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Введение

На сегодняшний день видео в стереоскопическом формате очень широко

распространены и знакомы практически каждому. Но все чаще зрители пред­

почитают смотреть в кинотеатрах 2D-версии полнометражных фильмов вместо

3D-версий. Большинство таких зрителей после просмотра фильмов в стереоско­

пическом формате ощущает определенного рода дискомфорт: усталость, напря­

жение и боль в глазах, а также другие симптомы, вплоть до головной боли

[1], из-за чего у них пропадает интерес к просмотру стереофильмов. Появление

дискомфорта при просмотре 3D-фильмов может быть связано с несколькими

факторами:

1. особенности зрительной системы;

2. условия показа;

3. техническое качество производимого контента.

Исследованию восприятия зрителями стереоскопических фильмов посвя­

щен ряд научных работ. В работе [2] обсуждаются трудности восприятия филь­

мов в форматах 2D и 3D, а также их влияние на зрительную систему. Авторы

отмечают, что восприятие фильмов в 2D и 3D форматах связано с различными

физиологическими и психофизиологическими особенностями. При грамотной

реализации стереоконтента нагрузка на зрительную систему может быть мень­

ше, чем при просмотре в 2D. Однако технические ошибки и несоответствия

между ракурсами создают трудности для адаптации, что вызывает зритель­

ный дискомфорт. Ключевая проблема заключается в несовпадении естествен­

ных условий восприятия и искусственных параметров 3D-фильмов, таких как

несоответствие аккомодации и конвергенции. В работе [3] подчеркивается, что

зрительная система вынуждена перестраиваться при переходе от 2D к 3D вос­

приятию. У людей, редко использующих бинокулярное зрение в повседневной

жизни, такие изменения вызывают значительное напряжение. Трудности могут

быть преодолены через тренировки, направленные на развитие бинокулярных
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функций, что снижает ощущение дискомфорта. Также влияние наклона голо­

вы на восприятие стереоизображений играет важную роль, согласно работе [4].

Наклон головы ухудшает качество восприятия за счет изменения геометрии

зрительного поля. Индивидуальные различия в адаптации связаны с физио­

логическими характеристиками, такими как торсионные движения глаз, что

требует учета при проектировании оборудования и контента.

Кроме того, в работе [5] анализируется влияние современных технологий

создания стереофильмов на зрителей с различными зрительными функциями.

Грамотно выполненный стереоконтент не вызывает дискомфорта у зрителей с

нормальным бинокулярным зрением. Однако недостатки в создании контента

или условиях показа могут усиливать зрительный дискомфорт, вызывая уста­

лость, головную боль и даже тошноту. Особое внимание уделено группе зрите­

лей с нарушениями бинокулярных функций, для которых просмотр стереофиль­

мов может быть наиболее проблематичным. Для улучшения восприятия авторы

предлагают разрабатывать тесты для диагностики бинокулярных функций и

тренировать их перед просмотром стереофильмов. Наконец, в работе [6] анали­

зируются искажения пространственных образов в стереоскопических фильмах.

Авторы рассматривают эффекты кулисности, миниатюризации и гигантизма,

которые возникают из-за противоречий между монокулярными и бинокулярны­

ми факторами зрительного восприятия. Основные причины данных искажений

включают несоответствие параметров стереосъёмки и особенностей простран­

ственного восприятия зрителя. Для устранения таких эффектов рекомендуется

оптимизировать параметры стереосъёмки, включая базис и фокусное расстоя­

ние, а также учитывать зрительное восприятие при разработке контента.

Таким образом, несмотря на то что особенности зрительского восприятия,

такие как индивидуальные зрительные функции и физиологические реакции,

играют важную роль в возникновении дискомфорта при просмотре 3D-филь­

мов, эти трудности не являются непреодолимыми. Со временем и при доста­

точной практике зрители способны адаптироваться к условиям восприятия сте­

реоскопического контента, что снижает влияние физиологических факторов.
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Поэтому по мере привыкания зрителей к 3D-формату на первый план выходят

проблемы, связанные с условиями показа и техническим качеством контента.

Недостатки оборудования, такие как несовершенство проекторов, экранов

или системы проекции, могут существенно повлиять на восприятие глубины,

контрастность изображения и комфорт зрителя. Так в работах [7; 8] рассмат­

ривается проблема конфликта между аккомодацией и конвергенцией при про­

смотре стереоскопического контента на 3D-устройствах, что часто становится

причиной визуального утомления и дискомфорта. Исследования показывают,

что подобные конфликты приводят к искажению восприятия глубины и увели­

чению времени идентификации стереоскопических стимулов. Авторы продемон­

стрировали улучшение зрительного восприятия при минимизации указанных

конфликтов на специализированных дисплеях, способных корректно воспроиз­

водить аккомодационные и конвергенционные подсказки. В работе [9] рассмат­

риваются артефакты и ограничения стереоскопических мониторов, возникаю­

щие при использовании временного и пространственного интерлейсинга. Дан­

ные методы приводят к таким проблемам, как искажения глубины, мерцание,

снижение разрешения и неудобства, связанные с слиянием изображений для

обоих глаз. Особое внимание уделяется влиянию данных искажений на ком­

форт зрителей и возможным способам их минимизации, включая использова­

ние гибридных методов интерлейсинга. В работе [10] рассматривается влияние

размера экрана на восприятие стереоскопического контента. Авторы показыва­

ют, что конфликты аккомодации и конвергенции, усиливаемые особенностями

дисплеев, влияют на визуальный комфорт и впечатление от 3D. Результаты под­

чёркивают важность выбора оптимального размера экрана и технологии для

минимизации зрительного дискомфорта. Работа [11] систематизирует основные

причины зрительного дискомфорта при использовании стереоскопических дис­

плеев. Помимо затронутых в других работах факторов, таких как конфликт ак­

комодации и конвергенции, также отмечаются недостатки стереоскопического

контента, включая чрезмерную диспаратность стереоскопические искажения.

Авторы подчеркивают необходимость создания субъективных и объективных
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методов оценки дискомфорта для разработки стандартов, обеспечивающих ком­

фортное восприятие стереовидео.

В работе [12] анализируется влияние различных условий просмотра на

зрительное утомление при просмотре стереоскопического телевидения (3DTV)

в домашних условиях. В эксперименте с 500 участниками оценивалась степень

усталости при просмотре 3D-программ на телевизорах с активными затворны­

ми очками. Результаты показали, что использование 3D-очков вызывает значи­

тельный дискомфорт, включая усталость глаз, головную боль и общее ухудше­

ние состояния, особенно при близком расстоянии просмотра. Также выявлено,

что такие эффекты могут сохраняться на следующий день. В работе [13] ана­

лизируется влияние изменений цветовой насыщенности на восприятие стерео­

скопических изображений. Эксперименты показали, что при увеличении насы­

щенности восприятие глубины и качество изображения улучшается, однако это

может сопровождаться снижением естественности изображения. Также иссле­

дование выявило, что стереоскопические изображения требуют более высокой

контрастности для достижения той же естественности, что и 2D, что подчерки­

вает важность сбалансированного подхода к настройке параметров отображе­

ния для достижения комфортного и качественного восприятия.

Таким образом, дискомфорт зрителей при просмотре стереоскопическо­

го контента обусловлен как технологическими ограничениями устройств пока­

за, так и качеством самого контента. Но несмотря на развитие технологий,

включая улучшение дисплеев и оптимизацию способов показа стереоскопиче­

ского контента, качество 3D-видео продолжает играть ключевую роль. Даже

при совершенствовании технологий показа, недостатки самого стереоскопиче­

ского контента могут свести на нет достигнутые технологические улучшения.

И если для первых двух рассмотренных факторов появления дискомфорта при

просмотре стереовидео зритель может решить эту проблему самостоятельно

(путем тренировки и привыкания зрительной системы к стереоскопическому

формату в случае первого фактора, и путем выбора для просмотра хорошего

оборудования в случае второго фактора), то для третьего фактора решение
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проблемы возникаемого дискомфорта ложится на плечи создателей стереоско­

пического контента. Следовательно, в стереокинематографе на первый план

выходит качество производимого контента, и становится актуальным создание

инструментов обеспечения контроля качества создаваемых стереофильмов.

При производстве 3D-фильмов возникает набор новых проблем, не харак­

терных для обычных фильмов. При этом для различных методов производства

стереоскопических фильмов характерны различные типы искажений (или ар­

тефакты). Существуют следующие методы производства стереофильмов:

– Cъемка 3D-фильмов. При съемке фильмов в стереоскопическом фор­

мате используются две видеокамеры, находящиеся на небольшом рас­

стоянии друг от друга, имитирующие тем самым зрительную систему

человека. Каждая камера при этом записывает отдельную видеопосле­

довательность (ракурс), предназначенную для одного (левого или пра­

вого, в зависимости от положения камеры) глаза.

– Конвертация из 2D в 3D. При конвертации «плоские» (2D) фильмы пре­

образуются в 3D-форму путем генерации левого и правого ракурса на

основе исходной видеопоследовательности и соответствующих данной

видеопоследовательности карт глубины (глубина — оценка расстояния

от камеры до рассматриваемой точки).

– Компьютерная графика. При рендеринге CGI-фильмов в 3D-формате

используются две виртуальные камеры, аналогично обычной съемке

3D-фильмов.

Рассмотрим артефакты, характерные для каждого метода производства

стереовидео. Так, при съемке 3D-фильмов достаточно часто появляются геомет­

рические несоответствия между ракурсами, а также несоответствия по цвету,

яркости и резкости [14]. Данные проблемы появляются в случае, когда исполь­

зуемые для съемки камеры по-разному настроены и/или какая-то компонента

одной из камер вышла из строя. Таких проблем лишены стереофильмы, при

производстве которых была использована конвертация или компьютерная гра­

фика (хотя описанные выше артефакты можно получить и при использовании
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компьютерной графики, проблем с настройкой виртуальных камер обычно не

возникает), из-за чего на сегодняшний день большинство высокобюджетных

полнометражных фильмов создается при помощи конвертации. Но это не зна­

чит, что при таком способе создания стереоконтента удается избавиться от всех

характерных для 3D проблем: для конвертации характерны искажения, свя­

занные с некачественной обработкой границ и карт глубины при генерации

ракурсов, например, эффект «кулисности», искажения резкости на границах

объектов, их деформация и другие [15].

Другим форматом видео, еще более погружающим чем 3D-видео, явля­

ются 360∘видео или сферические видео. При этом наибольшее погружение до­

стигается за счет использования наголовного дисплея или шлема виртуальной

реальности (VR-шлема). При просмотре сферических видео в каждый момент

времени зритель наблюдает только часть сферы, соответствующей текущему

направлению взгляда. Дополнительно, сферические видео также могут быть

стереоскопическими, при показе отдельных последовательностей для каждого

глаза – левого и правого ракурсов, аналогично обычному стереоскопическому

формату, что возможно при использовании VR-шлема для просмотра таких

видео.

