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Общая характеристика работы

Актуальность темы. В настоящее время стереоскопическое видео
широко распространено и знакомо практически каждому. Однако всё чаще
зрители предпочитают 2D-версии фильмов вместо 3D, поскольку просмотр
стереоскопических фильмов нередко сопровождается дискомфортом: уста­
лостью, напряжением и болью в глазах, а также головной болью. Причи­
нами такого дискомфорта могут быть особенности зрительной системы,
условия показа и техническое качество производимого контента.

Хотя зрители со временем могут адаптироваться к стереоскопическо­
му восприятию и выбирать качественное оборудование для просмотра, про­
блемы, связанные с техническим качеством самого контента, остаются зна­
чительными. Именно качество производимого стереоскопического контен­
та выходит на первый план, что делает актуальным создание инструментов
для его контроля.

Производство 3D-фильмов сопряжено с новыми проблемами, не ха­
рактерными для обычных фильмов. Различные методы создания стерео­
скопических фильмов — съёмка, конвертация из 2D в 3D и использование
компьютерной графики — могут приводить к появлению разнообразных
искажений или артефактов, таких как геометрические несоответствия, раз­
личия в цвете, яркости и резкости. Даже при совершенствовании техноло­
гий показа, недостатки самого стереоскопического контента могут свести
на нет достигнутые технологические улучшения.

Дополнительно, новые форматы видео, такие как 360-градусные ви­
део и VR180, обеспечивают ещё более глубокое погружение, но также
подвержены стереоскопическим артефактам. Особенно это актуально для
VR180-видео, производство которого зачастую осуществляется любителя­
ми без должного контроля качества, что приводит к появлению множества
искажений в итоговых материалах.

Таким образом, учитывая дискомфорт зрителей, вызванный техниче­
скими недостатками стереоскопического контента, и растущее распростра­
нение новых видеоформатов, разработка методов обнаружения искажений
в стереоскопических видео является важной и актуальной задачей. Созда­
ние эффективных инструментов для контроля качества стереоконтента
позволит улучшить зрительский опыт и повысить интерес к просмотру
3D-фильмов.

Целью данной работы является исследование и разработка нейросе­
тевых алгоритмов объективной оценки качества стереоскопических видео,
применимых на практике при анализе стереоскопических фильмов и ви­
део в формате VR180. В данной работе рассматриваются наиболее часто
встречающиеся артефакты, характерные для стереоскопической съемки:
искажения цвета, резкости и геометрии, а также один из наиболее болез­
ненных для зрителей артефактов – перепутанные ракурсы.
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Для достижения поставленной цели необходимо было решить следу­
ющие задачи:

1. Разработка новых нейросетевых алгоритмов для:
– одновременной оценки искажений цвета и резкости;
– оценки геометрических искажений, включающих в себя

сдвиг, масштабирование и поворот одного ракурса относи­
тельно другого;

– поиска перепутанных ракурсов в стереоскопических видео.
2. Исследование объективного качества видео в формате VR180 с по­

мощью предложенных методов оценки качества.
Основные положения, выносимые на защиту:
1. Нейросетевой метод оценки цветовых искажений и искажений рез­

кости между ракурсами стереоскопического видео значительно со­
кращает число ложноположительных срабатываний за счет одно­
временного учета рассматриваемых искажений и по результатам
объективного сравнения превосходит аналоги, ранее использовав­
шиеся при анализе полнометражных стереоскопических фильмов.

2. Нейросетевой метод оценки геометрических искажений между ра­
курсами стереоскопического видео по результатам объективного
сравнения уменьшает ошибку оценки угла поворота более чем на
14%, а коэффициента масштабирования и вертикального сдвига
на 2 порядка по сравнению с аналогами, ранее использовавши­
мися при анализе полнометражных стереоскопических фильмов.
Метод также обеспечивает возможность автоматического исправ­
ления выявленных геометрических искажений.

3. Нейросетевой метод поиска перепутанных ракурсов в стереоско­
пических видео по результатам объективного сравнения улучша­
ет точность классификации более чем на 8% по сравнению с при­
менявшимися ранее при анализе полнометражных стереофильмов
подходами.

4. Результаты исследования объективного качества 1000 VR180-видео,
выполненного с использованием разработанных методов, показы­
вают наличие по меньшей мере одного вида стереоскопического
искажения в каждом из проанализированных материалов.

Все предложенные алгоритмы были реализованы и прошли эксперимен­
тальную апробацию.

Научная новизна:
1. Впервые предложен нейросетевой алгоритм для одновременной

оценки цветовых искажений и искажений резкости в стереоско­
пических видео, что значительно понизило число ложноположи­
тельных срабатываний по сравнению с раздельными методами, ра­
нее использовавшимися при анализе полнометражных стереофиль­
мов.
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2. Предложен новый оптимизируемый функционал для обучения ней­
росетевых методов оценки геометрических искажений в стереоско­
пических видео, а также описан метод исправления геометриче­
ских искажений для VR180-видео на основе предложенного метода
поиска искажений.

3. Предложен новый нейросетевой метод поиска перепутанных ракур­
сов, предсказывающий вероятность наличия перепутанных ракур­
сов на основе исходного ракурса, построенной карты диспаратно­
сти и областей открытия/закрытия по движению.

