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ВВЕДЕНИЕ 

Актуальность работы. Картографирование небесных тел является 

важнейшей и неотъемлемой частью их исследования. Для представления научной 

информации о небесном теле и формирования впечатления об устройстве его 

поверхности часто используются карты поверхности и гипсометрические карты. 

Под картой поверхности понимается общегеографическая карта небесного тела, 

т.е. карта, на которой отображены видимые элементы местности. Это понятие 

вводится, чтобы избежать использования термина «общегеографическая карта» во 

внеземном картографировании. Основным содержанием карт поверхности и 

гипсометрических карт небесных тел чаще всего является рельеф, поскольку 

другие видимые элементы местности практически не представлены. 

Отличие других небесных тел от Земли в качестве объекта 

картографирования проявляется и в содержании карт, и в их математической 

основе. Для таких карт характерно разнообразие референц-поверхностей 

(математическая поверхность, аппроксимирующая физическую поверхность 

небесного тела) вследствие различий формы объектов. При этом, как правило, 

используется не такое большое число картографических проекций (в основном 

потому, что количество этих карт гораздо меньше, чем карт Земли). Карты 

поверхности и гипсометрические карты небесных тел составляются в различных по 

характеру искажений проекциях. При отображении рельефа на таких картах может 

требоваться как минимизация искажений форм объектов (для передачи очертаний 

горизонталей, морфологических характеристик кратеров и т.д.), так и сохранение 

их площадей. 

Как стало ясно к концу 80-х гг. XX в., многие небесные тела в Солнечной 

системе имеют сложную нерегулярную поверхность, что привело к появлению 

рекомендаций Международного астрономического союза использовать трѐхосный 

эллипсоид в качестве референц-поверхности для их картографирования. Под 

трѐхосным эллипсоидом в геодезии и картографии понимается эллипсоид, у 

которого все три полуоси различны. Таким образом, возникла необходимость 

получения проекций трѐхосного эллипсоида с заданным характером искажений. И 

если в то время из тел сложной формы космическими аппаратами исследовались 

только спутники Марса, то к 20-м гг. XXI в. накоплен большой объѐм данных для 
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картографирования спутников планет-гигантов, астероидов, ядер комет. Это 

определяет актуальность задач по разработке проекций трѐхосного эллипсоида и 

определению свойств этих проекций. Разнообразие референц-поверхностей и 

влияние их параметров на свойства проекций обуславливают важность 

обоснованного выбора проекций при создании карт небесных тел. Выбор проекций 

тесно связан с таким направлением математической картографии, как получение 

так называемых наилучших проекций, т.е. проекций, в которых минимизированы 

все искажения или некоторые их виды.  

К 20-м гг. XXI в. возросла роль геоинформационных технологий в 

картографировании, однако вследствие сложности расчѐтных формул проекции 

трѐхосного эллипсоида отсутствуют в математических модулях распространѐнных 

ГИС-пакетов. Поэтому при картографировании небесных тел, фигуры которых 

предпочтительно аппроксимировать трѐхосным эллипсоидом, нередко делается 

выбор в пользу более простого варианта (сфера или эллипсоид вращения). Это 

обуславливает актуальность задачи по разработке инструментария для работы с 

проекциями трѐхосного эллипсоида, в том числе получению конечных формул для 

упрощения вычислений. 

Цель исследования – получить формулы и определить свойства проекций 

трѐхосного эллипсоида, наилучших с точки зрения минимизации искажений для 

отображения рельефа на картах поверхностей и гипсометрических картах небесных 

тел. 

Для достижения цели были поставлены следующие задачи исследования: 

 на основе опыта картографирования небесных тел выявить проекции, 

используемые для отображения рельефа на картах поверхности и 

гипсометрических картах; 

 получить конечные формулы аналогичных проекций для трѐхосного 

эллипсоида или простые аппроксимирующие зависимости; 

 разработать инструментарий по вычислению прямоугольных 

координат в этих проекциях и показателей искажений; 

 определить свойства проекций трѐхосного эллипсоида, прежде всего 

величину и распределение основных видов искажений; 
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 выбрать наилучшие проекции для отображения рельефа на картах 

поверхностей и гипсометрических  картах небесных тел с точки зрения 

минимизации искажений. 

Объектом исследования являются проекции трѐхосного эллипсоида с 

различным характером искажений. Предмет исследования – свойства проекций 

трѐхосного эллипсоида (величина и распределение искажений) и их влияние на 

отображение рельефа на картах поверхностей и гипсометрических картах небесных 

тел. 

Фактический материал и личный вклад автора. Работа отражает 

результаты исследований аспиранта за период с 2017 г., выполненных на кафедре 

картографии и геоинформатики географического факультета МГУ имени 

М.В. Ломоносова. Автором получены конечные формулы цилиндрических, 

азимутальных и конических проекций трѐхосного эллипсоида, а при 

невозможности их получения – простые аппроксимирующие зависимости для 

вычисления координат в проекциях. Также автором на основе исследования 

распределения искажений в проекциях трѐхосного эллипсоида выбраны наилучшие 

из них для отображения рельефа на картах небесных тел с точки зрения 

минимизации искажений. Основные исходные материалы – глобальные 

фотомозаики небесных тел, созданные проф. Ф. Стуком (Stooke Small Bodies 

Maps), и цифровые модели поверхности, доступные в системе планетных данных 

(Planetary Data System). Параметры эллипсоидов устанавливаются в соответствии с 

отчѐтом рабочей группы Международного астрономического союза по 

картографическим координатам и элементам вращения планет и спутников. 

Программные комплексы для построения изокол и составления карт – Golden 

Software Surfer и QGIS. 

Методология и методика. Методологическую базу работы составляют 

методы моделирования, математические методы, картографический метод 

исследования, который заключается в представлении свойств объектов и явлений с 

помощью картографических изображений, а также сравнительный метод. В основе 

работы лежит традиционная методика исследования картографических проекций, 

разработанная К. Якоби, Г.А. Гинзбургом, Л.М. Бугаевским, распространѐнная на 

проекции трѐхосного эллипсоида. Она заключается в определении величин и 
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распределения искажений в проекциях по изоколам и выборе наилучших проекций 

с точки зрения минимизации искажений. Получение формул проекций трѐхосного 

эллипсоида является продолжением и углублением изысканий Л.М. Бугаевского, 

Б.Б. Серапинаса, Дж. Снайдера, М.Э. Флейс, М.В. Нырцова. При выводе формул 

проекций интегралы, соответствующие заданному характеру искажений, 

выражаются через аналитические функции (конечные формулы) либо сводятся к 

эллиптическим интегралам. Для выбора наилучших проекций сравнивается 

распределение искажений в разных проекциях и для разных эллипсоидов. 

Научную новизну работы определяют следующие результаты: 

 впервые получены конечные формулы ряда проекций трѐхосного 

эллипсоида, предназначенных для отображения рельефа на картах поверхностей, 

фотокартах и гипсометрических картах небесных тел, удобные для их включения в 

математический модуль геоинформационных систем и для упрощения расчѐта 

показателей искажений; 

 разработан новый инструментарий в виде программы на языке 

JavaScript и графического интерфейса к ней на HTML по вычислению 

прямоугольных координат в цилиндрических, азимутальных, конических 

проекциях трѐхосного эллипсоида и в проекции Якоби, а также показателей 

искажений, включающий полученные конечные формулы. 

Научная и практическая значимость работы. Исследование расширяет 

теорию проекций трѐхосного эллипсоида, получаемых на основе векторного 

описания самого трѐхосного эллипсоида радиус-вектором, а также касательной к 

эллипсоиду плоскости, содержащей приращение радиус-вектора. Выведенные 

формулы проекций дополняют систему цилиндрических, азимутальных и 

конических проекций в нормальной ориентировке, разрабатываемых в рамках этой 

теории.  

Выбранные наилучшие проекции трѐхосного эллипсоида для отображения 

рельефа рекомендуются к использованию для карт поверхностей и 

гипсометрических карт небесных тел, фигуры которых целесообразно 

аппроксимировать этой математической поверхностью. Разработанный 

инструментарий по вычислению координат в проекциях упрощает процесс 

составления карт таких небесных тел. Алгоритмы расчѐта показателей искажений, 
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включѐнные в упомянутый инструментарий, могут быть использованы при выборе 

проекций для карт небесных тел, также как и построенные изоколы. 

Инструментарий по вычислению прямоугольных координат проекций 

трѐхосного эллипсоида используется в лабораторных работах студентов по 

учебным курсам на кафедре картографии и геоинформатики географического 

факультета МГУ имени М.В. Ломоносова. 

Основные защищаемые положения: 

1. Для отображения рельефа на картах глобального охвата при условии 

комбинирования азимутальной и цилиндрической проекций в рамках 

единой компоновки и выбора переходной области в зависимости от 

эксцентриситетов эллипсоида наилучшими являются: для карт поверхности 

и фотокарт – проекции меридианного сечения, для гипсометрических карт – 

проекции, сохраняющие длины вдоль меридианов. 

2. Конические проекции целесообразно использовать для отображения 

рельефа на картах поверхности и гипсометрических картах регионального 

охвата, при этом расположение области с минимальными искажениями тем 

ближе к субширотному, чем меньше экваториальное сжатие эллипсоида. 

3. Для исследования поверхностей небесных тел с точки зрения соотношения 

площадей различных объектов и отклонения референц-поверхности от 

физической поверхности пригодны разработанные равновеликие проекции. 

Степень достоверности. Корректность полученных конечных формул 

проекций проверяется путѐм сравнения рассчитанных координат с результатами 

вычислений определѐнных интегралов, входящих в эти формулы, численными 

методами. Также для контроля правильности формул используется тот факт, что 

азимутальные проекции являются частным случаем, а цилиндрические – 

предельным случаем конических проекций. Выводы о распределении искажений в 

проекциях, сделанные по построенным изоколам, проверяются путѐм оценки 

искажений на примере отдельных форм рельефа и их сопоставления с 

составленными фотокартами и гипсометрическими картами небесных тел. 

Апробация работы. Результаты исследования были представлены на 

международных конференциях: «Practical Geography and XXI Century Challenges» 

(Москва, 2018), «14th Moscow International Solar System Symposium» (Москва, 2023), 
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«15th Moscow International Solar System Symposium» (Москва, 2024), «Lunar and 

Planetary Science Conference» (Вудлендс, 2025). 

Публикации. По теме диссертации опубликовано 6 научных работ, в том 

числе 6 статей в рецензируемых научных изданиях, индексируемых в базе ядра 

Российского индекса научного цитирования «eLibrary Science Index». Во всех 

работах вклад автора является существенным. Постановка научных задач, вывод 

формул, подготовка текста и иллюстраций, включая карты, осуществлялись при 

активном участии соискателя. При подготовке текста диссертации использован 

текст всех 6 публикаций, в которых, согласно Положению о присуждении учѐных 

степеней в МГУ, отражены основные результаты, положения и выводы 

исследования. 

Статьи в рецензируемых научных изданиях, индексируемых в базе ядра 

Российского индекса научного цитирования «eLibrary Science Index»: 

1. Sokolov A.I., Nyrtsov M.V., Fleis M.E., Nadezhdina I.E. Investigation and 

cartographic representation of Hyperion space images photogrammetric processing 
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76. EDN: HTVHZI / 0,59 п.л. Импакт-фактор 0,700 (JIF). Вклад соискателя 30%. 
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ГЛАВА 1. КАРТОГРАФИРОВАНИЕ НЕБЕСНЫХ ТЕЛ В 

ПРОЕКЦИЯХ ТРЁХОСНОГО ЭЛЛИПСОИДА 

1.1. Карты небесных тел в равноугольных, равновеликих и 

произвольных проекциях 

1.1.1. Некоторые особенности небесных тел как объектов 

картографирования 

Диссертационное исследование посвящено отображению рельефа на картах 

поверхности и гипсометрических картах. Создание таких карт предполагается 

возможным для небесных тел, обладающих твѐрдой поверхностью. Ещѐ одним 

ограничением является степень изученности небесного тела. Исходные данные, 

необходимые для составления карт поверхности и гипсометрических карт, как 

правило, получают в результате исследования небесных тел автоматическими 

межпланетными станциями (АМС). Основные цели полѐтов АМС – планеты 

земной группы, их спутники, околоземные астероиды, реже – планеты-гиганты, их 

спутники, астероиды главного пояса, кометы и другие объекты. 

Основным содержанием карт поверхности и гипсометрических карт 

небесных тел чаще всего является рельеф, поскольку антропогенное воздействие на 

них минимизировано, а из других видимых элементов местности можно отметить 

разве что гидрографические объекты спутника Сатурна Титан (Stofan et al., 2007). 

Среди трудов, содержащих сведения о рельефе небесных тел, в качестве наиболее 

значимого отметим учебное пособие «Рельеф планетных тел» (Лукашов, 1996). Под 

планетными телами понимаются планеты и их расслоѐнные на оболочки 

шарообразные спутники. В пособии рассматриваются только те из них, которые 

имеют твѐрдую, в том числе ледяную поверхность. Описываются типы рельефа 

планетных тел – кратерный (импактный), вулкано-тектонический, вулканический, 

флювиальный, гравитационный, гравитационно-тектонический, эоловый, рельеф 

полярных шапок. 

Для небесных тел Солнечной системы, не являющихся планетными телами, 

может использоваться понятие малые тела. Они обладают неправильной фигурой, 

т.е. имеют вид обломка или глыбы. К ним относятся небольшие спутники планет, 

астероиды, кометы и малые объекты из пояса Койпера. Малые тела в силу своей 
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недостаточной массы так и не стали планетными телами (Слюта, Воропаев, 1993). 

Деление небесных тел Солнечной системы (исключая Солнце) на планетные тела и 

малые тела весьма удобно. Однако ситуацию осложняет данное в 2006 г. 

Международным астрономическим союзом определение, согласно которому к 

малым телам Солнечной системы относятся все небесные тела, кроме планет, 

карликовых планет и естественных спутников (Resolutions adopted at the General 

Assemblies, URL: https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf). В 

соответствии с этим, небольшие спутники, не являющиеся планетными телами, не 

являются также и малыми телами. 

Рельеф небольших спутников, астероидов, комет и других небесных тел 

Солнечной системы, не относящихся к планетным телам, отличается меньшим 

разнообразием. Вулканизм, а также вода и атмосферная циркуляция на них 

отсутствуют, поэтому основные рельефообразующие процессы для поверхностей 

таких небесных тел – ударное кратерообразование и гравитационные процессы. В 

статье (Лазарев и др., 2014) показывается, что среди тех форм рельефа планет 

земной группы и Луны, которым присвоены названия, наиболее распространены 

кратеры; с учѐтом вышесказанного, допустимо применение этого вывода и к 

небесным телам неправильной формы. Хотя форма ударного кратера (в 

геометрическом смысле, т.е. форма в плане) зависит от угла падения 

образовавшего его тела (ударника), большинство кратеров имеют округлую форму 

или близкую к таковой, поскольку образование кратера – процесс в большей 

степени взрывного, а не механического характера. Только удары под очень малым 

углом приводят к образованию кратеров эллиптической формы (Melosh, 1996). 

Помимо кратеров, для рассматриваемых небесных тел характерны равнины, гряды, 

борозды, области. Меньшее число присвоенных таким объектам названий может 

указывать на их меньшую распространѐнность, по сравнению с кратерами. 

Также следует отметить особенности отсчѐта высот для создания карт 

небесных тел. Определение высот для внеземных объектов представляет сложность 

по ряду причин. Уровенные поверхности планет и других крупных небесных тел 

Солнечной системы близки к эллипсоидам вращения, а их физические поверхности 

отличается от уровенных весьма незначительно. Однако для этих тел отсутствует 

вещественная уровенная поверхность (такая, как уровень моря, по которому 
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определяется земной геоид) (Огородова и др., 2012). Кроме того, современное 

состояние науки и техники не предполагает проведение массовых измерений на 

физической поверхности небесного тела. Таким образом, введение для небесных 

тел систем высот, подобных ортометрическим и нормальным, с одной стороны, 

практически неосуществимо, а с другой стороны, не является необходимым. 

Ситуация усложняется, если мы имеем дело с небесными телами, 

имеющими нерегулярную фигуру, отличную от сферы и эллипсоида вращения. 

Наиболее часто для картографирования таких небесных тел используется 

трѐхосный эллипсоид, однако даже он не всегда близок к физической поверхности; 

так, весьма распространены небесные тела, поверхность которых несимметрична 

относительно экватора и начального меридиана (Огородова и др., 2012). Уровенная 

поверхность небесных тел неправильной формы сложна, и еѐ нельзя описать 

простым аналитическим выражением. Поэтому в качестве поверхности отсчѐта 

высот для таких тел применяется трѐхосный эллипсоид (Melosh, 2011). В 

частности, при построении цифровой модели рельефа Фобоса по результатам его 

телевизионных исследований с АМС «Фобос» в 1989 году высоты отсчитывались 

от трѐхосного эллипсоида с полуосями а = 13,5 км, b = 10,7 км и с = 9,6 км 

(Аванесов и др., 1994). 

При исследовании небесных тел с АМС информация о высотах обычно 

представляется в виде длин радиус-векторов. Радиус-вектор – отрезок, 

соединяющий центр масс тела и точку на его поверхности, которая имеет 

определѐнные планетоцентрические координаты – широту и долготу. «Высота» 

может быть вычислена как разность длин двух радиус-векторов: к точке 

физической поверхности и к соответствующей точке отсчѐтной поверхности.  

Обращаясь вновь к телевизионным исследованиям Фобоса, отметим, что высоты 

над трѐхосным эллипсоидом отсчитывались именно по радиус-векторам (Аванесов 

и др., 1994). Однако в статье (Огородова и др., 2012) указывается, что такая 

величина не может считаться высотой, поскольку она не определяет расстояние 

между уровенными поверхностями, проходящими через точку физической 

поверхности и точку с теми же координатами на отсчѐтной поверхности. 

Расстояние между уровенными поверхностями (которые параллельны 

между собой) определяется длиной перпендикуляра к любой из них. Таким 
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образом, в качестве высот целесообразно использовать превышения физической 

поверхности над отсчѐтной поверхностью не по радиус-векторам, а по нормалям к 

отсчѐтной поверхности. Для Земли высоты, отсчитываемые по нормалям к 

эллипсоиду вращения, называют геодезическими. Ортометрические и нормальные 

высоты также отсчитываются по нормалям к эллипсоиду вращения, но отсчѐтными 

поверхностями для них являются геоид и квазигеоид соответственно. Один из 

возможных способов вычисления высот по нормалям к трѐхосному эллипсоиду 

основан на методе приближений (Огородова и др., 2012). Другой способ, 

предоставляющий возможность точного определения геодезических высот (Флейс 

и др., 2019), разработан М.Э. Флейс, М.В. Нырцовым и М.М. Борисовым совместно 

с автором диссертации. 

Таким образом, важная особенность рельефа внеземных объектов – 

преобладание кратеров в облике местности вследствие ведущей роли процесса 

кратерообразования. Это обуславливает значимость исследования кратеров, в том 

числе с помощью карт. Отсутствие вещественной уровенной поверхности и 

невозможность непосредственного измерения высот приводит к необходимости 

использования референц-поверхности в качестве уровенной. Для тел с 

нерегулярной фигурой такой поверхностью может быть трѐхосный эллипсоид. 

1.1.2. Карты небесных тел в различных проекциях 

Картографирование небесных тел осуществлялось по результатам 

телескопических наблюдений с XVII в. Первые карты небесных тел, детали 

поверхностей которых можно различить при использовании телескопов, 

составлялись в тех же проекциях, что и для Земли. Для карт мира до XIX века 

нередко использовалась знаменитая равноугольная цилиндрическая проекция 

Меркатора, изначально предназначенная для морской навигации. Она была 

впервые представлена фламандским картографом Г. Меркатором в 1569 году без 

объяснения способа построения. Математические выкладки были опубликованы 

лишь к середине XVII века (Monmonier, 2004). В первоначальном варианте это 

была проекция сферы, поскольку теоретическое обоснование полярного сжатия 

Земли и параметры земного сфероида стали известны несколько позднее. 

Склонность к использованию проекции Меркатора проявилась и для первых карт 

ближайших к нам космических объектов. В качестве примера можно привести 

14



карты Марса, составленные итальянским астрономом Джованни Скиапарелли по 

наблюдениям во время великого противостояния 1877 г. и последующих 

противостояний. Для этих карт Дж. Скиапарелли использовал проекцию 

Меркатора и азимутальную стереографическую проекцию. Одна из карт 

представлена на рисунке 1 (Mars Maps by Schiaparelli (1877-1890), URL: 

https://planetarymapping.elte.hu/wp-content/uploads/2016/02/schiaparelli__1881.jpg). 

Отметим, что карта ориентирована в соответствии с тем, как наблюдалось 

изображение в телескоп – южный полюс находится сверху. 

Начало космической эры открыло новый этап в исследовании внеземных 

объектов. Уже в 1959 г. советской АМС «Луна-3» были получены снимки обратной 

стороны Луны, что сделало этот спутник первым внеземным объектом 

космического картографирования (Родионова и др., 2022). Составленная по этим 

изображениям карта (в поперечной ортографической проекции) показана на 

рисунке 2 (International Catalog of Planetary Maps, URL: 

https://planetarymapping.elte.hu/wp-content/uploads/2015/11/lipsky1960.jpg). Первый в 

мире «Атлас обратной стороны Луны» (Барабашов, 1960) был также составлен и 

опубликован в СССР. В последующие годы полѐты АМС к планетам земной 

группы – Меркурию, Венере, Марсу – позволяют получить изображения и 

составить первые карты этих небесных тел. 

Рисунок 1. Карта Марса в проекции Меркатора, составленная Дж. Скиапарелли  
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Таким образом, в последние три десятилетия XX века происходил рост 

степени изученности небесных тел, в первую очередь планет земной группы и их 

спутников. Появление подробных сведений о различных характеристиках 

исследуемых объектов способствовало увеличению масштаба картографирования. 

