих центры потоковых катушек. 

 

В измерениях, кроме потоковых катушек, были задействованы 36 В-сенсо-

ров, расположенных двумя рядами на торцах блоков трех слоёв L1, L2 и L3 (см. 

рис. 3-б) колец магнитопровода и на поверхности диска D−1. Еще один В-сенсор 

был размещен на торце блока TC. В-сенсоры измеряли аксиальную компоненту 

плотности магнитного потока Bz, потоковые катушки на кольцах магнитопро-

вода также измеряли Bz, а потоковые катушки, установленные на секторах тор-

цевых дисков, – вертикальную компоненту By.  
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Рис. 5-а соответствует рядам В-сенсоров на ближней к LHC стороне магни-

топровода, а рис. 5-б соответствует рядам В-сенсоров на дальней от LHC стороне 

магнитопровода CMS. Измеренные значения показаны открытыми маркерами, 

расчётные значения – сплошными маркерами. Кривые соответствуют расчётным 

значениям аксиальной компоненты Bz вдоль рядов В-сенсоров. 

Рис. 6 соответствует измерениям и расчёту компоненты By в сечениях сек-

торов торцевых дисков. Кривые рассчитаны вдоль середин потоковых катушек. 

Разброс между расчётными и измеренными значениями плотности магнитного 

потока в сечениях потоковых катушек составляет: (4,1 ± 7,0)% в блоках колец 

ярма магнита и (−0,6 ± 2,7)% в секторах торцевых дисков. Погрешность измере-

ния плотности магнитного потока с помощью потоковых катушек, включает в 

себя стандартное отклонение в серии из семи измерений (7,6 ± 5,0 мТл или (0,59 

± 0,32)%, в среднем) и систематическую ошибку ±3,6%, связанную с учётом тол-

щины потоковой катушки. Разброс между расчётной и измеренной плотностью 

магнитного потока в местах размещения трехмерных датчиков Холла составляет 

(3 ± 7)%. Погрешность измерений, выполненных с помощью трехмерных датчи-

ков Холла составляет 0,02 ± 0,01 мТл. Наибольшее расхождение между расчет-

ной и измеренной аксиальной плотностью магнитного потока достигается в об-

ласти трех крайних потоковых катушек вблизи большого зазора между кольцом 

W−2 и торцевым диском D−1 (см. рис. 3-б). В этом зазоре в нижнем азимуталь-

ном секторе магнитопровода находятся крупные цилиндрические стальные 

опоры диска D−1, влияние которых на распределение магнитного потока в зазоре 

трудно учесть в модели магнита CMS. 

 

В четвёртой главе описана процедура создания трехмерной карты магнит-

ного поля установки CMS, используемой в программах моделирования и рекон-

струкции событий столкновений пучков первичных частиц на установке CMS. 

Для описания распределения магнитного потока в объёме детектора была 

разработана система примитивных 3D-объёмов [37], содержащих значения плот-

ности магнитного потока, измеренной во внутреннем объёме сверхпроводящей 

катушки [36] и смоделированной снаружи катушки на специальной сетке опор-

ных узлов [35]. Эта система, называемая картой магнитного поля CMS, воспро-

изводит геометрические особенности стальных блоков магнитопровода и позво-

ляет интерполировать плотность магнитного потока между узлами сетки для по-

лучения значений магнитного поля в любой пространственной точке внутри ци-

линдра диаметром 18 м и длиной 48 м, в объёме которого расположены все де-

тектирующие системы CMS. Распределение полной плотности магнитного по-

тока B в вертикальном сечении этого объёма показано на рис. 7. 
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Геометрия примитивных объёмов описывается внутри одного 30° азиму-

тального горизонтального сектора  S1  магнита  CMS.  Для получения  значений  

 
Рисунок 7: Распределение полной плотности магнитного потока B (Тл) в продольном сечении 

карты магнитного поля CMS в области 18×44 м2 [37], рассчитанное в трехмерной модели маг-

нита CMS [35] при рабочем токе соленоида 18,164 кА. 

 

компонент плотности магнитного потока в области всего азимутального угла ис-

пользуется вращательная симметрия азимутальных секторов, позволяющая 

трансформировать координаты узлов сетки примитивных объёмов, описанных в 

горизонтальном секторе S1, в другие азимутальные секторы, что упрощает за-

дачу геометрического описания сетки опорных узлов в полном объёме карты 

магнитного поля. При этом извлечение из модели магнита CMS значений компо-

нент плотности магнитного потока в каждом секторе происходит индивиду-

ально. 