4. Проведен первый в мире масштабный анализ видео в формате
VR180 на предмет технического качества стереоскопического кон­
тента.

Практическая значимость. Все предложенные в данной работе ме­
тоды были реализованы в виде программного инструмента, позволяющего
осуществлять оценку соответствующих артефактов по двум видеопоследо­
вательностям — для левого и правого ракурсов. С помощью данного про­
граммного инструмента было проведено масштабное тестирование видео в
формате VR180, показавшее, что практически в каждом видео из собран­
ной выборки встречается как минимум один стереоскопический артефакт.
Разработанный инструмент может быть применен на этапе контроля каче­
ства при производстве стереоскопических видео, как профессиональными
студиями, так и любителями, что значительно сократит число нежелатель­
ных искажений в итоговом продукте и заметно сократит число зрителей,
испытывающих дискомфорт при его просмотре.

Проведенное исследование объективного качества стереоскопическо­
го видео в формате VR180 оформлено в виде отдельного отчета. Данный
отчет доступен в сети Интернет по адресу https://videoprocessing.ai/
stereo_quality/report12.html.

Mетодология и методы исследования. В работе применялись
методы линейной алгебры, теории алгоритмов, а также методы машинного
обучения.

Апробация работы. Основные результаты работы докладыва­
лись на:

– International Conference on 3D Immersion (Бельгия, 13-15 декабря
2016)

– 3DTV Conference 2018 (Стокгольм, Швеция, 3-5 июня 2018)
– International Conference on 3D Immersion (дистанционно, 15 декабря

2020)
– Stereoscopic Displays and Applications XXXII (дистанционно, 18 ян­

варя 2021)
– Семинар кафедры интеллектуальных информационных техноло­

гий ВМК МГУ (весна 2021)
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– Семинар центра визуализации и спутниковых информационных
технологий НИИСИ РАН (10 октября 2022)

– Семинар института информационных технологий, математики и
механики ННГУ им. Н.И.Лобачевского (13 октября 2022)

– Семинар им. М.Р. Шура-Бура ИПМ им. М.В. Келдыша (10 ноября
2022)

– Семинар кафедры информатики и программного обеспечения БГ­
ТУ (17 марта 2023)

– Семинар подразделения интеллектуального анализа данных и тех­
нического зрения ГосНИИАС (13 апреля 2023)

Личный вклад автора заключается в выполнении основного объема
теоретических и экспериментальных исследований, изложенных в диссер­
тационной работе, включая разработку теоретических моделей, методик,
разработку и реализацию алгоритмов, анализ и оформление результатов
в виде публикаций и научных докладов. В работах [1; 2] Д.С. Ватолину
принадлежит постановка задачи и обсуждение результатов ее решения.

Научные исследования, представленные в диссертации, были поддер­
жаны грантом СТАРТ Фонда содействия инновациям в рамках проекта
“Разработка системы автоматической объективной оценки качества и ис­
правления стереоскопического видео и видео в формате VR180”, а также
частично поддержаны грантами РФФИ 15-01-08632 а “Автоматизация со­
здания и контроля качества стерео видео” и РФФИ 19-01-00785 a “Разра­
ботка нейросетевых алгоритмов обработки и сжатия видеопоследователь­
ностей”.

Публикации. Основные результаты по теме диссертации изложены
в 3 публикациях [1—3], изданных в рецензируемых научных изданиях, опре­
деленных в п. 2.3 Положения о присуждении ученых степеней в Москов­
ском государственном университете имени М. В. Ломоносова.

Объем и структура работы. Диссертация состоит из введения,
трех глав, приложения и заключения. Полный объём диссертации состав­
ляет 149 страниц, включая 81 рисунок и 8 таблиц. Список литературы
содержит 95 наименований.

Основное содержание работы

Во введении обоснована актуальность диссертационной работы,
сформулирована цель и аргументирована научная новизна исследований,
показана их практическая значимость, представлены выносимые на защи­
ту научные положения.

Первая глава посвящена разработке нейросетевого метода одновре­
менной оценки искажений цвета и резкости. Цветовые искажения ракур­
сов и искажения ракурсов по резкости – одни из самых распространенных
типов искажений стереоскопического видео, полученных в ходе нативной
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(а) Цветовые
различия между

ракурсами

(б) Левый ракурс
находится полностью

в фокусе

(в) Различные
объекты находятся в

фокусе на разных
ракурсах

Рисунок 1 — Схематичные примеры стереопар с искажениями цвета и
резкости.

съемки в 3D, что справедливо как для классических стереоскопических
видео, так и видео в формате VR180, так как в обоих случаях использу­
ются одни и те же методы съемки: данные искажения характерны для
систем, состоящих из двух камер. Под цветовыми искажениями ракур­
сов стереоскопического видео понимается сильное несоответствие яркости
и/или цвета одного и того же объекта кадра в левом и правом ракурсе или
всего кадра, что наиболее заметно при переключении между ракурсами.
На рисунке 1 (а) представлен схематичный пример цветовых искажений в
стереовидео. Под искажениями ракурсов по резкости понимается сильное
несоответствие в детализации и/или размытии одного и того же объекта
кадра в левом и правом ракурсе или всего кадра, что также наиболее за­
метно при переключении между ракурсами. В самом простом случае либо
левый, либо правый ракурс резче другого во всех пикселях изображения,
как показано на рисунке 1 (б). Более сложной является ситуация, при ко­
торой разные объекты находятся в фокусе в разных ракурсах стереовидео,
как показано на рисунке 1 (в), поэтому для каждого ракурса будет справед­
ливо, что часть объектов в нем окажется более четкой и детализированной
по сравнению с теми же объектами в другом ракурсе. В данной работе рас­
сматриваются оба варианта искажений резкости в стереовидео. Подробнее
описание данных искажений приведено в разделе 1.1.