Следует отметить, что для крупномасштабных карт предпочтительными являются 

равноугольные проекции (Гинзбург и др., 1955). Б.Б. Серапинас указывает на 

тенденцию их использования при масштабах 1:1 000 000 и крупнее (в случае карт 

земной поверхности) (Серапинас, 2005). Для топографических карт разных стран 

также постепенно были введены равноугольные проекции. Так, для карт СССР в 

1928 г. решено использовать проекцию Гаусса-Крюгера (Гинзбург и др., 1955), для 

карт США несколько позднее принята проекция UTM (Snyder, 1987). 

Рисунок 2. Карта обратной стороны Луны (International Catalog of Planetary 

Maps, URL: https://planetarymapping.elte.hu/wp-

content/uploads/2015/11/lipsky1960.jpg) 
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Продолжением указанной тенденции является ввод равноугольных 

проекций для карт поверхностей планет земной группы и Луны. В частности, 

поверхность Марса была разделена геологической службой США на 30 частей: 16 в 

приэкваториальных широтах, 12 в средних и 2 в приполярных. В этих диапазонах 

широт используются проекция Меркатора, равноугольная коническая проекция 

Ламберта и азимутальная стереографическая проекция (Map of Mars, URL: 

https://photojournal.jpl.nasa.gov/catalog/PIA03467). В случае других небесных тел 

принцип разграфки и набор проекций аналогичный. Введение такой системы для 

карт поверхности способствовало использованию равноугольных проекций и при 

составлении тематических карт, в частности, геологических. Отметим, что для 

геологических карт Земли принято заимствовать математическую основу 

топографических карт – аналогичный процесс наблюдается и в картографировании 

внеземных объектов. На рисунке 3 представлен лист геологической карты области 

Дискавери (Discovery) на поверхности Меркурия (Geologic map of the Discovery 

Quadrangle of Mercury, URL: https://pubs.usgs.gov/imap/1658/plate-1.pdf) в 

равноугольной конической проекции Ламберта. 

Рисунок 3. Лист геологической карты Меркурия (Geologic map of the Discovery 

Quadrangle of Mercury, URL: https://pubs.usgs.gov/imap/1658/plate-1.pdf) 
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Приведѐнные примеры использования равноугольных проекций касаются 

картографирования на региональном уровне, однако введение описанной системы 

способствовало и созданию карт глобального охвата в тех же проекциях. Весьма 

распространена компоновка, в которой комбинируются изображения 

приэкваториальных и средних широт в проекции Меркатора и приполярных широт 

в азимутальной стереографической проекции. В частности, такая компоновка 

является одной из основных в «Атласе планет земной группы и их спутников» 

(1992). Она использована для бланковых и некоторых тематических карт. На 

рисунке 4 показана бланковая карта Венеры в описанной компоновке. В 

цилиндрической проекции отображѐн широтный пояс ±60°, в азимутальной 

проекции – от 50° до 90° вокруг обоих полюсов. Другая основная компоновка карт 

атласа – изображение полушарий (с перекрытием в 20°) в поперечной равновеликой 

азимутальной проекции Ламберта. Она использована для большинства карт, 

включая бланковые карты, карты поверхности и гипсометрические карты. 

Исключение составляет гипсометрическая карта Фобоса, математическая основа 

которой описывается в разделе 1.2.2. Также для отдельных карт атласа 

используется поперечная равнопромежуточная азимутальная проекция Постеля. 

Рисунок 4. Бланковая карта Венеры из «Атласа планет земной группы и их 

спутников» (1992) 
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В «Атласе Фобоса» (2015) проекция Меркатора и азимутальная 

стереографическая проекция используются для многолистной базовой карты 

поверхности и для гипсометрической карты, а рельеф отдельных кратеров 

показывается в косой стереографической проекции. Обзорная карта поверхности в 

этом атласе составлена в «простой цилиндрической» (равнопромежуточной вдоль 

меридианов квадратной цилиндрической) проекции сферы. Вообще, использование 

сферы для атласного картографирования этого небесного тела видится не вполне 

корректным. Однако такое решение было принято вследствие недоступности 

проекций трѐхосного эллипсоида в наиболее распространѐнных ГИС-пакетах, а 

одна из главных причин этого – сложность расчѐтных формул. 

Таким образом, наиболее часто используются при составлении карт 

небесных тел проекция Меркатора, азимутальная стереографическая проекция и 

поперечная равновеликая азимутальная проекция Ламберта. Система разграфки 

карт регионального охвата предполагает использование равноугольных проекций – 

цилиндрической, азимутальной и конической. В последнее время большее 

распространение получает равнопромежуточная вдоль меридианов квадратная 

цилиндрическая проекция.  

1.1.3. Особенности выбора проекций для карт небесных тел 

Приведѐнные выше примеры показывают, что карты поверхности и 

гипсометрические карты могут составляться в различных по характеру искажений 

проекциях, т.е. связи выбора проекции с содержанием карты небесного тела 

практически не наблюдается. Так, в «Атласе планет земной группы и их 

спутников» для гипсометрических карт используется равновеликая проекция, а в 

«Атласе Фобоса» – равноугольная. Поэтому для обоснования выбора проекций 

обратимся к «Атласу для выбора картографических проекций» (Гинзбург, 

Салманова, 1957). Рекомендации в этом атласе разработаны с учѐтом важности 

минимизации искажений разных типов на картах различного содержания. 

Основные типы искажений – искажения площадей, углов, длин и форм. Искажения 

площадей отсутствуют в равновеликих проекциях, искажения углов – в 

равноугольных проекциях, другие два типа искажений присутствуют во всех 

проекциях. Рекомендации в атласе даны для земных карт, однако в большинстве 

случаев они могут быть распространены и на другие небесные тела, поскольку 
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принцип отображения объектов на карте не изменяется. При этом необходимо 

учитывать возможные различия в содержании карт Земли и внеземных объектов.  

Для гипсометрических карт в «Атласе для выбора картографических 

проекций» рекомендуются проекции, по характеру искажений занимающие место 

посередине между равнопромежуточными и равновеликими (Гинзбург, Салманова, 

1957).  В этом случае присутствует необходимость сохранения площадей, занятых 

различными высотными уровнями, не пренебрегая полностью искажениями других 

видов. Эта необходимость не зависит от уровенной поверхности и способа расчѐта 

высот, поэтому далее в диссертационном исследовании будем исходить из того, 

что рекомендация может быть распространена на другие небесные тела. 

Для общегеографических карт, особенно обзорных, в «Атласе для выбора 

картографических проекций» признаѐтся важным передать как формы, так и 

площади с наименьшими искажениями. В диссертационном исследовании при 

рассмотрении карт поверхности основной акцент делается на сохранении 

очертаний и форм объектов, поскольку предполагается, что это более значимо для 

представления научной информации о небесном теле и формирования впечатления 

об устройстве его поверхности. В этом случае рекомендуется применять проекции, 

в которых минимизированы или полностью устранены искажения углов (Гинзбург, 

Салманова, 1957). 

Также при выборе проекций в диссертационном исследовании 

предполагается, что для представления научной информации о небесном теле 

наиболее удобны карты глобального и регионального охвата. В соответствии с 

этим при анализе свойств проекций и их влияния на отображение рельефа из 

рассмотрения исключаются мелкие кратеры, валуны и другие формы рельефа, 

имеющие небольшие размеры. 

1.2. Обзор разработки и исследования проекций трѐхосного 

эллипсоида 

1.2.1. Несферические небесные тела 

Необходимость использования различных референц-поверхностей и 

разработки их проекций становилась результатом развития представлений о 

фигурах небесных тел. Так, о шарообразности Земли было известно ещѐ с 
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античных времѐн (Щетников, 2012). В XVII веке И. Ньютон первым установил, 

что сферическая жидкая Земля под воздействием гравитационных и центробежных 

сил должна преобразоваться в слегка сжатый у полюсов сфероид вращения. К 

середине XIX века теоретические исследования математиков К. Маклорена и 

К. Якоби показали, что фигурами равновесия вращающейся однородной жидкости 

могут быть сжатые эллипсоиды вращения и трѐхосные эллипсоиды (Ляпунов, 1930; 

Chandrasekhar, 1969). Это неявно указывало, что и в действительности небесные 

тела способны принимать подобную форму в результате эволюции. Наблюдения 

подтверждали такие предположения: даже в телескоп при достаточном увеличении 

заметно, что Юпитер и Сатурн сплюснуты у полюсов (Холшевиков, 2008). 

Однако в XX веке распространились несколько иные представления. Как 

утверждал И.Д. Лукашевич, шарообразная форма Земли не является 

доказательством того, что она была когда-то в жидком состоянии. Он подчѐркивал, 

что в «столь больших накоплениях материи, как наш земной шар, силы, зависящие 

от гравитации материи, по закону Ньютона, достигают огромного напряжения и 

дают место явлениям, которые носят название процессов планетарных» 

(Лукашевич, 1911). Таким образом, начинает преобладать гравитационная гипотеза, 

согласно которой, шарообразная равновесная форма тела – результат 

преобразования неравновесной фигуры твѐрдого упругого тела под воздействием 

его собственной массы. «Форма Земли, сферическая или эллипсоидальная, близкая 

к шарообразной, для своего объяснения не нуждается в каком-либо обосновании 

теорией происхождения нашей планеты. Независимо от какой бы то ни было 

теории Земля при данной своей величине должна принять эту форму и на ней не 

могут не начаться геотектонические явления» (Личков, 1965). 

К этому времени уже было хорошо известно, что метеориты и астероиды 

тесно связаны и имеют угловатую, а не шарообразную форму. Небольшие 

астероиды представляют собой гигантские метеориты, а крупные метеориты 

являются малыми астероидами. Но уже становилось очевидным, что если между 

метеоритами и астероидами никакой границы не было, то между астероидами и 

планетами такая граница должна быть явной. Заключается она в «планетарности», 

отличающей планеты от астероидов, которые «…представляют собой глыбы или 

камни в десятки и более километров в поперечнике» (Кринов, 1951). Таким 

21



образом, возникает проблема границы между планетами и астероидами, или, в 

соответствии с понятиями, рассмотренными в разделе 1.1.1, между планетными 

телами и малыми телами. 

Накопление сведений, полученных в ходе дистанционного зондирования с 

космических аппаратов, привело к осознанию того, что математические 

поверхности сферы или эллипсоида вращения не всегда корректно 

аппроксимируют фигуры небольших спутников и астероидов. Так, канадский 

учѐный Ф. Стук установил, что для небесных тел, у которых разница в осях 

составляет более 10%, необходимо применять поверхности, отличающиеся от 

сферы (Stooke, 1986). К концу 80-х годов XX века было установлено, что астероиды 

и небольшие спутники, в отличие от планет, имеют неравновесную фигуру, 

которая может быть аппроксимирована трѐхосным эллипсоидом (Thomas, 1989). На  

фундаментальное структурное и эволюционное различие между планетными и 

малыми телами также указывало то, что зависимость перепадов высот поверхности 

от размера тела была разной: прямо пропорциональной для тел с неправильной 

фигурой и, напротив, обратно пропорциональной для планет (Croft, 1992). 

Первым из несферических тел, изображения поверхности которого были 

получены космическим аппаратом, стал спутник Марса Фобос (Нырцов и др., 

2012). Изучение фигуры Фобоса показало, что предпочтительно аппроксимировать 

его трѐхосным эллипсоидом (Duxbury, 1974), размеры полуосей которого могут 

различаться: в ранних исследованиях использовались значения 13,5, 10,7 и 9,6 км 

(Аванесов и др., 1994), тогда как при создании современного атласа Фобоса – 13,24, 

11,49 и 9,48 км (Karachevtseva et al., 2019). В конце 80-х гг. появляются 

рекомендации Международного астрономического союза (МАС) по выбору 

референц-поверхностей для картографирования планет и спутников, основанные на 

исследованиях их фигуры и геологического строения (Тюфлин, 1986). Трѐхосный 

эллипсоид рекомендуется для спутников Марса, а также для некоторых спутников 

Юпитера и Сатурна. 

По современным представлениям, параметры фигуры таких небесных тел 

(сплюснутость, вытянутость) зависят от их химического и минерального состава. 

Е.Н. Слюта выделяет пять групп малых тел, для каждой из которых имеется своя 

граница (критический радиус) перехода к планетному телу (Слюта, 2014): 
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койперовские объекты; ледяные тела; силикатные тела, состоящие из углистых 

хондритов; силикатные тела, состоящие из обыкновенных хондритов; 

металлические тела (класс железных метеоритов). Наблюдается явная корреляция 

формы силикатных тел в зависимости от их прочности, т.е. чем меньше прочность 

– тем меньше вытянутость фигуры по длинной оси (Слюта, 2013). Отсутствует 

зависимость сферичности малых тел от их массы, причѐм это характерно для тел 

любого состава – от ледяных до металлических (Слюта, 2014). Отметим, что 

Е.Н. Слюта указывает на характерное для планетных тел соотношение полуосей – 

более 0,9, что согласуется с исследованиями Ф. Стука. 

Таким образом, при картографировании небесных тел, не являющихся 

планетными телами, целесообразно использовать трѐхосный эллипсоид, поскольку 

фигуры этих тел не являются равновесными и чаще всего далеки от сферы и 

эллипсоида вращения. Это обуславливает практическую значимость задачи 

получения проекций трѐхосного эллипсоида. Далее в диссертации понятие «малые 

тела» не используется во избежание противоречий с определением МАС, о 

котором упоминалось в разделе 1.1.1. Однако предполагается, что проекции 

трѐхосного эллипсоида предназначены именно для таких тел, а их применение для 

картографирования планетных тел избыточно ввиду незначительных отличий этих 

тел от сферы и эллипсоида вращения. 

1.2.2. История разработки проекций трѐхосного эллипсоида 

По характеру искажений картографические проекции подразделяются на 

равновеликие, равноугольные и произвольные; среди последних выделяются 

равнопромежуточные проекции. При разработке проекций для трѐхосного 

эллипсоида исследователи чаще всего старались получить проекции с 

аналогичными свойствами, однако возможны и иные подходы.  

Получение равноугольных проекций является приложением более общей 

математической теории, рассматривающей конформные отображения, которые 

сохраняют углы между кривыми. Значительный вклад в развитие этой теории внѐс 

немецкий математик и геодезист К.Ф. Гаусс (Гаусс, 1958). Равноугольное 

отображение поверхности трѐхосного эллипсоида на плоскость исследовал 

немецкий математик К. Якоби (Якоби, 1936). Также следует отметить советского 

геодезиста Г.А. Мещерякова, рассмотревшего стереографические проекции 
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произвольной поверхности (Мещеряков, 1968). Одним из периодов активной 

разработки равноугольных и близких к ним проекций трѐхосного эллипсоида 

являются 80-е годы XX века. 

В 1985 году американский картограф Дж. Снайдер получил приближѐнные 

формулы равноугольной проекции трѐхосного эллипсоида с небольшим 

экваториальным и полярным сжатием (Snyder, 1985). Дж. Снайдер применил 

особый способ задания широты: параллели образуются сечением трѐхосного 

эллипсоида плоскостями, параллельными плоскости экватора, и представляют 

собой эллипсы. Для вычислений использовались тригонометрические ряды, 

коэффициенты которых рассчитывались методом наименьших квадратов. 

Меридианы в проекции несколько отличаются от прямолинейных (рисунок 5). 

Хотя полученная Снайдером проекция является строго равноугольной, 

использование еѐ при картографировании различных небесных тел затруднительно. 

Для каждого трѐхосного эллипсоида с конкретными значениями полуосей 

необходимо заново вычислять коэффициенты, входящие в формулы проекции, и 

проверять точность результата. 

 

Рисунок 5. Фрагмент картографической сетки в равноугольной проекции 

Снайдера (Snyder, 1985; размеры полуосей условны: a = 1, b = 0,8, c = 0,6) 
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Также в 80-е годы равноугольным проекциям трѐхосного эллипсоида были 

посвящены работы Б.Б Серапинаса. Так, в его статье (Серапинас, 1984)  

отмечается, что для получения равноугольных проекций необходимы 

изометрические координаты, введение которых может оказаться проблематичным, 

особенно для эллипсоидов с большими значениями экваториального и полярного 

эксцентриситетов. Исходя из существования равноугольной цилиндрической 

проекции трѐхосного эллипсоида, Б.Б. Серапинас предложил свой способ вывода 

такой проекции, основанный на пропорциональности коэффициентов Гаусса на 

эллипсоиде и на плоскости. Также в статье выводятся равноугольная коническая и 

стереографическая проекции. 

Особое место в истории разработки равноугольных и близких к ним 

проекций занимают исследования Л.М. Бугаевского. В частности, этому вопросу 

посвящена его докторская диссертация (Бугаевский, 1971), где также говорится о 

необходимости рассмотрения изометрических координат для трѐхосного 

эллипсоида и делается попытка ввести такие координаты. Основываясь на своих 

исследованиях, Л.М. Бугаевский предложил цилиндрическую проекцию трѐхосного 

эллипсоида (Бугаевский, 1987), которая в то время считалась равноугольной. 

Продолжив изыскания в этом направлении, учѐный получил формулы конической и 

азимутальной проекций (Бугаевский, 1991). Наиболее полно исследования 

Л.М. Бугаевского в области равноугольных проекций трѐхосного эллипсоида 

отражены в его монографии (Бугаевский, 1999), где представлен вывод 

перечисленных и некоторых других проекций через изометрические координаты. 

Предложенная Л.М. Бугаевским цилиндрическая проекция трѐхосного 

эллипсоида была использована для карт Фобоса в «Атласе планет земной группы и 

их спутников» (1992). Помимо карты поверхности (рисунок 6), в этой проекции 

составлены гипсометрическая карта и бланковая карта Фобоса. Единообразная 

компоновка этих трѐх карт была предложена К.Б. Шингарѐвой. К центральной 

части карты, показывающей приэкваториальные и средние широты (до ±60°), было 

добавлено изображение полярных территорий (от ±40° до ±90°) в 

равнопромежуточной вдоль меридианов азимутальной проекции трѐхосного 

эллипсоида. Таким образом, части карты были составлены в разных по характеру 

искажений проекциях. 
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В 2006 году цилиндрическая проекция Бугаевского была применена и для 

Деймоса при создании многоязыковой карты спутников Марса (Серия 

многоязыковых карт планет Земной группы и их спутников, URL: 

http://planetmaps.ru/multilingual-planet-maps.html), причѐм в той же компоновке. 

Модифицированная версия этой проекции была использована для «Атласа Фобоса» 

(2015). Новая карта составлена по данным, полученным с космического аппарата 

«Mars Express». Оригинальная компоновка была сохранена и в этом случае. 

По мере углубления знаний о равноугольных и близких к ним проекциях 

трѐхосного эллипсоида возрастал интерес картографов и к равновеликим 

проекциям, позволяющим отображать на карте без искажений площади любых 

объектов. В статье (Cheng, Lorre, 2000), посвящѐнной равновеликим проекциям для 

картографирования небесных тел с нерегулярной фигурой, условие сохранения 

площадей выводится с помощью коэффициентов Гаусса на аппроксимирующей 

поверхности, построенной авторами, и в плоскости проекции. Приводится интеграл 

для вычисления полярного расстояния в равновеликой азимутальной проекции. 

Утверждается, что этот интеграл не имеет аналитического выражения, далее 

полярное расстояние вычисляется численными методами. Также в статье 

Рисунок 6. Карта поверхности Фобоса из «Атласа планет земной группы и их 

спутников» (1992) 
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приводится координатная сетка полученной проекции (рисунок 7). Проекция 

используется для картографирования Фобоса и Деймоса. Отметим, что проекция 

является морфографической, поскольку длина радиус-вектора каждой точки 

цифровой модели фигуры входит в уравнения проекции. 

Равновеликая проекция из статьи (Berthoud, 2005) также получена на 

основе азимутальной проекции и является морфографической. Она используется 

для картографирования кратеров на поверхности Эроса (рисунок 8). Искажения в 

проекции для этого небесного тела сравниваются с искажениями в «простой 

цилиндрической» проекции сферы. 

 

Рисунок 8. Кратеры Эроса в равновеликой проекции (Berthoud, 2005) 
 

 

Рисунок 7. Картографическая сетка Фобоса (Cheng, Lorre, 2000) 
вчпир 
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В начале XXI века трѐхосный эллипсоид уже широко использовался для 

картографирования небесных тел (Нырцов, 2009). Этим можно объяснить новый 

период активной разработки равноугольных и близких к ним проекций этой 

математической поверхности, связанный с исследованиями М.В. Нырцова, 

М.Э. Флейс, М.М. Борисова и Ф. Стука. В их статье (Флейс и др., 2015) 

показывается, что полученные Л.М. Бугаевским и Б.Б. Серапинасом 

цилиндрические проекции не являются строго равноугольными. Однако, как 

отмечают авторы статьи, проекция Бугаевского даѐт хорошее представление о 

поверхности Фобоса в широтном поясе от -60° до +60°, так как в окрестности 

каждого меридиана близка к равноугольной цилиндрической проекции эллипсоида 

вращения, соответствующего меридианному сечению. 

Также авторами статьи (Флейс и др., 2015) было реализовано вычисление 

прямоугольных координат в различных проекциях трѐхосного эллипсоида, 

включая проекцию Бугаевского. Алгоритм вычислений, основанный на 

квадратурной формуле Гаусса, работает и для эллипсоидов с большими 

значениями экваториального и полярного эксцентриситетов. В число 

реализованных входит и равноугольная проекция трѐхосного эллипсоида, формулы 

которой были предложены К. Якоби ещѐ в XIX веке (Якоби, 1936). В этой 

проекции построена фотокарта поверхности астероида 25143 Итокава (Nyrtsov et 

al., 2014). Также авторами была составлена фотокарта поверхности астероида 433 

Эрос в проекции, сохраняющей угол между меридианом и параллелью (рисунок 9). 

