МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Щеклеина Мария Дмитриевна

Кварц как индикатор предэруптивных условий существования кислых магматических очагов

Специальность 1.6.3. Петрология, вулканология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата геолого-минералогических наук

Диссертация подготовлена на кафедре петрологии и вулканологии геологического факультета Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет имени М.В. Ломоносова»

Научный руководитель

Плечов Павел Юрьевич – доктор геологоминералогических наук, доцент, профессор PAH

Официальные оппоненты

Скублов Сергей Геннадьевич – доктор геолого-минералогических наук, доиент, ФГБУН Институт геологии и геохронологии лаборатория докембрия. геологии геодинамики, главный научный сотрудник Веселовский Роман Витальевич – доктор геолого-минералогических наук, профессор PAHФГБОУ BOМосковский государственный университет М.И.Ломоносова, геологический факультет, кафедра динамической геологии, профессор Андреева Ирина Анатольевна – кандидат геолого-минералогических ФГБУН наук, Институт геологии рудных месторождений, петрографии, минералогии геохимии PAH, лаборатория редкометального магматизма, ведуший научный сотрудник

Защита диссертации состоится «12» декабря 2025 года в 14 часов 30 минут на заседании диссертационного совета МГУ.016.5 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, д. 1, Главное здание МГУ, сектор «А», аудитория 415

E-mail: msu.04.02@mail.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на портале: https://dissovet.msu.ru/dissertation/3657

Автореферат разослан «10» ноября 2025 г.

Ученый секретарь диссертационного совета МГУ.016.5 Доктор химических наук, профессор

Белоконева Е.Л.

Общая характеристика работы Актуальность

Актуальность с точки зрения фундаментальной науки заключается в разработке методов, позволяющих получать информацию о состоянии и динамике магматических систем, в которых кварц является одним из главных породообразующих минералов. С практической точки зрения извержения кислых магматических очагов являются наиболее труднопрогнозируемыми и разрушительными. Понимание эволюции и динамики кислых магматических систем, а также условий их существования в предэруптивной фазе, являются важнейшими факторами корректного прогноза извержений и их последствий. Реконструкция состава расплава и условий становления очагов кальдерных извержений по расплавным включениям является крайне актуальной задачей [Goldstein, Reynolds, 1994; Lowenstern, Thompson, 1995; Sobolev, 1996; Anderson et al., 2000; Kent, 2008; Плечов, 2014; RoseKoga et al., 2021], но требует модели равновесия кварц-расплав для корректного решения.

Цели и задачи исследования

Целью данной работы является разработка методики для корректной реконструкции состава расплава и определения предэруптивных условий существования кислых магматических очагов по данным изучения зерен вулканогенного кварца и включений в нем. Для достижения этой цели были выделены следующие задачи:

- разработка методики оценки температур равновесия кварцрасплав на основании опубликованных экспериментальных данных,
- разработка метода оценки влияния постзахватной кристаллизации кварца на стенках включений на состав захваченного расплава, а также характеристика постзахватных изменений в расплавных включениях в кварце при повторном нагреве,
- опробование разработанных методов на природном материале.

Фактический материал, методы исследования, личный вклад автора

В качестве объектов исследования был выбран пирокластический материал ряда вулканических структур: тефра толщи Бишоп тафф кальдеры Лонг Валли (Long Valley) в Калифорнии (США), спекшиеся туфы толщи голыгинских игнимбритов Паужетской кальдеры на Южной Камчатке, пирокластический материал вулкана Хангар Срединного хребта Камчатки, а также тефра вулкана Эльбрус на Кавказе.

Всего изучено порядка 230 образцов горных пород и пирокластического материала. Из них детально описано по одному образцу тефр кальдеры Лонг Валли и Эльбруса, 14 образцов спекшихся туфов голыгинских игнимбритов, 7 образцов пемз отложений пирокластических потоков и 3 образца тефры вулкана Хангар. Всего изучено 2794 зерна кварца и 797 зерен прочих минералов и гиалокластов. В ходе работы было получено 157 CL (катодолюминисцентных) изображений кристаллокластов кварца, 5545 фотографий под оптическим микроскопом Olympus и 225 изображений в отраженных электронах на сканирующем электронном микроскопе JEOL IT-500 в лаборатории локальных методов исследования вещества. Сделано 272 определения содержания Ті в волновом-дисперсионном электронно-зондовом кварце на микроанализаторе JEOL Superprobe JXA-8230 в лаборатории локальных методов исследования вещества и 493 количественных электронностекол минералов. Также зондовых анализа И рентгентофлуоресцентный (XRF) анализ 4 образцов спекшихся туфов Паужетской кальдеры. Получено 74 рамановских спектра для оценки содержания воды в расплавных включениях в кварце. Автор лично участвовал в отборе и описании представительных коллекций образцов голыгинских игнимбритов Паужетской кальдеры (полевой сезон 2019 непосредственном участии проведен весь исследовательских работ, включая макроскопическое изучение образцов, отбор монофракций минералов, XRF-анализ. петрографическое описание шлифов, анализ фаз энергодисперсионным электронно-зондовым методом, получение и анализ BSE снимков, изготовление полированных препаратов кварцем разной гранулометрической размерности, описание типов включений, анализ составов, создание и интерпретация СL-изображений кварца, а также измерение концентрации титана по зонам роста в кристаллах кварца на волново-дисперсионном микроанализаторе. Было изготовлено более 50 полированных препаратов для изучения включений в проходящем свете, а также для определения состава минералов и включений с помощью электронно-зондового анализа. В том числе было изготовлено 15 полированных препаратов, содержащих зерна с индивидуально вскрытыми включениями. Автор также производил обработку, обобщение и интерпретацию полученных данных. Для разработки геотермометра кварц-расплав автором была собрана база данных по опубликованным экспериментальным материалам.