В данной работе предлагается осуществлять одновременный поиск
кадров стереоскопического видео с различиями по цвету и резкости. Оба
этих артефакта приводят к различиям в яркости и/или цвете между ра­
курсами стереовидео, поэтому при использовании отдельных алгоритмов
для поиска данных артефактов может возникать большое количество лож­
ноположительных срабатываний. Этой проблемой обладают предыдущие
методы поиска данных искажений, которые ранее использовались для ана­
лиза полнометражных стереоскопических фильмов. Раздел 1.2 содержит
обзор существующих методов оценки искажений цвета и резкости как для
моноскопических видео, так и для стереоскопических.
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В разделе 1.3 описана предложенная общая модель искажений цве­
та и резкости. Модель цветовых искажений строится на линейной модели,
а модель искажений резкости – на основе фильтров Гаусса. Пуcть 𝐼𝐿𝑔𝑡 и
𝐼𝑅𝑔𝑡 – соответственно левый и правый ракурсы стереопары, не содержащей
различия по цвету и резкости между ними. Для моделирования рассмат­
риваемых стереоскопических артефактов кадры без искажений модифици­
руются следующим образом:

𝐼𝐿 (𝑥, 𝑦, 𝑐) = 𝑎 (𝑥, 𝑦, 𝑐)×
(︀
𝐺 (𝜎𝑝𝑜𝑠 (𝑥, 𝑦)) * 𝐼𝐿𝑔𝑡

)︀
(𝑥, 𝑦, 𝑐) + 𝑏 (𝑥, 𝑦, 𝑐) , (1)

𝐼𝑅 (𝑥, 𝑦, 𝑐) =
(︀
𝐺 (𝜎𝑛𝑒𝑔 (𝑥, 𝑦)) * 𝐼𝑅𝑔𝑡

)︀
(𝑥, 𝑦, 𝑐) , (2)

где 𝐼𝐿 и 𝐼𝑅 – получаемые в результате применения модели левый и пра­
вый ракурсы с искажениями, 𝑐 – один из цветовых каналов цветового про­
странства YUV, 𝑎 (𝑥, 𝑦, 𝑐), 𝑏 (𝑥, 𝑦, 𝑐) – линейный и константный коэффици­
енты для моделирования цветовых искажений, генерирующиеся с помо­
щью шума Перлина для каждого пикселя с координатами (𝑥, 𝑦) и каждого
цветового канала 𝑐, 𝐺 (𝜎 (𝑥, 𝑦)) – ядро фильтра Гаусса размера 11 × 11, в
котором сила размытия задается параметром 𝜎 (𝑥,𝑦) – стандартным откло­
нением распределения Гаусса, генерирующийся с помощью шума Перлина
для каждого пикселя с координатами (𝑥, 𝑦), 𝜎𝑝𝑜𝑠 и 𝜎𝑛𝑒𝑔 – матрицы сгенери­
рованных стандартных отклонений, содержащие положительные значения
и модули отрицательных значений матрицы стандартных отклонений 𝜎
соответственно, и нули в остальных пикселях, * – операция свертки. Дан­
ный подход к генерации рассматриваемых стереоскопических искажений
позволяет получить сложные примеры, соответствующие неравномерному
прогреву матриц камер для цветовых искажений и нахождению различных
объектов кадра в фокусе на разных ракурсах для искажений резкости.

Дополнительно также рассматривалась простая константная модель
искажений, изменяющая исходную стереопару одинаково для каждого пик­
селя:

𝐼𝐿 (𝑐) = 𝑎𝑐 ×
(︀
𝐺 (𝜎𝑝𝑜𝑠) * 𝐼𝐿𝑔𝑡

)︀
(𝑐) + 𝑏𝑐, (3)

𝐼𝑅 =
(︀
𝐺 (𝜎𝑛𝑒𝑔) * 𝐼𝑅𝑔𝑡

)︀
, (4)

где параметры 𝑎𝑐, 𝑏𝑐, 𝜎𝑝𝑜𝑠, 𝜎𝑛𝑒𝑔 – константы для стереопары и не зависят от
координат пикселя, 𝑎𝑐, 𝑏𝑐 индивидуальны для каждого цветового канала,
а один из параметров 𝜎𝑝𝑜𝑠, 𝜎𝑛𝑒𝑔 равен 0, из-за чего размытие добавляется
в один из двух ракурсов, 𝐼𝐿 (𝑐) – один из каналов изображения в простран­
стве YUV. Данная модель соответствует более простым искажениям цвета
и резкости, которые также встречаются при анализе полнометражных сте­
реоскопических фильмов.

На основе данных моделей был сгенерирован набор данных путем
преобразования 9488 различных стереопар без искажений в разрешении
960 × 540 из 16 стереофильмов. Итоговый набор данных был разделен на
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Рисунок 2 — Общая схема предложенного метода поиска различий по
цвету и резкости между ракурсами стереоскопического видео.