Использование поперечной ориентировки и особенности трѐхосного эллипсоида, 

аппроксимирующего фигуру этого астероида (малая экваториальная и полярная 

полуоси совпадают) превращают проекцию, по сути, в проекцию эллипсоида 

вращения, которая является равноугольной. В то же время, карты в проекциях, 

сохраняющих угол между меридианом и параллелью, в нормальной ориентировке 

дают плохое представление о картографируемом небесном теле (Флейс и др., 2015). 
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Коллектив авторов в составе М.В. Нырцова, М.Э. Флейс, М.М. Борисова и 

Ф. Стука внѐс значительный вклад в разработку и иных по характеру искажений 

проекций трѐхосного эллипсоида, в частности, равновеликих. В их статье (Nyrtsov 

et al., 2015) приводятся формулы равновеликих проекций (цилиндрической и 

азимутальной), а также выражения для расчѐта различных показателей искажений 

в них. В этих проекциях составлена фотокарта астероида 253 Матильда. 

Цилиндрическая и азимутальная проекции, сохраняющие длины вдоль меридианов, 

использованы при картографировании астероида 433 Эрос. В статье (Нырцов и др., 

2012) приводится фотокарта поверхности этого небесного тела, а в статье (Флейс и 

 

Рисунок 9. Фотокарта поверхности астероида 433 Эрос в цилиндрической 

проекции, сохраняющей угол между меридианом и параллелью (Nyrtsov et al., 2014) 
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др., 2019) – гипсометрическая карта. В статье (Nyrtsov et al., 2017) предлагаются 

различные по характеру искажений конические проекции. Важнейшим результатом 

научных изысканий указанного коллектива авторов является создание учебного 

пособия (Нырцов и др., 2022), в котором обобщены знания о геометрии трѐхосного 

эллипсоида и его картографических проекциях, как существующих, так и вновь 

разработанных. 

Свою версию равноугольной проекции трѐхосного эллипсоида для 

ограниченного участка поверхности небесного тела предложил польский геодезист 

П. Пендзих (Pędzich, 2019). Проекция использована для картографирования кратера 

Стикни на поверхности спутника Марса Фобос (рисунок 10). Условием получения 

проекции является отсутствие искажений на границе кратера. 

В 2022 году П. Пендзих использовал координаты, введѐнные 

Л.М. Бугаевским и названные им изометрическими, и представил вновь 

«равноугольную» цилиндрическую проекцию трѐхосного эллипсоида (Pędzich, 

 

Рисунок 10. Изображение кратера Стикни в равноугольной проекции 

трѐхосного эллипсоида для ограниченного участка поверхности (Pędzich, 2019) 
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2022), ссылаясь на справедливость рассуждений Л.М. Бугаевского о соблюдении 

свойства равноугольности. В статье представлена картографическая сетка в 

полученной таким образом цилиндрической проекции, дополненная изолиниями 

линейных искажений. Также построена картографическая сетка в этой проекции с 

использованием предложенного автором коэффициента, позволяющего улучшить 

распределение искажений. В качестве исходных данных используются 

планетоцентрические координаты. Карт в этой проекции создано не было. В этой 

же статье П. Пендзих рассмотрел и другие проекции, полученные на основе 

«изометрических» координат по Бугаевскому. 

Исследования П. Пендзиха также не ограничились равноугольными и 

близкими к ним проекциями. В его статье (Pędzich, 2017) представлен метод 

построения равнопромежуточных проекций трѐхосного эллипсоида. При выводе 

использовались приведѐнные координаты, а уравнения проекций были выражены с 

помощью эллиптического интеграла 2-го рода и эллиптических функций Якоби. 

Приведены уравнения для трѐх проекций: цилиндрической, азимутальной и 

псевдоцилиндрической. Кроме того, представлены сетки трѐх систем координат 

(планетографической, планетоцентрической и приведѐнной) в разработанных 

проекциях, описаны их основные свойства. На рисунке 11 показана 

картографическая сетка в псевдоцилиндрической проекции. 

 

Рисунок 11. Картографическая сетка в равнопромежуточной 

псевдоцилиндрической проекции (Pędzich, 2017) 
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В ещѐ одной статье П. Пендзих представил метод построения 

цилиндрических и азимутальных равновеликих проекций трѐхосного эллипсоида в 

приведѐнных координатах (рисунок 12), также основанный на вычислениях 

эллиптического интеграла 2-го рода и эллиптических функций Якоби (Pędzich, 

2018). Представлены формулы для расчѐта искажений в этих проекциях. 

Искажения площадей и длин отображены в виде изокол и эллипсов искажений. 

Указывается, что представленный метод может быть использован для расчѐта 

площадей объектов на поверхности небесного тела. Расчѐты проводились для 

трѐхосного эллипсоида с полуосями a = 267,5 м, b = 147 м, c = 104,5 м, принятого в 

качестве референц-поверхности для астероида 25143 Итокава. Исследования 

П. Пендзиха, посвящѐнные равнопромежуточным и равновеликим проекциям 

трѐхосного эллипсоида, дополняют и расширяют описанные выше разработки 

коллектива авторов в составе М.В. Нырцова, М.Э. Флейс, М.М. Борисова и 

Ф. Стука. 

Говоря о разработке проекций трѐхосного эллипсоида, по характеру 

искажений относящихся к группе произвольных, следует упомянуть также 

перспективные проекции. Теория перспективных проекций трѐхосного эллипсоида 

 

Рисунок 12. Картографическая сетка приведѐнных координат в равновеликой 

цилиндрической проекции (Pędzich, 2018) 

32



была разработана А.В. Кондрачук (Кондрачук, 2008; 2009). Формулы 

предложенных проекций содержат тригонометрические функции и не требуют 

вычисления интегралов, что упрощает их практическое использование. На 

основании расчѐтов прямоугольных координат были построены варианты 

картографических сеток представленных в диссертации проекций для спутника 

Юпитера Амальтея, фигура которого аппроксимируется трѐхосным эллипсоидом с 

полуосями a = 135 000 м, b = 85 000 м, c = 77 500 м. 

Таким образом, в начале XXI в. активно ведѐтся разработка проекций 

трѐхосного эллипсоида с различным характером искажений. Однако проблемой 

остаѐтся отсутствие таких проекций в математических модулях распространѐнных 

ГИС-пакетов (Нырцов, 2017). Упомянутый ранее инструментарий по вычислению 

координат в проекциях трѐхосного эллипсоида, основанный на квадратурных 

формулах Гаусса, в свободном доступе отсутствует. Поэтому при создании карт 

небесных тел часто выбирается более простой вариант (сфера или эллипсоид 

вращения), что делает карты менее точными, затрудняет измерения по ним; также 

такая карта может формировать искажѐнное представление об устройстве 

поверхности небесного тела. 

1.2.3. Исследование проекций. Выбор наилучших проекций 

Под исследованием проекций понимается определение их свойств, которые 

устанавливаются после получения формул отображающих функций и 

характеристик проекции в ходе решения прямой задачи математической 

картографии. Достоинством способов определения картографических проекций 

при решении прямой задачи является сравнительная простота используемого при 

этом математического аппарата (Вахрамеева и др., 1986). Это особенно важно в 

случае трѐхосного эллипсоида, работа с которым сама по себе сопряжена с 

выполнением громоздких вычислений. 

Свойства проекций – это, прежде всего, величины и распределение 

основных видов искажений (углов, площадей, длин и форм) по картографируемой 

поверхности. Особый характер имеет связь между искажениями углов и площадей: 

стремление уменьшить искажения площадей влечѐт за собой увеличение 

искажений углов, и наоборот. Поэтому в равноугольных проекциях наблюдаются 

очень большие искажения площадей, а в равновеликих проекциях значительно 
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искажены углы (Серапинас, 2005). В проекциях могут быть точки или линии, в 

которых искажения отдельных или всех видов отсутствуют. Их называют точками 

и линиями нулевых искажений. 

Искажения длин на карте выражаются в том, что частный масштаб длин 

меняется в каждой точке в зависимости от направления, а также от точки к точке. 

Частный масштаб длин представляет собой отношение длины бесконечно малого 

отрезка на карте к длине соответствующего бесконечно малого отрезка на 

эллипсоиде. В бесконечно малой окрестности каждой точки карты различают: 

масштаб длин вдоль меридиана, масштаб длин вдоль параллели, масштаб длин по 

любому направлению (Серапинас, 2005). Также в каждой точке существуют два 

направления, по которым частные масштабы длин принимают экстремальные 

значения – по одному из них масштаб максимален, по другому – минимален. 

Направления экстремальных масштабов являются взаимно перпендикулярными. 

Искажения площадей на карте могут быть выражены через частный 

масштаб площадей, который представляет собой отношение площадей бесконечно 

малой трапеции на карте и на эллипсоиде. Что касается искажений углов, то разные 

углы, имеющие вершину в заданной точке, искажаются по-разному. Поэтому для 

характеристики этого вида искажений либо выбирается какой-то определѐнный 

угол (угол между меридианом и параллелью, азимут заданного направления), либо 

вычисляется наибольшее искажение углов. 

Говоря об использовании равноугольных проекций в целях сохранения 

форм структур рельефа на картах небесных тел (см. раздел 1.1.3), следует 

понимать, что сохранение углов не тождественно сохранению форм. В 

равноугольных проекциях частный масштаб длин не зависит от направления. 

Однако в этих проекциях подобие сохраняется лишь для бесконечно малых фигур, 

а форма объекта искажаются тем сильнее, чем больше его размеры (Серапинас, 

2005). Поэтому для крупнейших структур рельефа небесного тела эти искажения 

могут становиться существенными даже в равноугольных проекциях. Искажения 

форм, как и искажения длин, присутствуют в любых проекциях. 

Для характеристики искажений в отдельных точках проекции могут быть 

использованы изоколы – линии равных искажений, которые дают наглядное 

представление о величине и распределении искажений разных видов на карте. 
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Другой способ основан на том, что в общем случае (при изображении, не 

сохраняющем подобия бесконечно малых фигур) бесконечно малая окружность 

картографируемой поверхности изображается в проекции бесконечно малым 

эллипсом (Вахрамеева и др., 1986). Эллипс конечных размеров, соответствующий 

этому бесконечно малому эллипсу, называют эллипсом искажений. Радиус-вектор 

эллипса по любому направлению соответствует частному масштабу длин в этом 

направлении. Форма эллипса показывает искажения углов и форм – они искажены 

тем больше, чем больше эллипс отличается от окружности. Площадь эллипса 

пропорциональна частному масштабу площадей. Полуоси эллипса соответствуют 

экстремальным (наибольшему и наименьшему) масштабам длин. 

Изоколы удобны тем, что они наглядно показывают, в каких направлениях 

нарастают или убывают искажения и где достигаются их наибольшие или 

наименьшие значения. В то же время эллипс искажений является весьма наглядной 

комплексной характеристикой всех видов искажений. Недостатком изокол и 

эллипсов искажений является то, что они по ним трудно судить об искажениях на 

картах крупных объектов, имеющих конечные размеры (Серапинас, 2005). 

Искажения в пределах некоторого региона или даже всей карты 

исследуются разными способами, часто основанными на вычислениях средних 

значений показателей. Удобным и наглядным является способ кругов, или колец, 

размещаемых в заданных точках на сфере и отображаемых в плоскости проекции 

(Серапинас, 2005). В проекции они изображаются деформированными фигурами. 

По аналогии с эллипсами искажений их можно назвать фигурами искажений. 

Фигуры искажений могут быть использованы для получения количественных 

показателей. Так, если построить на сфере окружность конечных размеров и 

отобразить эту окружность и еѐ радиусы в проекции, изменение длин радиусов 

будет характеризовать искажения длин, а изменение площади круга – искажения 

площадей. Оценку искажений форм можно осуществить, вычислив коэффициент 

формы как отношение максимальной длины радиуса к минимальной.  

Возможен другой способ оценки искажений форм. Вновь на сфере строится 

окружность. В проекции она изображается некоторой геометрической фигурой. 

Находится максимальный диаметр этой фигуры. Из середины диаметра проводится 

радиус, определяющий минимальное расстояние от этой точки до контура фигуры. 
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Максимальный радиус является эквивалентом большой полуоси эллипса 

искажений, а минимальный радиус – малой полуоси. Отношение максимального 

радиуса к минимальному определяет коэффициент стереографичности. Он 

характеризует близость свойств проекции к свойствам стереографической 

проекции сферы (Серапинас, 2005), в которой любая окружность, как бесконечно 

малая, так и конечных размеров, изображается окружностью. 

Интересный способ демонстрации искажений форм в картографических 

проекциях разработал А.В. Гедымин. Он основан на том, что правильные 

изображения географических объектов не наблюдаются людьми регулярно. 

Поэтому даже существенные отступления на картах от правильных изображений 

большинство людей может не заметить. Отсюда возникла идея наложить на карту 

изображение предмета, хорошо знакомого любому читателю карты. Изображение 

этого предмета должно быть искажено так же, как искажено на карте изображение 

самого географического объекта. В качестве такого предмета А.В. Гедымин 

использовал профиль человеческого лица (Гедымин, 1984). Такое отображение 

весьма наглядно, особенно если искажения форм очень велики. 

Ещѐ один способ оценки искажения формы протяженных объектов был 

предложен С.В. Ктитровым и Д.А. Рысляевым (Ктитров, Рысляев, 2018). Помимо 

окружности, в качестве модельных предлагается использовать и другие фигуры, 

такие как параллелограмм, прямоугольник, ромб. При этом, так как неискаженная 

фигура в действительности расположена на сфере, то в случае, если она не является 

дугой или окружностью, могут возникнуть вопросы к форме и размерам фигуры 

для наложения. Решение проблемы видится авторами в проецировании фигуры на 

плоскость с наименьшими искажениями размеров и формы. Искажения форм и 

размеров оцениваются путѐм совмещения изображений модельной фигуры и той 

же фигуры в рассматриваемой проекции, что представляется весьма наглядным. 

Авторы предполагают возможность и количественной оценки искажений, однако 

конкретные значения для модельных фигур в разных проекциях не приводятся. 

Отметим, что рассмотренные способы оценки искажений форм 

предполагается использовать для проекций сферы. В случае с эллипсоидом 

вращения его поверхность в окрестности выбранной точки (центра фигуры 

искажений) заменяется сферой (Серапинас, 2005). Для земных карт это допустимо, 
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однако для карт небесных тел могут использоваться эллипсоиды с большим 

сжатием или трѐхосные эллипсоиды, и при переходе к сфере это приведѐт к 

неточностям. Построение фигуры искажений непосредственно на трѐхосном 

эллипсоиде затруднительно из-за отсутствия необходимого инструментария. 

Таким образом, описанные способы оценки искажений в пределах региона 

или всей карты, основанные на фигурах искажений, необходимо дополнительно 

дорабатывать, чтобы они были применимы для проекций трѐхосного эллипсоида. В 

то же время характеристика искажений в каждой точке карты для таких проекций 

может быть получена. Искажения в проекциях трѐхосного эллипсоида 

рассматривали Б.Б. Серапинас (Серапинас, 1983), Л.М. Бугаевский (Бугаевский. 

1999), А.В. Кондрачук (Кондрачук, 2009), П. Пендзих (Pędzich, 2018). Наиболее 

полно теория искажений в этих проекциях изложена в пособии (Нырцов и др., 

2022). В главе 3 пособия представлены формулы частных масштабов и параметров 

эллипса искажений. В выражения для вычисления показателей искажений входят 

производные вертикальной координаты (для цилиндрических проекций) и 

полярного расстояния (для азимутальных и конических проекций) по широте и 

долготе. Приводятся формулы этих производных, полученные с учѐтом того, что 

формулы самих координат представлены в виде определѐнных интегралов. 

Исследование проекций тесно связано с таким направлением 

математической картографии, как разработка теории и практики получения 

наилучших и идеальных проекций, обладающих минимальными искажениями и 

(или) другими достоинствами. Впервые постановка такой проблемы была сделана в 

1853 г. великим русским учѐным П.Л. Чебышѐвым, который сформулировал 

теорему о наилучших равноугольных проекциях (Чебышѐв, 1951). Наилучшие 

проекции можно искать либо из неограниченного множества картографических 

проекций (такая проекция называется идеальной), либо из какой-то их частной 

совокупности. Наилучшие проекции могут быть двух видов: 1) обеспечивающие 

минимум искажений и наилучшее их распределение; 2) обеспечивающие 

оптимальное выполнение всей совокупности требований к проекциям в 

соответствии с конкретным назначением создаваемой карты (Бугаевский, 1998). 
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1.3. Получение проекций трѐхосного эллипсоида с заданным 

характером искажений 

В основе диссертационного исследования лежит классификация проекций 

по виду вспомогательной поверхности и по характеру искажений, адаптированная 

для трѐхосного эллипсоида (Нырцов, Флейс, 2021; Нырцов и др., 2022). 

Выделяемые этой классификацией цилиндрические, азимутальные и конические 

проекции выводятся на основе векторного описания самого трѐхосного эллипсоида 

радиус-вектором, а также касательной к эллипсоиду плоскости, содержащей 

приращение радиус-вектора. Такой подход позволяет получить равновеликие и 

сохраняющие длины вдоль меридианов проекции, однако вместо равноугольных 

проекций трѐхосного эллипсоида возникает новый класс проекций – 

квазиравноугольные проекции, сохраняющие некоторые свойства равноугольных. 

Они подразделяются на проекции, сохраняющие угол между меридианом и 

параллелью, и проекции меридианного сечения. В пособии (Нырцов и др., 2022) 

приводятся формулы проекций, получаемых в рамках упомянутого подхода, при 

этом только для азимутальной проекции меридианного сечения даѐтся конечная 

формула, остальные же представлены в виде определѐнных интегралов. 

1.3.1. Трѐхосный эллипсоид: системы координат и первая 

квадратичная форма 

Эллипсоидом называется замкнутая центральная поверхность второго 

порядка. Каноническое уравнение эллипсоида имеет вид: 

  

  
 

  

  
 

  

  
               (1) 

Числа  ,   и   называются полуосями эллипсоида. Сечение эллипсоида 

плоскостью представляет собой эллипс. Эллипсоид, у которого две полуоси равны 

между собой, называется эллипсоидом вращения (Математическая энциклопедия, 

1982). В геодезии и картографии эллипсоид вращения нередко называется просто 

эллипсоидом, а эллипсоид, у которого все три полуоси различны, – трѐхосным 

эллипсоидом. Эллипсоид с соотношением полуосей       также будем 

называть трѐхосным, поскольку у большинства небесных тел ось вращения 

совпадает с наименьшей осью эллипсоида или близка к ней. 
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Вывод цилиндрических, азимутальных и конических проекций в пособии 

(Нырцов и др., 2022) основывается на системе пространственных прямоугольных 

координат XYZ с центром, совпадающим с центром масс небесного тела (рисунок 

13). Эта система координат имеет особое значение при картографировании 

внеземных объектов, так как нередко именно в ней представлены данные, 

необходимые для составления карт. В качестве примера можно привести цифровую 

модель рельефа Фобоса (Gaskell Phobos shape model v1.0, URL: 

https://data.nasa.gov/Earth-Science/GASKELL-PHOBOS-SHAPE-MODEL-V1-0/2u8k-

qygw). Все проекции в рамках описанного выше подхода выведены в системе 

планетоцентрических координат (широта  , долгота  ). Для трѐхосного 

эллипсоида существуют и другие способы задания широт – геодезическая 

(планетографическая), условно-геодезическая, приведѐнная (Бугаевский, 1998). 

Практическое значение планетоцентрических координат заключается в том, что 

они часто используются для представления данных о небесных телах, наряду с 

пространственными прямоугольными координатами (Нырцов и др., 2012).  

В пособии (Нырцов и др., 2022) для поверхности трѐхосного эллипсоида 

рассматриваются коэффициенты Гаусса первой квадратичной формы          

(коэффициент   на экваторе), а также угол между меридианом и параллелью  . 

Рисунок 13. Трѐхосный эллипсоид в пространстве (Нырцов и др., 2022) 
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Первая квадратичная форма, определяющая квадрат дифференциала длины дуги 

на поверхности с заданной на ней угловой системой координат (   ): 

                                 (2) 

где       – коэффициенты Гаусса этой формы: 

  (
  

  
*
 

 (
  

  
*
 

 (
  

  
*
 

             (3) 

  (
  

  
*
 

 (
  

  
*
 

 (
  

  
*
 

             (4) 

  
  

  

  

  
 

  

  

  

  
 

  

  

  

  
                (5) 

Коэффициент Гаусса   на экваторе обозначен   . Косинус угла   между 

координатными линиями на поверхности вычисляется по формуле: 

     
 

√  
             (6) 

При выводе формул проекций в пособии (Нырцов и др., 2022) и в 

диссертации используются  следующие выражения для коэффициентов Гаусса: 
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1.3.2. Условия для получения цилиндрических, азимутальных и 

конических проекций 

С помощью приведѐнных выше формул коэффициентов Гаусса в пособии 

(Нырцов и др., 2022) выводятся выражения для элементов бесконечно малой 

трапеции на эллипсоиде. Затем даются определения цилиндрических, 
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азимутальных и конических проекций трѐхосного эллипсоида и путѐм 

сопоставления элементов бесконечно малой трапеции на поверхности эллипсоида и 

в плоскости проекции выводятся условия сохранения углов, длин вдоль 

меридианов и площадей в дифференциальной форме для каждого класса проекций. 

Именно они будут использованы при получении формул проекций в главе 2 

диссертации. Далее эти условия приводятся с сохранением введѐнных авторами 

пособия обозначений. 

Здесь и далее предполагается, что размеры полуосей эллипсоида 

соотносятся таким образом, что      . Выражения для квадратов 

эксцентриситета эллипса начального меридиана (полярного эксцентриситета) 

   
  и экваториального эксцентриситета    

  имеют вид: 

   
  

     

  
    

  
     

  
          (12) 

Цилиндрическая проекция трѐхосного эллипсоида в пособии (Нырцов и др., 

2022) определяется как проекция с прямолинейными меридианами, 

ортогональными прямолинейному экватору. В такой проекции горизонтальная 

координата не зависит от широты. Параллели в ней являются кривыми линиями, а 

вертикальная координата зависит от долготы и характера искажений. 

