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Общая характеристика работы

Актуальность работы. Современные системы искусственного интел-
лекта (системы ИИ), представляющие собой комбинацию алгоритмов ИИ и
аппаратного обеспечения, в большинстве случаев построены на основе глубоких
нейронных сетей (НС) и компьютеров на архитектуре фон Неймана. При этом,
по сравнению с мозгом человека современные системы ИИ значительно менее
энергоэффективны: при меньшем количестве нейронов и связей они потребля-
ют значительно больше энергии. Мозг человека, состоящий приблизительно из
80-100 миллиардов нейронов и 1000 триллионов связей (синапсов), потребляет
около 20 Вт. Для сравнения, современная высокопроизводительная видеокар-
та Nvidia H100 с энергопотреблением 700 Вт имеет память объемом 80 ГБ,
достаточную для моделирования лишь 80 миллиардов связей. Таким образом,
моделирование на четыре порядка меньшего количества связей требует на по-
рядок большего энергопотребления. Как следствие, высокое энергопотребление
ограничивает применение нейронных сетей в робототехнике и других встраи-
ваемых системах.

Столь высокое энергопотребление обусловлено значительными энергоза-
тратами на обращение к основной памяти по сравнению с вычислительными
операциями, что является следствием разделения памяти и вычислений, ха-
рактерного для большинства современных вычислительных архитектур. Кроме
того, разделение вызывает большие временны́е задержки при обращении в па-
мять и ограничивает общую производительность вычислительной системы из-за
узкого канала передачи данных между памятью и вычислителем. Данные про-
блемы часто в совокупности называются проблемой бутылочного горлышка фон
Неймана. Стоит отметить, что многие алгоритмы, лежащие в основе нейрон-
ных сетей, относятся к алгоритмам с низкой вычислительной интенсивностью,
что еще больше усиливает проблему бутылочного горлышка фон-неймановской
архитектуры в системах ИИ. Особенно остро проблема обращений в память
проявляется в ситуациях, когда размер пакета входных данных НС равен едини-
це, что приводит к еще меньшей вычислительной интенсивности. Характерным
примером таких ситуаций являются задачи управления, в частности, задачи обу-
чения с подкреплением.

Обучение с подкреплением имеет множество приложений в реальном ми-
ре, таких как робототехника, управление сложными устройствами (к примеру,
удержание плазмы в токамаке в реальном времени), игры, биржевая торговля и
другие. Эти приложения часто накладывают требования малого времени отклика
и высокой частоты работы нейронных сетей, тренированных с помощью мето-
дов обучения с подкреплением. Применение НС для задач удержания плазмы в
токамаке требует частоты их работы в 100 кГц, а при автономном управлении
высокоманевренным квадрокоптером необходимы частоты их работы не менее
100 Гц. Время отклика НС в десятки наносекунд необходимо при биржевой
торговле. При попытках использования в подобных задачах нейронных сетей с
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миллиардами связей, их максимальная частота работы существенно снижается
(до нескольких Гц), что вынуждает применять либо малые по размерам сети, ли-
бо ограничиваться низкой частотой их работы. Таким образом, алгоритмические
свойства НС в сочетании с особенностями фон-неймановской архитектуры на-
кладывают серьезные ограничения на применение больших нейронных сетей в
задачах обучения с подкреплением.

Для преодоления обозначенных выше ограничений исследователи пред-
лагают как алгоритмические методы оптимизации нейронных сетей, так и
принципиально новые аппаратные решения. Существуют различные методы
алгоритмической оптимизации нейронных сетей, такие как структурная разре-
женность (прюнинг), квантование, дистилляция знаний, поиск вычислительно
эффективных архитектур НС. К сожалению, эти методы далеко не всегда учи-
тывают взаимосвязь аппаратного обеспечения и алгоритмов, что затрудняет
практическое применение данных методов. Одновременно с этим существует
крайне малое количество научных работ, посвященных применению методов
оптимизации к нейронным сетям, тренированных методами обучения с под-
креплением. Также, в последние годы активно развиваются аппаратные методы
оптимизации и предлагаются новые вычислительные архитектуры, такие как не
фон-неймановские вычислители, направленные на преодоление ограничений со-
временного аппаратного обеспечения для нейронных сетей.

Одним из наиболее перспективных направлений являются нейроморф-
ные (биологически подобные) архитектуры и методы, стремящиеся имитировать
алгоритмически или аппаратно некоторые принципы функционирования мозга
человека, что может способствовать повышению энергоэффективности, скоро-
сти работы и масштабируемости систем искусственного интеллекта. К данному
направлению относятся: импульсные нейронные сети, «вычисления в памя-
ти»/«рядом с памятью», асинхронное исполнение нейронных сетей, поддержка
разреженных и аналоговых вычислений.

Таким образом, поиск аппаратных и алгоритмических методов для оптими-
зации инференса систем искусственного интеллекта, основанных на нейронных
сетях, тренированных с помощью методов обучения с подкреплением, представ-
ляется крайне значимой и перспективной задачей. В данной работе предлагается
использовать нейроморфные методы для её решения.

В диссертации делаются акценты на следующих вопросах:
1. Анализ причин низкой эффективности в аспекте энергопотребления

и скорости работы существующих систем искусственного интеллекта,
сравнение принципов их работы с принципами функционирования моз-
га человека.

2. Разработка, применение и анализ эффективности нейроморфных мето-
дов для оптимизации систем ИИ для задач обучения с подкреплением.

Цели и задачи работы. Целью данной работы является разработка
нейроморфных методов, позволяющих существенно ускорить и понизить
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энергозатратность систем искусственного интеллекта для задач обучения с
подкреплением.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Проанализировать принципы работы современных систем искус-
ственного интеллекта с целью выявления их узких мест и проблем.
Исследовать взаимосвязь работы алгоритмов нейронных систем с
современными аппаратными платформами. Провести анализ существу-
ющих аппаратных и программных методов оптимизации нейронных
сетей.