Научная новизна

Новизна работы заключается в создании геотермометра, описывающего равновесие кварц-расплав с учетом влияния давления и летучих компонентов. Впервые экспериментально изучено влияние значительного перегрева включений в кварце на их вещественный состав и морфологические особенности. Впервые установлены условия (состав расплава, температура, давление, содержание воды в расплаве) в магматическом очаге перед извержением Паужетской кальдеры, а также охарактеризован с петрологической точки зрения материал извержения Эльбруса, произошедшего 530 тыс. лет назад. Материал извержения вулкана Хангар был впервые изучен с учетом положения образцов в разрезе. Диссертация содержит результаты работы с расплавными включениями для представительной геологических объектов – кальдер Лонг Валли и Паужетской, вулканов Хангар и Эльбрус. Их изучение реконструировать предэруптивные условия для каждой из этих магматических систем. Это сделано впервые для голыгинских игнимбритов Паужетской кальдеры и извержения вулкана Эльбрус, произошедшего 530 тыс. лет назад. Для случившегося 7.6 млн. л.н. извержения вулкана Хангар уточнены предэруптивные условия, а для его извержения, произошедшего 7.9 млн. л.н., реконструированы впервые.

Теоретическая и практическая значимость работы

Проведенная работа показала возможность количественного определения параметров кислых магматических расплавов на основе изучения расплавных включений в кварце. Разработанная методика

позволила определить физико-химические параметры очагов для нескольких вулканов и ее применение будет расширяться. Изучение равновесия кварца и его высокотемпературных полиморфов с расплавом крайне важно для моделирования процессов кристаллизации в насыщенных кремнеземом магматических системах. Разработан ликвидусный геотермометр кварц-расплав, позволяющий определять температуру равновесия как в синтетических системах простого состава (Q-Ab, Q-Ksp, Q-Fo и др.), так и для расплавов, отвечающих широкому спектру природных магм. В диапазоне температуры 670-1650 °C, давлении 0-3 ГПа и содержаниях воды до 8 мас.% геотермометр показывает среднее отклонение от результатов эспериментов ±50°C, а в более узком диапазоне условий и состава расплавов, отвечающему системам магматическим относительная погрешность определения температуры оценивается в пределах 10°C (зависит также от качества анализов). Этот геотермометр востребован для решения различных геологических задач и уже имплементирован в популярный программный пакет для петрологического моделирования Petrolog-4.

Защищаемые положения

- (1) Откалиброванный на данных экспериментов ликвидусный геотермометр кварц-расплав применим в широком диапазоне условий: при кристаллизации расплавов от андезитового до риолитового состава, при температуре 670–1650 °C, давлении 0-3мас.%. ГПа И содержаниях воды ДΟ 8 Среднеквадратичное отклонение расчетной ОТ экспериментальной температуры использованной ДЛЯ выборки экспериментов составляет 50 °C.
- (2) Проведённые серии экспериментов по нагреву расплавных включений в кварце Бишоп тафф кальдеры Лонг Валли (Long Valley) в Калифорнии (США) показали, что во включениях, частично сохраняющих летучие компоненты, происходит увеличение содержания кремнезема расплава с последующей кристаллизаций кристобалита на контакте расплав-кварц и далее в объеме включения, что приводит к буферированию состава расплава. Если включение при нагреве теряет воду

постепенно, то плавления кварца (минерала-хозяина) не происходит, и включение может сохранять исходное содержание петрогенных компонентов плоть до полной дегазации включения.

(3) Предэруптивные условия существования изученных магматических систем характеризуются кислым составом расплава (SiO_2 от 77.4 до 79.5 мас.%), условиями близкими к водонасыщенным (от 3.7 до 6.5 мас. % Н₂О) при давлении от 50 до 250 МПа и температуре от 680 до 780 °C. Расплавные включения в кварце пирокластических отложений Лонг Валли и Хангара отражают состав расплава в магматической камере перед извержением. Для голыгинских игнимбритов существенное характерно изменение расплавных включений за счет кристаллизации минерала-(кварца) на стенках включения. включения в кварце извержения Эльбруса, произошедшего 530 тыс. лет назад, не отражают предэруптивное состояние магматического очага.

Апробация работы

диссертации опубликовано 4 статьи журналах, рекомендованных для защиты диссертационном совете МГУ имени М.В.Ломоносова по специальности и отрасли наук. По материалам диссертации сделано 7 докладов на российских и международных конференциях: на 32-ой молодежной научной школе-конференции проблемы геологии, геофизики и геоэкологии», «Актуальные Петрозаводск, 2021; на Дне научного творчества – 2022, Москва, МГУ; конференции Всероссийской ПО термобарогеохимии, посвященной памяти И.Т. Бакуменко, Новосибирск, 2022; на конференции «Continental Collision Zone Volcanism and Associated Hazards», Армения, Ереван, 2023; на Ломоносовских чтениях - 2024. Секция «Геология», Москва, МГУ, 2024; на XXVII ежегодной научной конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 2024; на годичном собрании РМО «Минералогические исследования интересах развития минерально-сырьевого В

комплекса России и создания современных технологий», Апатиты, 2024.

Объем и структура работы

Диссертационная работа содержит семь глав, 24 таблицы, 74 иллюстрации, в том числе одно приложение, а также библиографию, отсылающую к 294 источникам. Общий объем работы 159 страниц.

Основное содержание работы

Глава 1. Кислые магматические системы. Полиморфы кремнезема. Литературный обзор

В этой главе приведен обзор литературных данных по механизмам извержений и сепарации кислого материала в магматических системах. Особое внимание уделяется параметрам, позволяющим разделять продукты одного или нескольких извержений. На примере вулкана Тоба рассматривается степень изученности материала, а также эволюция взглядов на строение магматической системы, особое внимание отводится исследованиям, включающим работу с расплавными включениями.