обучающую и валидационную части в соотношении 95% и 5% соответствен­
но.

Раздел 1.4 содержит описание предлагаемого алгоритма. Для оценки
расхождений ракурсов по цвету и резкости с помощью нейросети предла­
гается подход, состоящий из следующих шагов:

1. Вычисление карт диспаратности между левым и правым ракур­
сами, а также построение карт доверия к вычисленным картам,
характеризующих точность оцененных значений диспаратности.

2. Интерполяция правого ракурса к левому ракурсу по вычисленной
карте диспаратности.

3. Оценка карт различий по резкости и размытию с помощью ней­
ронной сети на основе левого ракурса, интерполированного к нему
правого ракурса, а также карте доверия, соответствующей карте
диспаратности.

4. Вычисление величины искажения цвета и резкости между входны­
ми ракурсами по предсказанным нейросетью картам различий.

Каждый кадр стереоскопического видео обрабатывается независимо друг
от друга. Общая схема метода представлена на рисунке 2.
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Итоговая оценка искажений по цвету 𝑚𝑐 и резкости 𝑚𝑑 в стереопаре
формируется на основе предсказанных карт различий следующим образом:

𝑚𝑐 =

∑︀𝑛
𝑖=1 conf𝑖

(︀
𝑐𝑌𝑖 + 𝑐𝑈𝑖 + 𝑐𝑉𝑖

)︀
3
∑︀𝑛

𝑖=1 conf𝑖
, (5)

𝑚𝑑 =

∑︀𝑛
𝑖=1 conf𝑖 × 𝑑𝑖∑︀𝑛

𝑖=1 conf𝑖
, (6)

где 𝑐 – предсказанная карта различий по цвету для каждого цветового
канала YUV, 𝑑 – предсказанная карта размытия, conf – карта доверия к
диспаратности, используемая в качестве входной карты доверия для ней­
ронной сети, 𝑛 – количество пикселей в изображении. Используемый метод
оценки карты диспаратности описывается в разделе 1.4.1. Для каждой кар­
ты диспаратности также вычисляется карта доверия на основе двух пока­
зателей: меры достоверности сопоставления и блочной дисперсии цветовых
значений ракурса.

В разделе 1.4.2 представлены использованные в методе нейросетевые
архитектуры для предсказания карт различий по цвету и резкости. В рам­
ках работы рассмотрено два типа нейросетевых архитектур: кодировщик­
декодировщик по типу U-net (рисунок 3) и кодировщик-декодировщик по
типу GridNet (рисунок 4). Для улучшения качества оценки и удаления
эффектов блочности в итоговых картах искажений из-за блочного сопо­
ставления ракурсов в рассматриваемые сверточные нейронные сети в каче­
стве последних блоков был добавлен fast global smoother (FGS) – фильтр,
использующийся для распространения данных предсказанных карт иска­
жений по маске карты доверия с учетом границ исходного изображения. В
работе показано, что данный фильтр можно использовать в качестве ней­
росетевого блока, а также для него возможна эффективная параллельная
реализация:

Теорема 1. Одномерный фильтр FGS дифференцируем и применим в ме­
тоде обратного распространения ошибки.

Теорема 2. Пусть фильтруемое изображение 𝑓 ∈ R𝐻×𝑊×3. Тогда по­
следовательная сложность двумерного сепарабельного фильтра FGS с 𝑇
итерациями составляет 𝒪(𝑇 ×𝐻 ×𝑊 ), а его параллельная сложность –
𝒪(𝑇 ×max (𝐻,𝑊 )). Аналогичная оценка на сложности справедлива и для
метода обратного распространения ошибки по данному фильтру.

В разделе 1.5 описывается процесс обучения нейросетевой части ме­
тода. В нем вводится предложенный оптимизируемый функционал:

𝐿
(︁
𝑐, 𝑐, 𝑑, 𝑑, 𝜃

)︁
= 𝐿𝑐 (𝑐, 𝑐) + 𝐿𝑑

(︁
𝑑, 𝑑

)︁
+ 𝐿2 (𝜃) . (7)
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Рисунок 3 — Общая архитектура сети типа U-net.
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Рисунок 4 — Общая архитектура сети типа GridNet.

𝐿𝑐 (𝑐, 𝑐) =

∑︀𝑛
𝑖=1 conf𝑖 ×

(︁(︀
𝑐𝑌𝑖 − 𝑐𝑌𝑖

)︀2
+
(︀
𝑐𝑈𝑖 − 𝑐𝑈𝑖

)︀2
+
(︀
𝑐𝑉𝑖 − 𝑐𝑉𝑖

)︀2)︁
3
∑︀𝑛

𝑖=1 conf𝑖
, (8)

𝐿𝑑

(︁
𝑑, 𝑑

)︁
=

∑︀𝑛
𝑖=1 conf𝑖 ×

(︁
𝑑𝑖 − 𝑑𝑖

)︁2

∑︀𝑛
𝑖=1 conf𝑖

, (9)

𝐿2 (𝜃) = 𝜆

𝑘∑︁
𝑖=1

𝜃2𝑖 , (10)

где 𝑐, 𝑐 – предсказанная и истинная карты различий по цвету для каждого
цветового канала YUV, 𝑑, 𝑑 – предсказанная и истинная карты размытия,
conf – карта доверия к диспаратности, используемая в качестве входной
карты доверия для нейронной сети, 𝑛 – количество пикселей в изображе­
нии, 𝜃 – веса обучаемой нейросети, 𝜆 = 10−2 – параметр регуляризации, 𝑘
– общее количество весов в сети.