В пятой главе проведен анализ вклада неоднородности магнитного поля в 

трековой системе установки CMS в ошибки измерения импульсов заряженных 

частиц и рассмотрена методика регистрации четырех изолированных заряжен-

ных лептонов e и µ, позволивших реконструировать инвариантную массу бозона 

Хиггса. 

В системе отсчёта координат XYZ, связанной с центром установки CMS рас-

смотрим траекторию заряженной частицы, испускаемой в радиальной плоскости 

RZ под углом θ к оси пучков Z из номинальной точки пересечения пучков частиц. 

При малом шаге dl вдоль направления движения частицы в идеальном соленоиде 

с однородным магнитным полем изменение угла поворота траектории частицы 

dα лежит в поперечной плоскости, показанной на рис. 8, и определяется выраже-

нием 
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𝑑𝛼 =
0.3

𝑝𝑇
𝐵 𝑑𝑙 𝑠𝑖𝑛𝜃,                                                 (12) 

где l измеряется в метрах, поперечный импульс частицы pT постоянной величины  

измеряется в ГэВ/с, а постоянный вектор плотности магнитного потока B изме-

ряется в Тл. В общем случае, в неоднородном поле, где вектор B меняет свою 

величину и направление, траектория частицы заворачивается в направлении век-

торного произведения dl×B [27, 28].  

 

 

Рисунок 8: Траектория заряженной частицы (пунктирная линия) в плоскости, поперечной 

направлению магнитного поля. Частица с поперечным импульсом pT = 100 ГэВ/c, испущена в 

вертикальной азимутальной RZ-плоскости под полярным углом  θ = 90°. Здесь: Rt – радиус 

траектории частицы, S – расстояние от центра дуги до центра ее основания (сагитта), α – ко-

нечный угол поворота частицы, L – полная длина трека в плоскости RZ. Поперечное отклоне-

ние x определяется уравнением (14). Сагитта S рассчитывается двумя способами: по точной 

формуле S = R(1 – cos α) и по поперечным отклонениям x. Разница между двумя расчетными 

значениями находится в пределах 0,8%. Масштаб вертикальной оси искажает угол поворота 

радиуса траектории, половина которого также равна α. 

 

Для энергичных частиц отклонение в магнитном поле мало по сравнению с дли-

ной трека, поэтому расстояние вдоль траектории можно аппроксимировать вы-

ражением l = r / sinθ, где r – поперечный радиус (расстояние между осью Z и l в 

радиальной плоскости RZ), и приближение малых углов справедливо. При длине 

трека l в плоскости RZ угол поворота α(l) трека относительно его начального 

направления в поперечной проекции определяется выражением 

𝛼(𝑙) =
0.3

𝑝𝑇
∫ 𝐵 𝑠𝑖𝑛𝜃(𝑑𝒍,𝑩) 𝑑𝑙.                                          (13)

𝑙

0
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Здесь полярный угол θ(dl, B) представляет собой продольную составляющую угла 

между проекцией трека на плоскость RZ и вектором поля, т. е. и длина трека, и 

вектор плотности магнитного потока считаются лежащими в плоскости RZ. 

Полное поперечное отклонение x, показанное на рис. 8,  получается  путем 

интегрирования уравнения (13) по dr = dl sinθ: 

𝑥(𝑙) =
0.3

𝑝𝑇
∫ ∫ 𝐵 𝑠𝑖𝑛𝜃(𝑑𝒍,𝑩) 𝑑𝑙

𝑟/𝑠𝑖𝑛𝜃

0

𝑑𝑟.

𝑙 𝑠𝑖𝑛𝜃

0

                               (14) 

Для идеального соленоида, в котором магнитное поле постоянно по величине и 

направлению, отклонение x(l) пропорционально Bl2. 