Для получения формул проекций, помимо общего характера искажений, 

используется дополнительное условие минимизации искажений в определѐнных 

областях. В случае цилиндрических проекций в качестве такого условия выступает 

сохранение длин вдоль экватора. Это условие формулируется следующим образом: 

       √               (13) 

Горизонтальная координата       в цилиндрической проекции трѐхосного 

эллипсоида получается путѐм интегрирования этого выражения. 

Вертикальная координата       в цилиндрических проекциях зависит от 

характера искажений. Условие равноугольности в дифференциальной форме 

(Нырцов и др., 2022): 

      

      

 
√   

√       
                 (14) 

или, с учѐтом формулы (13) для горизонтальной координаты: 
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   √                 (15) 

Условие сохранения площадей в цилиндрических проекциях:  

      

  
   

√      

√  

            (16)  

Условие сохранения длин вдоль меридианов: 

      

  
    √             (17) 

Цилиндрические проекции в нормальной ориентировке отличаются 

небольшими искажениями в близких к экватору областях и увеличением их к 

полюсам. Поэтому для отображения полярных областей часто в дополнение к 

цилиндрическим применяются азимутальные проекции. Проекции этого класса 

определяются в пособии (Нырцов и др., 2022) как проекции, в которых меридианы 

– прямые линии, выходящие из одной точки, а параллели – кривые линии, 

построенные в соответствии с выбранным характером искажений. 

Получение координат в азимутальных проекциях осуществляется с учѐтом 

перехода к полярным координатам   (полярное расстояние) и   (полярный угол) в 

плоскости проекции, причѐм для проекций в нормальной ориентировке    . 

Формулы связи имеют вид: 

              

                       (18) 

Полярное расстояние в азимутальных проекциях зависит от характера 

искажений. Условие локальной равноугольности (Нырцов и др., 2022) имеет вид: 
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условие сохранения площадей 
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   √                    (21) 

а условие сохранения длин меридианов 
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    √               (22) 

Цилиндрические и азимутальные проекции целесообразно совместно 

использовать для глобального картографирования, как в случае с картой 

поверхности Фобоса (рисунок 6). Для регионального картографирования удобны 

конические проекции. Проекции этого класса определены в пособии (Нырцов и др., 

2022) как проекции, в которых меридианы – прямые линии, исходящие из одной 

точки, а параллели – кривые линии, построенные в соответствии с выбранным 

характером искажений. При этом углы в точке схода меридианов в проекции 

зависят от соответствующих углов на эллипсоиде и от параметров конуса. 

Получение координат в конических проекциях осуществляется с учѐтом 

перехода к полярным координатам     в плоскости проекции. Формулы связи 

имеют вид: 

              

                               (23) 

где полярное расстояние                       по среднему меридиану 

равно расстоянию между началами координат полярной и плоской прямоугольной 

систем координат. 

Далее приводятся формулы расчѐта полярного угла   для всех конических 

проекций в нормальной ориентировке из пособия (Нырцов и др., 2022). Для их 

получения в пособии определяются параметры эллиптического конуса, 

касательного к трѐхосному эллипсоиду по линии сечения эллипсоида плоскостью 

    . При заданных координатах центра карты      : 

   
 

√      (       
      

     
 *  

      

     
 

             (24) 

Линия сечения представляет собой эллипс. Расстояние    от центра эллипса 

до точки с заданной долготой   на границе эллипса равно: 

   
 √     

 

√     
      

 √  
  
 

  
          (25) 

Широта точки касания равна: 
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           (26) 

Прямоугольная координата    вершины конуса, не зависящая от долготы: 

   
  

  
           (27) 

Длина отрезка касательной от точки касания до вершины конуса, 

обозначенная как  , вычисляется по формуле: 

  √  
         

           (28) 

Синус и косинус угла   между осью Z и касательной равны: 

     
  
 

      
     

 
          (29) 

Полярный угол   вычисляется по формуле: 

  ∫     √       (
   
         

     
      

)

 

  

 

  

 ∫   

 

  

         (30) 

Полярное расстояние в конических проекциях, как и в азимутальных, 

зависит от характера искажений. Условие локальной равноугольности имеет вид: 

 

  
  

  

     
 

√   

√       
               (31) 

условие сохранения площадей 

  
 (

  

 
*

  
   √                   (32) 

а условие сохранения длин меридианов 

 
  

  
   √               (33) 

Формулы для вертикальной координаты       в цилиндрической проекции 

и полярного расстояния   в азимутальной и конической проекциях выводятся 

путѐм интегрирования выражений, соответствующих заданному характеру 

искажений. Получаемые при этом интегралы могут выражаться в элементарных 

функциях, в противном случае их можно привести к эллиптическим интегралам. В 

статье (Флейс и др., 2022) описан процесс таких преобразований для 

цилиндрических проекций трѐхосного эллипсоида. 
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1.3.3. Квазиравноугольные проекции трѐхосного эллипсоида 

Для получения равноугольной цилиндрической проекции трѐхосного 

эллипсоида необходимо проинтегрировать выражение (15). При интегрировании 

возникает неопределѐнность, зависящая от задаваемого пути интегрирования 

(Флейс и др., 2013). Но при выборе пути интегрирования в каждой точке 

фиксируется направление, при этом угол между меридианом и выбранным 

направлением в плоскости проекции равен соответствующему углу на трѐхосном 

эллипсоиде. В то же время для любого другого направления угол сохраняться не 

будет. Это доказывает невозможность построения равноугольной проекции 

трѐхосного эллипсоида, которая являлась бы цилиндрической в соответствии с 

данным выше определением. Равноугольная азимутальная проекция трѐхосного 

эллипсоида, как и цилиндрическая, не существует (Флейс и др., 2013). 

Не являются равноугольными и проекции, полученные на основе 

изометрических координат по Бугаевскому, о которых упоминалось в разделе 1.2.2. 

Попытки построения равноугольных проекций трѐхосного эллипсоида через 

введение изометрических координат подробно рассмотрены в статье (Fleis et al., 

2024). В ней показано, что некоторые системы координат, ранее описанные как 

изометрические, на самом деле не являются таковыми, и, как следствие, проекции, 

полученные на их основе, не являются равноугольными. В статье рассматриваются 

два способа задания систем координат на поверхности трѐхосного эллипсоида, 

ошибочно называемых изометрическими. В первом способе соответствующая 

система координат не является ортогональной, а тем более изометрической. Это 

доказывает тот факт, что косинус угла между координатными линиями 

тождественно не равен нулю. Во втором способе координаты определяются с 

помощью интегрирования, а результат интегрирования зависит от пути 

интегрирования. Такая неоднозначность показывает, что этот способ также 

неверен. Рассмотренные системы координат позволяют создавать новые проекции, 

однако эти проекции не являются равноугольными. 

Тем не менее, построение равноугольных проекций трѐхосного эллипсоида 

не является принципиально невозможным. Для получения такой проекции 

необходимо ввести на трѐхосном эллипсоиде сетку ортогональных координат и 

определить в этих координатах условие равноугольности. Именно такую систему 
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координат ввѐл К. Якоби для получения формул равноугольной проекции 

трѐхосного эллипсоида, о которой говорилось в разделе 1.2.2. В статье (Nyrtsov et 

al., 2014) приведѐн способ перехода от планетоцентрических координат к 

эллиптическим и от них – к прямоугольным координатам в плоскости проекции с 

использованием полученных Карлом Якоби формул. Координаты в проекции 

представлены в виде эллиптических интегралов 1-го и 3-го рода.  

Для того, чтобы проекция трѐхосного эллипсоида была равноугольной, 

нужно, чтобы соблюдались два условия: сохранение угла между меридианом и 

параллелью и равенство отношений дифференциала длины дуги меридиана и 

дифференциала длины перпендикуляра, проведѐнного к этому меридиану, на 

эллипсоиде и в проекции. При построении цилиндрических и азимутальных 

проекций трѐхосного эллипсоида выполняется только одно из этих условий. При 

выполнении первого условия получается проекция, сохраняющая угол между 

меридианом и параллелью, при выполнении второго – так называемая проекция 

меридианного сечения (Нырцов и др., 2021). Эти проекции образуют особый класс – 

квазиравноугольные проекции трѐхосного эллипсоида. 

Невозможность построения равноугольных цилиндрических и 

азимутальных проекций трѐхосного эллипсоида связана с тем, что сетка 

меридианов и параллелей планетоцентрической широты на этой поверхности не 

ортогональна. Вследствие этого значение квазиравноугольных проекций – 

проекции меридианного сечения и проекции, сохраняющей угол между 

меридианом и параллелью, – возрастает.  Как отмечалось в разделе 1.2.2, карты в 

проекциях, сохраняющих угол между меридианом и параллелью, в нормальной 

ориентировке дают плохое представление о картографируемой поверхности, 

однако в некоторых случаях возможно использование поперечной ориентировки. 

Приоритет среди квазиравноугольных проекций остаѐтся за проекциями 

меридианного сечения (к ним относятся и упомянутые выше цилиндрические 

проекции Бугаевского и Серапинаса), их теория разработана значительно лучше. 

Проекциям этого класса посвящена статья (Нырцов и др., 2021). 

Введение нового класса проекций трѐхосного эллипсоида – 

квазиравноугольных проекций, а также их разделение на проекции меридианного 

сечения и проекции, сохраняющие угол между меридианом и параллелью, 
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отражено в статье (Нырцов, Флейс, 2021), посвящѐнной классификации проекций 

трѐхосного эллипсоида. Еѐ авторы отмечают, что классификации по характеру 

искажений и по виду вспомогательной поверхности претерпевают существенные 

изменения при переходе к этой математической поверхности (по сравнению со 

сферой и эллипсоидом вращения). Также следует отметить, что в пособии (Нырцов 

и др., 2022) даѐтся рекомендация использовать конические проекции для 

картографирования на региональном уровне, а азимутальные и цилиндрические – 

на глобальном. Как видно из примеров карт в разделах 1.1.2 и 1.2.2, последние два 

класса проекций могут комбинироваться в весьма удачной компоновке, 

предложенной К.Б. Шингарѐвой и преобразованной автором диссертации. 

Выводы к главе 1 

1. Обзор литературы и картографических произведений показывает, что 

карты поверхности и гипсометрические карты могут составляться в различных по 

характеру искажений проекциях, т.е. связи выбора проекции для карты небесного 

тела с еѐ содержанием практически не наблюдается. Поэтому для обоснования 

выбора проекций используется «Атлас для выбора картографических проекций» 

(Гинзбург, Салманова, 1957). Для гипсометрических карт рекомендуются проекции, 

по характеру искажений занимающие место посередине между 

равнопромежуточными и равновеликими. На практике используются и те, и 

другие. Для общегеографических карт признаѐтся важным передать как формы, так 

и площади с наименьшими искажениями. В диссертационном исследовании при 

рассмотрении карт поверхности основной акцент делается на сохранении 

очертаний и форм объектов. В этом случае рекомендуется применять проекции, в 

которых минимизированы или полностью устранены искажения углов (Гинзбург, 

Салманова, 1957). 

2. Исследование проекций предполагает анализ величины и распределения 

искажений разных видов – длин, площадей, углов и форм. Характеристика 

искажений в каждой точке карты для проекций трѐхосного эллипсоида может быть 

получена, теория искажений подробно освящена в пособии (Нырцов и др., 2022). В 

то же время способы оценки искажений в пределах региона или всей карты, 

основанные на фигурах искажений, необходимо дополнительно дорабатывать, 
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чтобы они были применимы для таких проекций. Исследование искажений в 

проекциях служит основой для выбора наилучших проекций. 

3. Проекции, выведенные в пособии (Нырцов и др., 2022) на основе 

векторного описания самого трѐхосного эллипсоида радиус-вектором, а также 

касательной к эллипсоиду плоскости, содержащей приращение радиус-вектора, 

вместе с равноугольной проекцией Якоби обеспечивают необходимый характер 

искажений для карт поверхности и гипсометрических карт. Поэтому объектом 

диссертационного исследования являются проекция Якоби, цилиндрические и 

азимутальные проекции – для карт глобального охвата, а также конические 

проекции – для карт регионального охвата. 
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ГЛАВА 2. ПОЛУЧЕНИЕ ФОРМУЛ И ОПРЕДЕЛЕНИЕ СВОЙСТВ 

ПРОЕКЦИЙ ТРЁХОСНОГО ЭЛЛИПСОИДА 

2.1. Получение формул проекций 

Получение формул проекций основывается на интегрировании выражений, 

которые отражают соотношения элементов бесконечно малой трапеции в 

плоскости проекции и на эллипсоиде, соответствующие заданному характеру 

искажений. Для ряда проекций трѐхосного эллипсоида имеются формулы в виде 

определѐнных интегралов (Нырцов и др., 2022), при этом конечные формулы 

представлены только для азимутальной проекции меридианного сечения. Далее 

будут представлены полученные автором диссертации конечные формулы 

остальных проекций, а при невозможности их получения – приведѐнные к 

эллиптическим интегралам 1-го, 2-го и 3-го рода. Такие преобразования упрощают 

вычисление координат и показателей искажений, а также делают формулы более 

удобными для обратного пересчѐта из проекции в планетоцентрические 

координаты на эллипсоиде. Формулы получены с использованием справочника 

«Интегралы и ряды» (Прудников и др., 2002), если не указано иное. 

2.1.1. Горизонтальная координата в цилиндрических проекциях 

Все представленные в диссертации цилиндрические проекции не имеют 

искажений на экваторе. Горизонтальная координата (Нырцов и др., 2022) 

вычисляется путѐм интегрирования выражения (13): 

      ∫√    

 

 

           (34) 

В рамках диссертационного исследования этот интеграл был приведѐн к 

эллиптическому интегралу 2-го рода           : 

        (           
   
           

√     
       

)              (
   

     
 )   (35) 

Эллиптический интеграл 2-го рода         вычисляется приближѐнно с 

помощью разложения в ряд (Журавский, 1941): 

           
 

 
   

  
 

 
   

    
          

      
   

         (36) 
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Коэффициенты             рассчитываются последовательно: 

        
    

  
     

 

  
                    (37) 

При расчѐте горизонтальной координаты     ,      . 

2.1.2. Полярный угол в конических проекциях 

Формула (30) для вычисления полярного угла содержит интеграл, который 

не выражается в элементарных функциях и не сводится к эллиптическим 

интегралам. При вычислении координат в конических проекциях авторы статьи 

(Nyrtsov et al., 2017) использовали квадратурную формулу Гаусса для 

приближѐнного вычисления интеграла. Этот же метод был использован и в рамках 

диссертации. При расчѐтах для достижения большей точности использовался 

составной вариант формулы (Калиткин, 1978; Никольский, 1988): вычисления 

производились для трѐх и пяти узлов и сравнивались между собой. 

2.1.3. Проекции меридианного сечения
1
 

Вертикальная координата в цилиндрической проекции меридианного 

сечения получается интегрированием выражения (15) сначала по экватору, затем 

по меридиану с долготой  : 

      √  ∫
√ 

√     
  

 

 

 ∫√        

 

 

        (38) 

Второй интеграл равен нулю, так как угол   на экваторе равен 90°. Первый 

интеграл может быть представлен в элементарных функциях. Вывод этого 

интеграла представлен в статье (Нырцов и др., 2021) и более подробно в пособии 

(Нырцов и др., 2022). Для записи полученного выражения введѐм обозначения 

               
          

     
  

     

     
 
  

           
     

     
         

 

     
 
  

                                                           
1
 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 

основные результаты, положения и выводы исследования: 

Нырцов М.В., Флейс М.Э., Соколов А.И. Проекции меридианного сечения: новый класс проекций для 

трѐхосного эллипсоида // Геодезия и картография. – 2021.– № 2. – С. 11-22. – DOI: 10.22389/0016-7126-2021-

968-2-11-22, EDN: XHPCZT. 
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Если интеграл, входящий в формулы проекции, представлен в 

элементарных функциях, то конечная формула получается с учѐтом постоянной 

интегрирования     , которая рассчитывается для каждой проекции исходя из 

дополнительных условий. Для цилиндрических проекций это равенство нулю 

вертикальной координаты на экваторе, для азимутальных – отсутствие искажений в 

полюсе проекции, для конических – равенство полярного расстояния в точке 

      и величины  . 

Полученная в исследовании конечная формула вертикальной координаты в 

цилиндрической проекции меридианного сечения с учѐтом постоянной 

интегрирования имеет вид: 

      √    

    
     

  √   

    √   

 √        
      

  √    

    √          
  √     

  (40) 

Полярное расстояние в азимутальной проекции меридианного сечения 

получается интегрированием выражения (20) сначала по экватору, затем по 

меридиану с долготой   (Нырцов и др., 2022): 

     ∫
√ 

√     
  

 

 

 ∫      

 

 

         (41) 

Таким образом, в формулу входит тот же интеграл (второй интеграл также 

равен нулю). Вывод представлен в пособии (Нырцов и др., 2022). Конечная 

формула полярного расстояния с учѐтом постоянной интегрирования: 

  
      √     

 

           
  √   

 (
    √          

  √     

(√   √   )√       
  

+

    

        (42) 

Полярное расстояние в конической проекции меридианного сечения 

получается интегрированием выражения (31): 
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        (43) 

Второй интеграл (по экватору) вновь равен нулю. После преобразований в 

рамках диссертации была получена конечная формула полярного расстояния с 

учѐтом постоянной интегрирования: 
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где 

                    
            

      
   

 
       

      
   

    

                 
            

     
  

       

     
 

         (45) 

2.1.4. Проекции, сохраняющие угол между меридианом и параллелью
2
 

Вертикальная координата в цилиндрической проекции, сохраняющей угол 

между меридианом и параллелью, получается интегрированием выражения (15) 

сначала по начальному меридиану, затем по параллели с широтой  : 
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         (46) 

или, с учѐтом того, что на начальном меридиане угол   равен 90°: 
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          (47) 

Первое слагаемое вычисляется по формуле (40), причѐм    . Результатом 

(с учѐтом постоянной интегрирования, выведенной по аналогии с цилиндрической 

проекцией меридианного сечения при условии    ) является полученная 

автором диссертации конечная формула: 

                                                           
2
 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 

основные результаты, положения и выводы исследования: 
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√  ∫
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        (48) 

Интеграл, входящий во второе слагаемое, в рамках диссертационного 

исследования был представлен в виде эллиптических интегралов 1-го, 2-го и 3-го 

рода (Флейс и др., 2022). Эллиптический интеграл 1-го рода         вычисляется 

приближѐнно с помощью разложения в ряд (Журавский, 1941): 

            
 

 
   

  
   

   
   

    
          

      
   

         (49) 

Коэффициенты             рассчитываются последовательно с помощью 

равенств 

        
    

  
     

 

  
                     (50) 

Эллиптический интеграл 3-го рода           вычисляется приближѐнно по 

более сложным формулам, представленным в разделе 17.7 «Справочника по 

специальным функциям» (1979). 

Полярное расстояние в азимутальной проекции, сохраняющей угол между 

меридианом и параллелью, получается интегрированием выражения (20) сначала 

по начальному меридиану, затем по параллели с широтой  : 
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          (51) 

Интеграл по начальному меридиану (первое слагаемое) вычисляется по 

формуле (42), причѐм    . Результатом (с учѐтом постоянной интегрирования, 

выведенной по аналогии с азимутальной проекцией меридианного сечения при 

условии   
 

 
) является полученная в исследовании конечная формула: 
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Второе слагаемое в правой части формулы (51) представляет собой 

интеграл по параллели, который выражается в элементарных функциях. Для записи 

окончательного результата введѐм обозначения: 
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Окончательно для исходного интеграла имеем: 

∫       ∫
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Постоянная интегрирования      подбирается в каждом из трѐх случаев так, 

чтобы значение интеграла на начальном меридиане было равным нулю. При    : 
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Таким образом, с учѐтом      для второго слагаемого в правой части 

формулы (51) в рамках диссертационного исследования была получена конечная 

формула: 
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Для получения конической проекции, сохраняющей угол между меридианом 

и параллелью, необходимо выполнение двух условий. Во-первых, котангенс угла 

между меридианом и параллелью в проекции должен быть равен котангенсу угла 

между меридианом и параллелью на эллипсоиде. Во-вторых, как и для других 

конических проекций, при       полярное расстояние          должно быть 

равно расстоянию   от точки с координатами       до точки схода меридианов. 

Выполнению первого условия соответствуют зависимости:  
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                    ∫       

 

 

             (58)  

Эти выражения получаются при интегрировании по параллели второго 

слагаемого в правой части формулы (31). 

Для выполнения второго условия при       правая часть (58) должна 

быть равна    , умноженному на константу, то есть подынтегральное выражение 

должно быть равно 
  

 
, умноженному на эту константу. Интеграл по параллели 

может быть представлен в следующем виде: 

∫        

  

 

 
     

   √  
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где    –  длина отрезка касательной от точки касания до вершины конуса 

при    ;                     . 

Для выполнения второго условия множитель при 
  

 
 в подынтегральном 

выражении должен быть равен константе. Вычисления значения этого множителя 

для трѐхосного эллипсоида с полуосями    13000 м,    11400 м,    9100 м, 

аппроксимирующего фигуру спутника Марса Фобос, показывают его зависимость 

от долготы. Таким образом, выполнение одновременно двух перечисленных 

условий невозможно, следовательно, коническая проекция, сохраняющая угол 

между меридианом и параллелью, не существует. Это утверждение также может 

рассматриваться как доказательство невозможности построения равноугольной 

конической проекции. 