Для записи сферических видео обычно используется специальная система

из нескольких камер, одновременно снимающих различные, но пересекающиеся

ракурсы вокруг фиксированной позиции, которые далее объединяются в одно

360∘ видео с помощью алгоритмов склейки. Однако такой подход порождает

целый ряд влияющих на итоговое качество видео проблем в зависимости от каче­

ства работы алгоритма склейки и калибровки камер. Более того, в сферических

видео основное действие обычно происходит только на одной полусфере, в то

время как на устройство передается весь видеопоток, что приводит к передаче

и хранению избыточной информации. Для решения этих проблем Google анон­

сировала новый формат видео в VR – VR180, в котором видео проецируется на

полусферу, в то время как другая часть сферы может быть использована для

хранения второго ракурса, благодаря чему достигается стереоскопический эф­
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фект. Вместо использования специального рига из нескольких камер для записи

видео в формате VR180 используются только две камеры с объективами типа

«рыбий глаз», аналогично обычной стереоскопической съемке. Такой подход

значительно снижает стоимость конечного устройства. При этом значительно

упрощается техника съемки, так как остаются актуальными все приемы работы

с обычной камерой (только результат получается потенциально более зрелищ­

ным). В целом, видео в формате VR180 обеспечивает еще большее погружение,

чем сферические видео, дешевле и проще в производстве, а также не обладает

проблемами, возникающими при использовании алгоритмов склейки. Но, как и

в случае с обычным стереоскопическим форматом, VR180-видео также страда­

ют от стереоскопических артефактов, характерных для 3D-съемки. А так как

съемкой видео в формате VR180 в основном занимаются любители, контролю

качества уделяется не так много времени, и большое количество стереоскопиче­

ских артефактов попадает в итоговые видео.

Целью данной работы является исследование и разработка нейросетевых

алгоритмов объективной оценки качества стереоскопических видео, примени­

мых на практике при анализе стереоскопических фильмов и видео в формате

VR180. В данной работе рассматриваются наиболее часто встречающиеся арте­

факты, характерные для стереоскопической съемки: искажения цвета, резкости

и геометрии, а также один из наиболее болезненных для зрителей артефактов

– перепутанные ракурсы.

Для достижения поставленной цели необходимо было решить следующие

задачи:

1. Разработка новых нейросетевых алгоритмов для:

– одновременной оценки искажений цвета и резкости;

– оценки геометрических искажений, включающих в себя сдвиг,

масштабирование и поворот одного ракурса относительно дру­

гого;

– поиска перепутанных ракурсов в стереоскопических видео.
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2. Исследование объективного качества видео в формате VR180 с помо­

щью предложенных методов оценки качества.

Основные положения, выносимые на защиту:

1. Нейросетевой метод оценки цветовых искажений и искажений резко­

сти между ракурсами стереоскопического видео значительно сокраща­

ет число ложноположительных срабатываний за счет одновременно­

го учета рассматриваемых искажений и по результатам объективного

сравнения превосходит аналоги, ранее использовавшиеся при анализе

полнометражных стереоскопических фильмов.

2. Нейросетевой метод оценки геометрических искажений между ракурса­

ми стереоскопического видео по результатам объективного сравнения

уменьшает ошибку оценки угла поворота более чем на 14%, а коэффи­

циента масштабирования и вертикального сдвига на 2 порядка по срав­

нению с аналогами, ранее использовавшимися при анализе полномет­

ражных стереоскопических фильмов. Метод также обеспечивает воз­

можность автоматического исправления выявленных геометрических

искажений.

3. Нейросетевой метод поиска перепутанных ракурсов в стереоскопиче­

ских видео по результатам объективного сравнения улучшает точность

классификации более чем на 8% по сравнению с применявшимися ранее

при анализе полнометражных стереофильмов подходами.

4. Результаты исследования объективного качества 1000 VR180-видео, вы­

полненного с использованием разработанных методов, показывают на­

личие по меньшей мере одного вида стереоскопического искажения в

каждом из проанализированных материалов.

Все предложенные алгоритмы были реализованы и прошли экспериментальную

апробацию.

Научная новизна:

1. Впервые предложен нейросетевой алгоритм для одновременной оценки

цветовых искажений и искажений резкости в стереоскопических видео,
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что значительно понизило число ложноположительных срабатываний

по сравнению с раздельными методами, ранее использовавшимися при

анализе полнометражных стереофильмов.

2. Предложен новый оптимизируемый функционал для обучения нейросе­

тевых методов оценки геометрических искажений в стереоскопических

видео, а также описан метод исправления геометрических искажений

для VR180-видео на основе предложенного метода поиска искажений.

3. Предложен новый нейросетевой метод поиска перепутанных ракурсов,

предсказывающий вероятность наличия перепутанных ракурсов на ос­

нове исходного ракурса, построенной карты диспаратности и областей

открытия/закрытия по движению.

4. Проведен первый в мире масштабный анализ видео в формате VR180

на предмет технического качества стереоскопического контента.

Практическая значимость. Все предложенные в данной работе методы

были реализованы в виде программного инструмента, позволяющего осуществ­

лять оценку соответствующих артефактов по двум видеопоследовательностям

— для левого и правого ракурсов. С помощью данного программного инстру­

мента было проведено масштабное тестирование видео в формате VR180, пока­

завшее, что практически в каждом видео из собранной выборки встречается как

минимум один стереоскопический артефакт. Разработанный инструмент может

быть применен на этапе контроля качества при производстве стереоскопических

видео, как профессиональными студиями, так и любителями, что значительно

сократит число нежелательных искажений в итоговом продукте и заметно со­

кратит число зрителей, испытывающих дискомфорт при его просмотре.

Проведенное исследование объективного качества стереоскопического ви­

део в формате VR180 оформлено в виде отдельного отчета. Данный отчет досту­

пен в сети Интернет по адресу https://videoprocessing.ai/stereo_quality/

report12.html.

Mетодология и методы исследования. В работе применялись методы

линейной алгебры, теории алгоритмов, а также методы машинного обучения.
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Апробация работы. Основные результаты работы докладывались на:

– International Conference on 3D Immersion (Бельгия, 13-15 декабря 2016)

– 3DTV Conference 2018 (Стокгольм, Швеция, 3-5 июня 2018)

– International Conference on 3D Immersion (дистанционно, 15 декабря

2020)

– Stereoscopic Displays and Applications XXXII (дистанционно, 18 января

2021)

– Семинар кафедры интеллектуальных информационных технологий

ВМК МГУ (весна 2021)

– Семинар центра визуализации и спутниковых информационных техно­

логий НИИСИ РАН (10 октября 2022)

– Семинар института информационных технологий, математики и меха­

ники ННГУ им. Н.И.Лобачевского (13 октября 2022)

– Семинар им. М.Р. Шура-Бура ИПМ им. М.В. Келдыша (10 ноября 2022)

– Семинар кафедры информатики и программного обеспечения БГТУ (17

марта 2023)

– Семинар подразделения интеллектуального анализа данных и техниче­

ского зрения ГосНИИАС (13 апреля 2023)

Личный вклад автора заключается в выполнении основного объема тео­

ретических и экспериментальных исследований, изложенных в диссертацион­

ной работе, включая разработку теоретических моделей, методик, разработку

и реализацию алгоритмов, анализ и оформление результатов в виде публикаций

и научных докладов. В работах [1; 2] Д.С. Ватолину принадлежит постановка

задачи и обсуждение результатов ее решения.

Научные исследования, представленные в диссертации, были поддержаны

грантом СТАРТ Фонда содействия инновациям в рамках проекта “Разработка

системы автоматической объективной оценки качества и исправления стерео­

скопического видео и видео в формате VR180”, а также частично поддержаны

грантами РФФИ 15-01-08632 а “Автоматизация создания и контроля качества
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стерео видео” и РФФИ 19-01-00785 a “Разработка нейросетевых алгоритмов об­

работки и сжатия видеопоследовательностей”.

Публикации. Основные результаты по теме диссертации изложены в 3

публикациях [1—3], изданных в рецензируемых научных изданиях, определен­

ных в п. 2.3 Положения о присуждении ученых степеней в Московском государ­

ственном университете имени М. В. Ломоносова.

Объем и структура работы. Диссертация состоит из введения, трех

глав, приложения и заключения. Полный объём диссертации составляет 149

страниц, включая 81 рисунок и 8 таблиц. Список литературы содержит 95 на­

именований.

Дополнительно результаты работы были опубликованы в трудах между­

народных конференций и рекомендованных ВАК журналах [16—24]. По итогам

разработки получено свидетельство о государственной регистрации програм­

мы для ЭВМ "Система для обучения и тестирования нейросетевых методов

объективной оценки качества и исправления стереоскопических видео" [25]. В

работах [16—24] Д.С. Ватолину принадлежит постановка задачи и обсуждение

результатов ее решения. В работе [16] вклад А.А. Бокова, М.В. Ерофеева и

А.А. Федорова заключается в подготовке текста статьи. В работе [22] вклад

К.А. Кожемякова состоит в проведении экспериментальных сравнений разра­

ботанного метода оценки геометрических искажений. В работе [24] вклад К.А.

Кожемякова и И.А. Молодецких заключается в участии в подготовке отчета по

результатам анализа объективного качества видео в формате VR180. В работе

[17] вклад В.А. Людвиченко состоит в разработке метода исправления цветовых

искажений в стереоскопических видео. В работах [18; 21; 23] практическая со­

ставляющая была выполнена основными авторами статей – М.С. Великановым,

К.В. Малышевым и С.Д. Грохольским соответственно – автору диссертации

принадлежит постановка задачи и курирование проектов.

Как было упомянуто выше, в данной диссертационной работе основное

внимание уделяется артефактам стереосъемки. Из-за проблем с артефактами,

характерными для натуральной съемки фильмов в 3D, в последние годы боль­
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шинство стереофильмов производится с помощью конвертации отснятого в 2D

контента в стереоскопический формат (рисунок 1). Хотя этот факт уменьша­

ет востребованность поиска искажений стереосъемки в конвертированных пол­

нометражных фильмах, данная проблема как никогда актуальна для стерео­

скопических VR-видео, так как съемка в 3D является единственным способом

создания стереоскопического контента в VR помимо компьютерной графики.

При этом рынок VR продолжает активно развиваться и расти (рисунок 2),

и формат стереоскопических видео в VR – VR180 – может вскоре получить

большую огласку. Однако это может не произойти из-за плохого технического

качества стереоскопического контента в VR, в результате чего заинтересован­

ность зрителей стремительно спадет из-за возникаемого при просмотре диском­

форта аналогично полнометражным стереоскопическим фильмам, где интерес

поддерживается в основном в азиатском регионе. Например, сборы 3D версии

фильма «Мир юрского периода» в США составили 48% от общих сборов в этом

регионе, в то время как в Китае – 95% от общих сборов. Поэтому для продвиже­

ния стереоскопического формата в VR важен контроль качества создаваемого

стереоскопического контента на этапе его производства для сокращения потен­

циального дискомфорта.

Решению задачи оценки цветовых искажений в стереоскопических видео,

а также задачи оценки искажений резкости посвящено множество научных ра­

бот, обзор которых представлен в разделе 1.2. Проведенный обзор показал, что

на текущий момент не существует метода, осуществляющего оценку данных

искажений одновременно, в результате чего существующие методы будут да­

вать неверные оценки на стереокадрах с другим искажением. В разделе 1.4

приводится описание нового нейросетевого метода для одновременной оценки

искажений цвета и резкости между ракурсами стереовидео на основе модели

искажений, представленной в разделе 1.3. В разделе 1.5 описывается процесс

обучения нейросетевой части метода. Как показано в разделе 1.6, предложен­

ный метод превосходит аналоги, ранее использовавшиеся при анализе полно­

метражных стереоскопических фильмов. В разделе 1.8 приводятся результаты
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Рисунок 1 — Количество полнометражных стереоскопических фильмов по
годам, разделенных по методу производства. Информация по фильмам

получена со страницы
https://en.wikipedia.org/wiki/List_of_3D_films_(2005_onwards).