В кремниевом трековом детекторе разрешение по импульсу при больших 

поперечных импульсах pT [ГэВ/с] определяется пространственным разрешением 

детектора, и относительная точность измерения поперечного импульса δ в иде-

альном соленоиде может быть аппроксимирована формулой Глюкштерна: 

𝛿 =
𝑑𝑝𝑇

𝑝𝑇
≈

𝜎𝑝𝑇

0.3𝐵𝐿2
√

720

𝑁 + 4
,                                            (15) 

выраженной для однородного поля соленоида B [Тл], N равноудаленных друг от 

друга плоскостей (слоёв) детектора, пространственного разрешения σ [м] в плос-

кости (слое) детектора и длины трека L [м] в объёме трекового детектора. В не-

однородном магнитном поле член BL2 следует заменить двойным интегралом 

магнитного поля 

𝐼2 = ∫ ∫ 𝐵 𝑠𝑖𝑛𝜃(𝑑𝒍,𝑩) 𝑑𝑙

𝑟/𝑠𝑖𝑛𝜃

0

𝑑𝑟.

𝑙 𝑠𝑖𝑛𝜃

0

                                      (16) 

Для обеспечения точного измерения импульса заряженной частицы сагитту 

трека можно аппроксимировать выражением x(L)/2 – x(L/2), как показано на 

рис. 8, где L – полная длина трека в плоскости RZ объёма трекового детектора. 

Для идеального соленоида сагитта равна x(L/2), поскольку из уравнения (14) сле-

дует x(L) = 4x(L/2). 

Из уравнений (14) и (15) относительная точность измерения поперечного 

импульса для реального – inhomogeneous (i) и идеального – homogeneous (h) со-

леноида определяется соотношением R = δh / δi, или R = xi(L) / xh(L), или R = I2i / 

I2h, где индексы h и i обозначают однородное и неоднородное магнитное поле 

соответственно. Деградация относительной точности измерения поперечного 

импульса заряженной частицы пропорциональна 1−R. Длина трека L зависит от 

псевдобыстроты η, определяемой соотношением η = −ln[tan(θ/2)], где θ – поляр-
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ный угол частицы в системе координат установки. Значение ηc = 1,63489 соот-

ветствует углу внутреннего объема трекового детектора CMS в плоскости RZ. 

Для значений псевдобыстроты, меньших ηc, длина L равна Rmax/sinθ, для бóльших 

значений длина L равна Zmax/cosθ, где Rmax и Zmax – радиус и половина длины ак-

тивного внутреннего объема трекового детектора. 

Двойные интегралы магнитного поля I2h и I2i, определяемые уравнением 

(16) вычисляются в четверти вертикальной плоскости RZ внутреннего объёма 

трекового детектора в диапазоне псевдобыстроты от 0 до 3. Индексы h и i обо-

значают гипотетическое однородное и реальное неоднородное поле CMS, соот-

ветственно. Магнитная индукция B в идеальном (однородном) соленоиде пред-

полагается постоянной по величине, равной 3,809442 Тл, что соответствует цен-

тральной плотности магнитного потока B0 в существующей конфигурации маг-

нита CMS. На рис. 9-а представлена зависимость двойных интегралов I2h и I2i от 

псевдобыстроты η. 

 

  

(а) (б) 

Рисунок 9: (а) Двойные интегралы магнитного поля I2h (пунктир) и I2i (сплошная линия) в вер-

тикальной плоскости трекового детектора в зависимости от η; (б) Зависимость от η деградации 

1−R двойного интеграла магнитного поля в вертикальной плоскости трекового детектора. 

 

При η < ηc величина интеграла I2h уменьшается от 2,4645 до 2,4578 Тл·м2, а 

величина интеграла I2i уменьшается с 2,4658 до 2,4271 Тл·м2. В интервале псев-

добыстроты η > ηc оба интеграла быстро падают из-за ограничения длины трека 

величиной Zmax и уменьшения угла между вектором полной магнитной индукции 

и направлением трека при больших значениях псевдобыстроты. Во всем диапа-

зоне псевдобыстроты от 0 до 3 отношение R находится в пределах 1,0006 > R > 

0,9869. Этот результат показывает, что интеграл I2i уменьшается с ростом псев-

добыстроты быстрее двойного интеграла идеального магнитного поля I2h. 

На рис. 5.4-б показана величина деградации двойного интеграла неоднород-

ного магнитного поля 1−R относительно интеграла гипотетического однород-

ного поля. Для интервала псевдобыстроты η > ηc деградация интеграла меняется 
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незначительно: 0,0125 < 1−R < 0,0131. Этот результат свидетельствует о том, что 

вклад неоднородности магнитного поля в объёме трекового детектора CMS в от-

носительную точность измерения поперечного импульса заряженной частицы в 

области значений псевдобыстроты 1,6 < |η| < 2,4 не превышает 1,3%. 