2.1.5. Проекции, сохраняющие длины вдоль меридианов
3
 

Вертикальная координата в цилиндрической проекции, сохраняющей длины 

вдоль меридианов, получается интегрированием выражения (17): 
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Этот интеграл был приведѐн к эллиптическому интегралу 2-го рода (Флейс 

и др., 2022): 
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 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 
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Полярное расстояние в азимутальной проекции, сохраняющей длины вдоль 

меридианов, получается интегрированием выражения (22): 
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            (63) 

С учѐтом приведения к эллиптическому интегралу 2-го рода автором 

диссертации была получена формула полярного расстояния в азимутальной 

проекции: 
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Полярное расстояние в конической проекции, сохраняющей длины вдоль 

меридианов, получается интегрированием выражения (33). С учѐтом приведения к 

эллиптическому интегралу 2-го рода в рамках диссертационного исследования 

была получена следующая формула полярного расстояния: 
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2.1.6. Равновеликие проекции
4
 

Формула вертикальной координаты в равновеликой цилиндрической 

проекции получается интегрированием выражения (16) и имеет вид: 
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        (67) 

Этот интеграл может быть представлен в элементарных функциях. Вывод 

представлен в статье (Флейс и др., 2022). Полученное выражение для интеграла 

имеет вид: 

                                                           
4
 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 
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Постоянная интегрирования       для цилиндрической проекции 

определяется так, чтобы вертикальная координата равнялась нулю на экваторе. С 

учѐтом этого автором диссертации была получена конечная формула вертикальной 

координаты в равновеликой цилиндрической проекции: 
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Полярное расстояние в равновеликой азимутальной проекции трѐхосного 

эллипсоида получается интегрированием выражения (21): 
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С учѐтом приведения входящего в это выражение интеграла к 

элементарным функциям: 
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Постоянная интегрирования      для азимутальной проекции определяется 

так, чтобы полярное расстояние равнялось нулю в полюсе. При   
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          (73) 

С учѐтом этого для полярного расстояния в равновеликой азимутальной 

проекции в рамках диссертационного исследования была получена следующая 

конечная формула: 

58



        √
      √   

   
 

    

√  
  

|    √          
  √     |

√      
   (√    √  )

      (74) 

Полярное расстояние в равновеликой конической проекции трѐхосного 

эллипсоида получается интегрированием выражения (32): 
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С учѐтом приведения входящего в это выражение интеграла к 

элементарным функциям получим: 
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Постоянная интегрирования      определяется для конической проекции 

так, чтобы полярное расстояние в точке       равнялось  . С учѐтом этого 

автором диссертации была получена конечная формула полярного расстояния в 

равновеликой конической проекции: 
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2.1.7. Равноугольная проекция Якоби 

В статье (Nyrtsov et al., 2014) и в пособии (Нырцов и др., 2022) координаты 

в равноугольной проекции Якоби представлены в виде эллиптических интегралов 

1-го и 3-го рода. О вычислении таких интегралов говорилось выше. Как отмечается 

в пособии (Нырцов и др., 2022), особенностью формул является тот факт, что 

полученные значения       и       – безразмерные величины, которые при 

создании карты необходимо дополнительно умножать, например, на большую 

полуось эллипсоида  . В рамках диссертационного исследования этот 

коэффициент был подобран таким образом, чтобы в полюсе частный масштаб длин 

был равен единице. 
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2.2. Вычисление координат в проекциях и показателей искажений 

2.2.1. Вычисление координат 

Вычисления координат были реализованы в виде программы на языке 

JavaScript и графического интерфейса к ней на HTML. Номера формул, по которым 

рассчитываются координаты в рассмотренных проекциях трѐхосного эллипсоида, 

представлены в таблице 1. Полужирным шрифтом выделены номера формул, 

полученных в рамках диссертационного исследования. Входными параметрами 

программы являются значения полуосей математической поверхности, начальное и 

конечное значения планетоцентрической широты и шаг по широте, начальное и 

конечное значение долготы и шаг по долготе. Также могут рассчитываться 

координаты точек из загруженного текстового файла. Результат работы программы 

– текстовый файл с прямоугольными координатами. Такой файл был использован 

для построения картографических сеток и трансформирования фотомозаик, 

созданных проф. Ф. Стуком (Stooke Small Bodies Maps, URL: https:// 

sbnarchive.psi.edu/pds3/multi_mission/MULTI_SA_MULTI_6_STOOKEMAPS_V3_0/ 

document/00_map_guide.html). 

Таблица 1. Номера формул для расчѐта 

координат в проекциях трѐхосного эллипсоида 

Проекции по 

характеру 

искажений 

Проекции по виду вспомогательной поверхности 

Цилиндрические Азимутальные Конические 

Меридианного 

сечения 
(35), (40) (42), (18) (44), (30), (23) 

Сохраняющие угол 

между меридианом 

и параллелью 

(35), (48), формулы 

раздела 17.7 из 

«Справочника по 

специальным 

функциям» (1979) 

(52), (56), (18) 
проекция не 

существует 

Сохраняющие 

длины вдоль 

меридианов 

(35), (61) (64), (18) (65), (30), (23) 

Равновеликие (35), (70) (74), (18) (77), (30), (23) 

Равноугольная 

проекция Якоби 

формулы раздела 17.7 из «Справочника по специальным 

функциям» (1979) 
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2.2.2. Вычисление показателей искажений 

Определение свойств проекций осуществляется путѐм вычисления 

показателей искажений и их визуализации в виде изокол. Как отмечалось в разделе 

1.2.3, в выражения для вычисления показателей искажений (Нырцов и др., 2022) 

входят производные вертикальной координаты (для цилиндрических проекций) и 

полярного расстояния (для азимутальных и конических проекций) по широте и 

долготе. Использование выведенных в разделе 2.1 конечных формул позволило в 

рамках диссертационного исследования получить эти производные аналитически. 

Далее приводятся выражения производных вертикальной координаты и 

полярного расстояния по широте и долготе, полученные в диссертационном 

исследовании с учѐтом конечных и приближѐнных формул, данных в разделе 2.1. 

Проекции меридианного сечения 

Производные по долготе вспомогательных величин, использованных при 

выводе конечных формул проекций меридианного сечения и равновеликих 

проекций (Нырцов и др., 2022): 
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Производная вертикальной координаты по долготе в цилиндрической 

проекции: 
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Производная полярного расстояния по долготе в азимутальной проекции: 
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Производная полярного расстояния по долготе в конической проекции: 
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Выражение для расчѐта производной    приведено в пособии (Нырцов и 

др., 2022). 

Проекции, сохраняющие угол между меридианом и параллелью 

Производная вертикальной координаты в цилиндрической проекции по 

широте (Нырцов и др., 2022): 
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Это выражение содержит интеграл, который, ввиду его сложности, 

вычисляется приближѐнно с использованием квадратурной формулы Гаусса, как и 

интеграл для расчѐта полярного угла в конических проекциях. 

Производная полярного расстояния по широте в азимутальной проекции 

вычисляется в трѐх вариантах, как и само полярное расстояние. Используем 

соотношение: 

     
       

  
          (85) 

Первый вариант         : 

       

  
  

√   

       

  

 
        

            
     √    

 
    (    √          √   )

            
  (        √       

 *

  

 
      

            
   √    

 
    (    √          √   )

            
  (        √       

 *

  

 
          

  

            
  

(
    

√   

 
    

√   

)   

 
              

                

            
  √    

 
  

(√    √    )√   

(√    √    )√ 
  

 
               

  (√    √   )

           
  

         (86) 

Второй вариант         : 
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Третий вариант         : 
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Производные вспомогательных величин по широте: 
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Проекции, сохраняющие длины вдоль меридианов 

Производные по долготе получены с учѐтом представления вертикальной 

координаты и полярного расстояния в виде эллиптического интеграла 2-го рода. 

Для цилиндрической проекции: 
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где 
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Для азимутальной проекции: 
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Для конической проекции: 
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Равновеликие проекции 

Для вычисления производных по долготе в равновеликих проекциях 

сначала необходимо получить производную величины     : 

      
      

  (                )

    √   
 

 
              

    √         
    

 
 

       

   

  (95) 

Производная вертикальной координаты по долготе в равновеликой 

цилиндрической проекции: 
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Производная полярного расстояния по долготе в азимутальной проекции: 
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Производная полярного расстояния по долготе в конической проекции: 
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Производные величин  ,       и     по долготе такие же, как и для 

конической проекции меридианного сечения. 

Оставшиеся производные получены как производные интегралов по 

переменной интегрирования и представлены в таблице 2. 

Таблица 2. Производные координат в 

проекциях, полученные из подынтегральных выражений (Нырцов и др., 2022) 

Проекции по 

характеру 

искажений 

Проекции по виду вспомогательной поверхности 

Цилиндрические Азимутальные Конические 

Меридианного 

сечения 
   

 √  

√       
     

  

√       
     

   

√       
 

Сохраняющие угол 

между меридианом 

и параллелью 

   
 √  

√       
     

  

√       
 проекция не 

существует 

Сохраняющие 

длины вдоль 

меридианов 

   √      √      √  

Равновеликие 
   

√       

√  

     
√       

 
     

√       
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Полученные формулы производных также вошли в новый инструментарий 

по вычислению координат в проекциях и показателей искажений. Интерфейс 

инструментария представлен на рисунке 14. 

2.3. Определение свойств проекций и составление карт 

2.3.1. Обоснование выбора небесных тел для исследования проекций 

При картографировании небесных тел с использованием трѐхосного 

эллипсоида в качестве аппроксимирующей поверхности чаще всего 

руководствуются отчѐтом рабочей группы Международного астрономического 

союза (МАС) по картографическим координатам и элементам вращения планет и 

спутников, где приводятся рекомендуемые параметры эллипсоидов для небольших 

спутников планет, астероидов и ядер комет. Следовательно, те небесные тела, для 

которых такие параметры приводятся, являются потенциальными объектами для 

картографирования в проекциях трѐхосного эллипсоида. 

На рисунке 15 приведена точечная диаграмма, которая отображает 

распределение трѐхосных эллипсоидов, представленных в отчѐте МАС (Archinal et 

al., 2018), по квадратам двух эксцентриситетов – полярного и экваториального. 

Трѐхосные эллипсоиды, у которых квадрат полярного эксцентриситета    
      , 

на диаграмме не показаны. 

 

Рисунок 14. Интерфейс программы по вычислению координат и показателей 

искажений 
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В рамках диссертации для построения изокол и картографирования были 

взяты три небесных тела: спутник Марса Фобос (рисунок 16, а), спутник Сатурна 

Гиперион (рисунок 16, б) и астероид 433 Эрос (рисунок 16, в). Эти три небесных 

тела относятся к наиболее изученным из тех, фигуры которых близки к трѐхосному 

эллипсоиду. Кроме того, они репрезентативны для разных групп небесных тел. 

Фобос расположен на диаграмме (рисунок 15) в области с небольшими значениями 

экваториального и полярного эксцентриситетов, Гиперион – в области средних 

значений, а Эрос и вовсе занимает крайнее правое положение на диаграмме. Также 

у Эроса полярный и экваториальный эксцентриситеты совпадают (это показано с 

помощью линии равных эксцентриситетов). 

 

Рисунок 15. Распределение трѐхосных эллипсоидов по квадратам эксцентриситетов  
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а) б) 

в) 

 

Параметры трѐхосных эллипсоидов, аппроксимирующих фигуры 

указанных небесных тел, – размеры полуосей a, b и c, а также квадраты 

экваториального    
  и полярного    

  эксцентриситетов – приведены в таблице 3. 

Отличие эллипсоида от сферы может быть охарактеризовано близким понятием 

«сжатие»; в дальнейшем «эксцентриситет» и «сжатие» используются 

равнозначно, поскольку различия между этими понятиями в рамках исследования 

несущественны. Для Гипериона вследствие хаотичности его вращения существует 

неоднозначность определения системы координат (Harbinson et al., 2011; Sokolov et 

Рисунок 16. Космические изображения небесных тел: 

а) Фобос (Catalog Page for PIA10366, URL: 

https://photojournal.jpl.nasa.gov/catalog/PIA10366); 

б) Гиперион (Catalog Page for PIA07740, URL: 

https://photojournal.jpl.nasa.gov/catalog/PIA07740); 

в) Эрос (NEAR image of the day for 2000 Feb 17 (A), URL: 

https://near.jhuapl.edu/iod/20000217a/index.html). 
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al., 2024a). Поэтому для этого спутника были использованы параметры 

аппроксимирующего эллипсоида, полученные И.Е. Надеждиной и А.Э. Зубаревым 

(Slodarzh et al., 2022). Параметры эллипсоидов, аппроксимирующих Фобос и Эрос, 

были взяты из отчѐта (Archinal et al., 2018). Поскольку для проекции Якоби 

необходимо соблюдение строгого неравенства      , в экспериментальных 

целях при построении изокол в этой проекции для Эроса малая экваториальная 

полуось была принята равной 5510 м. 

Таблица 3. Параметры трѐхосных 

эллипсоидов, аппроксимирующих фигуры выбранных небесных тел 

 2.3.2. Обоснование выбора способов оценки искажений в проекциях 

 Для построения изокол были выбраны такие показатели искажений, как 

частные масштабы длин вдоль меридианов, длин вдоль параллелей и площадей, а 

также наибольшее искажение углов. Выбор этих показателей вместо эллипсов 

искажений обусловлен тем, что они позволяют подробно анализировать искажения 

разных типов, тогда как эллипс искажений даѐт их комплексную характеристику. 

В дополнение к оценке распределения искажений в проекциях по 

построенным изоколам, была осуществлена оценка искажений формы некоторых 

кратеров на поверхности выбранных небесных тел. Эта оценка производилась 

путѐм вычисления среднеквадратического отклонения (СКО) экстремальных 

масштабов длин вдоль границы каждого кратера в разных проекциях (  ). Такой 

показатель был подобран исходя из предположения, что чем меньше отличаются 

наибольший и наименьший масштабы длин между собой и вдоль контура, тем 

меньше искажена форма этого контура. Отсутствию искажений формы кратера 

соответствует показатель     ; чем выше показатель, тем больше искажения. 

Преимущество этого показателя – возможность оценить искажения формы 

конкретного объекта, в то время как способы, описанные в разделе 1.2.3, относятся 

к абстрактным фигурам. Также посредством сравнения площади кратера в каждой 

проекции с его площадью в равновеликой проекции была осуществлена 

количественная оценка искажения площадей. 

 a, м b, м c, м    
     

  

Спутник Марса Фобос 13 000 11 400  9100 0,231 0,51 

Спутник Сатурна Гиперион 177 600 128 500 105 600 0,4765 0,6465 

Астероид 433 Эрос 17 000 5500 5500 0,8953 0,8953 
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 Для количественной оценки искажений форм и площадей были выбраны 

кратеры Казанова на поверхности Эроса, Мери на поверхности Гипериона и 

Скайреш на поверхности Фобоса. Выбранные кратеры располагаются в средних 

широтах (таблица 4), что позволяет на их примере оценить искажения в 

конических проекциях, а также сравнивать между собой искажения в 

азимутальных и цилиндрических проекциях. На рисунке 17 представлены 

изображения кратеров Скайреш (рисунок 17, а) и Казанова (рисунок 17, в), 

сделанные по трѐхмерным моделям Эроса и Фобоса, а также изображение кратера 

Мери, полученное по стереопаре (рисунок 17, б). 

 Таблица 4. Планетоцентрические координаты 

центров кратеров, выбранных для количественной оценки искажений формы 

Следует отметить, что искажения форм и площадей кратеров зависят не 

только от проекции и параметров эллипсоида, но и от расположения и размеров 

кратеров; это необходимо учитывать при оценке. Подобранная таким образом 

характеристика искажений форм и площадей может применяться только в 

Кратер Широта 

(°) 

Долгота (°, 

отсчѐт от 0° 

до 360° на 

восток) 

Скайреш (Фобос) 

(Skyresh, URL: https://planetarynames.wr.usgs.gov/Feature/14264) 

52,5 40 

Мери (Гиперион) 

(Meri, URL: https://planetarynames.wr.usgs.gov/Feature/3852) 

31 213 

Казанова (Эрос) 

(Casanova, URL: https://planetarynames.wr.usgs.gov/Feature/1039) 

46,6 124 

 

а) б) 
 

в) 
 

Рисунок 17. Изображения кратеров, выбранных для количественной оценки 

искажений форм и площадей: 

а) Скайреш (M1 Phobos, URL: https://3d-asteroids.space/moons/M1-Phobos); 

б) Мери (Sokolov et al., 2024b); 

в) Казанова ( (433) Eros, URL: https://3d-asteroids.space/asteroids/433-Eros). 
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дополнение к оценке по изоколам. Для самостоятельного использования 

необходимо рассчитывать показатели искажений для большего числа кратеров, 

расположенных в разных частях поверхности небесного тела. 

Дополнительно в качестве примера оценки искажения длины линейной 

формы рельефа была вычислена длина одной из борозд на поверхности Фобоса в 

разных проекциях. Рассчитанные значения длины сравнивались с длиной этой 

борозды на эллипсоиде, вычисленной приближѐнно по пространственным 

прямоугольным координатам. Также было вычислено СКО экстремальных 

масштабов (  ) длин вдоль этой борозды для оценки искажения еѐ формы. На 

рисунке 18 представлено изображение борозды (показана красной стрелкой), 

сделанное по трѐхмерной модели Фобоса (M1 Phobos, URL: https://3d-

asteroids.space/moons/M1-Phobos). 

На качественном уровне свойства проекций исследовались визуально по 

составленным в них фотокартам и гипсометрическим картам. Использование 

фотокарт вместо карт поверхности для визуальной оценки допустимо, поскольку 

фотокарты пригодны для анализа формы объектов (при условии достаточного 

пространственного разрешения космических изображений), а их составление менее 

Рисунок 18. Изображение борозды на поверхности Фобоса (показана красной 

стрелкой), выбранной для оценки искажения длины линейной формы рельефа 

(M1 Phobos, URL: https://3d-asteroids.space/moons/M1-Phobos) 
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трудоѐмко. Суть визуальной оценки в том, что, определив по изоколам величины 

искажений и их распределение, можно увидеть, как искажаются объекты в 

соответствующих местах на карте. Дополнительно для большей наглядности 

составленные фотокарты были совмещены с изоколами наибольшего искажения 

углов. Визуальный анализ дополняет количественную оценку искажений и 

позволяет судить о том, как воспринимаются искажения при работе с картой. 

Далее будут описаны технологии построения изокол, горизонталей для 

гипсометрических карт и трансформирования глобальных фотомозаик. 

2.3.3. Построение изокол 

При построении изокол (рисунок 19) все показатели для последующей 

интерполяции вычислялись с шагом в 1° по широте и по долготе. Для 

интерполяции значений выбранных показателей был использован инструментарий, 

имеющийся в ПО Golden Software Surfer 11. Текстовый файл, полученный в 

результате работы программы по вычислению показателей искажений, 

использовался для операции Grid – собственно интерполяции, которая 

осуществлялась методом радиальных базисных функций (РБФ). Этот метод 

относится к наиболее гибким благодаря возможности выбора базисной функции, 

однако имеет недостаток – выход за пределы исходного диапазона значений 

(Самсонов, 2021). Применительно к показателям искажений это может приводить, 

например, к появлению отрицательных масштабов длин, поэтому изоколы с 

некорректными значениями необходимо отслеживать и удалять. Метод РБФ был 

выбран в результате визуального сравнения изокол наибольшего искажения углов в 

азимутальной проекции для Эроса, построенных всеми методами интерполяции, 

имеющимися в Golden Software Surfer 11  (Introduction to Gridding Methods, URL: 

http://surferhelp.goldensoftware.com/gridmisc/gridding_methods.htm?tocpath=Gridding

% 7CGridding%20Methods%7C_____1). 

 

Точки с 

шагом 1° 

Вычисление 

показателей 

искажений 
Интерполяция Изоколы 

Рисунок 19. Этапы обработки данных при построении изокол 
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Все картографические сетки и изоколы строились в диапазоне от 0° до 90° 

по широте и долготе. Исключение – цилиндрические проекции меридианного 

сечения и сохраняющая угол между меридианом и параллелью, в которых 

вертикальная координата быстро возрастает с широтой. В этих двух проекциях 

сетки и изоколы были ограничены параллелью 60° широты. Для всех конических 

проекций долгота центра карты 0°, широта 45°. 

2.3.4. Трансформирование фотомозаик и составление фотокарт 

Для трансформирования фотомозаик по опорным точкам прямоугольные 

координаты в проекциях трѐхосного эллипсоида были рассчитаны с шагом в 4° по 

широте и долготе, который предполагается достаточным для фотокарты. Первым 

этапом (рисунок 20) является привязка фотомозаик – переход от системы 

координат пикселей изображения к системе планетоцентрических координат. Этот 

переход упрощается за счѐт того, что исходная фотомозаика создана в 

равнопромежуточной вдоль меридианов цилиндрической проекции сферы. Для 

азимутальной проекции растр дополнительно обрезается с сохранением только 

нужного полушария. Трансформирование привязанной фотомозаики в QGIS в 

цилиндрическую проекцию трѐхосного эллипсоида осуществляется 

непосредственно из системы планетоцентрических координат. Для 

трансформирования в азимутальную проекцию необходимо предварительно 

перепроецировать растр в равнопромежуточную вдоль меридианов азимутальную 

проекцию сферы, установив соответствие координат опорных точек в этой 

проекции и в проекции трѐхосного эллипсоида. 

 

Для создаваемых фотокарт Фобоса, Гипериона и Эроса в проекциях 

меридианного сечения использована видоизменѐнная компоновка Шингарѐвой: 

изображение приполярных областей дано по всему диапазону долгот, в отличие от 

Глобальная 

фотомозаика 

Опорные 

точки с 

шагом 4° 

Привязка 

Трансформирование 

Фотокарта 

поверхност

Оформление 

Вычисление 

прямоугольных 

координат 

Рисунок 20. Этапы обработки данных при создании фотокарты 
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исходного варианта компоновки. Были составлены фотокарты Фобоса (Нырцов и 

др., 2021) и Эроса, а также карта поверхности Гипериона (Sokolov et al., 2024a; 

Sokolov et al., 2024b). Кроме того, была создана фотокарта Фобоса в 

цилиндрической проекции, сохраняющей угол между меридианом и параллелью 

(Fleis et al., 2024). На фотокарты были нанесены названия форм рельефа Эроса 

(Planetary Names: Eros, URL: https://planetarynames.wr.usgs.gov/Page/EROS/target), 

Гипериона (Planetary Names: Hyperion, URL: https://planetarynames.wr.usgs.gov/ 

Page/HYPERION/target) и Фобоса (Planetary Names: Phobos, URL: https:// 

planetarynames.wr.usgs.gov/Page/PHOBOS/target) в соответствии со списком, 

приведѐнным в справочнике планетной номенклатуры. Все фотокарты составлены 

автором диссертации и представлены в Приложении 2 (с. 152-159). 