Рисунок 2 — Прогнозы объема рынка AR- и VR-шлемов во всем мире с 2022
по 2032. Данные получены с сайта https://www.precedenceresearch.com/
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проведенного анализа объективного качества 1000 VR180-видео, собранных с

платформы YouTube.

Аналогичным образом построены главы 2 и 3, посвященные новым пред­

ложенным методам по оценке геометрических искажений между ракурсами сте­

реоскопического видео и поиску перепутанных ракурсов соответственно. Также

в приложении A приведены дополнительные материалы по результатам иссле­

довния стереоскопического качества видео в формате VR180. В разделе A.1

описывается методология проводимой объективной оценки качества в целом, в

разделе A.2 – результаты оценки диапазона параллаксов для VR180-видео, а в

разделе A.3 приведены найденные кадры с стереоскопическими артефактами в

проанализированных видео.

В Заключении сформулированы основные результаты диссертационного

исследования, рассмотрены возможные варианты их применения и обозначены

перспективы дальнейших исследований.
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Глава 1. Нейросетевой метод одновременной оценки искажений

цвета и резкости между ракурсами стереовидео

1.1 Постановка задачи

Цветовые искажения ракурсов и искажения ракурсов по резкости – одни

из самых распространенных типов искажений стереоскопического видео, полу­

ченных в ходе нативной съемки в 3D, что справедливо как для классических

стереоскопических видео, так и видео в формате VR180, так как в обоих случа­

ях используются одни и те же методы съемки: данные искажения характерны

для систем, состоящих из двух камер. Малейшие несоответствия в настройке

и/или неполадки одной из них и приводят к возникновению названных выше

артефактов.

Под цветовыми искажениями ракурсов стереоскопического видео понима­

ется сильное несоответствие яркости и/или цвета одного и того же объекта

кадра в левом и правом ракурсе или всего кадра, что наиболее заметно при

переключении между ракурсами. На рисунке 3 представлен схематичный при­

мер цветовых искажений в стереовидео. При этом часто в полнометражных

стереофильмах встречается ситуация, когда лишь часть кадра отличается по

цвету между ракурсами, как показано на рисунке 4. Эти несоответствия могут

возникать из-за различий в матрицах камер (различия могут появиться непо­

средственно во время съемки стереоскопического видео, например, при неравно­

мерном прогреве матриц), особенностей освещения (например, возникновение

различных бликов в ракурсах из-за разного угла падения световых лучей на

объективы камер), а также некорректном использовании светофильтров и/или

их дефекте.

Под искажениями ракурсов по резкости понимается сильное несоответ­

ствие в детализации и/или размытии одного и того же объекта кадра в левом
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Рисунок 3 — Схематичный пример стереопары с цветовыми различиями
между ракурсами.

Рисунок 4 — Пример локальных цветовых расхождений между ракурсами
стереофильма. В кадре присутствует засвет на стене здания в правом ракурсе,

в то время как цвет героя сильно не меняется при смене ракурсов. Кадр из
фильма “Шаг вперед 4”.

и правом ракурсе или всего кадра, что также наиболее заметно при переключе­

нии между ракурсами. Пример стереопары из полнометражного стереофильма

с различиями по резкости представлен на рисунке 5. Обычно различия в резко­

сти между ракурсами появляются из-за некорректной калибровки съемочного

оборудования, а именно разной фокусировке камер, но также могут возникнуть

из-за загрязнения объективов камер и их дефектов. В итоге данные артефакты

стереовидео могут иметь различную природу и силу. В самом простом случае

либо левый, либо правый ракурс резче другого во всех пикселях изображения,

как показано на рисунке 6 (a). Более сложной является ситуация, при которой
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Рисунок 5 — Увеличенный фрагмент стереопары, в котором различия по
резкости максимальны. Кадр из фильма “Джек – покоритель великанов”.

(а) Левый ракурс находится
полностью в фокусе в отличие от

правого

(б) Различные объекты находятся в
фокусе на разных ракурсах

Рисунок 6 — Схематичные примеры стереопар с различиями по резкости
между ракурсами.

разные объекты находятся в фокусе в разных ракурсах стереовидео, как пока­

зано на рисунке 6 (б), поэтому для каждого ракурса будет справедливо, что

часть объектов в нем окажется более четкой и детализированной по сравнению

с теми же объектами в другом ракурсе. В данной работе рассматриваются оба

варианта искажений резкости в стереовидео.

Также в данной работе предлагается осуществлять одновременный поиск

кадров стереоскопического видео с различиями по цвету и резкости. Оба этих

артефакта приводят к различиям в яркости и/или цвете между ракурсами сте­

реовидео, поэтому при использовании отдельных алгоритмов для поиска дан­
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ных артефактов может возникать большое количество ложноположительных

срабатываний. Этой проблемой обладают предыдущие методы поиска данных

искажений, которые ранее использовались для анализа полнометражных сте­

реоскопических фильмов [26; 27].

Формально задачу одновременной оценки искажений цвета и резкости

между ракурсами стереовидео можно поставить следующим образом. Пусть

имеются две видеопоследовательности, являющиеся левым и правым ракурса­

ми стереоскопического видео. Необходимо для каждого кадра стереовидео оце­

нить различия по цвету и резкости между левым и правым ракурсом. Введем

обозначения:

– Пиксель 𝑝 – тройка (𝑝𝑌 , 𝑝𝑈 , 𝑝𝑉 ) целых чисел, 𝑝𝑌 , 𝑝𝑈 , 𝑝𝑉 ∈ [0, 255], опре­

деляющих цветовые компоненты в модели YUV.

– Изображение 𝐼 – матрица пикселей, имеющая размер ℎ × 𝑤, где ℎ –

высота изображения, 𝑤 – ширина изображения.

– Видеопоследовательность {𝐼𝑡}𝑘𝑡=1 – упорядоченнный набор изображе­

ний, имеющиих одинаковую высоту и ширину, длиной 𝑘.

– Стереовидео 𝑆 – упорядоченная пара видеопоследовательностей(︀
{𝐼𝐿𝑡 }

𝑘
𝑡=1, {𝐼𝑅𝑡 }

𝑘
𝑡=1

)︀
, имеющих одинаковую высоту, ширину и количество

кадров. Данные видеопоследовательности называются левым и правым

ракурсом соответственно.

На вход алгоритму подается стереовидео 𝑆. На выходе алгоритм должен

предоставить оценку различий между левым и правым ракурсом по цвету

{𝑚𝑐
𝑖}

𝑘
𝑖=1, 𝑚

𝑐
𝑖 ∈ R[0,+∞] и по резкости {𝑚𝑑

𝑖 }
𝑘
𝑖=1, 𝑚

𝑑
𝑖 ∈ R[0,+∞] для каждого кадра

стереовидео 𝑡 = 1, 𝑘. Вид оценок напрямую зависит от рассматриваемой моде­

ли искажений. Подробное описание используемой в работе модели искажений

представлено в разделе 1.3.
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1.2 Обзор существующих алгоритмов

В общем случае для оценки стереоскопических искажений обычно необхо­

димо сопоставить ракурсы (то есть найти для каждого пикселя одного ракурса

соответствующий ему пиксель в другом ракурсе), после чего проводится ана­

лиз соответствующих друг другу пикселей. Для сопоставления ракурсов могут

быть использованы различные методы: сопоставление особых точек [28—30], вы­

числение оптического потока [31—33] и блочные алгоритмы сопоставления [34].

Далее могут быть использованы стандартные метрики, например среднеквадра­

тическое отклонение и средняя абсолютная ошибка, для поиска разницы между

стереоскопическими изображениями для оценки цветовых искажений, либо для

оценки искажений резкости, но в частотном диапазоне. Также возможны под­

ходы, не использующие сопоставление ракурсов для оценки искажений между

ними. Как правило, в них вычисляется некоторая характеристика для каждо­

го ракурса, которая затем между ними сравнивается. Таким способом можно

применять любые моноскопические методы оценки качества, не использующие

эталон, для сравнения качества ракурсов стереоскопического видео.

1.2.1 Моноскопические методы

В научной литературе встречается большое количество методов для оцен­

ки уровня размытия изображения. Данные методы могут быть применены для

оценки размытия между стереоскопическими ракурсами путем вычисления раз­

ницы уровня размытия между ними. Методы оценки уровня размытия изобра­

жения могут быть разделены на две основные группы: методы на основе анали­

за границ и методы на основе анализа областей. Также за последние несколько
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лет появился целый ряд нейросетевых методов оценки уровня размытия в изоб­

ражении.

Методы на основе анализа границ обычно следуют похожей стратегии: вы­

числяется уровень размытия границ изображения, в результате чего получается

разреженная карта размытия, а далее эти оценки размытия распространяются

на все изображение (что является необязательным шагом) с помощью методов

интерполяции и/или экстраполяции для получения полной карты размытия. В

работе [35] размытая граница моделируется путем свертки четкой границы с яд­

ром фильтра Гаусса. Далее оценивается стандартное отклонение в ядре фильтра

Гаусса (неизвестный уровень размытия) путем оценки силы изменения яркости

вдоль границ. В работе [36] предлагается одновременный метод поиска границ и

метод оценки размытия. Рассматриваемый метод вычисляет уровень размытия,

измеряя места обнуления производных гауссианы третьего порядка по направ­

лению градиента за счет использования поворачивающихся фильтров. В обоих

рассмотренных методах вычисляется лишь разреженная карта размытия. В ме­

тоде [37] было предложено использовать соотношение модулей градиента между

исходным изображением и его дополнительно размытой версией для локальной

оценки силы размытия в точках границ. Далее полученные оценки фильтро­

вались с помощью билатерального фильтра и распространялись на все изобра­

жение с помощью матирующего лапласиана [38]. В дальнейшем проводились

дополнительные исследования использования разницы модулей градиента и в

других работах. Например, в работах [39; 40] предлагается использовать более

одного параметра для дополнительного размытия изображения для уменьше­

ния влияния шума, а в работе [41] предлагается иерархический подход, чтобы

избежать неоднозначностей в определении границ при различных масштабах.