Отдельная подглава посвящена полиморфам кремнезема, полям стабильности кварца, тридимита и кристобалита. Также в этой главе кварц рассматривается как источник петрологической информации. Обсуждается анализ СL-снимков – особенности структуры и примеси, влияющие на катодолюминисценцию, корреляция между вхождением различных примесей в структуру, а также возможные пути интерпретации полученной зональности. Освещаются вопросы ЭПРдатирования и использования вхождения титана в структуру вулканогенного кварца как метода определения температуры и давления кристаллизации зерен кварца. Диффузия титана в структуре кварца [Seitz, 2018; Gualda, Sutton, 2016] и форма обратной огранки [Pamukcu, 2015] первичных расплавных включений позволяет оценить время существования кристалла в высокотемпературных условиях. Рассматривается связь морфологии кристаллов кварца в зависимости от степени переохлаждения и времени роста. В отдельных главах дан краткий обзор каждого из рассматриваемых в диссертации объектов кальдеры Long Valley в США, Паужетской кальдеры и вулкана Хангар на Камчатке и вулкана Эльбрус. Приведена петрография пород, временные оценки, представления об эволюции магматической системы по литературным данным.

Глава 2. Методы исследования

В работе использовались электронно-зондовый анализ, анализ СС-снимков, рамановская спектроскопия, рентгенофлуоресцентный анализ, были проведены эксперименты при атмосферном давлении в вертикальной трубчатой печи Nabertherm RHTV 120-300/17.

Глава 3. Калибровка модели кварц-расплав

Нами были суммированы данные по 235 экспериментам, в которых кристаллизовался кварц, приведен состав закалочного стекла, и имеются оценки содержания воды. Для этого использованы выборки из баз данных LEPR [Hirschmann et al., 2008] и MELT [Girnis, 2003], которые дополнены данными из отдельных статей. Выборка, на которой калибровка модели, включает эксперименты содержанием SiO₂ в расплаве в диапазоне 63.1-100 мас.%, давление варьирует от 1 атм до 3.5 ГПа, температура – от 640 до 1713 °C, а длительность экспериментов – от 0.5 до 936 часов. Калибровка модели равновесия кварц-расплав проводилась с допущением об аддитивности параметров, влияющих на температуру кристаллизации. В качестве второго допущения мы приняли, что влияние каждого независимого параметра на температуру кристаллизации имеет форму, близкую к линейной. Такие допущения позволяют использовать для описания псевдоликвидусной поверхности уравнение в форме многочлена, в котором каждый отдельный член отвечает за свой независимый параметр. В качестве независимых использованы семь параметров состава расплава (атомные доли Al, Ti, Fe, Mg, Ca, Na и K), дополнительный параметр структурного состояния $\sqrt{\text{Al}\cdot(\text{Na+K})}$ по [Nathan, VanKirk, 1978], параметр водонасыщенности системы по [Плечов, Геря, 1998] и параметр литостатического давления. Калибровка модели проводилась в четыре последовательных этапа. На первом этапе подбирались коэффициенты для четырех параметров модели (Al, Na, K, $\sqrt{(Al\cdot(Na+K))}$), что позволило использовать эксперименты в простых синтетических системах. На втором этапе в калибровке участвовали эксперименты, проведенные при различном давлении (до 3.5 ГПа) в безводных условиях. На третьем этапе мы определили влияние воды на температуру кристаллизации кремнезема

с использованием экспериментов, проведенных в недосыщенных и насыщенных водой условиях. На четвертом, финальном, этапе мы использовали все экспериментальные данные и оценили влияние Ті, Fе, Мg и Са на температуру кристаллизации кремнезема. Подбор коэффициентов проводился методом наименьших квадратов (минимизация суммы квадратов разницы экспериментальной и расчетной температуры для выборки). Полученное уравнение имеет вид [Плечов и др., 2023]:

$$\begin{split} \text{T (°C)} &= 1863.34 - 3589.3 \ (Al) - 3444.7 (Ti) - 1320.2 (Fe_{tot}) \\ &- 1177.9 (Mg) - 132.8 (Ca) - 2589.1 (Na) - 249.4 (K) \\ &- 15.722 \sqrt{Al(Na+K)} - 342.7 \left(Z_{H_{70}}\right) + 197.5 (P) \end{split}$$

где Al, Ti, Fetot, Mg, Ca, Na, K – атомные доли катионов в расплаве, ZH_2O – водонасыщенность расплава при заданных температуре и давлении, P – давление в $\Gamma\Pi a$.

Предложенный алгоритм расчета не содержит сложных итерационных циклов и псевдоликвидусная температура кристаллизации может быть определена для любого заданного состава расплава. Модель предсказывает температуру для сухих и водосодержащих расплавов в широком диапазоне температуры (670–1650 °C), давления (0–3 ГПа) и содержания воды (0–8 мас.%). Оценка среднеквадратичного отклонения расчетной температуры составляет около 50 °C (Рис. 1).

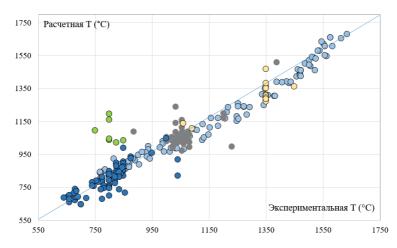


Рис. 1 График сравнения измеренной в эксперименте температуры (Тэкспериментальная) и рассчитанной (Т расчетная) по откалиброванной модели равновесия кварц—расплав. Светлосиние значки — эксперименты при атмосферном давлении в безводных условиях, которые использовались для калибровки в работе (Nathan, VanKirk, 1978). Темно-синие значки — эксперименты в водосодержащих системах. Желтые значки — эксперименты в сухих системах при давлении выше 10 кбар. Зеленые значки — эксперименты с присутствием в системе фтора или хлора. Серые значки — эксперименты в многокомпонентных системах, выполненные после 1978 года.

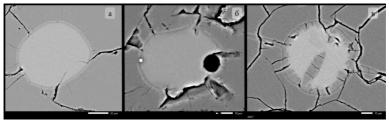


Рис. 2 BSE изображения включений после эксперимента при 1200 °C. а — состав соответствует первичному за исключением воды; б — включение наиболее кремнистого состава; в - включение с видимой кристобалитом в кайме и в центральной части включения.