2.3.5. Вычисление высот и составление гипсометрических карт 

Для отображения рельефа на гипсометрических картах использовались 

геодезические высоты. Вычисление геодезической высоты относительно 

трѐхосного эллипсоида основано на совместном использовании уравнения нормали 

к поверхности, проходящей через заданную точку, и уравнения собственно 

поверхности (Флейс и др., 2019; Sokolov et al., 2024a). Исходными данными для 

вычисления высот служат цифровые модели поверхности, имеющиеся в открытом 

доступе и представленные в прямоугольных (     ) или полярных         

планетоцентрических координатах. Для Фобоса и Эроса были использованы 

цифровые модели из системы планетных данных (PDS Asteroid Data Sets, URL: 

https://sbn.psi.edu/pds/archive/asteroids.html), для Гипериона – цифровая модель 

рельефа, созданная в Комплексной лаборатории исследования внеземных 

территорий МИИГАиК (Slodarzh et al., 2022; Sokolov et al., 2024a). 

 Этапы обработки данных при создании гипсометрической карты 

представлены на рисунке 21. Исходная цифровая модель рельефа в 

планетоцентрических координатах содержит точки с регулярным шагом по широте 

и долготе. При вычислении высот относительно трѐхосного эллипсоида точки 

получают новые координаты        , где широта и долгота отличаются от 

исходных и не имеют регулярного шага. Для удобства пересчѐта 

планетоцентрических координат в прямоугольные (в проекциях трѐхосного 
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эллипсоида) была осуществлена предварительная интерполяция с переходом к 

регулярной сетке (с шагом 1°). 

Свойства проекций исследовались по гипсометрическим картам Эроса в 

цилиндрической проекции, сохраняющей длины вдоль меридианов (Флейс и др., 

2019), Гипериона (Sokolov et al., 2024b), Фобоса и Эроса в равновеликой 

цилиндрической проекции. Все гипсометрические карты составлены автором 

диссертации и представлены в Приложении 2 (с. 160-162). 

Выводы к главе 2 

1. В рамках диссертационного исследования получены конечные формулы 

цилиндрических, азимутальных и конических проекций трѐхосного эллипсоида 

(равновеликих проекций, проекций меридианного сечения и азимутальной 

проекции, сохраняющей угол между меридианом и параллелью). Эти конечные 

формулы, а также найденные для остальных проекций простые 

аппроксимирующие зависимости удобны для включения проекций трѐхосного 

эллипсоида в математический модуль геоинформационных систем, поскольку 

благодаря им упрощается необходимый для этого обратный пересчѐт в 

планетоцентрические координаты. Также полученные конечные формулы 

упрощают расчѐт показателей искажений за счѐт того, что необходимые для этого 

выражения производных могут быть получены аналитически. 

2. С помощью нового инструментария (в виде программы на языке 

JavaScript и графического интерфейса к ней на HTML) по вычислению 

прямоугольных координат и показателей искажений построены изоколы частных 

масштабов длин вдоль меридианов, длин вдоль параллелей, площадей и 

наибольшего искажения углов в исследуемых проекциях для Фобоса, Гипериона и 

Цифровая 

модель 

поверхности 

Вычисление 

геодезических 

высот 

Гипсометрическа

я карта 

Интерполяция 

высот 

Вычисление 

прямоугольных 

координат 

Оформление 

Рисунок 21. Этапы обработки данных при создании гипсометрической карты 
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Эроса. Анализ распределения искажений по изоколам является основополагающим 

при выборе наилучших проекций для отображения рельефа на картах.  

3. В дополнение к оценке распределения искажений в проекциях по 

построенным изоколам, была осуществлена оценка искажений формы и площади 

кратеров Скайреш, Мери и Казанова на поверхности выбранных небесных тел, а 

также длины одной из борозд на поверхности Фобоса. 
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ГЛАВА 3. ВЫБОР НАИЛУЧШИХ ПРОЕКЦИЙ ТРЁХОСНОГО 

ЭЛЛИПСОИДА ДЛЯ ОТОБРАЖЕНИЯ РЕЛЬЕФА НА КАРТАХ 

НЕБЕСНЫХ ТЕЛ 

3.1. Наилучшие проекции для фотокарт и карт поверхности 

глобального охвата
5
 

На картах поверхностей небесных тел важно минимизировать искажения 

форм, поскольку эти карты часто используются для формирования представления 

об устройстве поверхности, в первую очередь о рельефе. Так, знание 

морфологических характеристик рельефа позволяет выдвинуть гипотезы о его 

происхождении, а правильно определять эти характеристики предпочтительно по 

карте в проекции, в которой минимизированы искажения форм. В этих целях могут 

быть использованы квазиравноугольные проекции трѐхосного эллипсоида 

(проекции меридианного сечения и проекции, сохраняющие угол между 

меридианом и параллелью) и равноугольная проекция Якоби. 

Для карт глобального охвата в проекциях меридианного сечения 

целесообразно комбинировать цилиндрическую и азимутальную проекции в 

рамках видоизменѐнной компоновки Шингарѐвой (Нырцов и др., 2021). 

Рассмотрим изоколы в этих двух проекциях, представленные в Приложении 1 (с. 

115-118, 139-142). Отметим, что азимутальная проекция является равноугольной на 

начальном меридиане, меридиане 90° и в полюсе, а цилиндрическая – на начальном 

меридиане, на экваторе и на меридиане 90°. 

Для Фобоса в цилиндрической проекции масштабы длин вдоль меридианов 

и параллелей к 60° широты достигают значений около 2,5, масштаб площадей – 

около 6 (Приложение 1, с. 139-141). В азимутальной проекции искажения растут 

ещѐ медленнее: к экватору рассматриваемые показатели (Приложение 1, с. 115-

117) достигают величин 1,6-1,65 и 2,6 соответственно. Расположение изокол 

близко к субширотному. Наибольшее искажение углов (Приложение 1, с. 142), в 

                                                           
5
 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 

основные результаты, положения и выводы исследования: 

Sokolov A.I., Nadezhdina I.E., Nyrtsov M.V., Zubarev A.E., Fleis M.E., Kozlova N.A. Mapping Hyperion in 

Projections of the Triaxial Ellipsoid Based on a New Reference Network and a Digital Terrain Model // Solar 

System Research. – 2024. – Vol. 58. – No. 1. – pp. 112-121. – DOI: 10.1134/S0038094624010106, EDN: 

PCXXAT. 
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цилиндрической проекции равное нулю на экваторе, начальном меридиане и 

меридиане 90°, плавно возрастает по мере удаления от этих линий, достигая 10°-

11° к 60° широты и 45° долготы. В азимутальной проекции (Приложение 1, с. 118) 

этот показатель на экваторе не превышает 3° (около 30° долготы). Интересно 

наличие замкнутой области незначительного повышения показателя в районе 30°-

60° широты и 60°-80° долготы. 

Для Гипериона все показатели чуть выше. В цилиндрической проекции 

масштабы длин вдоль меридианов и параллелей  достигают значений около 3, 

масштаб площадей – около 9 (Приложение 1, с. 139-141). В азимутальной проекции 

искажения также растут медленнее, чем в цилиндрической: к экватору 

рассматриваемые показатели (Приложение 1, с. 115-117) достигают величин 1,65-

1,7 и 2,8 соответственно. Расположение изокол сильнее отличается от 

субширотного, чем в случае Фобоса. Наибольшее искажение углов (Приложение 1, 

с. 142), в цилиндрической проекции равное нулю на экваторе, начальном 

меридиане и меридиане 90°, плавно возрастает по мере удаления от этих линий, 

достигая 30°-32° к 60° широты и 45° долготы. В азимутальной проекции этот 

показатель (Приложение 1, с. 118) на экваторе не превышает 12° (около 23-24° 

долготы). Имеется область повышения показателя в районе 30°-60° широты и 60°-

80° долготы. 

Для Эроса значения всех показателей гораздо выше. Так, масштабы длин 

вдоль меридианов и параллелей и масштаб площадей в цилиндрической проекции 

(Приложение 1, с. 139-141) к 60° широты достигают 6-7, 25-30 и 40-50 

соответственно. В азимутальной проекции масштабы растут не столь стремительно 

и в случае с Эросом: перечисленные показатели не превышают 2 для масштабов 

длин и 4 для масштаба площадей (Приложение 1, с. 115-117). Расположение изокол 

значительно отличается от субширотного; кроме того, вблизи 50° долготы длины и 

площади практически не искажаются, а при долготах меньше 50° есть области, где 

они преуменьшаются – в отличие от Фобоса, для которого масштабы длин и 

площадей всюду больше 1. Наибольшее искажение углов в цилиндрической 

проекции (Приложение 1, с. 142) при удалении от экватора, начального меридиана 

и меридиана 90° растѐт крайне быстро и достигает 120° и более. При этом имеется 

дополнительный меридиан, где искажения углов практически отсутствуют – 8°-9° 
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долготы. Однако при удалении от него рост показателя ещѐ более стремительный. 

В азимутальной проекции наибольшее искажение углов (Приложение 1, с. 118) 

достигает 70° на экваторе при долготах 5°-20°, при этом имеется линия 

минимальных искажений углов – примерно вдоль меридиана 45°. При долготах 

больше 50° рассматриваемый показатель не выше 15°. 

Обратимся к среднеквадратическому отклонению экстремальных 

масштабов длин (  ) вдоль границ кратера (таблица 5), которое характеризует 

искажение его формы, рассчитанному для кратеров Казанова на поверхности 

Эроса, Мери на поверхности Гипериона и Скайреш на поверхности Фобоса. Форма 

кратеров сильнее искажается в цилиндрической проекции меридианного сечения 

(для кратера Скайреш         , для кратера Мери         , для кратера 

Казанова         ). В азимутальной проекции меридианного сечения эти 

величины равны 0,008, 0,021 и 0,032 соответственно. Можно заключить, что с 

точки зрения искажений формы азимутальная проекция является наилучшей. 

Поэтому при использовании проекций меридианного сечения в рамках 

видоизменѐнной компоновки Шингарѐвой азимутальную проекцию нужно 

распространять не только на высокие широты, но и на средние широты (до 30-40°), 

где и расположены упомянутые кратеры. 

Таблица 5. СКО экстремальных масштабов длин и площадь кратеров в 

равноугольной проекции Якоби и в квазиравноугольных проекциях 

Из приведѐнного анализа распределения искажений в проекциях 

меридианного сечения можно сделать два вывода. Во-первых, искажения в 

азимутальной проекции достигают к экватору гораздо меньших значений, чем 

искажения в цилиндрической проекции – к параллели 60° широты. Во-вторых, чем 

правее расположен эллипсоид на графике (рисунок 15), тем больше все искажения 

в цилиндрической проекции по сравнению с азимутальной. 

Проекция СКО экстремальных масштабов длин 

Казанова 

(Эрос) 

Мери 

(Гиперион) 

Скайреш 

(Фобос) 

Равноугольная Якоби 0,002 0,059 0,036 

Азимутальная меридианного сечения 0,032 0,021 0,008 

Цилиндрическая меридианного сечения 0,701 0,253 0,321 

Сохраняющая угол между меридианом и 

параллелью азимутальная 

0,058 0,037 0,008 

Сохраняющая угол между меридианом и 

параллелью цилиндрическая 

0,671 0,126 0,232 
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Эти выводы подтверждаются при визуальном сопоставлении фотокарт трѐх 

небесных тел. По фотокарте Фобоса (Приложение 2, с. 150, 152) видно, что 

цилиндрическая проекция меридианного сечения трѐхосного эллипсоида, 

используемая для широт от -60° до 60°, характеризуется незначительными 

искажениями. Кратеры, расположенные вблизи экватора и вблизи полюсов, имеют 

округлую форму. Преимущества видоизменѐнной компоновки Шингарѐвой видны 

и при рассмотрении переходной полосы между параллелями 30° и 60°. Если в 

цилиндрической проекции форма расположенных здесь кратеров уже начинает 

искажаться, то в азимутальной остаѐтся близкой к окружности (рисунок 22, а-б). 

Таким образом, выявленное при количественной оценке искажений формы 

преимущество азимутальной проекции подтверждается и визуально. Также в 

азимутальной проекции с меньшими искажениями передаются линейные формы 

рельефа (борозды к северу от области Лапута). 

а) б) 

 

При построении карты поверхности Гипериона (Приложение 2, с. 156, 157) 

переходная область между азимутальной и цилиндрической проекциями была 

смещена к экватору. Такое решение было принято после сопоставления изокол 

наибольшего искажения углов в этих двух проекциях (Sokolov et al., 2024a). Это 

позволило уменьшить искажения при отображении рельефа, особенно искажения 

Рисунок 22. Изображение кратера Скайреш в проекциях меридианного 

сечения с изоколами наибольшего искажения углов (°): а) в цилиндрической 

проекции (𝜎𝐾       ); б) в азимутальной проекции (𝜎𝐾       ) 
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форм. Проведѐнная количественная оценка искажений формы кратера Мери, 

расположенного в переходной области, подтверждает необходимость подобного 

изменения компоновки по сравнению с картой Фобоса. 

Наконец, фотокарта Эроса (Приложение 2, с. 154, 155) показывает, что 

искажения в цилиндрической проекции для этого небесного тела критически 

возрастают уже в непосредственной близости от экватора. Такое распределение 

искажений затрудняет комбинирование двух проекций меридианного сечения в 

рамках видоизменѐнной компоновки Шингарѐвой. Поэтому для небесных тел с 

очень большими значениями эксцентриситетов использование проекций 

меридианного сечения для глобального картографирования не рекомендуется. 

Таким образом, для большинства небесных тел, исключая те из них, 

фигуры которых аппроксимируются трѐхосными эллипсоидами с большими 

значениями эксцентриситетов (расположены на рисунке 15 вблизи Эроса), 

проекции меридианного сечения обеспечивают отображение рельефа на картах с 

минимальными искажениями форм. 

Обратимся теперь к проекциям, сохраняющим угол между меридианом и 

параллелью. Отметим, что азимутальная проекция является равноугольной на 

начальном меридиане и в полюсе, а цилиндрическая – только на начальном 

меридиане. По сравнению с проекциями меридианного сечения, изоколы масштаба 

длин вдоль параллелей и площадей в этих проекциях распределены похожим 

образом. А вот изоколы масштаба длин вдоль меридианов и наибольшего 

искажения углов распределены иначе, чем в проекциях меридианного сечения. В 

цилиндрической проекции (Приложение 1, с. 143-146) максимальные значения 

наибольшего искажения углов достигаются в области, расположенной на 

пересечении меридиана 90° с экватором и параллелями 10°-20° широты. Такое 

распределение не позволяет уменьшать искажения углов путѐм сдвига переходной 

области в рамках компоновки Шингарѐвой, как это было сделано для карт 

Гипериона. Поскольку при использовании такой компоновки предполагается, что 

искажения в приэкваториальных областях минимальны, а в цилиндрической 

проекции, сохраняющей угол между меридианом и параллелью, это не так, то 

использование проекций этого класса в указанной компоновке нецелесообразно. 
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В статье (Fleis et al., 2024) сравниваются между собой фотокарты Фобоса, 

составленные в цилиндрических проекциях меридианного сечения (Приложение 2, 

с. 150, 152) и сохраняющей угол между меридианом и параллелью (Приложение 2, 

с. 151, 153). Сохранение формы крупных кратеров, различимых по фотомозаике, в 

целом, лучше обеспечивается в проекциях меридианного сечения. Однако у 

проекции, сохраняющей угол между меридианом и параллелью, вблизи параллелей 

50°-60° имеется область, где она близка к равноугольной (Приложение 1, с. 146), 

вследствие чего форма кратера Скайреш (рисунок 23, а-б), расположенного именно 

в этой области, искажается несколько меньше, чем в проекции меридианного 

сечения (         и          соответственно). 

Азимутальная проекция, сохраняющая угол между меридианом и 

параллелью (Приложение 1, с. 119-122), обладает лучшими свойствами, чем 

цилиндрическая проекция, но худшими, чем азимутальная проекция меридианного 

сечения. Форма борозды на поверхности Фобоса, расположенной 

преимущественно в приполярных широтах, искажается несколько меньше в 

азимутальной проекции меридианного сечения (        ), чем в азимутальной 

проекции, сохраняющей угол между меридианом и параллелью (        ). 

Азимутальная проекция, сохраняющая угол между меридианом и параллелью, 

имеет теоретическое значение в сопоставлении с азимутальной проекцией 

меридианного сечения: чем меньше отличия картографических сеток в этих 

а) б) 

 

Рисунок 23. Изображение кратера Скайреш в цилиндрических проекциях с 

изоколами наибольшего искажения углов (°): 

а) в проекции, сохраняющей угол между меридианом и параллелью (𝜎𝐾       ); 

б) в проекции меридианного сечения (𝜎𝐾       ) 
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проекциях, тем ближе обе проекции к равноугольным. Рассмотренные две 

азимутальные проекции могут быть взаимозаменяемы только для приполярных 

областей, не выше 50°-40° широты. Так, для кратера Скайреш на поверхности 

Фобоса, широта центра которого 52,5°, в обеих проекциях         . Для 

кратеров Казанова на поверхности Эроса и Мери на поверхности Гипериона 

(рисунок 24, а-б), расположенных ближе к экватору (46,6° и 31°), этот показатель в 

проекции меридианного сечения и в проекции, сохраняющей угол между 

меридианом и параллелью, несколько различается (таблица 5). 

Таким образом, два класса квазиравноугольных проекций схожи по 

характеру искажений, но различны по их распределению. Особенно заметны эти 

различия для цилиндрических проекций. Распределение искажений в проекциях 

меридианного сечения лучше подходит для комбинирования азимутальной и 

цилиндрической проекций этого класса в единой компоновке. Это позволяет 

считать их наилучшими для глобальных карт поверхности, за исключением карт 

небесных тел, фигуры которых аппроксимируются трѐхосными эллипсоидами с 

большими значениями эксцентриситетов. 

Хорошей альтернативой проекциям меридианного сечения может быть 

равноугольная проекция Якоби. Важной особенностью этой проекции является 

наличие так называемых круговых точек, в которых масштаб длин стремится к 

бесконечности. Эти точки имеют долготы 0° и 180°, а их широта зависит от 

а) б) 

 

Рисунок 24. Изображение кратера Мери в азимутальных проекциях с изоколами 

наибольшего искажения углов (°): 

а) в проекции. сохраняющей угол между меридианом и параллелью (𝜎𝐾       ); 

б) в проекции меридианного сечения (𝜎𝐾       ) 
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эксцентриситетов эллипсоида. Круговая точка для Фобоса имеет широту около 38°, 

для Гипериона около 20°, для Эроса менее 1°. Как видно по представленным в 

Приложении 1 (с. 147-148) изоколам, искажения длин и площадей вблизи круговой 

точки могут быть значительными. 

Вновь обратимся к количественной характеристике искажений формы 

кратеров Казанова, Мери и Скайреш (таблица 5). Обратим внимание, что для двух 

из них в проекции Якоби среднеквадратическое отклонение экстремальных 

масштабов длин достигает бóльших значений (кратер Скайреш – 0,036, кратер 

Мери – 0,059), чем в азимутальной проекции меридианного сечения (0,008 и 0,021 

соответственно). Таким образом, равноугольная проекция не обеспечивает лучшего 

сохранения формы этих двух кратеров. Причиной может являться относительно 

близкое их расположение к круговой точке. Форма борозды на поверхности 

Фобоса искажается в этой проекции тоже несколько сильнее (        ), чем в 

рассмотренных выше азимутальных проекциях. В то же время для кратера 

Казанова (рисунок 25, а-б) в проекции Якоби         , что значительно меньше, 

чем в азимутальной проекции меридианного сечения (        ). Для Эроса 

круговая точка расположена вблизи экватора, поэтому форма кратера в средних 

широтах меньше искажается именно в проекции Якоби. 

Итак, недостатком проекции Якоби с точки зрения глобального 

картографирования является то, что масштабы длин и площадей значительно 

а) б) 

Рисунок 25. Изображение кратера Казанова в разных проекциях: 

а) в равноугольной проекции Якоби (𝜎𝐾       ); 

б) в азимутальной проекции меридианного сечения (𝜎𝐾       ) с изоколами 

наибольшего искажения углов (°) 
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возрастают в окрестности круговой точки (в ней оба масштаба стремятся к 

бесконечности). С большими искажениями передаѐтся участок поверхности в 

диапазоне    -    от начального меридиана по долготе и    -    от параллели 

круговых точек по широте. Проекции меридианного сечения в компоновке для 

глобального картографирования, хотя и не обеспечивают строгой равноугольности, 

такого недостатка лишены. Однако проекцию Якоби целесообразно использовать 

для трѐхосных эллипсоидов со значительными экваториальными и полярными 

сжатиями, поскольку для них проекции меридианного сечения не рекомендуются. 

Таким образом, для отображения рельефа на картах поверхностей и 

фотокартах небесных тел с небольшими экваториальным и полярным сжатиями 

наилучшим образом подходят проекции меридианного сечения, а в случае, если  

сжатия значительны – проекция Якоби. При использовании проекций 

меридианного сечения необходимо смещать переходную область между 

азимутальной и цилиндрической проекциями в рамках единой компоновки ближе к 

экватору при увеличении эксцентриситетов эллипсоида (Sokolov et al., 2024a). На 

рисунке 26 показаны примерные области графика распределения эллипсоидов по 

эксцентриситетам, где та или иная проекция может считаться наилучшей для 

отображения рельефа на фотокартах и картах поверхностей небесных тел. 

Рисунок 26. Наилучшие проекции для отображения рельефа на фотокартах и 

картах поверхности глобального охвата (границы областей условные) 
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3.2. Наилучшие проекции для гипсометрических карт глобального 

охвата
6
 

При отображении рельефа на гипсометрических картах важно уменьшить 

искажения площадей, в то же время не пренебрегая полностью искажениями форм. 