Методы на основе анализа областей обрабатывают локальные блоки изоб­

ражения для оценки уровня размытия и в большинстве случаев используют

пострегуляризацию для получения согласованных результатов. В работе [42]

задача оценки уровня размытия решается в частотном диапазоне с использова­

нием теоремы свертки. В данном методе вычисляется функция правдоподобия
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для заданного кандидата функции рассеяния точки, формулируя на ее основе

разложение изображения на поддиапазоны и модель гауссовой смеси на различ­

ных масштабах. Рассматриваемый метод получил развитие в работе [43], в ко­

торой исследовалась непрерывная вероятностная функция для оценки уровня

размытия в каждом пикселе на основе анализа локализованного преобразова­

ния Фурье. Дополнительно использовалась информация о цветовых границах, а

также накладывались ограничения на гладкость для получения согласованных

результатов. В работе [44] также рассматривается локализованное преобразо­

вание Фурье, но задача оценки силы размытия формулируется как задача раз­

метки пикселей изображения. В частности, каждому пикселю изображения при­

сваивается дискретное значение уровня размытия, используя методы машинно­

го обучения, что гарантирует глобальную консистентность вычисленной карты

размытия. В методе [45] анализируются признаковые векторы, построенные на

основе высокочастотных коэффициентов дискретного косинусного преобразо­

вания блоков изображения для каждого пикселя. При этом для одного пик­

селя рассматривается несколько блоков разного размера для учета различных

масштабов. В работе [46] предложен метод оценки размытия изображений, осно­

ванный на модели человеческого восприятии размытия при различных уровнях

контрастности. Метод использует вероятностную модель для обнаружения раз­

мытия на каждой границе изображения, а для получения итогового значения

вероятности для границ объединяются путем вычисления кумулятивной веро­

ятности размытия. В работе [47] также предлагается метод оценки размытия

всего изображения. Ключевым понятием в нем является разница разниц зна­

чений яркости изображения после обработки медианными фильтром. Авторы

[47] устверждают, что данная характеристика оценивает ширину границ, кото­

рая соответствует силе размытия.

Также для оценки уровня размытия появилось несколько методов на осно­

ве нейронных сетей. В работе [48] предложена архитектура сверточной нейрон­

ной сети для вычисления значимых локальных признаков на уровне суперпик­

селей для оценки размытия в областях изображения. В работе [49] комбиниру­
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ется классические признаки с нейросетевыми, что увеличило точность работы

метода для оценки размытия границ. В методе [50] используется сверточная

нейронная сеть для непосредственного предсказания уровня размытия по изоб­

ражению. В рассматриваемом методе также дополнительно используется метод

адаптации доменов наборов данных, который преобразует признаки натураль­

но размытых изображений в признаки искусственно размытых изображений.

В работе [51] предлагается еще одна нейросетевая архитектура для определе­

ния размытых областей изображения на основе последовательности остаточных

уточнений. В нейросетевом методе [52] оценка уровня размытия осуществляется

за счет дистилляции глубины для определения областей, находящихся в фокусе.

Для оценки карты глубины в данном методе используется отдельная нейросете­

вая модель. В работе [53] предлагается использовать две сверточные нейронные

сети: одна классифицирует границы изображения на границы по глубине, а вто­

рая осуществляет непосредственную оценку размытия. При этом авторам [53]

удалось добиться улучшения точности оценки как по сравнению с методами на

основе анализа границ, так и с методами на основе анализа областей.

Таким образом, нейросетевые подходы являются многообещающими в за­

даче оценки уровня размытия изображения. Однако использовать существую­

щие методы оценки уровня размытия в изображениях для оценки несоответ­

ствий резкости между ракурсами стереовидео нецелесообразно: данные методы

не учитывают другие возможные стереоскопические искажения и в случае их

наличия будут выдавать некорректные результаты. Наиболее распространен­

ным будет ошибка в случае наличия цветовых искажений.

1.2.2 Стереоскопические методы

Все стереоскопические методы оценки искажений цвета и резкости можно

разделить на глобальные (не использующие результаты сопоставления ракур­
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сов) и локальные (использующие результаты сопоставления ракурсов). Так, для

оценки цветовых искажений было предложено два локальных метода. В методе

[54] вычисляется корреляция Пирсона между цветовыми гистограммами двух

ракурсов в цветовом пространстве HSV. В работе [55] рассматривается анало­

гичный подход, в котором предложена простая глобальная мера цветовых ис­

кажений. Хотя эти методы достаточно просты, они не позволяют локализовать

цветовые искажения и часто работают неточно, так как не учитывают различия

двух ракурсов, например, области открытия/закрытия.

В работе [56] исследуется задача оценки искажений резкости, вызванных

различиями в фокусных расстояниях камер. Авторы данной работы предпо­

лагают, что входная стереопара ректифицирована, и поэтому для вычисления

карты диспаратности рассматриваются только горизонтальные смещения пик­

селей. Рассматриваемый метод использует сумму модифицированных лапласи­

анов для вычисления уровня размытия в каждом пикселе изображения и на

их основе строит модель, которая сопоставляет различия резкости со значения­

ми диспаратности. Другой подход предлагается в работе [57] на основе анализа

различий в ширине соответствующих границ в разных ракурсах. Однако эти

подходы не измеряют напрямую силу размытия одного ракурса относительно

другого. Так, метод [56] классифицирует кадр по 5 возможным уровням раз­

мытия, а метод [57] вычисляет вероятность наличия размытия одного ракурса

относительно другого.

Предложенный в данной работе метод строится на идеях локальных мето­

дов оценки искажений цвета и резкости, используя стандартную схему сопостав­

ления ракурсов и дальнейшем оценки стереоскопических артефактов. За основу

берутся метод оценки искажений цвета [27] и метод оценки искажений резкости

[26]. Метод оценки цветовых искажений вычисляет локальную цветовую разни­

цу между соответствующими пикселями, а метод оценки различий резкости –

локальную разницу размытия в частотном диапазоне. Данные методы были ис­

пользованы при анализе 105 полнометражных стереоскопических фильмов [58].
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Однако в ходе анализа было получено большое число ложных срабатываний

данных методов, в первую очередь из-за присутствия другого типа искажения

в кадре. Поэтому логичным дальнейшим шагом по улучшению точности работы

этих методов является создание общего метода для одновременной оценки рас­

сматриваемых стереоскопических артефактов. Также для более точной оценки

силы искажений предлагается использовать нейросетевой подход.

1.3 Общая модель искажений цвета и резкости стереоскопических

видео

Для обучения нейросетевого метода оценки стереоскопических искажений

необходимо в первую очередь подготовить соответствующие наборы данных,

для чего, в свою очередь, необходимо ввести модель рассматриваемых искаже­

ний для генерации элементов выборки. Пуcть 𝐼𝐿𝑔𝑡 и 𝐼𝑅𝑔𝑡 – соответственно левый и

правый ракурсы стереопары, не содержащей различия по цвету и резкости меж­

ду ними. Все изображения рассматриваются в цветовом пространстве YUV. Для

моделирования рассматриваемых стереоскопических артефактов кадры без ис­

кажений модифицируются следующим образом:

𝐼𝐿 (𝑥, 𝑦, 𝑐) = 𝑎 (𝑥, 𝑦, 𝑐)
(︀
𝐺 (σ𝑝𝑜𝑠 (𝑥, 𝑦)) * 𝐼𝐿𝑔𝑡

)︀
(𝑥, 𝑦, 𝑐) + 𝑏 (𝑥, 𝑦, 𝑐) , (1)

𝐼𝑅 (𝑥, 𝑦, 𝑐) =
(︀
𝐺 (σ𝑛𝑒𝑔 (𝑥, 𝑦)) * 𝐼𝑅𝑔𝑡

)︀
(𝑥, 𝑦, 𝑐) , (2)

где 𝐼𝐿 и 𝐼𝑅 – получаемые в результате применения модели левый и правый

ракурсы с искажениями, 𝑐 – один из цветовых каналов цветового простран­

ства YUV, 𝑎 (𝑥, 𝑦, 𝑐), 𝑏 (𝑥, 𝑦, 𝑐) – линейный и константный коэффициенты для

моделирования цветовых искажений, генерирующиеся с помощью шума Перли­

на для каждого пикселя с координатами (𝑥, 𝑦) и каждого цветового канала 𝑐,

𝐺 (σ (𝑥, 𝑦)) – ядро фильтра Гаусса размера 11×11, в котором сила размытия за­

дается параметром σ (𝑥,𝑦) – стандартным отклонением распределения Гаусса,
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генерирующийся с помощью шума Перлина для каждого пикселя с координа­

тами (𝑥, 𝑦), σ𝑝𝑜𝑠 и σ𝑛𝑒𝑔 – матрицы сгенерированных стандартных отклонений,

содержащие положительные значения и модули отрицательных значений матри­

цы стандартных отклонений σ соответственно, и нули в остальных пикселях, *

– операция свертки. Здесь используется линейная модель цветовых искажений,

которые добавляются только в левый ракурс, чего достаточно для получения

разницы в цвете между ракурсами стереовидео, а для моделирования искаже­

ний резкости используется Гауссово размытие с изменяющейся силой размытия

в каждом пикселе, применяющееся либо в левом, либо в правом ракурсе. Для

генерации коэффициентов линейной модели и матрицы стандартных отклоне­

ний Гауссова размытия используется градиентный шум Перлина, позволяющий

задавать непрерывное изменение силы искажений в зависимости от координат

пикселя. Данный подход к генерации рассматриваемых стереоскопических иска­

жений позволяет получить сложные примеры, соответствующие неравномерно­

му прогреву матриц камер для цветовых искажений и нахождению различных

объектов кадра в фокусе на разных ракурсах для искажений резкости.

Дополнительно также рассматривалась простая константная модель иска­

жений, изменяющая исходную стереопару одинаково для каждого пикселя:

𝐼𝐿 (𝑐) = 𝑎𝑐
(︀
𝐺 (σ𝑝𝑜𝑠) * 𝐼𝐿𝑔𝑡

)︀
(𝑐) + 𝑏𝑐, (3)

𝐼𝑅 =
(︀
𝐺 (σ𝑛𝑒𝑔) * 𝐼𝑅𝑔𝑡

)︀
, (4)

где параметры 𝑎𝑐, 𝑏𝑐, σ𝑝𝑜𝑠, σ𝑛𝑒𝑔 – константы для стереопары и не зависят от

координат пикселя, 𝑎𝑐, 𝑏𝑐 индивидуальны для каждого цветового канала, а один

из параметров σ𝑝𝑜𝑠, σ𝑛𝑒𝑔 равен 0, из-за чего размытие добавляется в один из двух

ракурсов, 𝐼𝐿 (𝑐) – один из каналов изображения в пространстве YUV. Данная

модель соответствует более простым искажениям цвета и резкости, которые

также встречаются при анализе полнометражных стереоскопических фильмов.

Для генерации наборов данных на основе описанных выше моделей было

вырезано 9488 различных стереопар в разрешении 960 × 540 без цветовых ис­

кажений и искажений резкости из полнометражных стереоскопических фииль­
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мов. При сборе кадров стереовидео рассматривались только стереопары, у кото­

рых были близкие к нулевым значения оценки соответствующих артефактов с

помощью методов [26; 27], ранее применявшихся для анализа полнометражных

стереоскопических фильмов. У данных методов практически отсутствуют лож­

ноотрицательные срабатывания, тем самым в выборку не попадали стереопары

с искажениями. Кадры были получены из следующих фильмов:

1. “Вольт”;

2. “Судья Дредд 3D”;

3. “Первый мститель”;

4. “Призрачный гонщик 2”;

5. “Гравитация”;

6. “Великий Гэтсби”;

7. “Гарри Поттер и Дары Смерти: Часть II”;

8. “Хоббит: Нежданное путешествие”;

9. “Железный человек 3”;

10. “Человек из стали”;

11. “Люди в черном 3”;

12. “Тихоокеанский рубеж”;

13. “Пастырь”;

14. “Призрачный патруль”;

15. “47 ронинов”;

16. “Сталинград”.

В этот список вошли фильмы, произведенные как по методу съемки в 3D, так

и с помощью конвертации из 2D в 3D и компьютерной графики.