2. Выделить принципы функционирования мозга человека и их связь с си-
стемами ИИ. Оценить их преимущества и недостатки для их возможной
имплементации в современные системы ИИ.

3. Исследовать особенности работы нейронных сетей, тренированных с
помощью методов обучения с подкреплением.

4. Разработать алгоритмы оптимизации нейронных сетей, тренированных
методами обучения с подкреплением, на основе нейроморфных мето-
дов: с помощью комбинации временно́й и структурной разреженности
и на основе комбинации структурной разреженности и квантования.

5. Программно реализовать описанные подходы, проанализировать их
эффективность и возможность потенциальной имплементации в аппа-
ратных вычислительных платформах. Провести сравнение с существу-
ющими решениями.

Научная новизна:

1. Проведено детальное сравнение принципов работы мозга человека с
принципами работы систем ИИ на основе фон-неймановских и на ос-
нове не фон-неймановских нейроморфных вычислителей. На основе
проведенного сравнения предложена классификация принципов работы
мозга человека и проведен анализ на предмет их имплементируемости
в современных системах ИИ.

2. Впервые предложен алгоритм на основе комбинации структурной раз-
реженности и квантования для оптимизации нейронных сетей, трени-
рованных методами обучения с подкреплением. Метод на 1 - 2 порядка
(вплоть до 400 раз) уменьшает занимаемую нейронными сетями память
без потери качества работы, что позволяет размещать нейронные сети в
быстрой памяти или снижать число обращений в память.

3. Впервые предложен алгоритм оптимизации нейронных сетей, трени-
рованных методами обучения с подкреплением, на основе комбинации
двух видов разреженности: структурной и временно́й.Метод уменьшает
на 1 - 2 порядка число обращений в память и число необходимых ариф-
метических операций при инференсе нейронных сетей при сохранении
качества работы. Данный метод обладает еще одним преимуществом,
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позволяя нейронным сетям работать в асинхронном режиме, что повы-
шает их потенциальную масштабируемость.

Теоретическая и практическая значимость.
В диссертационной работе проведено сравнение принципов работы моз-

га человека и современных систем искусственного интеллекта, построенных на
основе как фон-неймановских вычислителей, так и не фон-неймановских нейро-
морфных архитектур. Показано, что современные системы ИИ на основе фон-
неймановских вычислителей не используют ряд ключевых принципов работы
мозга человека. Это обуславливает низкую энергоэффективность, масштабиру-
емость и скорость работы современных систем ИИ. Рассмотрены возможности
реализации части принципов работымозга человека в современных системахИИ
для улучшения их энергоэффективности и скорости работы.

Практическая значимость работы связана с повышением эффективности
инференса систем ИИ для задач обучения с подкреплением с помощью нейро-
морфных подходов. Были предложены новые и развиты существующие подходы
на основе структурной разреженности, временно́й разреженности и квантова-
ния для оптимизации нейронных сетей, тренированных методами обучения с
подкреплением. С помощью данных методов была показана возможность умень-
шать размеры нейронных сетей на 1 - 2 порядка и уменьшать на 1 - 2 порядка
число арифметических операций. Была показана связь этих методов оптимиза-
ции с некоторыми принципами работы мозга человека.

Создан программный комплекс, который позволяет проводить экспери-
менты для изучения и тестирования методов оптимизации нейронных сетей,
тренированных методами обучения с подкреплением.

Методология и методы исследования. При получении основных резуль-
татов диссертационной работы использовались методы обучения с подкреплени-
ем, глубокое машинное обучение, методы системного и сравнительного анализа.
Использовались методы программирования на языке Python и C++.

Основные положения, выносимые на защиту:
1. Нейроморфные методы и подходы к оптимизации систем искусственно-

го интеллекта для задач обучения с подкреплением на основе свойств
и принципов функционирования мозга человека с целью повышения
энергоэффективности, пропускной способности, масштабируемости и
скорости работы современных систем ИИ.

2. Метод оптимизации инференса нейронных сетей, тренированных ме-
тодами обучения с подкреплением, на основе комбинации структурной
разреженности и квантования. Метод уменьшает на 1 - 2 порядка
(вплоть до 400 раз) размеры нейронных сетей без потери качества ра-
боты, что позволяет размещать нейронные сети в быстрой памяти или
уменьшать число обращений в память.

3. Метод оптимизации инференса нейронных сетей, тренированных ме-
тодами обучения с подкреплением, на основе комбинации временно́й и
структурной разреженности. Метод уменьшает на 1 - 2 порядка число
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обращений в память и число арифметических операций при инферен-
се нейронных сетей без потери качества работы. Введенная в методе
асинхронность нейронов дает возможность обеспечения большей мас-
штабируемости.

Апробация работы. Представленные в работе результаты докладывались
на следующих научных конференциях и семинарах:

1. Научная конференция «Тихоновские чтения» 2023, Москва, Россия, 29
октября - 3 ноября 2023.

2. Всероссийская конференция «Ломоносовские чтения» 2022, Москва,
Россия, 14 - 22 апреля 2022.

3. Научный семинар кафедрыИнтеллектуальных информационных техно-
логий ВМК МГУ, 2024.

4. Научный семинар по машинному обучению под руководством проф.
А.Г. Дьяконова, Центральный университет, 2024.

5. Научный семинар «Методы машинного обучения в автоматической об-
работке текстов», НИВЦ МГУ, 2024.

Личный вклад. Все результаты работы получены автором лично под
научным руководством д.ф.-м.н., чл.-корр. РАН Воеводина Владимира Вален-
тиновича. В работах, написанных в соавторстве, вклад автора диссертации
является определяющим.