В этих целях для небесных тел, фигуры которых целесообразно аппроксимировать 

трѐхосным эллипсоидом, могут быть использованы как равновеликие проекции, 

так и проекции, сохраняющие длины вдоль меридианов. Выбор наилучших из них 

основывается на сравнении распределения искажений. 

При анализе искажений в равновеликой цилиндрической проекции 

(Приложение 1, с. 133-135), прежде всего, следует отметить уменьшение масштаба 

длин вдоль меридианов от 1 на экваторе до 0 в полюсе. В результате изображение 

становится трудно различимым выше 50°-60° широты. Наглядный пример – 

гипсометрическая карта Гипериона (Sokolov et al., 2024b), приведѐнная в 

Приложении 2 (с. 158), на которой с трудом различаются горизонтали выше 60° 

широты (рисунок 27). Решением проблемы может быть совмещение 

цилиндрической и азимутальной проекций в компоновке, аналогичной той, что 

рассматривалась в разделе 3.1 для проекций меридианного сечения. 

Судя по изоколам и картографической сетке, для Эроса указанная 

особенность равновеликой цилиндрической проекции наблюдается уже на 40-й 

параллели. Искажения других типов возрастают ещѐ сильнее: так, наибольшее 

искажение углов (Приложение 1, с. 135) достигает 100° уже к 30° широты на 

                                                           
6
 При подготовке данного раздела диссертации использованы следующие публикации, выполненные 

автором в соавторстве, в которых, согласно положению о присуждении учѐных степеней в МГУ, отражены 

основные результаты, положения и выводы исследования: 

Sokolov A.I., Nyrtsov M.V., Fleis M.E., Nadezhdina I.E. Investigation and cartographic representation of Hyperion 

space images photogrammetric processing results // Planetary and Space Science. – 2024. – Vol. 249. – 105945. – 

DOI: 10.1016/j.pss.2024.105945, EDN: GYXPGD. 

 

Рисунок 27. Фрагмент гипсометрической карты Гипериона в равновеликой 

цилиндрической проекции (красной рамкой выделены трудноразличимые 

горизонтали выше 60° широты) 
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меридианах 10°-20°. Для этого небесного тела искажения останутся значительными 

даже при совмещении двух равновеликих проекций в вышеупомянутой 

компоновке (и при должном смещении переходной области к экватору). 

Проекции, сохраняющие длины вдоль меридианов, интересны в контексте 

гипсометрических карт тем, что обеспечивают баланс между искажениями 

площадей и углов (а, следовательно, и форм). На картах в таких проекциях не 

будет больших искажений как очертаний горизонталей, так и площадей высотных 

уровней. В таблице 6 приведены результаты количественной оценки искажений 

форм и площадей кратеров Казанова, Мери и Скайреш в равновеликих проекциях и 

в проекциях, сохраняющих длины вдоль меридианов. Таблица показывает, что 

лучший баланс искажений форм и площадей достигается в азимутальной проекции, 

сохраняющей длины вдоль меридианов: искажения площадей в этой проекции 

небольшие, а формы искажаются ощутимо меньше, чем в равновеликой 

азимутальной проекции. С точки зрения глобального картографирования, 

целесообразно использовать такое преимущество цилиндрических проекций, как 

отсутствие искажений на экваторе, и комбинировать их с азимутальными 

проекциями в рамках видоизменѐнной компоновки Шингарѐвой, по аналогии с 

картами в проекциях меридианного сечения. 

Таблица 6. СКО экстремальных масштабов длин и площадь кратеров в 

равновеликих проекциях и в проекциях, сохраняющих длины вдоль меридианов 

Длина борозды на поверхности Фобоса также меньше всего искажена в 

азимутальной проекции, сохраняющей длины вдоль меридианов (на 0,1%). Это 

Проекция Площадь, км
2
 СКО экстремальных масштабов 

длин 

Казанова 

(Эрос) 

Мери 

(Гиперион) 

Скайреш 

(Фобос) 

Казанова 

(Эрос) 

Мери 

(Гиперион) 

Скайреш 

(Фобос) 

Равновеликая 

азимутальная 

0,467 749 1,881 0,064 0,045 0,017 

Равновеликая 

цилиндрическая 

0,467 749 1,881 0,613 0,374 0,899 

Сохраняющая 

длины вдоль 

меридианов 

азимутальная 

0,471 

(100,9%) 

782 

(104,4%) 

1,92 

(102,1%) 

0,036 0,034 0,011 

Сохраняющая 

длины вдоль 

меридианов 

цилиндрическая 

0,811 

(173,7%) 

1034 

(138,1%) 

4,14 

(220,1%) 

0,511 0,271 0,641 
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объясняется тем, что бóльшая еѐ часть расположена вблизи полюса. Поэтому в 

обеих цилиндрических проекциях (равновеликой и сохраняющей длины вдоль 

меридианов) длина борозды преувеличена более чем в 2,5 раза. 

Таким образом, проекции, сохраняющие длины вдоль меридианов, следует 

признать наилучшими для гипсометрических карт. При этом для небесных тел с 

небольшим экваториальным и полярным сжатием равновеликие проекции также 

могут использоваться, при условии комбинирования цилиндрических и 

азимутальных проекций в рамках всѐ той же компоновки.  Однако, чем больше 

экваториальное и полярное сжатие, тем более целесообразным становится выбор в 

пользу проекций, сохраняющих длины вдоль меридианов. Так, для Эроса в 

равновеликой цилиндрической проекции искажения значительно возрастают уже в 

районе 20-й параллели, особенно вблизи начального меридиана. Это снижает 

целесообразность комбинирования двух равновеликих проекций в рамках 

видоизменѐнной компоновки Шингарѐвой. На рисунке 28 показаны области 

(границы даны условно) графика распределения эллипсоидов по эксцентриситетам, 

где та или иная проекция может считаться наилучшей для отображения рельефа на 

гипсометрических картах небесных тел. 

Рисунок 28. Наилучшие проекции для отображения рельефа на гипсометрических 

картах глобального охвата (границы областей условные) 

90



Равновеликая цилиндрическая проекция, представленная в диссертации в 

виде конечных формул (Флейс и др., 2022), удобна для расчѐта площадей любых 

объектов на поверхности, в том числе кратеров и высотных ступеней, и их 

сопоставления. В статье (Sokolov et al., 2024b) по карте в равновеликой 

цилиндрической проекции измеряется площадь кратера на поверхности Гипериона. 

Карты в равновеликих проекциях служат инструментом для таких измерений в 

условиях отсутствия в ГИС-пакетах возможности их выполнения непосредственно 

на эллипсоиде. 

Расчѐт площадей высотных ступеней в равновеликой проекции позволяет 

получить распределение участков поверхности небесного тела по высотам, которое 

может быть представлено в виде гистограммы или кривой с накоплением 

(гипсографической кривой). Такое представление позволяет анализировать как 

рельеф, так и отклонения референц-поверхности от физической поверхности. На 

рисунке 29 представлены диаграммы высотных уровней (англ. hypsograms) для 

Фобоса, Гипериона и Эроса. Построенные диаграммы могут служить 

инструментом, позволяющим оценить соответствие аппроксимирующего 

эллипсоида физической поверхности небесного тела. Для Гипериона (Sokolov et al., 

2024a) определѐн наилучший эллипсоид, выведенный под условием минимума 

отклонения от физической поверхности, без учѐта физических параметров 

вращения и центра масс, поэтому диаграмма высотных ступеней имеет вид 

нормального распределения, с пиком в центре. Если центр масс тела не совпадает с 

геометрическим центром его фигуры или при различиях в направлении осей 

фигуры и осей системы координат, диаграмма будет иметь значимые отклонения 

от нормального распределения. 

91



3.3. Наилучшие проекции для карт поверхности и 

гипсометрических карт регионального охвата 

Конические проекции трѐхосного эллипсоида, формулы которых получены 

в главе 2, удобны для регионального картографирования, поскольку предоставляют 

возможность выбрать точку (центр карты), где отсутствуют искажения всех типов. 

Изоколы в этих проекциях (Приложение 1, с. 123-132) были построены таким 

образом, чтобы отсутствовали искажения в точке пересечения начального 

меридиана и параллели с широтой 45°. 

Анализ изокол показывает, что конфигурация участка поверхности, где 

искажения всех типов минимальны, зависит от эксцентриситетов эллипсоида. Для 

Фобоса это область близка к широтной полосе. Так, наибольшее искажение углов в 

равновеликой проекции (рисунок 30) не превышает 1° в полосе широт 35°-55°, 

которая при возрастании долготы слегка смещается в сторону полюса примерно к 

39°-58° широты. Для Гипериона такой сдвиг к полюсу заметнее: наибольшее 

искажение углов не превышает 1° в полосе широт 32°-58°, которая при возрастании 

долготы смещается в сторону полюса примерно к 43°-63° широты. Наконец, для 

Эроса зона минимальных искажений углов имеет нижнюю границу по начальному 

меридиану около 30° широты, а по меридиану 90° выше 60° широты. 

   

а) б) в) 

Рисунок 29. Диаграммы высотных уровней: а) Фобос; б) Гиперион; в) Эрос 
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Эти особенности проекции определяются положением линии касания 

эллипсоида и эллиптического конуса. В конической проекции меридианного 

сечения на конфигурацию области с минимальными искажениями углов влияет 

также тот факт, что эта проекция является равноугольной на начальном меридиане 

и меридиане 90°. Такое свойство позволяет заключить, что для карт поверхности 

регионального охвата более предпочтительны именно проекции меридианного 

сечения. В то же время отличия распределения изокол между проекциями с 

различным характером искажений невелики, особенно в окрестности центра карты, 

поэтому все конические проекции можно считать взаимозаменяемыми. 

Тезис о взаимозаменяемости конических проекций подтверждается при 

рассмотрении фотокарт одного и того же участка поверхности Эроса в различных 

по характеру искажений проекциях (рисунок 31), представленных в пособии 

(Нырцов и др., 2022). Не глядя на подписи, затруднительно увидеть разницу между 

тремя фотокартами. 

Рисунок 30. Наибольшее искажение углов (°) в равновеликой конической проекции 
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Количественная оценка искажений форм и площадей кратеров Казанова, 

Мери и Скайреш также показывает, что при подборе параметров конических 

проекций в соответствии с координатами центров кратера эти искажения во всех 

трѐх конических проекциях практически одинаковы. Схожесть показателей 

иллюстрирует таблица 7. Можно заключить, что для карт поверхностей и 

гипсометрических карт регионов, расположенных в средних широтах и 

простирающихся на 15°-20° по широте и долготе, наилучшей может считаться 

любая из трѐх конических проекций. 

 Таблица 7. Искажения форм и площадей кратеров в конических проекциях 

Коническая 

проекция 

СКО экстремальных масштабов длин Площадь, км
2
 

Казанова 

(Эрос) 

Мери 

(Гиперион) 

Скайреш 

(Фобос) 

Казанова 

(Эрос) 

Мери 

(Гиперион) 

Скайреш 

(Фобос) 

Равновеликая 0,01 0,009 0,002 0,467 749 1,881 

Сохраняющая 

длины вдоль 

меридианов 

0,009 0,009 0,001 0,468 750 1,882 

 

Меридианного 

сечения 

0,012 0,01 0,001 0,469 751 1,883 

 

Рисунок 31. Фотокарты участка поверхности Эроса в конических проекциях 

(Нырцов и др., 2022): а) сохраняющей длины вдоль меридианов; б) равновеликой; в) 

меридианного сечения 
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Измерения длины и формы борозды на поверхности Фобоса показывают, 

что для территорий бóльших размеров (борозда простирается более чем на 65° по 

широте и более чем на 135° по долготе) искажения в конических проекциях могут 

уже значительно различаться. Так, среднеквадратическое отклонение 

экстремальных масштабов длин вдоль линии борозды составляет 0,505 в 

равновеликой проекции, 0,159 в проекции, сохраняющей длины вдоль меридианов, 

и 0,062 в проекции меридианного сечения. В тоже время длина борозды в этих 

проекциях искажена на 5,8%, на 4,6% и на 5,8% соответственно. То есть искажение 

формы борозды в проекции меридианного сечения меньше, чем в двух других 

проекциях, а еѐ длина искажается незначительно во всех проекциях. 

Следует также обратить внимание, что во всех трѐх конических проекциях 

область минимальных искажений для Эроса не ограничивается окрестностью 

линии касания. Имеется также полоса, расположенная примерно вдоль 50° долготы 

и простирающаяся до экватора, вдоль которой искажения практически 

отсутствуют. При этом, например, в проекции, сохраняющей длины вдоль 

меридианов, к западу от этой полосы частные масштабы длин вдоль параллелей и 

площадей уменьшаются, к востоку – увеличиваются. Для Фобоса и Гипериона в 

этой проекции указанные частные масштабы всюду больше или равны единице. 

Таким образом, конические проекции целесообразно использовать для 

отображения рельефа на картах поверхностей и гипсометрических картах 

регионального охвата, при этом расположение области с минимальными 

искажениями тем ближе к субширотному, чем меньше экваториальное сжатие 

эллипсоида. Для карт регионов, расположенных в средних широтах и 

простирающихся на 15°-20° по широте и долготе, наилучшей может считаться 

любая из трѐх конических проекций. 

Выводы к главе 3 

1. Для отображения рельефа на картах поверхностей и фотокартах 

небесных тел с небольшим экваториальным и полярным сжатием наилучшим 

образом подходят проекции меридианного сечения, а в случае значительного 

экваториального и полярного сжатия – проекция Якоби. Для гипсометрических 

карт наилучшим образом подходят проекции, сохраняющие длины вдоль 

меридианов. При этом для небесных тел с небольшим экваториальным и полярным 
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сжатием равновеликие проекции также могут использоваться. Однако, чем больше 

экваториальное и полярное сжатие, тем более целесообразным становится выбор в 

пользу проекций, сохраняющих длины вдоль меридианов. 

2. При отображении рельефа на картах поверхности, фотокартах и 

гипсометрических картах минимизация искажений в указанных выше проекциях 

достигается путѐм комбинирования цилиндрических и азимутальных проекций в 

составе единой компоновки. При этом необходимо смещать переходную область 

между азимутальной и цилиндрической проекциями ближе к экватору при 

увеличении эксцентриситетов эллипсоида. 

3. Конические проекции целесообразно использовать для отображения 

рельефа на картах поверхностей и гипсометрических картах регионального охвата, 

при этом расположение области с минимальными искажениями тем ближе к 

субширотному, чем меньше экваториальное сжатие эллипсоида. Для карт 

регионов, расположенных в средних широтах и простирающихся на 15°-20° по 

широте и долготе, наилучшей может считаться любая из трѐх конических 

проекций. 

4. Равновеликая цилиндрическая проекция, представленная в виде 

конечных формул, удобна для расчѐта площадей любых объектов на поверхности, 

в том числе кратеров и высотных ступеней, и их сопоставления. Построенные по 

карте в равновеликой проекции диаграммы высот могут служить инструментом 

анализа поверхностей небесных тел на предмет отклонения референц-поверхности 

от физической. 
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ЗАКЛЮЧЕНИЕ 

Результаты исследования 

В исследовании определены проекции, используемые для отображения 

рельефа на картах поверхностей и гипсометрических картах небесных тел. 

Рассмотрены способы получения таких проекций для трѐхосного эллипсоида. 

Получены конечные формулы цилиндрических, азимутальных и конических 

проекций трѐхосного эллипсоида, а при невозможности их получения – простые 

аппроксимирующие зависимости для вычисления координат в проекциях. Эти 

формулы удобны для включения в математический модуль геоинформационных 

систем и для упрощения расчѐта показателей искажений. Разработан новый 

инструментарий по вычислению прямоугольных координат в проекциях 

трѐхосного эллипсоида и показателей искажений. На основе исследования 

проекций трѐхосного эллипсоида путѐм оценки искажений по изоколам и на 

примере отдельных кратеров, визуальной оценки по фотокартам и 

гипсометрическим картам выбраны наилучшие из них для отображения рельефа на 

картах небесных тел с точки зрения минимизации искажений. 

Выбранные наилучшие проекции для отображения рельефа рекомендуются 

к использованию для карт поверхностей и гипсометрических карт небесных тел, 

фигуры которых целесообразно аппроксимировать трѐхосным эллипсоидом. 

Разработанный инструментарий по вычислению координат в проекциях 

значительно упрощает процесс составления карт таких небесных тел. Алгоритмы 

расчѐта показателей искажений, включѐнные в упомянутый инструментарий, могут 

быть использованы при выборе проекций для карт небесных тел, также как и 

построенные изоколы. 

Основные выводы 

1. Для отображения рельефа на картах поверхностей и фотокартах 

глобального охвата небесных тел с небольшими экваториальным и полярным 

сжатиями наилучшим образом подходят проекции меридианного сечения. В случае 

значительных экваториального и полярного сжатий искажения в проекциях 

меридианного сечения возрастают, поэтому наилучшей для таких небесных тел 

является проекция Якоби. Наилучшие проекции для отображения рельефа на 
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гипсометрических картах глобального охвата –  проекции, сохраняющие длины 

вдоль меридианов. 

2. Проекции меридианного сечения и проекции, сохраняющие длины вдоль 

меридианов, являются наилучшими для отображения рельефа на картах 

глобального охвата при использовании видоизменѐнного варианта компоновки 

Шингарѐвой, который обеспечивает минимизацию искажений по всей поверхности 

небесного тела.  Использование равновеликих проекций в этой компоновке для 

гипсометрических карт также допускается – в случае небольших значений 

экваториального и полярного эксцентриситетов эллипсоида. 

3. Конические проекции целесообразно использовать для отображения 

рельефа на картах поверхности и гипсометрических картах регионального охвата. 

Построенные изоколы показывают, что расположение области с минимальными 

искажениями тем ближе к субширотному, чем меньше экваториальное сжатие 

эллипсоида. Количественная оценка искажений форм и площадей отдельных 

кратеров позволяет сделать вывод, что для карт регионов, расположенных в 

средних широтах и простирающихся на 15°-20° по широте и долготе, наилучшей 

может считаться любая из трѐх конических проекций. 

4. Равновеликие проекции предоставляют возможность анализировать 

небесные тела на предмет отклонения референц-поверхности от физической 

поверхности путѐм сопоставления площадей различных объектов. Новый 

инструментарий по вычислению координат в проекциях трѐхосного эллипсоида 

включает конечные формулы этих проекций. 

98



СПИСОК ЛИТЕРАТУРЫ 

1. Аванесов Г.А., Жуков Б.С., Зиман Я.Л.  Телевизионные исследования 

Фобоса – М.: Наука, 1994. – 168 с. 

2. Атлас планет земной группы и их спутников / Под ред. Большакова 

В.Д. – М.: МИИГАиК, 1992. – 208 с. 

3. Атлас Фобоса / И.П. Карачевцева, А.А. Конопихин, А.А. Коханов и др. 

– М.: МИИГАиК, 2015. – 220 с. 

4. Барабашов Н.П., Михайлов А.А., Липский  Ю.Н. Атлас обратной 

стороны Луны. – М.: Изд-во АН СССР, 1960. – 169 c. 

5. Бугаевский Л.М. Проблемы изыскания и использования 

равноугольных и близких к ним проекций для целей картографии и геодезии: 

автореф. дисс. на соиск. учѐной степени д-ра техн. наук. – М.: МИИГАИК, 1971. – 

49 с. 

6. Бугаевский Л.М. К вопросу о получении изометрических координат и 

равноугольной цилиндрической проекции трѐхосного эллипсоида // Известия 

высших учебных заведений. Геодезия и аэрофотосъемка. – 1987. – №4. – С. 79-90. 

7. Бугаевский Л.М. Изометрические координаты, равноугольная 

цилиндрическая, коническая и азимутальная проекции трѐхосного эллипсоида // 

Известия высших учебных заведений. Геодезия и аэрофотосъемка. – 1991. – №3. – 

С. 144-152. 

8. Бугаевский Л.М. Математическая картография: учебник для вузов. – 

М.: Златоуст, 1998. – 400 с. 

9. Бугаевский Л.М. Теория картографических проекций регулярных 

поверхностей. – М.: Златоуст, 1999. – 144 с. 

10. Вахрамеева Л.А., Бугаевский Л.М., Казакова З.Л. Математическая 

картография: учебник для вузов. – М.: Недра, 1986. – 286 с. 

11. Гаусс К.Ф. Избранные геодезические сочинения. Том II. Высшая 

геодезия / Под ред. Г.В. Багратуни; пер. с нем. Н.Ф. Булаевского, М.Л. Рудштейна. 

– М.: Издательство геодезической литературы, 1958. – 246 с. 

12. Гедымин А. В. Картографические проекции советских школьных карт. 

– М.: Просвещение, 1984. – 111 с. 

99



13. Гинзбург Г.А., Салманова Т.Д. Атлас для выбора картографических 

проекций. – М.: Геодезиздат, 1957. – 239 с. 

14. Журавский А.М. Справочник по эллиптическим функциям. – М., 

Ленинград: Изд-во Акад. наук СССР, 1941. – 236 с. 

15. Калиткин Н.Н. Численные методы. – М.: Наука, 1978. – 512 с. 

16. Кондрачук А.В. Перспективные проекции разных классов // Известия 

высших учебных заведений. Геодезия и аэрофотосъемка. – 2008. – № 6. – С.57-59. 

17. Кондрачук А.В. Исследование и разработка перспективных проекций 

трѐхосного эллипсоида для картографирования поверхностей небесных тел: 

автореф. дисс. на соиск. учѐной степени канд. техн. наук по спец-ти 25.00.33 – 

Картография. – М.: МИИГАИК, 2009. – 23 с. 

18. Кринов Е.Л. Планеты-карлики (астероиды). – М., Л.: Изд. АН СССР, 

1951. – 235 с. 

19. Ктитров С.В., Рысляев Д.А. Сравнительный графический анализ 

искажений некоторых картографических проекций // Научная визуализация. – 

2018. – Т. 10 – № 3. – С. 1- 10. 