При подготовке набора данных рассматривались случаи без/с добавлени­

ем цветовых искажений, без/c добавлением искажений резкости. При добавле­

нии искажений результирующие кадры генерировались с помощью одной из

двух представленных выше моделей. Наряду с этим были использованы сме­

шанные модели, в которых один вид искажений добавлялся по сложной моде­

ли, а другой – по упрощенной. Пример стереопары со сгенерированными иска­
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Рисунок 7 — Пример левого ракурса со сгенерированными искажениями цвета
и размытия и приведенного к нему правого ракурса. На данной стереопаре

присутствуют локальные цветовые искажения, а также глобальное искажение
резкости. Кадр из фильма “Первый мститель”.

жениями представлен на рисунке 7. Итоговый набор данных был разделен на

обучающую и валидационную части в соотношении 95% и 5% соответственно.

1.4 Описание предложенного алгоритма

Для оценки расхождений ракурсов по цвету и резкости с помощью нейро­

сети предлагается подход, состоящий из следующих шагов:

1. Вычисление карт диспаратности между левым и правым ракурсами, а

также построение карт доверия к вычисленным картам, характеризую­

щих точность оцененных значений диспаратности.

2. Интерполяция правого ракурса к левому ракурсу по вычисленной кар­

те диспаратности.

3. Оценка карт различий по резкости и размытию с помощью нейронной

сети на основе левого ракурса, интерполированного к нему правого ра­

курса, а также карте доверия, соответствующей карте диспаратности.

4. Вычисление величины искажения цвета и резкости между входными

ракурсами по предсказанным нейросетью картам различий.
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Рисунок 8 — Общая схема предложенного метода поиска различий по цвету и
резкости между ракурсами стереоскопического видео.

Каждый кадр стереоскопического видео обрабатывается независимо друг от

друга. Общая схема метода представлена на рисунке 8.

Итоговая оценка искажений по цвету 𝑚𝑐 и резкости 𝑚𝑑 в стереопаре фор­

мируется на основе предсказанных карт различий следующим образом:

𝑚𝑐 =

∑︀𝑛
𝑖=1 conf𝑖

(︀
𝑐𝑌𝑖 + 𝑐𝑈𝑖 + 𝑐𝑉𝑖

)︀
3
∑︀𝑛

𝑖=1 conf𝑖
, (5)

𝑚𝑑 =

∑︀𝑛
𝑖=1 conf𝑖 𝑑𝑖∑︀𝑛
𝑖=1 conf𝑖

, (6)

где 𝑐 – предсказанная карта различий по цвету для каждого цветового канала

YUV, 𝑑 – предсказанная карта размытия, conf – карта доверия к диспаратно­

сти, используемая в качестве входной карты доверия для нейронной сети, 𝑛 –

количество пикселей в изображении.
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Рисунок 9 — Пример карты диспаратности и соответствующей ей карты
доверия, построенной для правого ракурса кадра стереофильма “Мстители”.

Далее описывается метод построения карт диспаратности и соответству­

ющих им карт доверия, а также используемые нейросетевые архитектуры для

оценки карт различий по цвету и резкости между входными ракурсами.

1.4.1 Оценка карты диспаратности и вычисление карты доверия

Оценка карты диспаратности осуществляется по исходным ракурсам сте­

реоскопического видео в цветовом пространстве RGB с помощью блочного ме­



34

тода сопоставления [34]. Так как при сопоставлении блоков возможны ошибки,

для построенных карт диспаратности строятся карты доверия. Значения карты

доверия характеризуют точность вычисленных векторов диспаратности. При

вычислении значений доверия учитываются следующие показатели:

– Мера достоверности сопоставления LRC (left-right consistency) [59]. По­

скольку левый и правый ракурсы являются изображениями одной сце­

ны, то значение диспаратности пикселя в левом ракурсе должно быть

равно по модулю и иметь противоположный знак по сравнению со значе­

нием диспаратности соответствующего ему пикселя в правом ракурсе.

Более формально, мера достоверности сопоставления LRC вычисляется

следующим образом: если пиксель с координатами 𝑥 = (𝑥1, 𝑥2) одного

ракурса соответствует пикселю с координатами 𝑥′ = (𝑥′1, 𝑥
′
2) = 𝑥 + 𝑣𝑥

другого ракурса, то мера достоверности сопоставления LRC для него

равна:

lrc =
dif21
ℎ

+
dif22
𝑤

, (7)

dif = (dif1,dif2) = 𝑣′𝑥′ + 𝑣𝑥, (8)

где 𝑣𝑥 – вектор диспаратности пикселя с координатами 𝑥 в первом ра­

курсе, 𝑣′𝑥′ – вектор диспаратности пикселя с координатами 𝑥′ во втором

ракурсе.

– Блочная дисперсия цветовых значений ракурса, соответствующего кар­

те диспаратности. Дисперсия вычисляется для каждого блока ракурса

как сумма значений дисперсий каждой цветовой компоненты в блоке:

var = var𝑅 + var𝐺 + var𝐵, (9)

var𝑖 =
1

𝑠

∑︁
𝑝∈𝑏𝑙𝑜𝑐𝑘

𝑝2𝑖 −

⎛⎝1

𝑠

∑︁
𝑝∈𝑏𝑙𝑜𝑐𝑘

𝑝𝑖

⎞⎠2

, (10)

где 𝑝 – значение цветовой компоненты пикселя в блоке изображения

размером 9×9, 𝑖 – один из каналов цветовой модели RGB, 𝑠 – количество

пикселей в блоке.
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Итоговое значение доверия к значению диспаратности в пикселе, учиты­

вающее две описанные характеристики, строится по следующей формуле:

conf𝑖 = min (1−min (1, 𝑎 lrc𝑖),min (1, 𝑏 var𝑖)), (11)

где 𝑎 = 40, 𝑏 = 0.5, 𝑖 – индекс пикселя. Итоговое значение доверия лежит

в диапазоне [0, 1]: conf𝑖 ∈ R[0,1]. Пример построенной карты диспаратности и

соответствующей ей карты доверия представлен на рисунке 9.

1.4.2 Нейросетевая оценка искажений

На вход нейронной сети подается исходный левый ракурс и интерполиро­

ванный к нему по вычисленной карте диспаратности правый ракурс в цветовом

пространстве YUV, а также соответствующая карте диспаратности карта дове­

рия. По этим входным данным нейронная сеть одновременно предсказывает

карты различий по цвету между ракурсами, а также карту размытия, которая

соответствует матрице стандартных отклонений, используемой в модели иска­

жений в фильтре Гаусса для задания силы искажения при генерации примеров

набора данных.

Для предсказания карт различий по цвету и резкости были использованы

следующие нейросетевые архитектуры. Первой была использована архитектура

сети кодировщик-декодировщик по типу U-net, впервые примененная в задаче

сегментации медицинских изображений [60] и хорошо себя зарекомендовавшая в

дальнейшем в других задачах обработки изображений и видео. Данная архитек­

тура состоит из кодировщика, постепенно уменьшающего разрешение карт при­

знаков, и декодировщика, постепенно увеличивающего разрешение карт при­

знаков и восстанавливающего по ним целевое изображение, которые и придают

ей U-форму. В данной работе был использован кодировщик, представляющий

из себя сверточную сеть с последовательным применением сверточных слоев

и операций субдискретизации с выбором среднего. В качестве декодировщика
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Рисунок 10 — Общая архитектура сети типа U-net.

была выбрана сверточная сеть с последовательным применением сверточных

слоев и билинейной интерполяции для пространственного увеличения разре­

шения. Конфигурация блоков кодировщика и декодировщика представлена в

таблице 1. Каждый сверточный блок состоит из нескольких сверточных слоев

с функцией активации ReLU: 𝑓 (𝑥) = max (0,𝑥), за которыми идет слой субдис­

кретизации с выбором среднего в случае кодировщика, либо блок повышения

размерности в случае декодировщика. Блок повышения размерности представ­

ляет из себя билинейную интерполяцию карты признаков, за которой следует

сверточный слой с функцией активации ReLU. Между сверточными блоками,

находящимися в разных частях сети, с одинаковой пространственной размер­

ностью добавляются дополнительные соединения в виде сложения результатов

работы сверточного слоя перед субдискретизацией в кодировщике с результа­

том работы сверточного слоя после восстановления разрешения в декодировщи­

ке для восстановления пространственной информации, утраченной после слоев

субдискретизации с выбором среднего в кодировщике. Шаг и коэффициент ди­

латации каждого сверточного слоя в сети равен 1. Исключением является по­

следний блок декодировщика, в котором последний сверточный слой заменен

на два параллельных слоя, один из которых предсказывает карту различий по

цвету, а другой — карту размытия. Общая архитектура сети представлена на

рисунке 10.
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Таблица 1 — Конфигурация блоков сверточной нейронной сети типа U-net.

Слой Размерность Шаг
Коэффициент

дилатации
Функция
активации

Сверточный блок кодировщика
Сверточный 3× 3 1 1 ReLU
Сверточный 3× 3 1 1 ReLU
Сверточный 3× 3 1 1 ReLU
Субдискретизация
с выбором среднего

2× 2 2 1 —

Сверточный блок декодировщика
Сверточный 3× 3 1 1 ReLU
Сверточный 3× 3 1 1 ReLU
Сверточный 3× 3 1 1 ReLU
Билинейной интерполяции — — — —
Сверточный 3× 3 1 1 ReLU

В качестве второй архитектуры сети для предсказания карт различий по

цвету и резкости была использована сверточная нейронная сеть типа GridNet

[61], представляющая из себя модификацию архитектуры кодировщик-декоди­

ровщик и ранее применявшаяся для задачи семантической сегментации. Вме­

сто использования последовательности сверточных слоев, как в типичном коди­

ровщике-декодировщике, данная архитектура обрабатывает карты признаков

в виде решетки из строк и столбцов. Слои в каждой строке образуют поток

признаков, в котором их разрешение остается постоянным. Каждый поток об­

рабатывает карты признаков на разных масштабах, а столбцы соединяют по­

токи для обмена информацией между вышестоящим и нижестоящим потоком.

Такая архитектура обобщает архитектуру кодировщик-декодировщик, в кото­

ром карты признаков обрабатываются лишь по одному потоку. Данный подход

позволяет значительно сократить размеры сети по сравнению со стандартным

кодировщиком-декодировщиком, а также увеличивает качество работы за счет

использования потока карт признаков с полным пространственным разрешени­

ем. Сеть состоит из набора сверточных блоков: горизонтального для обработки
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Таблица 2 — Конфигурация блоков сверточной нейронной сети типа GridNet.