Метод двойных интегралов магнитного поля позволяет оценить влияние не-

однородности магнитного поля на разрешение по поперечному импульсу заря-

женных частиц, что особенно важно при проектировании новых магнитных си-

стем для экспериментальных установок в физике высоких энергий [38]. 

 

Открытие бозона Хиггса в 2012 году в экспериментах ATLAS [1] и CMS [2, 

3] является эпохальным событием в физике высоких энергий. Всем изложенным 

выше автор внес и свой вклад в это фундаментальное открытие. Магнитная си-

стема, в создании которой автор принимал участие на протяжении десяти лет, 

является сердцем установки CMS [11] и определяет работу всех ее подсистем. 

В данном разделе рассмотрен канал распада бозона Хиггса H → ZZ* → 4l 

[4], где Z и Z* – реальный и виртуальный Z-бозоны, каждый из которых распада-

ется на два лептона: либо на электрон и позитрон, либо на два мюона противо-

положного знака. Данный канал распада служит хорошим триггером для выде-

ления процессов рождения бозона Хиггса в массе событий столкновений сгуст-

ков встречных пучков протонов, которые происходят в центре установки CMS с 

частотой до 40 МГц. Отбор нужных событий происходит в два этапа. Первый 

этап, или триггер первого уровня L1, отбирает события c определенными кине-

матическими характеристиками аппаратным образом и снижает частоту появле-

ния выделенных событий в образце данных до 100 кГц. На втором этапе отбора 

– триггере высокого уровня HLT – происходит частичная реконструкция объек-

тов событий, таких как треки частиц с поперечными импульсами, превышаю-

щими пороговые значения, и в базе данных регистрируется образец событий с 

частотой их появления около 0,4 кГц. Этот образец подвергается последующей 

полной реконструкции кинематических переменных частиц и впоследствии ис-

пользуется в анализе, включающем в себя статистическую обработку данных. 

Для выделения процессов распада бозона Хиггса на четыре лептона необ-

ходимо зарегистрировать события с изолированными лептонами, у которых ве-

личина поперечного импульса превышает пороговые значения, определяемые 

компьютерным моделированием процессов рождения и распада бозона Хиггса. 

Анализируемые данные получены в первом сеансе ускорителя LHC в 2010-

2012 гг. при энергии столкновений протонных пучков в с.ц.м. 7 и 8 ТэВ, когда 

максимальная мгновенная светимость LHC составляла 2,1×1032 см−2 с−1 (2010), 

4×1033 см−2 с−1 (2011) и 7,7×1033 см−2 с−1 (2012), что соответствует частоте собы-

тий на сечение процесса, равной 0,2; 4 и 7,7 Гц нбн−1. Интегральная светимость, 
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предоставленная установке CMS в первом сеансе, составила в 2010 г. (7 ТэВ) 44,2 

пбн-1, в 2011 г. (7 ТэВ) 6,1 фбн-1 и в 2012 (8 ТэВ) 23,3 фбн-1. 

В триггере первого уровня L1 отбор событий происходит с помощью аппа-

ратного анализа сигналов с электромагнитного ECAL и адронного HCAL кало-

риметров, переднего адронного калориметра, а также с камер мюонного спектро-

метра. Измерение импульсов мюонов в системах DT и CSC происходит по вели-

чине искривления траекторий мюонов в стальных блоках ярма магнита CMS 

между последовательными мюонными станциями. В меню триггера L1 можно 

реализовать до 128 различных наборов требований к отбору объектов. 

Триггер высокого уровня HLT отвечает за обеспечение того, чтобы образцы 

данных с потенциально интересными событиями регистрировались с высокой 

эффективностью и хорошим качеством. Отбор событий в триггере высокого 

уровня HLT осуществляется аналогично тому, как это используется при авто-

номной обработке. Для каждого события реконструируются такие объекты, как 

электроны, мюоны и струи, и применяются критерии идентификации, чтобы 

отобрать только те события, которые представляют потенциальный интерес для 

анализа данных. 