В разделе 1.6 преимущества предложенного алгоритма перед анало­
гами демонстрируются путем вычисления корреляций Пирсона и Спирме­
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на с эталонными значениями искажений на отдельной тестовой выборке,
подготовленной на основе набора данных Sintel. Предложенный метод на
основе архитектуры GridNet в целом показал более высокие корреляции
как по сравнению с аналогами, так и по сравнению с методом на основе
U-net. Также была проведена экспертная оценка предложенного метода на
наборе из 100 видео в формате VR180 с методами, применявшимися для
анализа полнометражных стереоскопических фильмов, показавшая значи­
тельное сокращение числа ложноположительных параметров. Раздел 1.7
посвящен программной реализации предложенного метода.

В разделе 1.8 представлены результаты анализа 1000 видео в фор­
мате VR180, собранных с платформы YouTube, на предмет наличия иска­
жений цвета и резкости между стереоскопическими ракурсами. В рамках
работы рассматривались зависимости средних значений искажений отно­
сительно количества просмотров на YouTube, даты публикации и длитель­
ности каждого видео. Однако, ни один из рассматриваемых стереоскопи­
ческих артефактов не демонстрирует какой-либо существенной тенденции
по отношению к любой статистике видео, и вероятность встретить рассмат­
риваемые артефакты в видео от них также не зависит.

Вторая глава посвящена разработке метода оценки геометрических
искажений в стереоскопических видео. Аналогично искажениям цвета и
резкости при съемке стереоскопических видео и видео в формате VR180
также достаточно часто возникают геометрические искажения между ра­
курсами. Среди них можно выделить постоянный вертикальный сдвиг (ри­
сунок 5, слева), поворот (рисунок 5, посередине) и масштабирование (ри­
сунок 5, справа) одного ракурса относительно другого. Рассматриваемые
геометрические искажения в первую очередь возникают из-за неправиль­
ной калибровки камер. При просмотре стереоскопических сцен с данны­
ми артефактами, зритель часто испытывает дискомфорт, вплоть до голов­
ных болей, тошноты и головокружения, аналогично искажениям цвета и
резкости. Подробнее геометрические искаженеия описаны в разделе 2.1. В
обзоре существующих методов, приведенного в разделе 2.2, показано, что
существующие методы оценки геометрических искажений либо требуют ка­
либровочные параметры камер для точной оценки искажений, либо облада­
ют нестабильными результатами предсказаний. Поэтому в данной работе
предлагается использовать нейросетевой регрессор для непорседственной
оценки параметров геометрических искажений.

В разделе 2.3 приводится используемая модель геометрических ис­
кажений. Для моделирования данных искажений достаточно применить
аффинное преобразование к одному из ракурсов стереоскопического ви­
део. Пуcть 𝐼𝐿𝑔𝑡 и 𝐼𝑅𝑔𝑡 – левый и правый ракурсы стереопары, не содержащей
геометрических искажений, 𝑝 = [𝑥 𝑦 1]

𝑇 и 𝑝′ = [𝑥′ 𝑦′ 1]
𝑇 – однородные коор­

динаты двух точек до и после применения преобразования соответственно.
Тогда геометрические несоответствия между ракурсами стереовидео мож­
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Рисунок 5 — Схематичная иллюстрация типов геометрических
искажений, возникаемых при съемке 3D-видео.

но промоделировать следующим аффинным преобразованием:

𝑝′ = 𝐴× 𝑝, (11)

𝐴 =

⎡⎣(1 + 𝑘) cos(𝛼) −(1 + 𝑘) sin(𝛼) 0
(1 + 𝑘) sin(𝛼) (1 + 𝑘) cos(𝛼) 𝑡

0 0 1

⎤⎦ , (12)

где 𝛼 – угол поворота, 𝑘 – коэффициент масштабирования, 𝑡 – вертикаль­
ный сдвиг. Примеры с геометрическими искажениями получаются путем
интерполяции одного из ракурсов по преобразованной координатной сетке.

На основе данной модели был сгенерирован набор данных путем пре­
образования 22800 различных стереопар без геометрических искажений из
29 стереофильмов. Итоговый набор данных был разделен на 3 части: обу­
чающую (15500 стереопар), валидационную (3600 стереопар) и тестовую
(3700 стереопар). Каждая стереопара из обучающего набора данных иска­
жалась 9 раз для расширения выборки, а также в выборку добавлялись
неискаженные варианты стереопар. Стереопары из валидационного и те­
стового наборов данных добавлялись ровно один раз, в 20% случаев из
которых искажения не применялись.

Предложенный алгоритм для оценки геометрических искажений опи­
сан в разделе 2.4. Данный алгоритм состоит из следующих шагов:

1. Вычисление карт диспаратности между левым и правым ракур­
сами, а также построение карт доверия к вычисленным картам,
характеризующих точность оцененных значений диспаратности.
Данный шаг полностью совпадает с первым шагом предложенного
нейросетевого метода оценки искажений цвета и резкости.