Глава 4. Постзахватные изменения

Состав стекла в расплавных включениях может отличаться от состава расплава в магматической камере за счет различных эффектов при формировании включения или после его консервации [Плечов, 2014]. В данной работы проведена систематизация возникающих при значительном перегреве включений в кварце относительно температуры ИХ консервации. Предыдущими исследованиями [Severs et al., 2007; Skirius et al., 1990] было показано, что включения в кварце Bishop Tuff остаются сохранны при условиях, близких к условиям консервации (800 °C и 1 кбар) и длительности эксперимента до 12 ч. При более длительном эксперименте включения начинают терять воду и при длительности 1512 часов (63 дня) они теряют до 75% от первоначального содержания воды [Severs et al., эксперименте 20071. ПО гомогенизации расскристаллизованных включений в кварце Bishop Tuff длительностью 20 часов при температуре 800 и 900 °C и давлении 2 кбар потеря воды оценена как незначительная (около 20 отн. %) [Skirius et al., 1990]. Систематическое изменение состава включений при повторном нагреве включений в кварце предыдущими исследователями не изучалось. Образец PC-19/8 (горизонт F9 толщи Bishop Tuff кальдеры Long Valley США) был выбран для проведения экспериментов, так как он содержит охарактеризованных количество хорошо закаленных полностью стекловатых расплавных включений [Anderson et al., 2000; Wark et al., 2004; Thomas, Watson, 2012]. Мы выбрали температуру эксперимента (1100-1200°С) существенно превышающую температуру консервации включений (750 °C) для того, чтобы добиться существенной потери воды и видимых преобразований включений при меньшей ллительности. Bce эксперименты проводились фугитивности кислорода близкой к буферу NNO и атмосферном давлении. Исходные составы включений в кварце Bishop Tuff лежат в диапазоне 77.3-78.5 мас.% SiO₂ и 4.6-5.8 мас.% K₂O, с содержанием После эксперимента 5-6 мас.%. при 1100 включений. проанализировано 18 расплавных продуктах эксперимента включения морфологически мало изменились, в некоторых случаях был виден эффект частичного исчезновения формы обратной огранки и возникновение «хвостиков» у единичных включений (Рис. 2a). При этом составы включений разделились на две группы. Составы включений первой группы – 17 %, соответствуют составам расплавных включений в кварце тощи Bishop Tuff до нагревания за исключением воды, в то время как составы включений

второй группы - 83%, лежат на линии кварцевого контроля с диапазоном содержания SiO₂ от 83.5 мас. % до 86.7 мас.%. После эксперимента при 1150 °C было проанализировано 31 расплавное включение. Форма включений становится более округлой (Рис. 26). На стенках части включений возникает каемка шириной до 5 мкм, сложенная кристобалитом (Рис. 2в), а в окружающем кварце возникает мелкая сеть оперяющих трещин, также выполненных кристобалитом, изредка встречаются «хвостики». Составы включений для данного эксперимента делятся на такие же две группы, как в случае эксперимента при 1100 °C. Составы включений первой группы (61%) соответствуют составам расплавных включений в кварце тощи Bishop Tuff до нагревания за исключением воды, в то время как составы включений второй группы (39%), лежат на линии кварцевого контроля. Включения второй группы с каемками кристобалита (26%) систематически содержат меньше SiO₂ (от 82.8 до 86.2 мас.%), чем включения без кристобалитового ореола (13%) – диапазон содержаний SiO_2 от 85.3 до 87.1 мас.%. После эксперимента при $1200~^{\circ}\mathrm{C}$ было проанализировано 45 расплавных включений. Составы включений также делятся на две группы, к включениям первой группы, идентичным по петрогенным компонентам природно-закаленным за исключением воды, относится 73% включений, ко второй группе, чьи линии кварц-контроль относится составы лежат на проанализированных включений. Для включений первой группы характерны незначительные морфологические изменения - округлая форма или форма обратной огранки. Среди включений второй группы – 27%, преобладают включения с кристобалитовым ореолом – 20% (диапазон содержания SiO₂ от 82.8 до 84.9 мас.%) при этом мощность каемки достигает 20 мкм. В некоторых включениях кристобалит кристаллизуется по всему объему включения. Во включениях второй группы без кристобалитового ореола зафиксировано максимальное содержание SiO₂ (88.2 мас.%). Количество таких включений (7%) сокращается по сравнению с экспериментом при 1150 °C. Мы предполагаем три принципиальных сценария поведения включений в кварце при повторном нагреве. Первый сценарий с разгерметизацией и потерей летучих до начала взаимодействия включения и минералахозяина реализуется в 17% проанализированных включений в эксперименте при 1100 °C, 61% при 1150 °C и 73% при 1200 °C. Второй сценарий с герметичностью включения и подплавлением минералахозяина на стенках включения реализуется в 83% проанализированных включений в эксперименте при 1100 °C, 13% при 1150 и 7% при 1200 Третий сценарий с буферированием состава °C.

кристаллизацией кристобалита на стенках включения и далее в объеме не реализуется в эксперименте при 1100 °C, но встречается в 26% проанализированных включений в эксперименте при 1150 °C и в 20% при 1200 °C. Проведённые серии экспериментов по нагреву расплавных включений в кварце Bishop Tuff показали, что во включениях, частично сохраняющих летучие компоненты, происходит увеличение содержания кремнезема расплава с последующей кристаллизаций кристобалита, что приводит к буферированию состава расплава. Если включение при нагреве теряет воду постепенно, плавление кварца (минерала-хозяина) не происходит, и включение может сохранять исходное содержание петрогенных компонентов вплоть до полной дегазации включения.