Слой Размерность Шаг
Коэффициент

дилатации
Горизонтальный блок

Сверточный 1× 1 1 1
Функция активации PReLU — — —
Сверточный 3× 3 1 1
Функция активации PReLU — — —
Сверточный 3× 3 1 1
Skip-соединение
с первым сверточным блоком

— — —

Вертикальный блок для уменьшения разрешения
Функция активации PReLU — — —
Сверточный 3× 3 2 1
Функция активации PReLU — — —
Сверточный 3× 3 1 1

Вертикальный блок для увеличения разрешения
Билинейной интерполяции — — —
Функция активации PReLU — — —
Сверточный 3× 3 1 1
Функция активации PReLU — — —
Сверточный 3× 3 1 1

карт признаков в одном потоке и двух типов вертикальных блоков для умень­

шения и увеличения разрешения. Конфигурация блоков сети представлена в

таблице 2. Каждый блок состоит из нескольких сверточных блоков с функ­

циями активации PReLU [62]. Коэффициент дилатации каждого сверточного

слоя в сети равен 1, а шаг изменяется с 1 до 2 в сверточных слоях, в которых

осуществляется уменьшение размерности в 2 раза. После последнего горизон­

тального блока также используются два параллельных сверточных слоя для

предсказания карт различий по цвету и резкости аналогично предыдущей ар­

хитектуре. Общая архитектура сети представлена на рисунке 11.
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Рисунок 11 — Общая архитектура сети типа GridNet.

Для улучшения качества оценки и удаления эффектов блочности в ито­

говых картах искажений из-за блочного сопоставления ракурсов в рассматри­

ваемые сверточные нейронные сети в качестве последних блоков был добавлен

fast global smoother (FGS) [63] – фильтр, использующийся для распростране­

ния данных предсказанных карт искажений по маске карты доверия с учетом

границ исходного изображения. Рассмотрим метод фильтрации FGS.

Задача фильтрации входного изображения 𝑓 ∈ R𝐻×𝑊×3 с учетом направ­

ляющего изображения 𝑔 ∈ R𝐻×𝑊×3 | R𝐻×𝑊 в фильтре FGS формулируется как

задача минимизации функции энергии взвешенного метода наименьших квад­

ратов:

argmin
𝑢

∑︁
𝑥

((𝑢𝑥 − 𝑓𝑥)
2 + λ

∑︁
𝑖∈𝑁(𝑥)

ω𝑥,𝑖(𝑔)(𝑢𝑥 − 𝑢𝑖)
2), (12)

где 𝑢 ∈ R𝐻×𝑊×3 – результат фильтрации, 𝑁(𝑥) – набор соседних пикселей к пик­

селю 𝑥, λ > 0 – параметр, контролирующий баланс между двумя компонентами

функции энергии, ω𝑥,𝑖(𝑔) – веса, построенные на направляющем изображении

𝑔 и представляющие из себя меру похожести пикселей 𝑥 и 𝑖. Авторы FGS пред­

лагают аппроксимировать решение данной задачи путем ее декомпозиции на

серию одномерных задач для каждого пространственного измерения. В случае

одномерной задачи минимизации набор соседних пикселей 𝑁(𝑥) = {𝑥−1,𝑥+1}

и решение для нее получается в рекурсивной манере за два прохода:
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1. Прямой проход:

𝑐𝑥 =
𝑐𝑥

𝑏𝑥 − 𝑐𝑥−1𝑎𝑥
, 𝑐0 =

𝑐0
𝑏0
𝑓𝑥 =

𝑓𝑥 − 𝑓𝑥−1𝑎𝑥
𝑏𝑥 − 𝑐𝑥−1𝑎𝑥

, 𝑓0 =
𝑓0
𝑏0
, (13)

𝑎𝑥 = −λω𝑥,𝑥−1, 𝑏𝑥 = 1 + λ(ω𝑥,𝑥−1 +ω𝑥+1,𝑥), 𝑐𝑥 = −λω𝑥+1,𝑥,

𝑎0 = 0, 𝑐𝑁−1 = 0,

где 𝑁 – размерность одномерного сигнала, 𝑐𝑥 и 𝑓𝑥 – скрытые пере­

менные, использующиеся для вычисления результата фильтрации на

обратном проходе.

2. Обратный проход:

𝑢𝑥 = 𝑓𝑥 − 𝑐𝑥𝑢𝑥+1,𝑢𝑁−1 = 𝑓𝑁−1. (14)

Сложность такого одномерного фильтра составляет 𝒪(𝑁). Для использования

данного одномерного фильтра для фильтрации двумерных изображений он при­

меняется сначала к каждой строке, затем к каждому столбцу изображения в

течение нескольких итераций 𝑇 для достижения более качественного резуль­

тата. Так как использование в течение нескольких итераций одного и того же

параметра λ приводит к куда более значительному сглаживанию изображения,

чем при решении исходной двумерной задачи сглаживания с тем же парамет­

ром, то для каждой итерации 𝑡 = 1,𝑇 вычисляется свой параметр λ𝑡 =
3
2
4𝑇−𝑡

4𝑇−1λ,

гарантирующий тот же уровень сглаживания, что и в исходной задаче.

Для применения сепарабельного двумерного фильтра FGS в качестве

вычислительного блока в обучаемой нейронной сети необходимо, чтобы этот

фильтр был дифференцируемым и его можно было использовать в методе об­

ратного распространения ошибки, а также обладал некоторым ресурсом парал­

лелизма для эффективного распараллеливания вычислений. Покажем, что это

справедливо, в следующих теоремах.

Теорема 1. Одномерный фильтр FGS дифференцируем и применим в методе

обратного распространения ошибки.
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Доказательство. Покажем дифференцируемость обратного прохода одномер­

ного фильтра FGS. При обратном распространении ошибки с последующих сло­

ев нейронной сети приходит градиент 𝜕𝐿
𝜕𝑢𝑥

,𝑥 = 0,𝑁 − 1. Тогда для обратного

прохода получаем следующие производные:

𝜕𝐿

𝜕𝑓𝑥
=

𝜕𝐿

𝜕𝑢𝑥

𝜕𝑢𝑥

𝜕𝑓𝑥
=

𝜕𝐿

𝜕𝑢𝑥
, (15)

𝜕𝐿

𝜕𝑐𝑥
=

𝜕𝐿

𝜕𝑢𝑥

𝜕𝑢𝑥
𝜕𝑐𝑥

= −𝑢𝑥+1
𝜕𝐿

𝜕𝑢𝑥
, (16)

𝜕𝐿

𝜕𝑢𝑥+1
=

𝜕𝐿

𝜕𝑢𝑥+1
+

𝜕𝐿

𝜕𝑢𝑥

𝜕𝑢𝑥
𝜕𝑢𝑥+1

=
𝜕𝐿

𝜕𝑢𝑥+1
− 𝑐𝑥

𝜕𝐿

𝜕𝑢𝑥
. (17)

Аналогично для прямого прохода одномерного фильтра FGS. С обратного про­

хода приходят градиенты 𝜕𝐿
𝜕𝑓𝑥

и 𝜕𝐿
𝜕𝑐𝑥

. Тогда получаем следующие производные

для прямого прохода:

𝜕𝐿

𝜕𝑓𝑥
=

𝜕𝐿

𝜕𝑓𝑥

𝜕𝑓𝑥
𝜕𝑓𝑥

=
1

𝑏𝑥 − 𝑐𝑥−1𝑎𝑥

𝜕𝐿

𝜕𝑓𝑥
, (18)

𝜕𝐿

𝜕𝑐𝑥−1
=

𝜕𝐿

𝜕𝑐𝑥−1
+

𝜕𝐿

𝜕𝑓𝑥

𝜕𝑓𝑥
𝜕𝑐𝑥−1

+
𝜕𝐿

𝜕𝑐𝑥

𝜕𝑐𝑥
𝜕𝑐𝑥−1

= (19)

=
𝜕𝐿

𝜕𝑐𝑥−1
+

𝑎𝑥(𝑓𝑥 − 𝑓𝑥−1𝑎𝑥)

(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2
𝜕𝐿

𝜕𝑓𝑥
+

𝑎𝑥𝑐𝑥
(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2

𝜕𝐿

𝜕𝑐𝑥
,

𝜕𝐿

𝜕𝑓𝑥−1

=
𝜕𝐿

𝜕𝑓𝑥−1

+
𝜕𝐿

𝜕𝑓𝑥

𝜕𝑓𝑥

𝜕𝑓𝑥−1

=
𝜕𝐿

𝜕𝑓𝑥−1

+
−𝑎𝑥

𝑏𝑥 − 𝑐𝑥−1𝑎𝑥

𝜕𝐿

𝜕𝑓𝑥
. (20)

При этом также можно посчитать производные относительно весовых коэффи­

циентов ω𝑥,𝑥−1,𝑥 = 1,𝑁 − 1, что позволяет пропускать градиенты к направля­

ющему изображению 𝑔 и делает возможным обучение сетей для генерации и

обработки не только фильтруемого изображения, но и направляющего изобра­

жения:

𝜕𝐿

𝜕𝑎𝑥
=

𝜕𝐿

𝜕𝑓𝑥

𝜕𝑓𝑥
𝜕𝑎𝑥

+
𝜕𝐿

𝜕𝑐𝑥

𝜕𝑐𝑥
𝜕𝑎𝑥

=
𝑓𝑥𝑐𝑥−1 − 𝑓𝑥−1𝑏𝑥
(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2

𝜕𝐿

𝜕𝑓𝑥
+

𝑐𝑥𝑐𝑥−1

(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2
𝜕𝐿

𝜕𝑐𝑥
, (21)

𝜕𝐿

𝜕𝑏𝑥
=

𝜕𝐿

𝜕𝑓𝑥

𝜕𝑓𝑥
𝜕𝑏𝑥

+
𝜕𝐿

𝜕𝑐𝑥

𝜕𝑐𝑥
𝜕𝑏𝑥

=
𝑓𝑥−1𝑎𝑥 − 𝑓𝑥

(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2
𝜕𝐿

𝜕𝑓𝑥
+

𝑐𝑥
(𝑏𝑥 − 𝑐𝑥−1𝑎𝑥)2

𝜕𝐿

𝜕𝑐𝑥
, (22)
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Рисунок 12 — Вычислительный граф двумерного сепарабельного фильтра
FGS.

𝜕𝐿

𝜕𝑐𝑥
=

𝜕𝐿

𝜕𝑐𝑥

𝜕𝑐𝑥
𝜕𝑐𝑥

=
1

𝑏𝑥 − 𝑐𝑥−1𝑎𝑥

𝜕𝐿

𝜕𝑐𝑥
, (23)

𝜕𝐿

𝜕ω𝑥,𝑥−1
=

𝜕𝐿

𝜕𝑎𝑥

𝜕𝑎𝑥
𝜕ω𝑥,𝑥−1

+
𝜕𝐿

𝜕𝑏𝑥

𝜕𝑏𝑥
𝜕ω𝑥,𝑥−1

= λ𝑡(
𝜕𝐿

𝜕𝑏𝑥
− 𝜕𝐿

𝜕𝑎𝑥
), (24)

𝜕𝐿

𝜕ω𝑥+1,𝑥
=

𝜕𝐿

𝜕ω𝑥+1,𝑥
+
𝜕𝐿

𝜕𝑏𝑥

𝜕𝑏𝑥
𝜕ω𝑥+1,𝑥

+
𝜕𝐿

𝜕𝑐𝑥

𝜕𝑐𝑥
𝜕ω𝑥+1,𝑥

=
𝜕𝐿

𝜕ω𝑥+1,𝑥
+λ𝑡(

𝜕𝐿

𝜕𝑏𝑥
− 𝜕𝐿

𝜕𝑐𝑥
). (25)

Таким образом, одномерный фильтр FGS является дифференцируемым филь­

тром относительно всех входных сигналов 𝑓 и 𝑤. А представленные в данном

доказательстве производные могут быть использованы в методе обратного рас­

пространения ошибки.