В работе [A.1] автором выполнен анализ принципов работы современных
вычислительных систем и проведено сравнение с принципами работы мозга че-
ловека. На основе этого предложена классификация принципов работы мозга
человека и проанализирована их реализация в нейроморфных системах ИИ. Ра-
бота опубликована в журнале Frontiers in Neuroscience [A.1].

В работе [A.2] автором предложен метод оптимизации инференса ней-
ронных сетей, тренированных методами обучения с подкреплением, на основе
комбинации структурной разреженности и квантования. Все эксперименты вы-
полнены лично автором. Работа опубликована в журнале Scientific Reports [A.2].

В работе [A.3] предложен метод оптимизации инференса нейронных се-
тей, тренированных методами обучения с подкреплением, на основе комбинации
структурной и временно́й разреженности. Все эксперименты выполнены лично
автором. Работа опубликована в журнале Scientific Reports [A.3].

Публикации. Основные результаты по теме диссертации изложены в 3
публикациях [A.1––A.3], изданных в рецензируемых научных изданиях, опре-
деленных в п. 2.3 Положения о присуждении ученых степеней в Московском
государственном университете имени М. В. Ломоносова.

Объем и структура работы. Диссертация состоит из введения, 4 глав, за-
ключения и 1 приложения. Полный объем диссертации составляет 116 страниц,
включая 34 рисунка и 10 таблиц. Список литературы содержит 110 наименова-
ний.
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Содержание работы

Во введении обосновывается актуальность работы, ставится её цель и за-
дачи, излагается научная новизна, теоретическая и практическая значимость,
сформулированы положения, выносимые на защиту, и личный вклад автора.

Первая глава посвящена описанию современных систем ИИ для задач
обучения с подкреплением, их проблемам и недостаткам, и существующим ме-
тодам решения данных проблем.

Сначала обосновывается необходимость рассмотрения алгоритмов ИИ и
аппаратного обеспечения в совокупности, вводится концепция системы ИИ, ко-
торая объединяет эти два понятия.

В разделе 1.1 представлено описание архитектуры фон Неймана, её клю-
чевых компонентов и основных ограничений. Рассматриваются узкие места этой
архитектуры, включая ограниченную пропускную способность шины данных,
разницу в скорости работы памяти и процессора, а также энергетические огра-
ничения. Приводятся методы смягчения проблем архитектуры фон Неймана
такие как кэширование, конвейеризация, спекулятивные вычисления, мульти-
поточность, использование памяти с высокой пропускной способностью (HBM)
и «вычисления в памяти» («in-memory computations») или «рядом с памятью»
(«near-memory computations»).

В разделе 1.2 описаны современные нейронные сети и их ключевые ком-
поненты. Рассмотрены основные типы слоев нейронных сетей с точки зрения
вычислений, включая полносвязный, сверточный и рекуррентный слои. Описано
влияние размера пакета (batch) на вычислительную интенсивность нейронных
сетей. Показано, что вычислительную основу большинства слоев составляют
матричные операции.

В разделе 1.3 описана проблема исполнения нейронных сетей на архитек-
туре фон Неймана. Основное внимание уделено операциям умножения матриц,
которые являются ключевыми для нейронных сетей, и связанными с ними
ограничениям по доступу к памяти. Представлен анализ эффективности исполь-
зования весов и входных данных при различных размерах пакета, с акцентом на
критичность этой проблемы для задач управления в реальном времени, при ко-
торых размер пакета входных данных равен единице.

Раздел 1.4 посвящен описанию принципов работы основных классов аппа-
ратного обеспечения для задач искусственного интеллекта, включая CPU, GPU
и TPU. Представлены особенности архитектуры и методы оптимизации каждого
типа вычислителей для выполнения операций с нейронными сетями. Указаны
недостатки данных архитектур и проблематичность эффективного инференса
нейронных сетей в задачах управления.

В разделе 1.5 описывается задача обучения с подкреплением. Рассматрива-
ются основные понятия, математическая формулировка, концепция марковского
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процесса, уравнения Беллмана. Указывается, что для задач обучения с подкреп-
лением при инференсе характерен размер пакета, равный единице. Подчерки-
вается важность быстрого и энергоэффективного инференса нейронных сетей,
тренированных методами обучения с подкреплением, для многих практических
задач.

В разделе 1.6 вводится идея нейроморфного подхода к разработке систем
искусственного интеллекта, которая заключается в использовании некоторых
принципов организации и функционирования мозга человека.

В разделе 1.7 подводятся итоги главы, которые заключаются в том, что
современные системы ИИ на базе фон-неймановских вычислителей и искус-
ственных нейронных сетей на основе персептрона Розенблатта, имеют узкие
места, связанные с низкой вычислительной интенсивностью НС и дорогими по
времени и энергии обращениям в память. Подчеркивается, что особенно остро
эта проблема проявляется при инференсе нейронных сетей в задачах обучения
с подкреплением. В качестве решения предлагается заимствовать принципы ра-
боты мозга человека для повышения скорости работы и энергоэффективности
систем ИИ.

Вторая глава посвящена анализу принциповфункционирования и устрой-
ства мозга человека с целью выделения ключевых механизмов, которые могут
быть успешно адаптированы и внедрены в системыИИ, что позволит существен-
но повысить их энергоэффективность, скорость работы, масштабируемость и
оптимизировать размер нейронных сетей.

В начале производится сравнение мозга человека с современными систе-
мами искусственного интеллекта. Подчеркивается превосходство мозга человека
в энергоэффективности и количестве нейронных связей, и ставится вопрос о воз-
можности создания более эффективных систем ИИ, использующих принципы
работы мозга человека.