Глава 5. Изучение материала природных объектов

Long Valley

Изучение расплавных включений в кварце кальдеры Long Valley (Рис. 3а) проводилось на материале образца РС-19-8а, который представляет мелкозернистый туф, состоящий из обломков кристаллокластов полевого шпата и кварца. Для приблизительной оценки содержания летучих компонентов в первичных расплавных включениях в кварце, таких как хлор и вода были использованы результаты микрозондового анализа, где кислород был измерен наравне с другими элементами, а не рассчитан по стехиометрии. Среднее содержание хлора для стекол, налипших на кристаллокласты, составило около 0.07 мас.%, для включений в кварце 0.08 мас.% и для включений в полевом шпате 0.06 мас.%. Концентрация серы находятся ниже порога обнаружения. Содержание воды оценивали ПО «избыточному кислороду» из предположения, что все летучие за исключением также измеренного хлора и соединений серы представлены водой. Для стекол, налипших на кристаллокласты средняя оценка содержания воды составляет 4.3 мас.% (погрешность 2 опо Н2О составляет 1.5 мас.%; и 2.7 % по сумме анализа). Для стекол расплавных включений в кварце средняя оценка содержания воды составляет 5.2 мас.% (погрешность 2σ по H_2O составляет 1.0 мас.%; и 1.7 % по сумме анализа). Для стекол расплавных включений в полевом шпате средняя оценка содержания воды составляет 5.1 мас.% (погрешность 2 по Н2О составляет 1.8 мас.%; и 2.0 % по сумме анализа). Таким образом, можно заключить, что в процессе извержения с момента захвата включений и плоть до

кристаллизации стекла на кристаллокластах произошла потеря ~17 относительных %, растворенной в расплаве воды. Ранее описанная зональность кристаллокластов кварца различных слоев в толще пород кальдеры Long Valley [Peppard et al., 2001], не соответствует в полной мере зональности обеих групп кристаллокластов кварца образца РС-19-8а. Группа, в которой отсутствует внешняя более яркая и интенсивная зона может соответствовать зональности кварца слоев F9 и Ig2E, к которым и относился образец при первичном описании. Однако группа кристаллокластов кварца с явной внешней зоной, отличающейся повышенной яркостью и интенсивностью (Рис. 4a), скорее походит на кристаллокласты кварца игнимбритовой толщи северо-западной части кальдеры. Концентрация титана во внешней зоне кристаллокластов кварца толщи Ig2NWa соответствует 79.2±4.9 ppm (Peppard et al., 2001), а для кристаллокластов кварца образца РС-19-8а соответствует среднему значению 63 ppm Ti ($2\sigma - 31$ ppm) и максимальному 85 ppm. Таким образом, кристаллокласты образца РС-19-8а, представленные в основным двумя большими группами, отличающимися наличием внешней яркой и интенсивной зоны, соответствующей повышенным содержаниям титана, являются как бы переходным или смешанным типом между типичным кварцем восточной зоны кальдеры Лонг Валлей, для которого характерно отсутствие внешней яркой интенсивной зоны, и северной-северо-западной зоны кальдеры Лонг Валлей, для которого характерна яркая интенсивная внешняя зона. Оценка давления по [Blundy, Cashman, 2001] и [Brugger et al., 2003] по работам [Tuttle, Bowen, 1958], [Luth et al., 1964] и [Ebadi, Johanes., 1991] (Рис. 34) для стекол на кристаллокластах составила от 1.5 Кбар и вплоть до атмосферного давления, для включений в полевом шпате в среднем 1 Кбар и для включений в кварце от 1 до 10 Кбар со средним значением около 3 Кбар. По откалиброванному нами ликвидусному геотермометру температура для расплавных включений в среднем составляет 780 °C, для расплавных включений в полевом шпате в среднем составляет 795°C, а для пленок стекла на кристаллокластах кварца и полевого шпата в среднем 670°C. Оценка температуры кристаллизации кварца по вхождению титана в кварц лежат в диапазоне от 728 до 584 °C, средняя температура равна 657 °C при допущении, что активность TiO_2 равна 1. В таком случае полученные температуры имеют погрешность ±21 °C [Wark, Watson, 2006]. Если принять активность титана равной 0.6, как было показано в работах по толще Бишоп тафф [Wark et al., 2004], то

температура будет соответственно от 790 до 630 °C, а средняя температура составит 711 °C.

Паужетская кальдера

Изучение магматической системы Паужетской кальдеры проходило на материале четырех образцов голыгинских игнимбритов из керна скважины К-6. Для детального изучения были выбраны первичные стекловатые расплавные включения ≥ 20 µm в диаметре (Рис. 36) для минимизации эффекта граничного слоя [Плечов, 2014]. Среднее содержание хлора составило около 0.2 мас.%. Содержание воды оценивали по «избыточному кислороду» из предположения, что все летучие за исключением также измеренного хлора и соединений серы представлены водой. Группа включений образца VK19K-6-7 сильно отличается от остальных по рассчитанному содержанию Н2О. Из этого видно, что в расплавных включениях в кварце образца VK19K-6-7 сохранилось наибольшее количество воды. Для образца VK19K-6-1 среднее содержание воды составило 0.19 мас.% (погрешность 2σ по H₂O составляет 0.82 мас.%; и 1.45% по сумме анализа). Для образца VK19K-6-2 среднее содержание воды составило 0.32 мас.% (погрешность 2 о по H_2O составляет 0.43 мас.% и 1.45% по сумме анализа). Для образца VK19K-6-3 среднее содержание воды составило -0.14 мас.% (погрешность 2σ для по H_2O составляет 1.56 мас.% и 3.21% по сумме анализа). Для образца VK19K-6-7 среднее содержание воды составило $1.61\ \text{мас.}\%$ (погрешность 2σ для по H_2O составляет $1.07\ \text{мас.}\%$ и $1.55\ \%$ по общей сумме). Все эти значения значительно меньше концентраций воды, характерных для подобных пород и геодинамических обстановок [Плечов и др., 2010; Beddoe-Stephens et al., 1983]. Давление 3 кбар оценено по частично-раскристаллизованным расплавным включениям образца VK19K-6-7, содержащим дочернюю фазу пироксена. Моделирование кристаллизации при давлении 3 Кбар, то концентрации воды для расплавов Паужетской кальдеры будут соответствовать 7.5 мас.% [Moore et al., 1998]. По откалиброванному нами ликвидусному геотермометру [Plechov et al., 2023] температура для стекол [Ponomareva et al., 2018] в среднем составляет 708 °C, для включений в кварце образцов VK19K-6-1,2,3 и, соответственно, давления 2 кбар - $680\,^{\circ}\text{C}$, а для включений в кварце образца VK19K-6-7 и давления 3 кбар - 670 °C. Оценка температуры кристаллизации кварца по вхождению титана в кварц лежит в диапазоне от 877 до 784 °C, средняя температура равна 839 °C при допущении, что активность TiO_2 равна 1. В таком случае полученные оценки температуры имеют погрешность ± 21 °C [Wark, Watson, 2006]. Для минеральной ассоциации плагиоклазамфиболового, отражающей раннюю стадию кристаллизации магмы температура лежит в диапазоне 904 до 1170 °C [Holland, Blundy, 1994], а давление - 4.6-5.2 Кбар [Ridolfi et al., 2012]. СL-изображения кварца всех изученных образцов демонстрируют магматическую зональность, с несколько нарушенным контуром границ меду отдельными зонами (Рис. 4в).