20. Лазарев Е.Н., Баскакова М.А., Гусакова Е.Н. [и др.]. Сравнительный 

анализ данных активного дистанционного зондирования для картографирования 

форм рельефа планет и спутников Солнечной системы // Известия высших учебных 

заведений. Геодезия и аэрофотосъемка. – 2014. – № 2. – С.84-92.  

21. Личков Б.Л. К основам современной теории Земли – Л.: Изд. 

Ленинградского Унив., 1965. – 120 с. 

22. Лукашевич И.Д. Неорганическая жизнь земли: Ч. 1-3. – Санкт-

Петербург: Т-во худож. печати, 1908-1911. –1287 с. 

23. Лукашов А.А. Рельеф планетных тел. Введение в сравнительную 

геоморфологию: учебное пособие. – М.: Издательство Московского университета, 

1996. – 112 с. 

24. Ляпунов А.М. О форме небесных тел // Известия Академии наук СССР. 

VII серия. Отделение физико-математических наук. – 1930. – Вып. 1. – С. 25-41.  

25. Математическая энциклопедия. Том 5.  – М.: Советская энциклопедия, 

1985. – 623 с. 

100



26. Мещеряков Г.А. Теоретические основы математической картографии. 

– М.: Недра, 1968. – 160 с.  

27. Никольский С.М. Квадратурные формулы. – М.: Наука, 1988. – 256 с. 

28. Нырцов М.В. Картографирование астероида 433 Эрос на основе 

проекций реальных поверхностей небесных тел // Известия высших учебных 

заведений. Геодезия и аэрофотосъемка. – 2009. – № 2. – С.82-86. 

29. Нырцов М.В., Флейс М.Э., Борисов М.М. Картографирование 

астероида 433 Эрос в равнопромежуточных вдоль меридианов цилиндрической и 

азимутальной проекциях трѐхосного эллипсоида // Известия высших учебных 

заведений. Геодезия и аэрофотосъемка. – 2012. – № 1. – С.54-61. 

30. Нырцов М.В. Актуальные проблемы картографирования внеземных 

объектов // Вопросы географии. – 2017. – № 144. – С. 42-51. 

31. Нырцов М.В., Флейс М.Э., Соколов А.И. Проекции меридианного 

сечения: новый класс проекций для трѐхосного // Геодезия и картография. – 2021.– 

№ 2. – С. 11-22. 

32. Нырцов М.В., Флейс М.Э. Классификация проекций трѐхосного 

эллипсоида // Геодезия и картография. – 2021.  – № 6. – С. 18-26. 

33. Нырцов М.В., Флейс М.Э., Борисов М.М. Математическая картография. 

Проекции трехосного эллипсоида: учебное пособие. – М.: Издательство 

Московского университета, 2022. – 212 с. 

34. Огородова Л.В., Конопихин А.А., Надеждина И.Е. Вычисление 

геодезических координат для трѐхосного отсчѐтного эллипсоида // Известия 

высших учебных заведений. Геодезия и аэрофотосъемка. – 2012. – № 5. – С.9-13. 

35. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. В 3 т. 

Т. 1. Элементарные функции. – 2-е изд., исправ. – М.: ФИЗМАТЛИТ, 2002. – 632 с. 

36. Родионова Ж.Ф., Шевченко В.В., Гришакина Е.А., Слюта Е.Н. 

Исследование и картографирование Луны космическими аппаратами и кораблями 

// Космическая техника и технологии. – 2022. – № 4 (39). – С. 29-44. 

37. Самсонов Т.Е. Визуализация и анализ географических данных на 

языке R [Электронный ресурс]. – М.: Географический факультет МГУ, 2021. –  

URL: https://tsamsonov.github.io/r-geo-course (дата обращения: 10.10.2022).  

101



38. Серапинас Б.Б. Оценка искажений в картографических проекциях 

трехосного эллипсоида // Геодезия и картография. – 1983. – № 8. – С. 55-56. 

39. Серапинас Б.Б. О получении равноугольных картографических 

проекций трѐхосного эллипсоида // Геодезия и картография. – 1984. – № 8. – С. 48-

50. 

40. Серапинас Б.Б. Геодезические основы карт: учебное пособие. – М.: 

Изд-во МГУ, 2001. – 133 с. 

41. Серапинас Б.Б. Математическая картография. – М.: Издательский 

центр «Академия», 2005. – 336 с. 

42. Серия многоязыковых карт планет Земной группы и их спутников 

[Электронный ресурс] / Комплексная лаборатория исследования внеземных 

территорий. –  URL: http://planetmaps.ru/multilingual-planet-maps.html (дата 

обращения: 21.04.2021).  

43. Слюта Е.Н., Воропаев С.А. Малые и планетные тела Солнечной 

системы. Критическая масса ледяных тел // Астрономический вестник. 

Исследования Солнечной системы. – 1993. – Т. 27. – № 1. – С. 71- 82.  

44. Слюта Е.Н. Физико-механические свойства и гравитационная 

деформация металлических астероидов // Астрономический вестник. Исследования 

Солнечной системы. – 2013. – Т. 47. – № 2. – С. 122-140. 

45. Слюта Е.Н. Особенности гравитационной деформации малых тел 

Солнечной системы в зависимости от их химического и минерального состава: 

автореф. дисс. на соиск. учѐной степени канд. геол.-минер. наук по спец-ти 25.00.09 

– Геохимия, геохимические методы поисков полезных ископаемых. – М.: Ин-т 

геохимии и аналитической химии им. В.И. Вернадского РАН, 2014. – 27 с. 

46. Справочник по специальным функциям с формулами, графиками и 

таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В.А. 

Диткина и Л.Н. Кармазиной. – М.: Наука. Главная редакция физ.-мат. литературы, 

1979. – 832 с. 

47. Тюфлин Ю.С. Космическая фотограмметрия при изучении планет и 

спутников. – М.: Недра, 1986. – 247 с. 

48. Флейс М.Э., Нырцов М.В., Борисов М.М. Исследование свойства 

равноугольности цилиндрических проекций трѐхосного эллипсоида // Доклады 

Академии наук. – 2013. – Т. 451. – № 3. – С. 336-338. 

102



49. Флейс М.Э., Нырцов М.В., Борисов М.М., Стук Ф. Равноугольные и 

близкие к ним проекции для карт Фобоса // Атлас Фобоса. – М.: МИИГАиК, 2015. – 

С.48-64. 

50. Флейс М.Э., Нырцов М.В., Соколов А.И. Цилиндрические проекции 

трѐхосного эллипсоида: точные формулы и эллиптические интегралы // Геодезия и 

картография. – 2022.– № 4. – С. 26-38. 

51. Холшевников К.В. О фигурах равновесия небесных тел (к 150-летию 

А.М. Ляпунова) // Компьютерные инструменты в образовании. – 2008. – №2. – С. 

39-44.  

52. Чебышѐв П.Л. Полное собрание сочинений. Том V. Прочие сочинения. 

Биографические материалы. – М., Л.: Изд-во Акад. наук СССР, 1951. – 475 с. 

53. Щетников А.И. Сферическая Земля от древних греков до эпохи 

Великих географических открытий // ΣΧΟΛΗ. Философское антиковедение и 

классическая традиция. – 2012. – Том 6. – №. 2. – С. 384-404. 

54. Якоби К. Лекции по динамике / пер. с нем. О.А. Полосухиной под ред. 

Н.С. Кошлякова. – М., Ленинград: Главная редакция общетехнической литературы, 

1936. – 271 с. 

55. (433) Eros [Электронный ресурс] / 3D Asteroid Catalogue. – URL: 

https://3d-asteroids.space/asteroids/433-Eros (дата обращения: 16.03.2024). 

56. Archinal B.A., Anton C.H., A’Hearn M. F. [et al.]. Report of the IAU 

Working Group on Cartographic Coordinates and Rotational Elements: 2015 // Celestial 

Mechanics and Dynamical Astronomy. – 2018. – Vol. 130. – Issue 3. 

57. Berthoud M.G. An equal-area map projection for irregular objects // Icarus. 

– 2005. – Vol. 175. – No. 2. – pp. 382-389. 

58. Casanova [Электронный ресурс] / Planetary Names – Gazetteer of 

Planetary Nomenclature. – International Astronomical Union (IAU) Working Group for 

Planetary System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/ 

Feature/1039 (дата обращения 15.11.2024). 

59. Catalog Page for PIA07740 [Электронный ресурс] / Photojournal. – Jet 

Propulsion Laboratory. – California Institute of Technology. – URL: 

https://photojournal.jpl.nasa.gov/catalog/PIA07740 (дата обращения: 19.11.2024). 

103



60. Catalog Page for PIA10366 [Электронный ресурс] / Photojournal. – Jet 

Propulsion Laboratory. – California Institute of Technology. – URL: 

https://photojournal.jpl.nasa.gov/catalog/PIA10366 (дата обращения: 19.11.2024). 

61. Chandrasekhar S. Ellipsoidal Figures of Equilibrium // New Haven: Yale 

Univ. Press, 1969. – 252 p. 

62. Cheng Y., Lorre J.J. Equal area map projection for irregularly shaped 

objects // Cartography and Geographic Information Science. – 2000. – Vol. 27. – No. 2. – 

pp. 91-100.  

63. Croft S.K. Proteus: Geology, shape, and catastrophic destruction // Icarus. 

1992. – Vol. 99. – pp. 402– 419. 

64. Duxbury T.C. Phobos: Control network analysis // Icarus. – 1974. – Vol. 23. 

– Issue 2. – pp. 290-299. 

65. Fleis M.E., Nyrtsov M.V., Borisov M.M., Sokolov A.I. Accurate calculation 

of geodetic heights of a celestial body’s surface points relative to the triaxial ellipsoid // 

Doklady Earth Sciences. – 2019. – Vol. 486. – No. 2. – pp. 663-668. 

66. Fleis M.E., Nyrtsov M.V., Sokolov A.I., Stooke P.J. Errors in the 

Introduction of Isometric Coordinates and Violation of the Property of Conformality of 

the Triaxial Ellipsoid Projections // Cartographica: The International Journal for 

Geographic Information and Geovisualization. – 2024. – Vol. 59. – No. 2. – pp. 67-76. 

67. Gaskell Phobos shape model v1.0 [Электронный ресурс] / NASA’s Open 

Data Portal. – URL: https://data.nasa.gov/Earth-Science/GASKELL-PHOBOS-SHAPE-

MODEL-V1-0/2u8k-qygw (дата обращения: 19.12.2023). 

68. Geologic map of the Discovery Quadrangle of Mercury [Электронный 

ресурс] / U.S. Geological Survey. – URL: https://pubs.usgs.gov/imap/1658/plate-1.pdf 

(дата обращения: 10.11.2024). 

69. Harbison R.A. Thomas P.C., Nicholson P.C. Rotational modeling of 

Hyperion // Celestial Mechanics and Dynamical Astronomy. – 2011. – Vol. 110. – No. 1. 

– pp. 1-16.  

70. International Catalog of Planetary Maps [Электронный ресурс] / Digital 

Museum of Planetary Mapping. – URL: https://planetarymapping.elte.hu/wp-

content/uploads/2015/11/lipsky1960.jpg (дата обращения: 18.10.2024). 

71. Introduction to Gridding Methods [Электронный ресурс] / Surfer Help. – 

104



URL: http://surferhelp.goldensoftware.com/gridmisc/gridding_methods.htm?tocpath= 

Gridding%7CGridding%20Methods%7C_____1 (дата обращения: 21.02.2022). 

72. Karachevtseva I.P., Kokhanov A.A., Rodionova Zh. Atlas Planetary 

Mapping: Phobos Case // Planetary Cartography and GIS (ed. Henrik Hargitai). – 

Springer Nature Switzerland, 2019. – pp. 235-251. 

73. M1 Phobos [Электронный ресурс] / 3D Asteroid Catalogue. – URL: 

https://3d-asteroids.space/moons/M1-Phobos (дата обращения: 16.03.2024). 

74. Mars Maps by Schiaparelli (1877-1890) [Электронный ресурс] / Planetary 

Maps. – Digital Museum of Planetary Mapping. – URL: https://planetarymapping.elte.hu/ 

wp-content/uploads/2016/02/schiaparelli__1881.jpg (дата обращения: 16.12.2020). 

75. Melosh H.J. Impact Cratering: A Geologic Process. – New York: Oxford 

University Press, 1996. – 245 p. 

76. Melosh H.J. Planetary surface processes. – New York: Cambridge 

University Press, 2011. – 534 p. 

77. Meri [Электронный ресурс] / Planetary Names – Gazetteer of Planetary 

Nomenclature. – International Astronomical Union (IAU) Working Group for Planetary 

System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/ 

Feature/3852 (дата обращения 15.11.2024). 

78. Monmonier M. Rhumb Lines and Map Wars: A Social History of the 

Mercator Projection. – Chicago: The University of Chicago Press, 2004. – 256 p. 

79. NEAR image of the day for 2000 Feb 17 (A) [Электронный ресурс] / Near 

Earth Asteroid Rendezvous Mission. – The Johns Hopkins Applied Physics Laboratory. – 

URL: https://near.jhuapl.edu/iod/20000217a/index.html (дата обращения: 15.10.2024). 

80. Nyrtsov M.V., Fleis M.E., Borisov M.M., Stooke P.J. Jacobi Conformal 

Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial 

Bodies // Cartography from Pole to Pole, Lecture Notes in Geoinformation and 

Cartography. M. Buchroithner et al. (eds.), Springer-Verlag, Berlin, Heidelberg, 2014. – 

pp. 235-246. 

81. Nyrtsov M.V., Fleis M.E., Borisov M.M., Stooke P.J. Equal-Area 

Projections of the Triaxial Ellipsoid: First Time Derivation and Implementation of 

Cylindrical and Azimuthal Projections for Small Solar System Bodies // The 

Cartographic Journal. – 2015. – Vol. 52. – No.2. – pp. 114-124. 

105



82. Nyrtsov M.V., Fleis M.E., Borisov M.M., Stooke P.J. Conic projections of 

the triaxial ellipsoid: the projections for regional mapping of celestial bodies // The 

International Journal for Geographic Information and Geovisualization. – 2017. – Vol. 

52. – No. 4. – pp. 322-331. 

83. Pędzich P. Equidistant map projections of a triaxial ellipsoid with the use of 

reduced coordinates // Geodesy and Cartography. – 2017. – Vol. 66. – No. 2. – pp. 271-

290. 

84. Pędzich P. The method of construction of cylindrical and azimuthal equal-

area map projections of a tri-axial ellipsoid // Geodesy and Cartography. – 2018. – Vol. 

67. – No. 2. – pp. 271-294. 

85. Pędzich P. A low distortion conformal projection of a tri-axial ellipsoid and 

its application for mapping of extra-terrestrial objects // Planetary and Space Science. – 

2019. – Vol. 178. – 104697. 

86. Pędzich P. Conformal projections of a tri-axial ellipsoid based on isometric 

coordinates: history, methodology, and examples // Polish Cartographical Review. – 

2022. – Vol. 54. – pp. 35-53. 

87. PIA03467: The MGS MOC Wide Angle Map of Mars [Электронный 

ресурс] / Photojournal. – Jet Propulsion Laboratory. – California Institute of Technology. 

– URL: https://photojournal.jpl.nasa.gov/catalog/PIA03467 (дата обращения: 

16.12.2022). 

88. Planetary Names: Eros [Электронный ресурс] / Gazetteer of Planetary 

Nomenclature. – International Astronomical Union (IAU) Working Group for Planetary 

System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/Page/ 

EROS/target (дата обращения: 30.04.2020). 

89. Planetary Names: Hyperion [Электронный ресурс] / Gazetteer of 

Planetary Nomenclature. – International Astronomical Union (IAU) Working Group for 

Planetary System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/ 

Page/HYPERION/target (дата обращения: 30.10.2022). 

90. Planetary Names: Phobos [Электронный ресурс] / Gazetteer of Planetary 

Nomenclature. – International Astronomical Union (IAU) Working Group for Planetary 

System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/Page/ 

PHOBOS/target (дата обращения: 10.05.2020). 

106



91. Resolutions adopted at the General Assemblies [Электронный ресурс] / 

International Astronomical Union (IAU). – URL: https://www.iau.org/static/resolutions/ 

Resolution_GA26-5-6.pdf (дата обращения: 10.05.2024). 

92.  Skyresh [Электронный ресурс] / Planetary Names – Gazetteer of 

Planetary Nomenclature. – International Astronomical Union (IAU) Working Group for 

Planetary System Nomenclature (WGPSN). – URL: https://planetarynames.wr.usgs.gov/ 

Feature/14264 (дата обращения 15.11.2024). 

93. Slodarzh N.A., Zubarev A.E., Nadezhdina I.E., Kozlova N.A. Hyperion 

(C7): control point network and shape model. Difficulties and solutions // 13
th

 Moscow 

Solar System Symp.: Abstract Book. – 2022. – P. 201. 

94. Asteroid Data Sets [Электронный ресурс] / Planetary Data System. – 

URL: https://sbn.psi.edu/pds/archive/asteroids.html (дата обращения: 11.07.2024). 

95. Snyder J. P. Conformal mapping of the triaxial ellipsoid // Survey Review. 

– 1985. – Vol. 28. – No. 217. – pp. 130-148. 

96. Snyder J. P. Map projections: A working manual. – Washington: U.S. 

Government Printing Office, 1987. – 385 p. 

97. Sokolov A.I., Nadezhdina I.E., Nyrtsov M.V. [et al.] Mapping Hyperion in 

Projections of the Triaxial Ellipsoid Based on a New Reference Network and a Digital 

Terrain Model // Solar System Research. – 2024. – Vol. 58. – No. 1. – pp. 112-121. 

98. Sokolov A.I., Nyrtsov M.V., Fleis M.E., Nadezhdina I.E.  Investigation and 

cartographic representation of Hyperion space images photogrammetric processing 

results // Planetary and Space Science. – 2024. – Vol. 249. – 105945. 

99. Stooke P.J. Automated cartography of non-spherical worlds // Proc. 2nd 

Internat. Symp. Spatial Data Handling. – 1986. – pp. 523–536. 

100. Stooke Small Bodies Maps [Электронный ресурс] / Planetary Science 

Institute. – URL: https://sbnarchive.psi.edu/pds3/multi_mission/MULTI_SA_MULTI_ 

6_STOOKEMAPS_V3_0/document/00_map_guide.html (дата обращения: 20.03.2023). 

101. Stofan E.R., Elachi C., Lunine J.I. [et al.] The lakes of Titan // Nature. – 

2007. – Vol. 445. – No. 7123. – pp. 61–64. 

102. Thomas P.C. The shapes of small satellites // Icarus. – 1989. – Vol. 77. – 

pp. 248–274. 

107



ПРИЛОЖЕНИЕ 1. ИЗОКОЛЫ ЧАСТНЫХ МАСШТАБОВ ДЛИН 

ВДОЛЬ МЕРИДИАНОВ, ВДОЛЬ ПАРАЛЛЕЛЕЙ, ПЛОЩАДЕЙ И 

НАИБОЛЬШЕГО ИСКАЖЕНИЯ УГЛОВ В ЦИЛИНДРИЧЕСКИХ, 

АЗИМУТАЛЬНЫХ, КОНИЧЕСКИХ ПРОЕКЦИЯХ И В 

ПРОЕКЦИИ ЯКОБИ (СПУТНИК МАРСА ФОБОС, СПУТНИК 

САТУРНА ГИПЕРИОН, АСТЕРОИД 433 ЭРОС) 
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ПРИЛОЖЕНИЕ 2. ФОТОКАРТЫ ПОВЕРХНОСТИ И 

ГИПСОМЕТРИЧЕСКИЕ КАРТЫ НЕБЕСНЫХ ТЕЛ (СПУТНИК 

МАРСА ФОБОС, СПУТНИК САТУРНА ГИПЕРИОН, АСТЕРОИД 

433 ЭРОС) 
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Высоты вычислены относительно трёхосного
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Высоты по нормалям

-1000

-2000

0

500

1000

-5
00

-500

0 3000

0

1000
0

0

-500

500

0-500-1000-1500-2000-2500ниже 500 1000 1500 25002000 3000 4000 выше

Шкала высот и глубин в метрах

16804 24 км

H i m e r o s P s y c h e

C h a r l o i s

R e g i o

W i t t

R e g i o

F i n s e n  D o r s u m

H i n k
s

 
D

o
r s u m

160


	d0b50d4d7ed869ab1b9b7010eb80655e6562f5b3519f809ab9cca15c372dafbc.pdf
	3f21272ceb9c99c5e8e694cb6465fbe67590aeaee71494449c99cac32b125f45.pdf
	d0b50d4d7ed869ab1b9b7010eb80655e6562f5b3519f809ab9cca15c372dafbc.pdf
	3f21272ceb9c99c5e8e694cb6465fbe67590aeaee71494449c99cac32b125f45.pdf
	d032fd88d749def00bf65b97f963bab6fdc976301468deb6ab64e9bbd94560c0.pdf
	85fb080c8ea6c0005118c593c041371eb47785f4d85c5c41ddf2d37d6a64d4f9.pdf
	ea65c76ff41c8e09a1f4c917be5afe6ac8dd2f2abbb105a986dd311dabfdaa86.pdf
	phobos + eros
	17n

	85fb080c8ea6c0005118c593c041371eb47785f4d85c5c41ddf2d37d6a64d4f9.pdf
	ea65c76ff41c8e09a1f4c917be5afe6ac8dd2f2abbb105a986dd311dabfdaa86.pdf
	phobos + eros
	17n


	phobos fotocarta cyl sav
	phobos fotocarta cyl mersec iso
	phobos fotocarta cyl sav iso
	d032fd88d749def00bf65b97f963bab6fdc976301468deb6ab64e9bbd94560c0.pdf
	d032fd88d749def00bf65b97f963bab6fdc976301468deb6ab64e9bbd94560c0.pdf
	d032fd88d749def00bf65b97f963bab6fdc976301468deb6ab64e9bbd94560c0.pdf