Нахождение треков заряженных частиц и вершин взаимодействий прото-

нов является важным элементом реконструкции событий в триггере высокого 

уровня  HLT. Для реконструкции вершин событий в триггере HLT не использу-

ется медленный алгоритм полной реконструкции треков частиц во всем объеме 

трековой системы CMS, а используются только данные с кремниевого пиксель-

ного детектора. Эффективность реконструкции вершин в триггере HLT по срав-

нению с автономной обработкой данных составляет 92%. 

Реконструкция импульсов высокоэнергичных электронов производится 

первоначально с помощью электромагнитного калориметра ECAL. При этом 

электронные и фотонные ливни в калориметре различаются по наличию или от-

сутствию трека в трековой системе CMS, соответствующего направлению элек-

тромагнитного ливня. Таким образом, идентификация электронов и гамма-кван-

тов возможна только в триггере высокого уровня HLT и невозможна в триггере 

первого уровня L1. 

В мюонном триггере высокого уровня с помощью объединения информа-

ции от мюонных и трековой систем производится идентификация мюонных кан-

дидатов и определение их поперечных импульсов pT. Алгоритм состоит из двух 

основных этапов: триггера второго уровня L2, в котором используется только 

информация от мюонной системы, и триггера третьего уровня L3, в котором объ-

единяются измерения, выполненные в мюонных и трековой и системах. 
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На рис. 10 представлены результаты отбора событий с двумя мюонами про-

тивоположного знака, в образце, полученном после работы димюонного триг-

гера высокого уровня HLT при низкой светимости LHC в 2010 году. Данный 

триггер позволил отобрать мюоны в области инвариантной массы, охватываю-

щей более трёх порядков величины, от нескольких сотен МэВ/c2 до нескольких 

сотен ГэВ/c2. 

 

Рисунок 10: Полученный в 2010 году при низкой светимости LHC спектр инвариантной массы 

димюонов в событиях, отобранных с помощью димюонного триггера, в котором один мюон 

надежно идентифицирован в триггере L3, а второй является в худшем случае трековым мюо-

ном. Вставка представляет собой увеличенное изображение области инвариантной массы 8–

12 ГэВ/c2, демонстрирующее три пика мезонов ϒ(nS), четко разделяемых благодаря хорошему 

разрешению по массе, которое составляет около 100 МэВ/c2 во всем диапазоне псевдобыст-

роты мюонных треков и 70 МэВ/c2 в диапазоне псевдобыстроты обоих мюонов |η| < 1. 

 

Эффективность реконструкции и идентификации мюонов с поперечным 

импульсом pT больше нескольких ГэВ/с составляет более 95% во всей области 

псевдобыстроты |η| < 2,4, охватываемой мюонным спектрометром CMS. В то же 

время вероятность ошибочной идентификации адрона как мюона значительно 

ниже 1%. Эффективность срабатывания триггера одиночного мюона с pT выше 

нескольких ГэВ/с составляет более 90% во всем диапазоне псевдобыстроты. Им-

пульсы мюонов из распадов Z-бозонов измеряются с точностью 0,2%. Относи-

тельное разрешение по поперечному импульсу мюонов в области 20 < pT < 100 

ГэВ/с составляет от 1,3% до 2% в центральной области и не хуже 6% в торцевой 

области мюонной системы CMS.  

Для отбора событий H → ZZ* → 4l с помощью дилептонных триггеров, до-

полненных трехэлектронными триггерами в канале распада на 4е, минимальные 

импульсы первого и второго лептона составляют 17 и  8  ГэВ/с для двухлептон-

ных триггеров, тогда как для трехэлектронного триггера они составляют 15, 8 и 
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5 ГэВ/с. Для надежного отбора прямых мюонов использована изоляция мюона – 

кинематическая переменная, рассчитываемая как скалярная сумма поперечных 

импульсов треков во внутренней трековой системе и поперечных энергий в ячей-

ках электромагнитного и адронного калориметров ECAL и HCAL внутри конуса 

радиусом ∆𝑅 = √(Δ𝜑)2 + (Δ𝜂)2 = 0,3, центрированного вокруг вектора им-

пульса мюонного кандидата, без учета вклада самого кандидата. 