Хангар

Из доступной для изучения коллекции из 113 образцов, было отобрано 8 образцов проксимальных отложений с точной привязкой к извержениям 7600 или 7900 лет назад, с детализацией до конкретного пирокластического потока [Мелекесцев и др., 1996]. Значительное количество кристаллокластов кварца с первичными расплавными включениями (Рис. 3в) было обнаружено в образцах извержения 7600 л.н., среди которых был выделен образец 98106-3. Оценка давления [Ridolfi, 2021] для разных групп амфиболов - в составе литокластов, в реакционных каймах по биотиту, в виде самостоятельных зерен и в качестве включений в кварце, соответствует 450, 400, 270 и 180 МПа соответственно. Все перечисленные выше группы амфиболов встречаются во всех изученных образцах. Температура и фугитивность кислорода оценивалась по [Ridolfi, 2021] и по равновесию титаномагнетит-ильменит [Yavuz, 2021]. Для I пирокластического потока XГ7900 оценки температуры составили 825 — 895 °C / -(11-12.9) logfO₂ и 785-850/ -(13.1-14.2) °C, для II XГ7900 898-1017 °C / -(11-11.3) $\log f O_2$ и 855-871 °C / -(12.8-13) $\log f O_2$, для III XГ7900 895 °C / -(11/2) logfO₂ и 860 °C / -(13.1) logfO₂ и HK-KHG (XГ7600) 871-927 °C / -(10-11.8) $logfO_2$ и 801-858 °C / -(13-13.9) $logfO_2$ соответственно. Оценка содержания воды проводилась как рамановской спектроскопией, так и по «недостатку суммы» [Kotov et al., 2021]; как в стеклах пемз МК-КНG и пирокластическом материале HK-KHG, так и в первичных стекловатых включениях в кварце НК-КНG, что позволило оценить содержание воды в расплаве от 4 до 6 мас.% Н₂О. С ростом кремнекислотности стекол концентрации воды в них увеличиваются. Максимальное содержание воды в стеклах расплавных включений - $6.27~{\rm mac.\%}$, при этом среднее $-3.7~{\rm mac.\%}$, среднее содержание воды в

стеклах тефры— 2.2 мас.%. По данным работы [Балашова, 2012] содержания серы в системе лежат в диапазоне от 0.01 до 0.05 мас.%, при среднем содержании 0.02 мас.%. Максимальное содержание Cl во включениях в кварце -0.11 мас.% при среднем содержании -0.08 мас.%, среднее содержание в стеклах, налипших на кристаллокласты - 0.07 Кристаллокласты кварца образца 98106/3, изученные с мас.%. помощью CL, являются магматическими по типу зональности (Рис. 4в). Оценка температуры кристаллизации кварца образца 98106/3 по вхождению титана в кварц лежит в диапазоне от 743 до 602 °C, средняя температура равна 684 °C при допущении, что активность TiO₂ равна 1. В таком случае полученная температура имеют погрешность ±21 °C [Wark, Watson, 2006]. Если принять активность титана равной 0.6, то температура будет соответственно от 807 до 650 °C, а средняя температура составит 742 °C. Оценка давления по [Blundy, Cashman, 2001] и [Brugger et al., 2003] для стекол расплавных включений в кварце составляет менее 0.5 кбар. По откалиброванному нами ликвидусному геотермометру температура для расплавных включений в кварце и для стекол, налипших на кристаллокласты в среднем составляет 701 и 714 °С соответственно.

Эльбрус

Образец тефры ОТК-21-L-3 относится к извержению Эльбруса 0.53 Образец л.н. [Константинов др., 2021]. содержит кристаллокласты плагиоклаза, кварца, пироксена биотита, гиалокласты, обломки пемз и микроксенолиты, определены составы фаз и описана их морфология. Кристаллокласты плагиоклаза относятся в основном к Іа и ІІб подтипам по Газеев и др., 2004], так как не обладают ярковыраженной зональностью и являются преимущественно кислыми. Также присутствуют сильно растворенные зерна плагиоклаза An 48, что может соответствовать центральной части зерен плагиоклаза типа Пб по [Газеев и др., 2004]. Ортопироксен в основном относится к III типу по [Газеев и др., 2004]. Для кристаллокластов ортопироксена образца OTK-2021-L-3 магнезиальность в ядрах колеблется от 0.69 до 0.77, а во внешних зонах от 0.42 до 0.55. В кристаллокластах биотита образца ОТК-2021-L-3 отсутствует химическая зональность (Мд# 0.44-0.45), отмечается расположение включений по зонам роста. содержание хлора для гиалокластов составило около 0.08 мас.%, а для

