Заключение диссертационного совета МГУ.011.6 по диссертации на соискание ученой степени кандидата наук

Решение диссертационного совета от «06» июня 2025 г. № 38

о присуждении Кабановой Любови Александровне, гражданке Российской Федерации, ученой степени кандидата физикоматематических наук.

Диссертация «Метод структурных функций в решении квазистатических задач об изгибе неоднородных упругих пластин» по специальности 1.1.8 – механика деформируемого твердого тела принята к защите диссертационным советом «16» апреля 2025, протокол № 37.

Соискатель Кабанова Любовь Александровна, 1998 года рождения, в 2019 году окончила специалитет МГУ имени М. В. Ломоносова. С 10 марта 2025 года по настоящее время закреплена за кафедрой механики композитов для выполнения диссертационного исследования.

Соискатель работает младшим научным сотрудником кафедры механики композитов механико-математического факультета МГУ имени М. В. Ломоносова.

Диссертация выполнена на кафедре механики композитов механико-математического факультета МГУ имени М. В. Ломоносова.

Научный руководитель — доктор физико-математических наук, старший научный сотрудник **Горбачев Владимир Иванович**, заведующий кафедрой механики композитов механико-математического факультета МГУ имени М. В. Ломоносова.

Официальные оппоненты:

Димитриенко Юрий Иванович – доктор физико-математических наук, профессор, заведующий кафедрой «Вычислительная математика математическая физика», Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет);

Полилов Александр Николаевич — доктор технических наук, профессор, главный научный сотрудник, отдел «Прочность, безопасность и живучесть машин», лаборатория «Безопасность и прочность композитных конструкций», Федеральное государственное бюджетное учреждение науки Институт машиноведения имени А.А.Благонравова Российской академии наук;

Бондарь Валентин Степанович — доктор физико-математических наук, профессор, профессор кафедры «Техническая механика и компьютерное моделирование», Федеральное государственное автономное образовательное

учреждение высшего образования «Московский политехнический университет»

дали положительные отзывы на диссертацию.

Выбор официальных оппонентов обосновывался компетентностью данных ученых в исследовании задач механики деформируемого твердого тела, а также имеющимися у них научными публикациями по теме диссертации и способностью определить научную и практическую значимость исследования.

Соискатель имеет 9 опубликованных работ, в том числе по теме диссертации 4 работы, все из них опубликованы в рецензируемых научных изданиях, рекомендованных для защиты в диссертационном совете МГУ по специальности и отрасли наук.

- 1. Горбачев В. И., Кабанова Л. А. О постановке задач в общей теории пластин Кирхгофа-Лява неоднородных анизотропных пластин// Вестник Московского университета. Серия 1: Математика. Механика. 2018. № 3. С. 43–50. (РИНЦ, ИФ 0,479) (0,9 п.л. / авторский вклад 0,45 п.л.) (Перевод: Gorbachev V. I., Kabanova L. A. Formulation of problems in the general Kirchhoff—Love theory of inhomogeneous anisotropic plates // Moscow University Mechanics Bulletin. 2018. Vol. 73, no. 3. Р. 60–66. DOI: 10.3103/S0027133018020020) (Scopus, Q4, Impact Factor SJR 0,2) (0,81 п.л. / авторский вклад 0,4 п.л.)
- 2. Kabanova L. A. The first-order structural functions method solution to the simply supported layered plate bending problem // Lobachevskii Journal of Mathematics. 2022. Vol. 43, no. 7. P. 1866–1877. DOI: 10.1134/S199508022210016X (Scopus, Q2, Impact Factor SJR -- 0,453) (1,5 п.л.)
- 3. Кабанова Л. А. Сопоставление приближений решения задачи об изгибе линейно-упругой слоистой пластины, полученных методом структурных функций // Чебышевский сборник. 2022. Т. 23, № 4. С. 211–232. DOI: 10.22405/2226-8383-2022-23-4-211-232 (Scopus, Q3, Impact Factor SJR -- 0,296) (2,54 п.л.)
- 4. Кабанова Л. А., Романов А. В. Сопоставление решений квазистатической задачи о нагружении пластины, построенных методом структурных функций и методом конечных элементов // Чебышевский сборник. 2024. Т. 25, № 4. С. 175–196. DOI: 10.22405/2226-8383-2024-25-4-175-196 (Scopus, Q3, Impact Factor SJR -- 0,296) (2,43 п.л. / авторский вклад 2 п.л.)

На диссертацию и автореферат дополнительных отзывов не поступило.

Диссертационный совет отмечает, что представленная диссертация на соискание ученой степени кандидата физико-математических наук

является научно-квалификационной работой, в которой на основании выполненных автором исследований разработана методика применения метода структурных функций к решению задач о нагружении линейноупругих пластин. Выделены параметры метода, описаны ограничения на выбор параметров рассмотренного типа задач. Проведено ДЛЯ построенных решений сопоставление исследуемым методом известными решениями аналогичной задачи. Полученные результаты быть использованы В дальнейших исследованиях могут метода структурных функций, а также при его применении к решению других задач теории упругости.

Диссертация представляет собой самостоятельное законченное исследование, обладающее внутренним единством. Положения, выносимые на защиту, содержат новые научные результаты и свидетельствуют о личном вкладе автора в науку:

- 1. Приближенные решения задачи о нагружении слоистой ортотропной линейно-упругой прямоугольной пластины, построенные методом структурных функций первого и второго порядка, основанные на решении сопутствующей задачи в рамках модели Тимошенко (или более точной), позволяют получить зависимость перемещений в пластине от поперечной координаты в виде криволинейной ломаной.
- 2. Приближенные решения задачи о нагружении слоистой ортотропной линейно-упругой прямоугольной пластины, построенные методом структурных функций первого порядка с использованием достаточно точного приближенного решения сопутствующей задачи, обеспечивают выполнение граничных условий на лицевых поверхностях пластины тогда и только тогда, когда модули сдвига сопутствующего тела совпадают с осредненными по Рейссу модулями сдвига исходного тела.
- 3. При фиксированном порядке метода структурных функций оправдано повышение порядка точности решения сопутствующей задачи: так, в рассмотренных в работе примерах уже при использовании метода первого порядка повышение точности решения сопутствующей задачи

позволяет приближенно вычислять поперечные напряжения в исходной пластине.

На заседании «06» июня 2025 года диссертационный совет МГУ.011.6 принял решение присудить Кабановой Л. А. ученую степень кандидата физикоматематических наук по специальности 1.1.8 механика деформируемого твердого тела.

При проведении тайного голосования диссертационный совет в количестве 14 человек, из них 13 докторов наук, участвовавших в заседании, из 18 человек, входящих в состав совета, проголосовали: за 14, против 0, недействительных бюллетеней 0.

Председатель диссертационного совета, доктор физико-математических наук, академик РАН

Горячева И. Г.

Ученый секретарь диссертационного совета, кандидат физико-математических наук

Чистяков П. В.

«06» июня 2025 года