В разделе 2.1 описывается структура и функционирование биологического
нейрона. Представлены основные компоненты нейрона (тело, дендриты, аксон)
и механизм передачи сигналов через синапсы. Особое внимание уделяется объ-
яснению роли мембранного потенциала и потенциала действия в обработке и
передаче информации в нервной системе.

В разделе 2.1.1 представлена модель LIF (Leaky Integrate-and-Fire) ней-
рона как более биологически правдоподобная альтернатива модели нейрона
Розенблатта. Описывается математическая формулировка LIF-модели, включая
уравнение динамики мембранного потенциала и условие генерации потенциала
действия. Указываются ограничения LIF-модели и обосновывается её популяр-
ность в компьютерных симуляциях нейронных сетей.

В разделе 2.2 представлена классификация вычислительных принципов
функционирования мозга человека. Производится их сравнение с механизмами
функционирования современных систем ИИ, а также рассматриваются проек-
ты вычислительных систем, основанные на предложенных принципах. Данная
классификация была представлена автором в статье [A.1].
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В разделе 2.2.1 описывается концепция коннекционизма, основанная на
представлении ментальных феноменов через призму нейронных сетей.

В разделе 2.2.2 описывается концепция параллелизма в контексте
нейронных сетей и обосновывается необходимость использования массивно-
параллельных архитектур для эффективного функционирования искусственных
нейронных сетей.

Раздел 2.2.3 посвящен импульсному характеру передачи информации
в нейронных сетях. Представлена концепция импульсных нейронных сетей
(Spiking Neural Networks, SNN), основанных на модели LIF-нейрона, где ин-
формация передается в виде элементарных событий - спайков. Рассмотрены
преимущества SNN, включая асинхронность передачи данных и потенциаль-
ную энергоэффективность, а также недостатки, такие как сложность обучения,
вычислительная сложность и более низкое качество работы. Анализируют-
ся причины энергоэффективности специализированных нейроморфных чипов,
которые заключаются в наличии в них большого объема SRAM-памяти. Рассмат-
ривается возможность использования небинарных импульсов для повышения
эффективности передачи информации в искусственных нейронных сетях.

В разделе 2.2.4 рассматривается проблема асинхронности в контексте
параллельных вычислений и нейронных сетей. Раскрывается преимущество
асинхронного функционирования биологических нейронов, позволяющее пол-
ностью задействовать потенциал параллельной работы. Приведены примеры
нейроморфных компьютеров, реализующих асинхронную архитектуру, такие
как SpiNNaker, Loihi и NeuronFlow. Также обсуждаются ограничения асин-
хронных архитектур для нейронных сетей на основе персептрона Розенблатта,
связанные с необходимостью их послойной синхронизации.

В разделе 2.2.5 предлагается концепция активационной разреженности в
нейронных сетях, которая заключается в активации небольшой части нейро-
нов при «молчании» остальных. Данное явление отсутствует в искусственных
нейронных сетях на основе персептрона Розенблатта, в которых активны все
нейроны (за исключением нейронов с ReLU активацией), в то время как в мозге
человека обычно активны менее 10% нейронов. Активационная разреженность
поддерживается практически всеми процессорами, работающими с импульсны-
ми нейронными сетями, к примеру Loihi, TrueNorth, Tianjic и NeuronFlow. Для
поддержки активационной разреженности в классических нейросетях был пред-
ложен экспериментальный чип EIE.

В разделе 2.2.6 описывается концепция временно́й разреженности, заклю-
чающейся в обработке только измененной части входных данных, вместо их
обработки «с нуля», характерной для современных нейронных сетей. Данная
концепция схожа с идеей алгоритмов сжатия на основе компенсации движения,
которые вместо хранения кадра целиком, хранят информацию о движении его
частей. Временна́я разреженность может быть одним из источников (но не един-
ственным) активационной разреженности. Концепция временно́й разреженности
для нейронных сетей была реализована в алгоритме SpArNet и чипе NeuronFlow.
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Раздел 2.2.7 посвящен структурной разреженности в биологических и ис-
кусственных нейронных сетях, характеризующейся отсутствием регулярных
полносвязных слоев. Рассмотрены исследования по внедрению разреженности
в искусственные нейронные сети. Такие чипы как Loihi, TrueNorth, Tianjic,
NeuronFlow и EIE обладают способностью поддерживать структурную разре-
женность в импульсных и классических нейронных сетях.

В разделе 2.2.8 описывается концепция квантованности в контексте работы
мозга человека и нейронных сетей. Рассматриваются применения квантован-
ных нейронных сетей. Представлены результаты исследований, указывающие на
дискретную природу обработки информации в мозге человека и преимущества
квантования для стабильности и устойчивости к шуму. Квантованность под-
держивается практически всеми современными аппаратными платформами для
искусственного интеллекта.

В разделе 2.2.9 рассматривается аналоговая природа вычислений в биоло-
гических нейронах. Описываются преимущества аналоговых реализаций ней-
ронов, включая их высокую скорость, энергоэффективность и естественную
поддержку параллелизма. Упоминаются существующие проекты по разработ-
ке аналоговых чипов для искусственного интеллекта, такие как BrainScaleS и
различные мемристорные разработки, однако отмечается отсутствие их практи-
ческих применений.

Раздел 2.2.10 посвящен концепции вычислений в памяти и её реализа-
ции в биологических и искусственных нейронных сетях. Описывается принцип
«один нейрон - один вычислитель», характерный для биологических нейро-
нов, противопоставляемый традиционному подходу в цифровых устройствах на
основе архитектуры фон Неймана, при котором множество нейронов совмест-
но «используют» один и тот же вычислитель. Представлен гибридный подход
«вычисления рядом с памятью», используемый в современных нейроморф-
ных чипах. Данный подход характеризуется расположением весов нейронов в
быстрой, но ограниченной по размерам SRAM-памяти, расположенной рядом
с вычислителем. Приводятся примеры реализации подхода вычислений рядом
с памятью в таких процессорах как EIE, Cerebras, Groq и NorthPole, демон-
стрирующих повышенную энергоэффективность и скорость работы благодаря
использованию большого объема SRAM-памяти.