включений в кварце 0.07 мас.%. Концентрация серы находятся ниже порога обнаружения. Для стекол расплавных включений оценка содержания воды составляет 5.2 мас.% (погрешность 2σ по H_2O составляет 2.5 мас.%; и 3.8 % по сумме анализа). Для гиалокластов средняя оценка содержания воды составляет 6.4 мас.% (погрешность 2 о по Н₂О составляет 1.6 мас.%; и 1.2 % по сумме анализа). Кварц принадлежит как минимум к двум различным генетическим типам. Кварц, насыщенный газовыми включениями, скорее всего, имеет немагматический генезис и судя по рисунку зональности на ССизображениях является ксеногенным для магмы, в которую он попал. Набор твердофазных включений и включения слюды с каемками стекла как в ксеногенном кварце, так и в магматическом кварце, содержащем расплавные включения (Рис. 3г), может говорить об общем этапе этих двух генераций кристаллов существования магматическом очаге. Оценка температуры кристаллизации первично магматического кварца по вхождению титана в кварц лежит в диапазоне от 724 до 540 °C, средняя температура равна 652 °C при допущении, что активность TiO₂ равна 1. В таком случае полученные значения температуры имеют погрешность ±21 °C [Wark, Watson, 2006]. Если принять активность титана равной 0.6, то температура будет соответственно от 787 до 580 °C, а средняя температура составит 706 °C. Для ксеногенного кварца, содержащего большое количество газовых включений, значения температуры по вхождению титана в кварц лежат в диапазоне от 657 до 364 °C, средняя температура равна 564 °C при допущении, что активность TiO₂ равна 1. Оценка давления по [Blundy, Cashman, 2001] и [Brugger et al., 2003] по работам [Tuttle, Bowen, 1958], [Luth et al., 1964] и [Ebadi, Johanes., 1991] для гиалокластов составила 1.5-2 кбар. По ликвидусному геотермометру [Плечов и др., 2023] температура для расплавных включений в кварце в среднем составляет 730 °C, а для гиалокластов 650 °C.

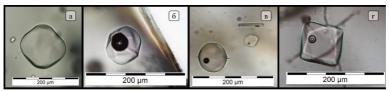


Рис. 3 Первичные стекловатые включения в кварце изучаемых объектов в проходящем свете. Первичные стекловатые расплавные включения с частичной формой обратной огранки в кварце А - толщи Бишоп Тафф; Б - голыгинских игнимбритов; В - тефре вулкана Хангар; Г - Первичное включение гетерофазного захвата в тефре вулкана Эльбрус

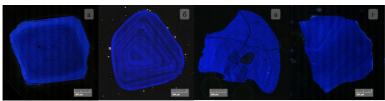


Рис. 4 CL изображения кристаллов кварца а – толщи Бишоп тафф, б – вулкана Хангар, в – голыгинских игнимбритов, г – вулкана Эльбрус

В диссертации предложена комплексная методика, позволяющая количественную реконструкцию условий в магматических очагах кислого состава по расплавным включениям в кварце. Зональность вкрапленников кварца реконструируется путем анализа СL-снимков (Рис. 4). По типу зональности можно различить кварц различного генезиса и восстановить историю кристаллизации вкрапленников кварца. Измерение содержания титана в кварце и использование разработанного ликвидусного геотермометра [Плечов и др., 2023] позволяет оценить температуру кристаллизации кварца двумя независимыми методами.

Для определения различных магматических событий (смешение магм, поступление свежих порций магм в очаг, ассимиляции вмещающих пород, перемещения магмы между очагами) используется изучение зональности кристаллов кварца и морфологии различных популяций включений, наряду с петрологическим изучением ассоциаций

минералов и закаленного стекла в породе, а также численное моделирование кристаллизации магмы. В работе систематическое изменение состава включений при значительном повторном нагреве включений, которое может происходить при поступлении порций базальтовых магм в кислый очаг. Было показано существенное уменьшение вязкости базальтовых магм при повышении содержания летучих компонентов [Persikov et al., 2020], подтверждает реальность смешения базальтов и риолитов в крупных островодужных вулкано-магматических системах. В работе дано объяснение возможности существования ультракислых стекол (до 88 мас.% SiO₂) в расплавных включениях в кварце при значительном перегреве включений. Отклонение состава стекол во включениях от состава законсервированного расплава объясняется растворением кварца со стенок включений при температуре, превышающей температуру равновесия кварц-расплав и кристаллизации кварца (или его полиморфов) на стенки включений при температуре ниже температуры равновесия. Включения в двух из четырех изученных объектов (Bishop Tuff и Хангар) сохранили состав, близкий к исходно законсервированному составу расплава. Составы включений в кварце из голыгинских игнимбритов смещены за счет кристаллизации кварца на стенки включений, тогда как составы включений в тефре извержения Эльбруса были смещены в более кремнекислую область, то есть испытали вторичный нагрев после консервации и до извержения.

В результате проделанной работы и вышеописанной дискуссии нами были реконструированы составы расплавов (включая содержание воды, клора и серы), из которых кристаллизовался кварц в четырех магматических системах. Для расплавных включений Лонг Валлей и Хангара это усредненные составы расплавных включений, т.к. составы расплавных включений для данных объектов совпадают с составами стекол приоксластического материала. Для Паужетской кальдеры состав расплава соответствует усредненному составу расплавных включений с внесенной корректировкой на кристаллизацию кварца на стенках включений. Составы расплавных включений в кварце вулкана Эльбрус отражают более ранний этап эволюции магматического расплава, нежели составы стекла гиалокластов. Поскольку кварц является одной из наиболее позднокристаллизующихся фаз, можно говорить, что реконструированные нами условия относятся к стадии жизни магматического очага непосредственно перед извержением.