Кандидаты в электроны должны иметь поперечный импульс более 7 ГэВ/c 

и находиться в пределах геометрического аксептанса, определяемого соотноше-

нием |ηe| < 2,5. Реконструкция электронов объединяет информацию из электро-

магнитного калориметра ECAL и трековой системы. Комбинируя оба метода, 

удается достичь разрешения по импульсу электрона в области от 7 до 100 ГэВ/c 

на уровне от 3,5 до 1,5%. Для надежного выделения лептонов, происходящих от 

сигнальных событий распада, используется их изолированность в конусе ∆𝑅 =

√(Δ𝜑)2 + (Δ𝜂)2 < 0,4 вокруг направления лептона l в вершине взаимодействия, 

определяемого координатами (ηl, φl). 

Наличие кандидата в Z-бозон, распадающийся на два лептона одного аро-

мата с противоположными зарядами, является необходимым условием отбора 

событий для поиска распада бозона Хиггса на 4l. Та пара лептонов с противопо-

ложными зарядами, инвариантная масса которой наиболее близка к номиналь-

ной массе Z-бозона, обозначается Z1 и отбирается, если её масса 𝑚𝑍1
  удовлетво-

ряет условию 40 < 𝑚𝑍1
 < 120 ГэВ /c2. Из оставшихся лептонов отбирается вторая 

пара l+l− (Z2) с массой, обозначаемой как 𝑚𝑍2
. Если найдено более одного канди-

дата в пару Z2, отбирается пара лептонов с наибольшей скалярной суммой pT. 

Результаты моделирования показывают, что этот алгоритм отбирает истинную 

пару Z2 в большинстве случаев, не искажая при этом форму фона ZZ. Выбранная 

пара Z2 должна удовлетворять условию 12 < 𝑚𝑍2
 < 120 ГэВ/c2. Для диапазона 

масс бозона Хиггса mH < 180 ГэВ/c2 по крайней мере один из кандидатов в Z-

бозон находится вне массовой оболочки. Нижняя граница для величины 𝑚𝑍2
 

обеспечивает оптимальную чувствительность для гипотезы массы бозона Хиггса 

в диапазоне 110 < mH < 160 ГэВ/c2. Среди четырех выбранных лептонов, образу-

ющих Z1 и Z2, по крайней мере один лептон должен иметь 𝑝𝑇
𝑙 > 20 ГэВ/c, а дру-

гой – 𝑝𝑇
𝑙 > 10 ГэВ/c для гарантии того, что выбранные события содержат леп-

тоны, находящиеся на плато эффективности триггера. В дальнейшем, для удале-

ния событий с лептонами, происходящими из распадов адронов, вызванных 

фрагментацией струи, или из распадов адронных резонансов с малой массой, тре-

буется, чтобы любая пара лептонов с противоположным зарядом, выбранная из 

четырех выбранных лептонов (независимо от аромата), удовлетворяла условию 

𝑚𝑙+𝑙− > 4 ГэВ/c2. 
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После отбора событий доминирующим фоном является фон от процессов 

рождения ZZ и Z + X. Распределение по инвариантной массе четырёх лептонов, 

реконструированное для объединённых каналов 4e, 2e2μ и 4μ, показано на 

рис. 11 в сравнении с ожидаемыми значениями для фоновых процессов. Норми-

ровка и форма фона от рождения ZZ, а также сигнала с mH = 126 ГэВ/c2 получены 

путём моделирования, в то время как нормировка и форма подавляемого фона 

оценены, исходя из контрольных выборок данных.  

 

 
Рисунок 11: Распределение по реконструированной массе четырёх лептонов в диапазоне масс 

70 < m4l < 1000 ГэВ/c2 для суммы каналов распада 4e, 2e2μ и 4μ. Точки с погрешностями пред-

ставляют данные, заштрихованные гистограммы – фон, а незаштрихованная гистограмма – 

ожидаемый сигнал для предполагаемой массы mH = 126 ГэВ/c2. И сигнал, и фон от рождения 

ZZ нормализованы к предсказанным СМ, а фон от процесса рождения Z + X оценен из выборки 

данных. Ожидаемые распределения представлены в виде сложенных гистограмм. В области 

m4l > 800 ГэВ/c2 событий не обнаружено. 

 

Интервалы ошибок на точках данных соответствуют асимметричным пуас-

соновским неопределённостям, охватывающим 68%-ный интервал вероятности 

вокруг центрального значения. 