В разделе 2.3 представлены выводы об использовании биологически по-
добных методов для систем искусственного интеллекта. Описываются преиму-
щества квантования и структурной разреженности для оптимизации нейронных
сетей, позволяющие значительно сократить их размеры, что дает возможность
при наличии подходящего аппаратного обеспечения повысить энергоэффектив-
ность, скорость работы и уменьшить время отклика систем ИИ. Концепция
вычислений рядом с памятью рассматривается как компромиссное решение про-
блемы бутылочного горлышка архитектуры фон Неймана, хорошо подходящая
для задач, в которых требуется высокая скорость работы и низкое энергопо-
требление. Комбинация методов сжатия нейронных сетей и их последующее
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расположение в SRAM-памяти рядом с вычислителем дает синергетический
эффект, позволяя исполнять изначально большие нейронные сети с высокой
скоростью и низкими затратами энергии. Описаны примеры комбинации этих
подходов в современных аппаратных решениях, таких как NorthPole, EIE и Loihi,
демонстрирующие значительное повышение производительности и энергоэф-
фективности систем ИИ.

Третья глава посвящена разработке биологически подобных методов оп-
тимизации систем ИИ для задач обучения с подкреплением на основе предло-
женных в предыдущей главе принципов работы мозга человека. Доступ к памяти
является основной проблемой при инференсе в задачах обучения с подкреплени-
ем. Её можно решать либо путем уменьшения числа обращений к памяти, либо
путем расположения нейронной сети в быстрой памяти.

В разделе 3.1 приводится описание двух современных широкораспростра-
ненных алгоритмов глубокого обучения с подкреплением: SAC и DQN. Они
будут использоваться в качестве алгоритмов обучения в предложенных методах
оптимизации.

В разделе 3.2 рассматриваются методы оптимизации нейронных сетей. В
начале раздела описываются два основных классических подхода: квантование
и структурная разреженность. Квантование представляет собой отображение
непрерывного множества значений в дискретное множество. Применение кван-
тования к нейронной сети позволяет уменьшить размер модели и упростить
вычисления. Структурная разреженность достигается путем удаления (прюнин-
га, обрезания) малозначимых весов сети, что также приводит к уменьшению
размера модели. Рассматриваются различные алгоритмы и критерии применения
этих методов, а также особенности их применения в задачах обучения с подкреп-
лением. В конце раздела рассматривается дельта-алгоритм, который позволяет
использовать концепцию временно́й разреженности для оптимизации инференса
нейронных сетей, последовательно обрабатывающих высококоррелированные
по времени данные. Идея дельта-алгоритма заключается в распространении по
нейронной сети только тех активаций нейронов, которые отличаются от актива-
ций на предыдущем временном шаге не менее чем на заранее заданный порог.

В разделе 3.3 описывается алгоритм оптимизации инференса нейронных
сетей на основе комбинации структурной разреженности и квантования. Целью
данного алгоритма является оптимизация обращений к памяти при инференсе
нейронных сетей, тренированных методами RL. Оптимизация выполняется пу-
тем уменьшения обращений к памяти и/или расположения нейронных сетей в
быстрой памяти. Для этого предлагается сократить размеры нейронной сети с
помощью структурной разреженности и квантования. Данный подход был ис-
следован автором в статье [A.2].

Алгоритм оптимизации (см. рис. 1, 2) состоит из двух частей: обучения с
одновременным прореживанием нейронной сети и последующего квантования
сети. Полученный алгоритм позволяет уменьшить число обращений к памяти
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и/или расположить нейронную сеть в быстрой памяти благодаря сжатию ней-
ронной сети в десятки, а иногда в сотни раз.

Обрезание сети выполнялось в процессе её обучения на основе модуля
значения параметров с помощью градуального прюнинга в соответствии с рас-
писанием (1):

st = sf ∗
)
1−

(
1− t− t0

n∆t

)3
)
for t ∈ {t0, t0 +∆t, ..., t0 + n∆t} (1)

на шагах обучения, лежащих в интервале [ts, tf ], где ts = 0.2 · T и tf = 0.8 · T ,
а T - число шагов обучения. После завершения основного обучения в течение
дополнительных 0.2 · T шагов сеть квантуется с донастройкой с помощью ал-
горитма QAT. Для сверточных слоев выполнялось асимметричное поканальное
квантование, для полносвязных – асимметричное тензорное квантование. Пол-
ный алгоритм приведен ниже:

Алгоритм 1 Алгоритм оптимизации инференса нейронных сетей на основе
комбинации структурной разреженности и квантования для задач обучения с
подкреплением.
Входные данные:

fθ(x) – необученная сеть с 32-битными параметрами
sfinal – целевое значение разреженности
T – число шагов обучения
n – число итераций обрезания
L – частота измерения качества

Выходные данные:
fθ′′(x) – обученная квантованная сеть,M – маска весов

1: // Этап 1: Обрезание
2: M ← 1(|θ|) " Инициализация маски, |θ| - количество параметров
3: for t = 1 to T · 0.2 do " Начальное обучение
4: train_RL_step(fθ)
5: end for
6: for i = 1 to n do " Фаза обрезания
7: t← tstart + i ·∆t
8: st ← sfinal · (1− (1− t−tstart

n·∆t )3)
9: active_weights← θ[M %= 0] " Необрезанные веса

Рис. 1 –– Псевдокод алгоритма оптимизации инференса нейронных сетей на ос-
нове комбинации структурной разреженности и квантования для задач обучения