2. Оценка параметров геометрических искажений с помощью нейрон­
ной сети. Для оценки параметров геометрических искажений ис­
пользуется нейросетевая архитектура, аналогичная ResNet-18. В
качестве входных данных используется нормированная карта дис­
паратности, а также соответствующая карта доверия. На выходе
сеть предсказывает вектор 𝜃 ∈ R3, содержащий параметры пред­
сказанных геометрических искажений.

Общая схема метода представлена на рисунке 6.
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Рисунок 6 — Общая схема предложенного метода оценки геометрических
искажений между ракурсами стереоскопического видео.

Процесс обучения нейросетевого регрессора описан в разделе 2.5. В
нем представлен предложенный в работе оптимизируемый функционал:

𝐿
(︁
𝜃, 𝜃𝑔𝑡, 𝐼

𝑅, 𝐼𝑅𝑔𝑡, 𝜃𝑏
)︁
= 𝐿𝑆𝐸 (𝜃, 𝜃𝑔𝑡)+𝐿𝐺𝑟𝑖𝑑 (𝜃, 𝜃𝑔𝑡)+𝐿𝑊𝑎𝑟𝑝

(︁
𝜃, 𝐼𝑅, 𝐼𝑅𝑔𝑡

)︁
+𝐿𝑆𝑖𝑎𝑚 (𝜃, 𝜃𝑏) ,

(13)
где 𝜃 – вычисленные нейросетью значения геометрических искажений по
картам диспаратности и доверия для левого ракурса, 𝜃𝑔𝑡 – эталонные зна­
чения геометрических искажений, 𝐼𝑅 и 𝐼𝑅𝑔𝑡 – правый ракурс стереопары,
содержащий и несодержащий геометрические искажения соответственно,
𝜃𝑏 – вычисленные нейросетью значения геометрических искажений по кар­
там диспаратности и доверия для правого ракурса. Данный функционал
состоит из двух основных компонент (первые две компоненты) для обуче­
ния модели по эталонным значениям геометрических искажений, а также
из двух регуляризационных компонент (последние две компоненты), для
которых не требуются эталонные значения искажений. Первая компонен­
та оптимизируемого функционала, 𝐿𝑆𝐸 , представляет собой взвешенную
сумму квадратичных разниц между вычисленными и эталонными значе­
ниями геометрических искажений с эмпирически подобранными весами
для каждого типа искажений. Вторая компонента, 𝐿𝐺𝑟𝑖𝑑, вычисляет функ­
цию потерь между двумя сетками, преобразованными с помощью аффин­
ных преобразований, построенных по вычисленным и эталонным значе­
ниям геометрических искажений. Первая регуляризационная компонента
𝐿𝑊𝑎𝑟𝑝 оценивает качество восстановления правого ракурса с внесенными
геометрическими искажениями 𝐼𝑅 из исходного правого ракурса 𝐼𝑅𝑔𝑡 по вы­
численным параметрам геометрических искажений. Наконец, последняя
регуляризационная компонента, 𝐿𝑆𝑖𝑎𝑚, оценивает консистентность между
нейросетевыми предсказаниями на основе входных данных как для левого,
так и для правого ракурсов.

В разделе 2.6 приведена экспериментальная оценка предложенного
метода. Вклад каждой компоненты оптимизируемого функционала в улуч­
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шение точности работы нейросетевого регрессора продемонстрирован на
валидационной выборке в разделе 2.6.1, а в разделе 2.6.2 представлены ре­
зультаты сравнения предложенного метода с аналогами на тестовой вы­
борке. Предложенному методу удалось сократить ошибку вычислений на
14.43% при оценке угла поворота, а при оценке масштабирования и верти­
кального сдвига – более чем на 99%.

Также предложенный метод для оценки геометрических искажений
между ракурсами стереовидео можно использовать и для их исправления:

Утверждение 1. Для исправления геометрических искажений между
ракурсами стереоскопического видео достаточно применить аффинное
преобразование с вычисленными параметрами геометрических искаже­
ний к левому ракурсу. Для исправления искажений в видео в формате
VR180 необходимо сначала перейти к трехмерным координатам на сфе­
ре, а только затем применить найденное аффинное преобразование к ле­
вому ракурсу.

Процесс данного преобразования подробно показан в разделе 2.7.
Программная реализация предложенных методов описана в разделе 2.8.

Результаты анализа 1000 видео в формате VR180 на предмет нали­
чия в них геометрических искажений описаны в разделе 2.9. Аналогично
искажениям цвета и резкости геометрические искажения не демонстриру­
ют какие-либо существенные тенденции по отношению к рассматриваемым
статистикам, и для них также справедливы все те же выводы. При этом
значительное количество проанализированных видео в формате VR180 де­
монстрирует наличие по крайней мере одного стереоскопического артефак­
та из рассмотренной группы искажений, что может привести к возникно­
вению у зрителей дискомфорта после просмотра нескольких таких видео.
Данная ситуация свидетельствует о необходимости разработки инструмен­
тов контроля качества и исправления стереоскопических искажений, кото­
рые бы помогли как профессионалам, так и любителям создавать более
качественный стереоскопический контент.