В распределении по инвариантной массе четырёх лептонов наблюдается 

чёткий пик при m4l = 126 ГэВ/c2, не ожидаемый для фоновых процессов и под-

тверждающий на большей выборке данных результаты, представленные ранее в 

работах [1–3]. Наблюдаемое распределение по массе четырех лептонов хорошо 

согласуется с ожидаемым фоном и имеет узкий резонанс, совместимый с рожде-

нием бозона Хиггса Стандартной модели с mH около 126 ГэВ/c2. Измеренная 
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масса составляет mH = 125,6 ± 0,4(стат.) ± 0,2(сист.) ГэВ/c2. Измеренная ширина 

этого резонанса составляет менее 3,4 ГэВ/c2 на 95% уровне достоверности. Из-

меренное сечение рождения нового бозона, умноженное на долю распада на че-

тыре лептона, составляет 0,93−0,23
+0,26

 (стат.) (сист. )−0,09 
+0,13

 от предсказанного Стан-

дартной моделью. В области меньших инвариантных масс наблюдается резо-

нансный пик от распада Z → 4l [41] при m4l = mZ в полном соответствии резуль-

татам моделирования. Измеренное распределение при массах, превышающих 

2mZ, определяется не подавляемым фоном от рождения и распадов пар Z-бозонов 

рождающихся на массовой оболочке. 

Сравнивая систематическую ошибку массы бозона Хиггса полученную в 

канале распада H → 4l с систематической ошибкой в массе бозона Хиггса mH = 

125.3 ± 0,4(стат.) ± 0,5(сист.) ГэВ/c2 полученной в комбинации четырехлептон-

ного распада с распадом H → γγ [2, 3], можно сделать вывод о том, что импульсы 

лептонов измерены точнее, чем импульсы гамма-квантов, поскольку импульсное 

разрешение вносит определяющий вклад в систематическую ошибку инвариант-

ной массы бозона Хиггса. Действительно, более поздние измерения массы бо-

зона Хиггса в каналах распада H → 4l [42] и H → γγ [43] подтверждают эту точку 

зрения. Более того, в канале распада H → 4μ систематическая ошибка меньше, 

чем в каналах распада на 2e2μ и 4e, что связано с лучшим измерением импульсов 

мюонов по сравнению с измерением импульсов электронов (позитронов). 

В заключении сформулированы основные результаты, полученные в дис-

сертации. 

 

Заключение 

 

1. Впервые для большого сверхпроводящего гетерогенного магнита с цен-

тральной плотностью магнитного потока 3,8 Тл разработана компьютерная трех-

мерная модель, основанная на расчете методом конечных элементов распределе-

ния скалярного магнитного потенциала внутри цилиндра диаметром 100 м и дли-

ной 120 м в 7 111 713 узлах пространственной сетки. Данное распределение поз-

волило вычислить значения трех компонент плотности магнитной индукции во 

всём объёме магнитной системы установки CMS диаметром около 14 м и длиной 

около 44 м. 

2. Впервые внутри сверхпроводящего соленоида диаметром 6 м и длиной 

12,5 м в цилиндрическом объёме диаметром 3,448 м и длиной 7 м с помощью 

специально созданной автоматизированной пневматической машины измерена 

плотность магнитного потока с относительной точностью 7×10−4. Всюду за пре-
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делами данного измеренного объема магнитный поток впервые рассчитан с по-

мощью трехмерной модели магнита CMS. Модель воспроизводит распределение 

плотности магнитного потока, измеренное с помощью автоматизированной ма-

шины внутри соленоида CMS, с точностью в пределах 0,1%, а в магнитопроводе 

по сравнению с проведенными дискретными измерениями – с усреднённой точ-

ностью 3%. 

3. Впервые внутри сверхпроводящего соленоида с центральной плотностью 

магнитного потока 3,8 Тл проведены многократные измерения плотности маг-

нитного потока с помощью 6 стационарно установленных датчиков ядерного 

магнитного резонанса. Усредненная точность измерений составляет (4,4 ± 

1,0)×10-5 Тл, при этом усредненная относительная разница расчётных и измерен-

ных значений плотности магнитного потока, составляет (−5,4 ± 1,6)×10-4, что 

подтверждает точность моделирования распределения магнитного потока 

внутри соленоида CMS. 