Теорема 2. Пусть фильтруемое изображение 𝑓 ∈ R𝐻×𝑊×3. Тогда последо­

вательная сложность двумерного сепарабельного фильтра FGS с 𝑇 итера­

циями составляет 𝒪(𝑇 × 𝐻 × 𝑊 ), а его параллельная сложность – 𝒪(𝑇 ×

max (𝐻,𝑊 )). Аналогичная оценка на сложности справедлива и для метода

обратного распространения ошибки по данному фильтру.

Доказательство. Рассмотрим одну итерацию двумерного сепарабельного

фильтра FGS по изображению 𝑓 ∈ R𝐻×𝑊×3. Каждая итерация состоит из

горизонтального и вертикального проходов, в которых осуществляется при­

менение одномерного фильтра FGS к каждой строке и столбцу изображения
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Рисунок 13 — Вычислительный граф метода обратного распространения
ошибки для двумерного сепарабельного фильтра FGS.

соответственно. Тогда как показано в [63], сложность фильтрации одной строки

составляет 𝒪(𝑊 ), а сложность фильтрации одного столбца – 𝒪(𝐻). Так как в

изображении 𝑓 всего 𝐻 строк и 𝑊 столбцов, то общая сложность одной итера­

ции фильтра составляет 𝒪(𝐻 ×𝑊 ), а следовательно общая последовательная

сложность алгоритма – 𝒪(𝑇 × 𝐻 × 𝑊 ). Граф вычислений одной итерации

двумерного сепарабельного фильтра FGS показан на рисунке 12.

По графу 12 можно заметить, что фильтрация каждой отдельной стро­

ки/столбца осуществляется независимо от других строк/столбцов. Тогда, при

условии наличия неограниченного числа процессоров эти операции можно рас­

параллелить по числу строк в случае фильтрации строк и числу столбцов в слу­

чае фильтрации столбцов. Следовательно параллельная сложность фильтрации

всех строк в изображении будет составлять 𝒪(𝑊 ), а параллельная сложность

фильтрации всех столбцов – 𝒪(𝐻). Значит параллельная сложность одной ите­

рации фильтра равна 𝒪(𝑊 ) +𝒪(𝐻) = 𝒪(max (𝐻,𝑊 )) и общая параллельная

сложность алгоритма – 𝒪(𝑇 ×max (𝐻,𝑊 )).

Рассмотрим последовательную сложность метода обратного распростра­

нения ошибки по одномерному фильтру FGS для сигнала размерности 𝑁 . Ана­

логично самому фильтру, вычисление его производных осуществляется в два

прохода:
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1. Обратный проход – сложность 𝒪(𝑁):

– 𝜕𝐿
𝜕𝑓𝑥

не требует вычислений и равен приходящему с последую­

щих слоев градиенту 𝜕𝐿
𝜕𝑢𝑥

;

– Вычисление 𝑁 − 1 градиента 𝜕𝐿
𝜕𝑐𝑥

по 𝜕𝐿
𝜕𝑢𝑥

;

– Рекурсивное обновление 𝑁−1 градиента 𝜕𝐿
𝜕𝑢𝑥+1

по предыдущему

элементу.

2. Прямой проход – сложность 𝒪(𝑁):

– Вычисление 𝑁 − 1 градиента 𝜕𝐿
𝜕𝑓𝑥

по 𝜕𝐿
𝜕𝑓𝑥

;

– Рекурсивное обновление 2 (𝑁 −1) градиентов 𝜕𝐿
𝜕𝑐𝑥−1

, 𝜕𝐿
𝜕𝑓𝑥−1

по сле­

дующему элементу;

– При необходимости распространения ошибки на направляющее

изображение – вычисление 3 (𝑁 − 1) градиентов вспомогатель­

ных переменных 𝜕𝐿
𝜕𝑎𝑥

, 𝜕𝐿
𝜕𝑏𝑥

, 𝜕𝐿
𝜕𝑐𝑥

по 𝜕𝐿
𝜕𝑓𝑥

,𝜕𝐿𝜕𝑥
;

– При необходимости распространения ошибки на направляющее

изображение – вычисление 2 (𝑁 −1) обновлений градиентов ве­

сов 𝜕𝐿
𝜕ω𝑥+1,𝑥

, 𝜕𝐿
𝜕ω𝑥,𝑥−1

по градиентам вспомогательных переменных.

Таким образом, последовательная сложность метода обратного распростране­

ния ошибки по одномерному фильтру FGS для сигнала размерности 𝑁 также

составляет 𝒪(𝑁). Тогда, исходя из тех же соображений, что и при оценке слож­

ностей двумерного сепарабельного фильтра FGS, последовательная сложность

метода обратного распространения ошибки для него равна 𝒪(𝑇 × 𝐻 × 𝑊 ), а

параллельная сложность – 𝒪(𝑇 ×max (𝐻,𝑊 )). Граф вычислений одной итера­

ции метода обратного распространения ошибки для двумерного сепарабельного

фильтра FGS показан на рисунке 13.

Данные теоремы показывают, что двумерный сепарабельный фильтр FGS

можно реализовать в качестве вычислительного блока нейронной сети. А так­

же его параллельная сложность позволяет эффективно распараллелить реали­

зацию алгоритма по строкам и столбцам изображения.



45

В качестве направляющего изображения для данного фильтра в рассмат­

риваемых архитектурах нейронных сетей была использована карта границ ис­

ходного изображения. Для вычисления карт границ был использован фильтр

Собеля: 𝑔 =
√︁
𝑔2𝑥 + 𝑔2𝑦, где 𝑔𝑦 =

⎡⎢⎢⎢⎣
1 2 1

0 0 0

−1 −2 −1

⎤⎥⎥⎥⎦ * 𝑓 и 𝑔𝑥 =

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ * 𝑓 . Тогда

веса для оценки похожести соседних пикселей можно задать как ω𝑥+1,𝑥(𝑔) =

𝑒−
√
2 𝑔𝑥
σ𝑐 , где σ𝑐 > 0 – параметр, контролирующий степень фильтрации.

Так как с помощью данного фильтра предполагается осуществлять рас­

пространение данных по маске карты доверия диспаратности, чтобы исключить

из рассмотрения области с низким доверием и распространить на них значения

предсказанных карт различий в области высокого доверия, то двумерный сепа­

рабельный фильтр FGS применяется к маскированному входному изображению

и самой маске, после чего результат фильтрации по маске вычисляется следу­

ющим образом:

𝑢conf =
FGS(conf × 𝑓)

FGS(conf)
, (26)

где conf – карта доверия к диспаратности.

1.5 Обучение нейронных сетей

Для обучения нейросетей был использован набор данных, сгенерирован­

ный на основе описанной ранее модели искажений. В качестве оптимизируемого

функционала была использована сумма квадратов разности предсказанных и

истинных значений, взвешенных на доверие к карте диспаратности, как для

карты различий по цвету, так и для карты различий по резкости:

𝐿𝑐 (𝑐, 𝑐) =

∑︀𝑛
𝑖=1 conf𝑖

(︁(︀
𝑐𝑌𝑖 − 𝑐𝑌𝑖

)︀2
+
(︀
𝑐𝑈𝑖 − 𝑐𝑈𝑖

)︀2
+
(︀
𝑐𝑉𝑖 − 𝑐𝑉𝑖

)︀2)︁
3
∑︀𝑛

𝑖=1 conf𝑖
, (27)
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𝐿𝑑

(︁
𝑑, 𝑑

)︁
=

∑︀𝑛
𝑖=1 conf𝑖

(︁
𝑑𝑖 − 𝑑𝑖

)︁2∑︀𝑛
𝑖=1 conf𝑖

, (28)

где 𝑐, 𝑐 – предсказанная и истинная карты различий по цвету для каждого цвето­

вого канала YUV, 𝑑, 𝑑 – предсказанная и истинная карты размытия, conf – кар­

та доверия к диспаратности, используемая в качестве входной карты доверия

для нейронной сети, 𝑛 – количество пикселей в изображении. Дополнительно

была использована 𝐿2-регуляризация для уменьшения эффекта переобучения:

𝐿2 (θ) = λ

𝑘∑︁
𝑖=1

θ2𝑖 , (29)

где θ – веса обучаемой нейросети, λ = 10−2 – параметр регуляризации, 𝑘 – об­

щее количество весов в сети. Итоговый оптимизируемый функционал выглядит

следующим образом:

𝐿
(︁
𝑐, 𝑐, 𝑑, 𝑑, θ

)︁
= 𝐿𝑐 (𝑐, 𝑐) + 𝐿𝑑

(︁
𝑑, 𝑑

)︁
+ 𝐿2 (θ) . (30)

Для инициализации весов сверточных слоев в начале обучения был ис­

пользован метод инициализации Xavier [64]. В качестве метода оптимизации

был выбран алгоритм Adam [65]. Нейронные сети обучались в течение 100 эпох.

Коэффициент скорости обучения составлял 10−4 с уменьшением в 10 раз каж­

дые 40 эпох. Количество примеров из набора данных, используемых на одной

итерации обучения, было равно 8, а разрешение используемых при обучении

примеров составляло 256 × 256. Участки изображений данного размера выре­

зались случайно во время обучения. Также для дополнительной аугментации

данных осуществлялось случайное отражение изображения относительно гори­

зонтальной или вертикальной оси и добавление шума к ракурсам по нормально­

му распределению с максимальным стандартным отклонением 0.02 и нулевым

средним значением. Сходимость предложенных методов продемонстрирована

на рисунке 14. Как можно видеть, метод на основе архитектуры GridNet пока­

зывает меньшую ошибку на валидационной выборке по сравнению с методом

на основе архитектуры U-net.
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Рисунок 14 — Сглаженные графики оптимизируемого во время обучения
функционала на обучающей (слева) и валидационной (справа) выборках.

Оранжевая и красная линии соответствуют методу на основе архитектуры
U-net, синяя и голубая — методу на основе архитектуры GridNet.

1.6 Экспериментальная оценка

Для тестирования предложенного метода была подготовлена тестовая вы­

борка на основе набора данных Sintel [66]. Sintel содержит в себе 23 стереоскопи­

ческие видеопоследовательности с разрешением 1024× 436, а также истинные

значения оптического потока и диспаратности для каждого кадра. В исходных

последовательностях отсутствуют искажения ракурсов по цвету и резкости, так

как данные последовательности получены с помощью компьютерной графики.

Для подготовки тестовой выборки на основе набора данных Sintel к каждой

последовательности добавлялись искусственные искажения на основе представ­

ленной ранее общей модели искажений. Каждая последовательность преобра­

зовывалась 3 раза с добавлением искажений разного типа и/или силы. На под­

готовленном наборе данных были протестированы предложенные нейросетевые

методы, а также несколько аналогов, включая методы, ранее применявшиеся

для анализа полнометражных стереоскопических фильмов. Результаты тести­

рования представлены в таблице 3. Предложенные нейросетевые методы превос­

ходят по качеству другие методы как по корреляции Пирсона, так и по корре­

ляции Спирмена. При этом метод на основе архитектуры GridNet превосходит

по качеству работы метод на основе архитектуры U-net, хотя проигрывают ему
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Таблица 3 — Результаты тестирования методов оценки различий по цвету и
резкости между ракурсами стереовидео на искусственном наборе данных
Sintel.