с подкреплением. Часть 1.
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10: k ← calculate_pruning_amount(st)
11: k ← |θ| · (st − |active_weights|/|θ|) " k - количество обрезаемых весов
12: threshold← kabsmin(active_weights, k) " Поиск k-го минимального по

модулю веса
13: M [|θ| ≤ threshold]← 0
14: for step = 1 to∆t do
15: train_RL_step(fθ 'M) " ' - поэлементное умножение
16: end for
17: end for
18: θbest ← θ, Rbest ← −∞
19: for t = tfinal to T do " Финальное обучение и поиск наилучшей сети
20: train_RL_step(fθ 'M)
21: if t mod L = 0 then
22: Rcurrent ← evaluate_performance(fθ 'M)
23: if Rcurrent > Rbest then
24: Rbest ← Rcurrent

25: θbest ← θ
26: end if
27: end if
28: end for
29: // Этап 2: Квантование
30: θbest_quantized ← θ
31: Rbest_quantized ← −∞
32: for t = tfinal to T do " Поиск наилучшей квантованной обрезанной сети
33: train_RL_step_with_QAT(fθ 'M)
34: if t mod L = 0 then
35: Rcurrent ← evaluate_performance(fθ 'M)
36: if Rcurrent > Rbest_quantized then
37: Rbest_quantized ← Rcurrent

38: θbest_quantized ← θ
39: end if
40: end if
41: end for
42: θresult ← θbest_quantized
43: return fθresult ,M

Рис. 2 –– Псевдокод алгоритма оптимизации инференса нейронных сетей на ос-
нове комбинации структурной разреженности и квантования для задач обучения

с подкреплением. Часть 2.
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В разделе 3.4 предлагается алгоритм оптимизации инференса нейронных
сетей на основе комбинации структурной и временно́й разреженностей. Целью
данного алгоритма является уменьшение числа обращений к памяти и сокраще-
ние объема вычислений при инференсе НС, тренированных методами RL. Для
этого предлагается обрабатывать только измененные области изображения и ак-
тивировать только необходимые нейроны, а также сжать размер сети с помощью
структурной разреженности. Так как задачи обучения с подкреплением обыч-
но имеют высокую корреляцию между входными данными в соседние моменты
времени, то применение временно́й разреженности путем обработки только из-
мененных частей входных данных и активации только необходимых нейронов
является логичным шагом. Данный подход был подробно исследован автором
в работе [A.3].

Для получения структурной разреженности используется метод на основе
Lottery Ticket Hypothesis (LTH, см. рис. 3). Для получения временно́й разрежен-
ности используется дельта-алгоритм (см. рис. 4).

Четвертая глава посвящена описанию результатов практических экспе-
риментов по оптимизации нейронных сетей, тренированных методами обучения
с подкреплением, с помощью алгоритмов, предложенных в третьей главе.

В разделе 4.1 представлено описание тестовых сред (окружений) для оцен-
ки эффективности алгоритмов обучения с подкреплением. Рассматриваются
два основных семейства сред, Atari games и MuJoCo, которые являются стан-
дартными бенчмарками для измерения качества работы алгоритмов обучения
с подкреплением. Окружения Atari games характеризуются высокоразмерным
пространством наблюдений (изображениями), дискретным пространством дей-
ствий и системой вознаграждений с задержкой. MuJoCo относится к классу
окружений с континуальным управлением, где алгоритм генерирует команды
в виде векторов вещественных чисел для контроля биоподобных механизмов.
Состояния в MuJoCo также представлены векторами действительных чисел раз-
личной размерности.

В разделе 4.2 представлены результаты работы алгоритма оптимизации
инференса нейронных сетей, тренированных методами обучения с подкреплени-
ем, на основе комбинации структурной разреженности и квантования. В качестве
методов обучения с подкреплением были выбраны два широкораспространен-
ных алгоритма: SAC и DQN.

В качестве архитектур обучаемых сетей для алгоритма SAC был применен
многослойный персептрон (MLP), в качестве окружений для обучения использо-
вались следующиеMuJoCo среды: Ant, Hopper, Swimmer, HalfCheetah, Humanoid
и Walker. В качестве архитектур обучаемых сетей для алгоритма DQN были при-
менены как классическая сверточная сеть из оригинальной работы, так и сеть
ResNet. В качестве окружений для обучения были использованы следующией
среды из семейства Atari games: Pong, Tutankham, Boxing и CrazyClimber. На ри-
сунках 5, 6, 7 представлена производительность обрезанных и/или квантованных
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Алгоритм 2 Этап 1: Структурная оптимизация (LTH)
Входные данные:

fθ(x) – необученная нейронная сеть с параметрами θ
n – число итераций обрезания сети
p – доля удаляемых весов на итерации
T – число шагов обучения на итерации
D – пороговое значение для дельта-алгоритма

Выходные данные: Кортеж 〈(fθ1(x),M1), (fθ2(x),M2), . . . , (fθn(x),Mn)〉, где
Mi ∈ {0,1}|θ|

1: M ← 1|θ| " Инициализация маски единицами
2: for i← 1 to n do
3: θi ← θ " Копирование исходных весов
4: fθi(x)← RL_train(fθi(x), T,M) " Обучение с учетом маски
5: k ← p · |θ| " Число весов для обрезания
6: active_weights← θ[M %= 0] " Необрезанные веса
7: threshold← kabsmin(active_weights, k) " Поиск k-го минимального по
модулю необрезанного веса

8: M [|θ| ≤ threshold]← 0 " Удаление k наименее значимых по модулю
весов

9: Mi ←M " Сохранение текущей маски
10: end for
11: return 〈(fθ1(x),M1), (fθ2(x),M2), . . . , (fθn(x),Mn)〉 " Кортеж обрезанных

сетей

Рис. 3 –– Псевдокод алгоритма оптимизации инференса нейронных сетей на ос-
нове комбинации структурной и временно́й разреженностей для задач обучения

с подкреплением. Этап 1. Получение структурной разреженности.