Большинство включений захватывались кварцем на глубине менее 6 км. Температура магмы в очагах лежит в диапазоне от 680 до 780 °C. Содержание воды в стеклах расплавных включений, оцененные по «избыточному кислороду» лежит в диапазоне от 4.6 (Эльбрус) до 5.3 (Паужетская кальдера) мас.%. Для стекол включений вулкана Хангар оценки содержания воды составили 3.7 вес.%.

Заключение

- 1. Предложенный в данной работе ликвидусный геотермометр позволяет рассчитывать температуру равновесия кварца с широким спектром магматических расплавов с учетом влияния литостатического давления и содержания воды в расплаве. Сравнение расчетной и экспериментальной температуры по данным 235 экспериментов показало, что предложенный ликвидусный геотермометр более точно предсказывает температуру равновесия, чем ранее предложенные модели.
- 2. Первичные расплавные включения в кварце кальдеры Лонг Валлей, Паужетской кальдеры, вулканов Хангар и Эльбрус дают возможность реконструировать составы магматических расплавов, из которых кристаллизовался кварц при детальном петрографическом изучении включений, выявлении ростовой зональности кварца с помощью катодолюминесцентные изображений и статистической обработке составов стекла в продуктах извержения исследуемых вулканов.
- 3. Реконструированные по 220 расплавным включениям в кварце составы магматических расплавов попадают в поле риолитов на диаграмме TAS и соответствуют узкому диапазону содержаний петрогенных оксидов SiO_2 77.38-79.52 мас.%, TiO_2 0.02-0.15 мас.%, Al_2O_3 11.61-12.80 мас.%, FeO 0.32-0.69 мас.%, MnO 0.01-0.08 мас.%, MgO 0.02-0.14 мас.%, CaO 0.48-0.70 мас.%, K_2O 4.20-5.12 мас.%, Na_2O 3.07-4.37 мас.% и CI 0.07-0.17 мас.%. Для этих магматических расплавов оценена температура (от 680 до 780 °C), давление (от атмосферного до 2.5 Кбар) содержание летучих (от 3.7 до 6.5 мас% H_2O). Для извержения вулкана Эльбрус была воссоздана история

кристаллизации риолитовой магмы, включающая растворение ранее кристаллизовавшихся минералов при подъеме магмы к поверхности.

Морфологические особенности И состав расплавных включений в кварце при повторном нагреве определяется сохранностью летучих компонентов во включении. В случае, частично, флюидные компоненты либо полностью удерживаются происходит взаимодействие включением. расплава и минерала-хозяина, что выражается в повышении расплава, сопровождающейся кремнекислотности кристаллизацией кристобалита, формированием a также вокруг видимого ореола включения. В случае включением летучих компонентов, морфологически оно остается неизменным и может использоваться для реконструкции состава расплава по петрогенным компонентам.

Первый вывод о ликвидусном геотермометре доказывает справедливость первого защищаемого положения, четвертый вывод иллюстрирует второе защищаемое положение, в то время как второй и третий выводы доказывают справедливость третьего защищаемого положения.

Список работ, опубликованных в рецензируемых научных изданиях, для защиты диссертационном совете МГУ имени М.В.Ломоносова по специальности и отрасли наук

1. Давыдова В.О., Биндеман И.Н., **Щеклеина М.Д.**, Рычагов С.Н. Паужетская кальдера (Южная Камчатка): изучение временной эволюции и происхождения объемного кислого магматизма // Петрология. — 2022. — Т. 30, № 5. — С. 480–497. EDN: EVGXNV Печатные листы – 1.08 Импакт-фактор – 0.98 (РИНЦ) Личный вклад – 20%

- 2. **Щеклеина М.Д.**, Плечов П.Ю., Щербаков В.Д., Давыдова В.О., Биндеман И.Н. Петрология голыгинских игнимбритов (Южная Камчатка) // Вестник Московского университета. Серия 4: Геология. 2023. № 4. С. 86 -98. EDN: SUITYC Печатные листы 1.58 Импакт-фактор 0.29 (РИНЦ) Личный вклад 60%
- 3. Persikov E.S., Bukhtiyarov P.G., Aranovich L.Ya., **Shchekleina M.D.** Features of hydrogen interaction with basaltic melts at pressures 10–100 MPa and temperatures 1100–1250° C // Chemical Geology 2020. Т. 556. С. 119829. EDN: DJBYUU Печатные листы 0.96 Импакт-фактор 1.39 (SJR) Личный вклад 15%
- 4. **Щеклеина М.Д.**, Плечов П.Ю., Плечова А.А. Расплавные включения в кварце: изменения при вторичном нагреве // Новые данные о минералах. -2025. Т. 59, № 2. С. 72-77. DOI: 10.25993/FM.2025.59.2025.005 Печатные листы 0.58 Импактфактор 0.29 (РИНЦ) Личный вклад 70%

Благодарности

Автор выражает благодарность своему научному руководителю профессору П.Ю. Плечову за постоянное участие и поддержку в процессе написания работы, а также за предоставление образцов для исследования, В.О. Давыдовой и В.Д. Щербакову за помощь в выполнении отдельных этапов и конструктивную критику, С.Н. Рычагову, Е.А. Константинову, В.В. Пономаревой и Л.И. Базановой за помощь в отборе и предоставлении образцов для исследования. И.Н. Биндеману и М.В. Портнягину за обсуждение работы, лаборатории Локальных методов исследования вещества микрозондовых выполнение анализов дисперсионных анализов, а также исследование образцов на электронном микроскопе, А.А. Плечовой и М.Е. Зеленскому за постановку экспериментов по эволюции расплавных включений кварце при повторном нагреве. Демонстрационнометодическому центру TESCAN и лаборатории трекового анализа и изотопной геохронологии ИФЗ РАН в Москве и центру коллективного пользования «Геоаналитик» Института геологии и геохимии им. акад. А.Н. Заварицкого УрО РАН за возможность получения СL изображений кварца. Б.Б. Шкурскому и А.А. Арискину за рецензии на раннюю версию работы и конструктивную критику.