Третья глава посвящена разработке метода поиска перепутанных
ракурсов в стереоскопических видео. Перепутанный порядок ракурсов –
артефакт, при котором в сцене стереовидео на месте левого ракурса ока­
зывается правый и наоборот (рисунок 7). Данное искажение встречается
достаточно редко в стереофильмах, но наличие даже одной сцены с перепу­
танными ракурсами может вызвать серьезный дискомфорт у зрителей при
ее просмотре. При этом этот артефакт встречается в стереофильмах вне за­
висимости от способа их создания. Задача поиска перепутанных ракурсов
в стереовидео является задачей бинарной классификации сцен 3D-видео на
2 класса:

– сцены с правильным порядком ракурсов;
– сцены с перепутанным порядком ракурсов.
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Рисунок 7 — Схематичный пример перепутанных ракурсов в стереовидео.

Подробнее постановка данной задачи приведена в разделе 3.1.

Для определения порядка ракурсов необходимо при помощи некото­
рых признаков произвести оценку карты диспаратности и сравнить ее с
полученной при использовании бинокулярных признаков (то есть при сопо­
ставлении ракурсов стереопары) картой диспаратности, в которой при на­
личии перепутанных ракурсов значения диспаратности будут иметь непра­
вильный знак. В разделе разделе 3.2 приводится классификация существу­
ющих методов по используемым признакам оценки карты диспаратности
и описывается каждый из классов методов: использование методов упоря­
дочивания глубины; проверка предположений о распределении диспарат­
ности; анализ областей открытия в стереопаре; анализ областей откры­
тия/закрытия по движению. Из обзора стоит заметить, что нейросетевые
методы получают достаточно точные результаты при предсказании карт
диспаратности, что демонстрирует возможность обучения сверточных ней­
ронных сетей монокулярным признакам упорядочивания глубины. Таким
образом, применение сверточных нейронных сетей является многообещаю­
щим шагом для улучшения методов поиска перепутанных ракурсов.

В разделе 3.3 представлен предложенный метод для поиска перепу­
танных ракурсов в стереоскопических видео. Предложенный метод осу­
ществляет классификацию сцены на наличие/отсутствие перепутанных ра­
курсов по усредненному по сцене значению нейросетевого признака, пред­
сказывающего вероятность наличия перепутанных ракурсов в кадре. Дан­
ный метод состоит из следующих шагов при обработке одного кадра:

1. Вычисление карт диспаратности между левым и правым ракурса­
ми, карт векторов движения между текущим и предыдущим, те­
кущим и следующим кадрами, а также построение карт доверия к
вычисленным картам диспаратности, характеризующих точность
вычисленных векторов. Вычисление карт диспаратности, векторов
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движения, а также их доверия, совпадает с аналогичным шагом
для методов оценки искажений цвета и резкости.

2. Определение пригодности кадра для анализа на нали­
чие/отсутствие перепутанных ракурсов. Из рассмотрения ис­
ключаются кадры с константной диспаратностью и/или с низкой
яркостью.

3. Вычисление областей открытия/закрытия по движению.
4. Нейросетевая оценка вероятности наличия перепутанных ракурсов

в кадре на основе левого ракурса, соответствующей карты диспа­
ратности, карты доверия и карты областей открытия/закрытия.
Для предсказания вероятности наличия перепутанных ракурсов
в кадре была также использована архитектура нейронной сети,
аналогичная ResNet-18, как и в методе по оценке геометрических
искажений.

На рисунке 8 представлена общая схема работы предложенного метода.
Формально, результатом работы предложенного алгоритма для сцены яв­
ляется число:

𝑥 =
1

𝑛𝐴

∑︁
𝑗∈𝐴

𝑥𝑗 , (14)

где 𝑥𝑗 , 𝑗 = 1, 𝑛 – значение нейросетевого признака 𝑗-го кадра анализиру­
емой сцены, 𝑛 – число кадров в сцене, 𝑛𝐴 = |𝐴| – число подходящих для
анализа кадров в сцене, 𝐴 = {𝑘𝑗 |1 ≤ 𝑘𝑗 ≤ 𝑛} – множество номеров кадров
сцены, подходящих для анализа.

Так как задача поиска перепутанных ракурсов в стереовидео явля­
ется задачей бинарной классификации, для обучения нейронной сети для
определения порядка ракурсов достаточно использовать бинарную кросс­
энтропию в качестве оптимизируемой функции. При этом дополнительно
для предотвращения переобучения в оптимизируемой функции использует­
ся 𝐿2-регуляризация. Подробнее процесс обучения нейронной сети описан в
разделе 3.4. Обучающий набор данных был подготовлен на основе кадров
из полнометражных стереоскопических фильмов, ранее использованных
для обучения методов оценки искажений цвета и резкости. При этом сам
порядок ракурсов выбирался во время обучения случайно.

Тестирование предложенного метода и сравнение с аналогами прово­
дилось на выборке из 900 сцен длиной в 30 кадров. Во время тестирования
для всех оцениваемых алгоритмов вычислялись следующие показатели:

– площадь под ROC-кривой;
– точность на тестовой выборке;
– F-мера.

Результаты тестирования, описанные в разделе 3.5, показали, что пред­
ложенный метод поиска перепутанных ракурсов в стереовидео превосхо­
дит существующие аналоги по качеству классификации. При этом удалось
улучшить точность классификации более чем на 8% по сравнению с ранее
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Рисунок 8 — Общая схема предложенного метода поиска перепутанных
ракурсов в стереовидео.