нейронных сетей в различных средах для вышеперечисленных алгоритмов обу-
чения с подкреплением и архитектур нейронных сетей.

На рис. 5 представлены результаты для MLP-сетей, обученных алгорит-
мом SAC, для сред MuJoCo. Для всех сред (за исключением HalfCheetah) за
счет предложенного алгоритма можно обрезать до 98 процентов весов НС и
квантовать оставшиеся без потери качества, что приводит к 200-кратному умень-
шению размера оптимизированных нейронных сетей: 4-кратное уменьшение за
счет квантования и 50-кратное за счет прореживания. Для HalfCheetah можно без
потери качества обрезать 80 % весов НС и квантовать оставшиеся, что приводит
к 20-кратному уменьшению размера нейронной сети. Для некоторых сред, таких
как Hopper и Swimmer, можно обрезать 99 % весов НС и квантовать оставшиеся
без потери качества работы, что приводит к 400-кратному уменьшению разме-
ра нейронной сети.
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Алгоритм 3 Этап 2: Применение дельта-алгоритма для получения временно́й
разреженности
1: // Выполняем алгоритм для каждого нейрона в сети
2: while True do
3: xk

i (t) = Wait(predecessors) " Получаем сигнал от предшественника i c
предыдущего слоя k

4: ok+1
j (t)← ok+1

j (t− 1) +Wij ×∆xk
i (t) " Пересчет внутреннего

состояния нейрона
5: ∆xk+1

j (t)← f(ok+1
j (t))− x_prevk+1

j (t) " Пересчет изменения
активации нейрона

6: if |∆xk+1
j (t)| ≥ D then " Проверка превышения активации порога

7: x_prevk+1
j (t) = f(oj(t)) " Обновление значения активации

8: Send(∆xk+1
j (t), successors) " Посылка изменения активации

∆xk+1
j (t) из нейрона последующим нейронам

9: end if
10: end while

Рис. 4 –– Псевдокод алгоритма оптимизации инференса нейронных сетей на ос-
нове комбинации структурной и временно́й разреженностей для задач обучения

с подкреплением. Этап 2. Получение временно́й разреженности.

На рис. 6 представлены результаты для классической DQN-сетей на основе
CNN для сред Atari. Для всех сред с помощью предложенного алгоритма можно
обрезать без потери качества до 80 процентов НС и квантовать оставшиеся веса,
что приводит к 20-кратному уменьшению размера оптимизированных нейрон-
ных сетей. Для Pong и Tutankham можно обрезать и квантовать до 95 процентов
весов НС, что приводит к общему 80-кратному уменьшению размера нейрон-
ных сетей.

На рис. 7 представлены результаты применения предложенного алгоритма
для DQN-сетей на основе ResNet для сред Atari. Для сред Boxing и CrazyClimber
можно обрезать до 90 процентов весов НС и квантовать оставшиеся веса с
потерей качества не более чем в три процента, что приводит к 40-кратному
уменьшению размера нейронных сетей. Для окружений Pong и Tutankhamможно
обрезать без потери качества до 98 процентов весов НС и квантовать оставшие-
ся, что приводит к 200-кратному уменьшению размера нейронных сетей. Стоит
отметить, что нейронные сети на основеResNet гораздо более пригодны для прю-
нинга и квантования.

В разделе 4.3 представлены результаты работы алгоритма оптимизации
инференса нейронных сетей, тренированных методами обучения с подкрепле-
нием, на основе комбинации структурной и временно́й разреженностей.
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Рис. 5 –– Результаты оптимизации для алгоритма SAC применительно к окруже-
ниямMuJoCo. Оси x на графиках отображают степень разреженности нейронной
сети; оси y обозначают производительность — награду, полученную агентом
(чем больше тем лучше). Синяя линия показывает производительность об-
резанной сети, красная линия показывает производительность обрезанной и
квантованной сети (результат автора) [A.2]. Пунктирная фиолетовая линия по-
казывает производительность только квантованной сети. Зелёная пунктирная
линия показывает производительность сети по умолчанию (без оптимизаций).
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Рис. 6 –– Результаты оптимизации для алгоритма DQN и сверточной нейронной
сети (CNN), применительно к Atari средам. Оси x на графиках отображают сте-
пень разреженности нейронной сети; оси y обозначают производительность —
награду, полученную агентом (чем больше тем лучше). Синяя линия показывает
производительность обрезанной сети, а красная линия показывает производи-
тельность обрезанной и квантованной сети (результат автора) [A.2]. Пурпурная
пунктирная линия показывает производительность только квантованной сети.
Зеленая пунктирная линия показывает производительность сети по умолчанию

(без оптимизаций).

В качестве метода обучения с подкреплением был применен алгоритм
DQN, в качестве архитектуры обучаемых сетей - классическая сверточная сеть
из оригинальной работы DQN. В качестве модельных среды для обучения бы-
ли использованы окружения из семейства Atari games: Freeway, Enduro, Krull,
Robotank, Breakout, SpaceInvaders. Результаты представлены на рисунке 8.

Показатели вознаграждения (синяя линия на графике) согласуются с ре-
зультатами, полученными в работах по применению алгоритма LTH в задачах
обучения с подкреплением. Оранжевая линия демонстрирует вознаграждение
для нейронных сетей с дельта-нейронами (т.е. после применения дельта-
алгоритма). Их производительность сопоставима с производительностью сети
без дельта-нейронов (синяя линия), что свидетельствует о том, что дельта-
алгоритм не оказывает существенного влияния на вознаграждение.