4. Впервые внутри сверхпроводящего соленоида с центральной плотностью 

магнитного потока 3,8 Тл проведено мониторирование плотности магнитного 

потока с помощью 4 стационарно установленных трехмерных датчиков Холла. 

Усредненная точность составляет (3,5 ± 0,5)×10-5 Тл, при этом усредненная от-

носительная разница расчётных и измеренных значений плотности магнитного 

потока, составляет (−2,4 ± 4,0)×10-4, что подтверждает точность моделирования 

распределения магнитного потока внутри соленоида CMS. 

5. Впервые с помощью оригинальной техники измерения плотности маг-

нитного потока в сечениях стальных блоков магнитопровода с помощью стаци-

онарно размещенных 22 потоковых катушек проведены измерения плотности 

магнитного потока при рабочем токе магнита 18,164 кА. В сравнении с измере-

ниями расчетная магнитная индукция на (4,1 ± 7,0)% выше измеренной в блоках 

колец ярма магнита и на (0,6 ± 2,7)% ниже измеренной в секторах торцевых дис-

ков магнитопровода. 

6. Впервые в цилиндрическом объёме диаметром 18 и длиной 48 м создана 

карта магнитного поля, содержащая три компоненты плотности магнитной ин-

дукции в 6 215 592 узлах пространственной сетки конечных элементов и позво-

ляющая получить значение магнитной индукции в любой точке установки CMS 

интерполяцией по 8 соседним узлам. Карта магнитного поля используется в про-

граммах моделирования физических процессов и реконструкции событий, заре-

гистрированных на установке CMS. Использование карты позволило измерить 

импульсы электронов, позитронов и мюонов из распадов бозона Хиггса на че-

тыре лептона (4e, 4μ, 2e2μ) с высокой точностью. 
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7. Впервые произведена оценка вклада неоднородности магнитного поля в 

трековом детекторе в деградацию разрешения по поперечному импульсу заря-

женной частицы по сравнению с разрешением в однородном постоянном поле. 

В трековом детекторе CMS деградация относительной точности измерения по-

перечного импульса δ = ∆pT/pT быстро растёт в зависимости от псевдобыстроты 

η до значения ∆δ/δ = 0,0125 при η = 1,63 и затем в интервале η < 2,4 не превышает 

0,0131, что говорит о близости магнитного поля в трековой системе CMS к иде-

альному однородному полю. 

8. В полученном при низкой светимости LHC спектре инвариантной массы 

димюонов в событиях, отобранных с помощью димюонного триггера, разреше-

ние по массе резонансов, проявивших себя в области 0,3–300 ГэВ/c2, составляет 

около 100 МэВ/c2 во всем диапазоне псевдобыстроты мюонных треков и 70 

МэВ/c2 в диапазоне псевдобыстроты обоих мюонов |η| < 1. 

9. С помощью дилептонных и трехэлектронных триггеров отобраны канди-

даты в события распада бозона Хиггса на четыре заряженных лептона (4e, 4μ, 

2e2μ) c минимальными импульсами изолированных лептонов 17 и 8 ГэВ/с для 

двухлептонных и 15, 8 и 5 ГэВ/с для трехэлектронных триггеров. При этом раз-

решение по импульсу электрона в области от 7 до 100 ГэВ/c составило от 3,5 до 

1,5%, а разрешение по поперечному импульсу мюонов в области 20 < pT < 100 

ГэВ/с составило от 1,3% до 2% в центральной области и не превысило 6% в тор-

цевой области мюонной системы CMS. Столь хорошее разрешение по попереч-

ному импульсу электронов и мюонов на установке CMS определяет массовое 

разрешение в канале распада Хиггса на четыре заряженных лептона (4e, 4μ, 2e2μ) 

на уровне 1–2%. 

10. Наблюдаемое распределение по инвариантной массе четырех заряжен-

ных лептонов (4e, 4μ, 2e2μ) хорошо согласуется с ожидаемым фоном и имеет уз-

кий резонанс, совместимый с рождением бозона Хиггса Стандартной модели с 

измеренной массой mH = 125,6 ± 0,4(стат.) ± 0,2(сист.) ГэВ/c2. Столь малая систе-

матическая ошибка свидетельствует, в частности, о малом вкладе неоднородно-

сти магнитного поля в относительную ошибку разрешения по поперечному им-

пульсу заряженного лептона. 
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