применявшимися на практике методами. Программная реализация пред­
ложенного метода описана в разделе 3.6.

Также с помощью предложенного метода поиска перепутанных ра­
курсов было проанализировано 50 наиболее просматриваемых видео в фор­
мате VR180. С помощью предложенного метода поиска перепутанных ра­
курсов в стереовидео была найдена 21 сцена с перепутанными ракурсами
в 10 видео. Согласно данному результату вероятность встретить сцену с
перепутанными ракурсами в VR180-видео составляет 20%. При этом даже
одна сцена с перепутанными ракурсами может вызвать серьезный диском­
форт у зрителя.

В Приложении представлены дополнительные результаты анали­
за видео в формате VR180. Помимо рассматриваемых в данной работе
стереоскопических артефактов для каждого видео измерялся диапазон па­
раллаксов. Среди них были найдены видео со значительным положитель­
ным параллаксом. Так как левый и правый ракурсы находятся непосред­
ственно перед соответствующими глазами зрителя при просмотре видео в
шлеме виртуальной реальности, нулевое значение параллакса (0%) соот­
ветствует объектам, находящимся на максимально удаленном от зрителя
расстоянии, то есть на уровне “бесконечности”. Поэтому значения поло­
жительного параллакса в VR180-видео должны быть как можно меньше,
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так как они соответствуют объектам, находящимся за уровнем “бесконеч­
ности” – невозможная ситуация для мозга зрителя. То есть при просмотре
сцены со значительным положительным параллаксом в формате VR180 с
большой вероятностью зрители будут испытывать дискомфорт. Также в
Приложении представлены примеры, обнаруженные с помощью предло­
женных методов оценки искажений.

В Заключении сформулированы основные результаты диссертаци­
онного исследования, рассмотрены возможные варианты их применения и
обозначены перспективы дальнейших исследований.

Заключение

В ходе диссертационного исследования были получены следующие
основные результаты:

1. Разработан новый нейросетевой метод одновременной оценки цве­
товых искажений и искажений резкости между ракурсами стерео­
скопического видео. Предложенный метод значительно сократил
число ложноположительных срабатываний за счет одновременно­
го учета рассматриваемых искажений и по результатам объектив­
ного сравнения превзошел аналоги, ранее использовавшиеся при
анализе полнометражных стереоскопических фильмов.

2. Разработан новый нейросетевой метод оценки геометрических ис­
кажений между ракурсами стереоскопического видео. По результа­
там объективного сравнения предложенный метод превзошел ана­
логи, ранее использовавшиеся при анализе полнометражных сте­
реоскопических фильмов. Предложенный метод также позволяет
автоматически исправлять найденные геометрические искажения.

3. Разработан новый нейросетевой метод поиска перепутанных ра­
курсов в стереоскопических видео. По результатам объективного
сравнения предложенный алгоритм превзошел аналоги, ранее ис­
пользовавшиеся при анализе полнометражных стереоскопических
фильмов.

4. Проведено исследование объективного качества 1000 VR180-видео
с помощью разработанных методов. Исследование показало нали­
чие по меньшей мере одного вида стереоскопического искажения
в каждом из проанализированных материалов.

Предложенные алгоритмы могут быть использованы для разработки
программных инструментов автоматического контроля качества стереоско­
пических видео, включая видео в формате виртуальной реальности, а так­
же послужить основой для создания автоматических методов их исправ­
ления. Предложенная методология объективной оценки качества видео в
формате VR180 может быть использована для анализа стереоскопического
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качества новых видео, а результаты представленного анализа могут послу­
жить их отправной точкой.

Дальнейшее развитие темы исследования может включать в себя:
– Исследование нейросетевых методов исправления искажений цвета

и резкости. Для успешного исправления данных артефактов необ­
ходимо также восстанавливать значения в областях, которые не
были успешно сопоставлены методом построения карт диспаратно­
сти, что подразумевает исследование методов по восстановлению
деталей и/или пикселей в неизвестных областях.

– Исследование метода поиска объектов с неправильной глубиной.
Как показало проведенное сравнение видео в формате VR180, боль­
шинство найденных сцен с перепутанными ракурсами возникают
из-за неправильной постобработки видео путем неверного наложе­
ния компьютерной графики и/или титров.

– Исследование нейросетевых методов оценки и исправления дру­
гих стереоскопических артефактов. Например, оценка временного
сдвига между ракурсами стереоскопического видео и его исправле­
ние, что актуально для 3D-съемки. Или оценка размытости границ
и поиск плоских объектов и сцен, что актуально для конвертации
из 2D в 3D.

Данная работа была поддержана грантом СТАРТ-19-1 по теме “Раз­
работка системы автоматической объективной оценки качества и исправле­
ния стереоскопических видео и видео в формате VR180”. Также работа бы­
ла частично поддержана грантами РФФИ 15-01-08632 а про теме “Автома­
тизация создания и контроля качества стерео видео” и РФФИ №19-01-00785
по теме “Разработка нейросетевых алгоритмов обработки и сжатия видео­
последовательностей”. Обучение нейросетевых моделей производилось с ис­
пользованием высокопроизводительного кластера IBM Polus факультета
ВМК МГУ: https://hpc.cmc.msu.ru/polus.
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