В разделе 4.3.1 проведен анализ количества обращений в память. Усред-
ненные доли числа обращений в память оптимизированного алгоритма от числа
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Рис. 7 –– Результаты оптимизации для алгоритма DQN и сети ResNet, приме-
нительно к Atari средам. Ось x на графиках обозначает степень разреженности
нейронной сети; ось y обозначает производительность - награду, полученную
агентом (чем больше тем лучше). Синяя линия показывает производительность
обрезанной сети, красная линия показывает производительность обрезанной и
квантованной сети (результат автора) [A.2]. Пунктирная фиолетовая линия по-
казывает производительность только квантованной сети. Зеленая пунктирная
линия показывает производительность сети по умолчанию (без оптимизаций).

обращений в память алгоритма без оптимизаций отображены зеленой пунк-
тирной линией на рисунке 8. Число обращений к памяти зависит от игры, в
которую играет агент, и от уровня разреженности сети. Предложенный алго-
ритм оптимизации обеспечивает различные уровни структурной и временно́й
разреженностей в зависимости от выбранного порога, слоя и входных данных
(окружения). Дельта-алгоритм (без обрезания весов) приводит к уменьшению ко-
личества обращений к памяти от 3.7 раз для Robotank до 14.3 раз для Breakout.
Одновременное использование с дельта-алгоритмом структурной разреженно-
сти еще больше уменьшает количество обращений к памяти. Например, для
Freeway доля обращений к памяти уменьшается при обрезании с 0.33 до 0.026
(уменьшение в 12.6 раз). Однако для Krull она уменьшается с 0.07 лишь, до 0.033
(уменьшение в 2.2 раза). Такая вариабельность объясняется тем, что структурная
разреженность весов статически влияет на количество обращений в память, в то
время как дельта-алгоритм обеспечивает разные уровни временно́й разреженно-
сти в зависимости от выбранного порога, слоя, разреженности и входных данных
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(окружения). Таким образом проявляется сложное внутреннее взаимодействие и
взаимная интерференция обоих алгоритмов оптимизации.

В разделе 4.3.2 проведен анализ количества значимых операций умноже-
ния (в которых оба операнда не ноль). Усредненные доли ненулевых операций
умножения в оптимизированном алгоритме от числа операций умножения алго-
ритма без оптимизаций отображены на рисунке 8 красной пунктирной линией.

В разделе 4.3.3 проанализирована зависимость числа значимых операций
умножения и качества работы сети от среды и порога D дельта-алгоритма. Про-
веденные эксперименты показали, что порог равный 0.01 является наиболее
подходящим.
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Рис. 8 –– Результаты оптимизации для сред Freeway, Robotank, Enduro, Breakout,
Krull and SpaceInvaders. На всех графиках ось x отображает степень разре-
женности нейронной сети. Левая ось y обозначает вознаграждения (качество
работы), полученные агентом; правая ось y представляет долю значимых опера-
ций умножения и долю обращений к памяти, усредненную по запускам среды.
Синяя линия демонстрирует производительность обрезанной сети, а оранже-
вая - производительность обрезанной сети с дополнительным применением
дельта-алгоритма (результат автора) [A.3]. Красная пунктирная линия отоб-
ражает долю значимых умножений обрезанной нейронной сети, дополненной
дельта-алгоритмом от числа значимых умножений неоптимизированной сети
(меньшее значение предпочтительнее, результат автора) [A.3]. Зеленая пунк-
тирная линия показывает долю необходимых обращений к памяти обрезанной
нейронной сети, дополненной дельта-алгоритмом от числа обращений неопти-
мизированной сети (меньшее значение предпочтительнее, результат автора)
[A.3]. Фиолетовая пунктирная линия иллюстрирует качество работы нейронной

сети без какой-либо оптимизации.
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В заключении приведены основные результаты работы, которые заклю-
чаются в следующем:

1. На основе детального анализа и классификации вычислительных прин-
ципов работы мозга человека показано, что отсутствие ряда ключевых
принципов в современных системах ИИ, построенных на основе вы-
числителей с фон-неймановской архитектурой, определяет их низкую
энергоэффективность, масштабируемость и скорость работы. Указан-
ные ключевые принципы легли в основу предложенных в работе мето-
дов, направленных на создание быстрых и энергоэффективных систем
ИИ для инференса задач глубокого обучения с подкреплением.

2. Впервые предложен метод оптимизации инференса нейронных сетей,
тренированных алгоритмами обучения с подкреплением, на основе
комбинации структурной разреженности и квантования. Метод суще-
ственно уменьшает размеры нейронных сетей (на 1 – 2 порядка, вплоть
до 400 раз) без потери качества работы, что позволяет размещать ней-
ронные сети в быстрой памяти или уменьшать число обращений в
память, а также уменьшает на порядок число необходимых арифмети-
ческих операций для инференса.

3. Впервые предложен метод оптимизации инференса нейронных сетей,
тренированных алгоритмами обучения с подкреплением, на основе ком-
бинации временно́й и структурной разреженности.Метод уменьшает на
порядок (до 25 раз) число обращений в память и число необходимых
арифметических операций при инференсе нейронных сетей без потери
качества работы.

4. Предложенные методы оптимизации программно реализованы и про-
шли апробацию на тестовых окружениях Atari и MuJoCo, являющихся
стандартными бенчмарками для задач обучения с подкреплением и хо-
рошо отражающих типовые случаи входных данных в них, подтвердив
эффективность предложенных методов.

В заключение автор выражает благодарность и большую признательность
научному руководителю Воеводину Владимиру Валентиновичу за помощь, об-
суждение результатов и научное руководство. Автор также выражает благодар-
ность своей матери Ивановой Ольге Петровне и своему дедушке Иванову Петру
Васильевичу (1930–2025) за воспитание, образование и поддержку. Автор глубо-
ко признателен своей жене Кузнецовой Дарье Владимировне за её неоценимую
поддержку, помощь, терпение и понимание.
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