Метод
Корреляция

Пирсона
Корреляция
Спирмена

Искажения цвета
MAE 0.1254 0.1626
MAE с компенсацией правого ракурса 0.1338 0.2039
Метод [54] -0.4430 -0.4093
Метод [26] 0.8136 0.8760
Предложенный метод на основе U-net 0.9701 0.9477
Предложенный метод на основе GridNet 0.9696 0.9602

Искажения резкости
Метод [46] 0.1310 0.0692
Метод [47] 0.9564 0.8047
Метод [45] 0.5176 0.3152
Метод [27] 0.7686 0.6815
Метод [52] 0.8151 0.4488
Предложенный метод на основе U-net 0.9482 0.8318
Предложенный метод на основе GridNet 0.9762 0.9078

по скорости: скорость работы первого метода составляет 0.1649 секунд на кадр,

в то время как второго – 0.0549 секунд на кадр.

Также было проведено сравнение качества работы предложенного метода

на основе архитектуры GridNet (как лучшего на сравнении на искусственном

наборе данных) с методами, применявшимися для анализа полнометражных

стереоскопических фильмов, на 100 случайных VR180-видео, скачанных с плат­

формы YouTube. Процесс создания набора VR180-видео представлен в разделе

1.8.1. Каждый метод запускался на центральной части кубической проекции в

разрешении 960 × 960 пикселей, вычисляемой для каждого видео в формате

VR180 во время запуска. Для каждого метода были заданы аналогичные по­

роговые значения на их результаты оценки и по заданным порогам отобраны

предполагаемые кадры с искажениями. Далее была осуществлена экспертная
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Таблица 4 — Результаты тестирования методов оценки различий по цвету и
резкости между ракурсами VR180-видео.

Метод
Количество истинных

срабатываний

Количество
ложноположительных

срабатываний
Искажения цвета

Метод [26] 601 213
Предложенный метод 600 51

Искажения резкости
Метод [27] 320 779
Предложенный метод 339 180

оценка полученных стереопар, которые были размечены на две категории: со­

держащие и несодержащие рассматриваемые артефакты. Результаты оценки

представлены в таблице 4. Предложенному нейросетевому методу удалось зна­

чительно сократить количество ложноположительных срабатываний, при этом

не потеряв кадры, действительно содержащие рассматриваемые артефакты.

1.7 Программная реализация

Предложенный метод для одновременной оценки искажений цвета и рез­

кости между ракурсами стереоскопических видео реализован на языке Python

3 в виде консольного приложения. В данном приложении используются следу­

ющие модули-зависимости:

– tensorflow – открытая программная библиотека для машинного обуче­

ния, направленная на решение задач построения и тренировки нейрон­

ных сетей;

– opencv, skimage – открытые библиотеки, использовавшиеся для работы

с изображениями и видео;
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– numpy, scipy, matplotlib, noise – многофункциональные открытые биб­

лиотеки, использовавшиеся для быстрой обработки, генерации и визуа­

лизации данных.

– MSU Motion Estimation для сопоставления ракурсов и оценки движе­

ния.

Реализованное консольное приложение включает в себя три основные компо­

ненты для:

– подготовки наборов данных для обучения нейросетевых моделей на ос­

нове общей модели искажений цвета и резкости;

– обучения нейросетевых моделей одновременной оценки несоответствий

по цвету и резкости между ракурсами стерескопических видео;

– тестирования и использования на практике обученных моделей для од­

новременной оценки несоответствий по цвету и резкости.

Также предложенный метод реализован в виде подключаемого модуля к

системе оценки качества стереовидео VQMT3D [67]. Основная часть данной

системы – хост – реализует задачи по чтению входных ракурсов стереоскопи­

ческих и VR180-видео; вычислению для считанных ракурсов общих данных,

необходимых для работы методов оценки качества; записи результатов работы

методов оценки артефактов стереоскопических видео, подключаемых к хосту в

виде динамических модулей.

Для чтения входных ракурсов стереоскопических видео в хосте использу­

ется OpenCV, тем самым поддерживаются все форматы видео, которые поддер­

живаются в OpenCV. Также в системе поддерживаются в качестве входных дан­

ных скрипты в формате AviSynth и VapourSynth, позволяющие перед анализом

качества входного стереоскопического видео провести предобработку ракурсов

с помощью одной из поддерживаемых программ для обработки видеоматериа­

лов. В рамках данной работы в хост добавлена дополнительная предобработка

входных данных в случае анализа видео в формате VR180: применение куби­

ческой проекции к исходному видео для генерации центральной части кадра,

пригодной для анализа стереоскопических артефактов.
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ракурса
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стереоскопического

видео

Кадры левого
и правого ракурса

Вычисление карт
диспаратности, векторов
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Генератор отчетов

Вход

Рисунок 15 — Схема работы системы объективной оценки качества
стереоскопических видео VQMT3D.

При анализе искажений стерескопического видео в хосте осуществляется

покадровое чтение левого и правого ракурсов стереоскопического видео и для

каждого кадра вычисляются карты диспаратности, карты векторов движения,

соответствующие карты доверия, карты областей открытия/закрытия. Далее

считанные кадры, а также вычисленные промежуточные данные передаются

методам по анализу стереоскопических артефактов, реализованных в виде ди­

намически подключаемых модулей, которые возвращают значения анализируе­

мых показателей.

Полученные результаты оценки значений стереоскопических искажений

аккумулируются в хосте, которые далее записываются в отдельные текстовые

файлы с покадровыми значениями метрик. Результаты анализа стереоскопи­

ческих видео, записанные в текстовых файлах, далее используются в систе­

ме генерации отчетов. Выпущенные в рамках проекта стереоскопические отче­

ты представлены на странице https://videoprocessing.ai/stereo_quality/

reports/.

Схема работы описанной системы представлена на рисунке 15.
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Одной из важных характеристик реализации является ее скорость работы,

что влияет на возможность практической применимости. Для кадров с разре­

шением 1024 × 436 из тестовой последовательности на основе набора данных

Sintel средняя скорость работы предложенного метода составила 0.1649 секунд

на кадр. Время работы реализации замерялось на стационарном компьютере с

восьмиядерным процессором серии AMD Ryzen 7 1700 и графическим ускори­

телем GeForce GTX 1070.

1.8 Анализ видео в формате VR180

1.8.1 Подготовка набора видео в формате VR180

Для проведения масштабного анализа видео в формате VR180 было собра­

но 1000 видео с платформы YouTube. Для увеличения разнообразия выборки

сбор осуществлялся по 36 запросам: по запросу на каждую английскую букву и

на каждую цифру от 0 до 9. Для сбора видео только в формате VR180 устанав­

ливался соответствующий фильтр на выдачу в YouTube. Для каждого запроса

отбирались видео с первых 5-10 страниц результатов поиска. При этом исключа­

лись видео, недоступные для загрузки, обладающие низким разрешением и/или

являющиеся не стереоскопическими.

На рисунках 16, 17 представлены распределения собранных видео по чис­

лу просмотров на YouTube и по длительности (в секундах) соответственно. Ось

𝑥 на обоих графиках логарифмическая. У большинства отобранных видео от

10000 до 100000 просмотров, но также встречаются видео с несколькими мил­

лионами просмотров. При этом длительность большинства видео находится в

диапазоне от 5 до 10 минут. Также на рисунках 18, 19 можно увидеть распре­

деления видео относительно соотношений “лайков” и “дизлайков”. Сбор видео
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Рисунок 16 — Распределение
отобранных видео по числу

просмотров.
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Рисунок 17 — Распределение
отобранных видео по их длительности.
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Рисунок 18 — Распределение
отобранных видео по соотношению

𝑙𝑖𝑘𝑒𝑠
𝑙𝑖𝑘𝑒𝑠+𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠 .
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Рисунок 19 — Распределение
отобранных видео по соотношению

𝑙𝑖𝑘𝑒𝑠− 𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠.

осуществлялся до середины 2020 года, а в дальнейшем производилась работа

по их обработке и оценке качества.
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1.8.2 Предобработка собранных видео в формате VR180

Все кадры видео в формате VR180 изначально представлены в равнопро­

межуточной проекции. При анализе кадров непосредственно в этой проекции

могут возникнуть проблемы как с сопоставлением ракурсов, так и с оценкой

геометрических искажений, так как данная проекция вносит дополнительные

нелинейные геометрические искажения, усиливающиеся при движении от цен­

тра кадра к его краям. Поэтому для корректного анализа видео в формате

VR180 все кадры преобразуются к кубической проекции. Пример такого пре­

образования представлен на рисунке 20. Так как поле зрения исходного видео

составляет 180 градусов, грани кубической проекции кадра заполнены следую­

щим образом: верхняя, нижняя и боковые – только на половину, фронтальная

– полностью, а задняя не заполнена совсем. Для дальнейшего анализа на пред­

мет стереоскопического качества отбирается только фронтальная грань куби­

ческой проекции, так как она заполнена полностью и содержит большинство

информации из исходного кадра, а также лишена геометрических искажений.

Все эти факторы значительно упрощают применение методов оценки стерео­

скопического качества и дают возможность получить правильные результаты

анализа. Далее предобработанные кадры V180 видео обрабатываются таким же

способом как обычные стереоскопические кадры.

1.8.3 Результаты оценки искажений цвета и резкости для видео в

формате VR180

Для всех 1000 видео в формате VR180 было проведено измерение силы цве­

товых искажений (рисунок 21) и искажений резкости (рисунок 22). Результаты

анализа продемонстрированы относительно количества просмотров на YouTube
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Рисунок 20 — Предобработка кадров видео в формате V180. Красным
квадратом выделена фронтальная грань кубической проекции,

непосредственно использующаяся при анализе качества VR180-видео.

(а), даты публикации (б) и длительности (в) каждого видео. Ось 𝑥 на этих гра­

фиках соответствует конкретной статистике видео, а ось 𝑦 – оцененной величине

стереоскопического искажения. Синими точками изображены отдельные видео.

Также графики включают в себя две линии тренда: верхняя линия соответству­

ет 33 перцентилю, а нижняя – 66 перцентилю. Ни один из рассматриваемых

стереоскопических артефактов не демонстрирует какой-либо существенной тен­

денции по отношению к любой статистике видео: на некоторых графиках при­

сутствуют небольшие увеличивающиеся либо уменьшающиеся тренды, однако

средние вычисленные значения искажений изменяются незначительно. Внезап­

ные спуски и подъемы появляются слева и справа на некоторых графиках, но

они в основном связаны с небольшим количеством видео с соответствующими

статистиками. Данные графики позволяют сделать следующие заключения:

– Вычисленные значения искажений для видео с большим количеством

просмотров на YouTube в среднем такие же как и у видео с небольшим

количеством просмотров;
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(а) Общие результаты анализа относительно
количества просмотров на YouTube.
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(б) Общие результаты анализа относительно
даты публикации видео.
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(в) Общие результаты анализа относительно
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Рисунок 21 — Результаты анализа цветовых искажений в VR180-видео.

– В целом, ситуация не изменялась со временем, так как видео, опубли­

кованные позже, обладают в среднем теми же оценками стереоскопиче­

ских артефактов, что и видео, опубликованные гораздо раньше;

– Средние значения искажений в видео независимы от их длительности.

В приложении на рисунках 55-58 представлены найденные в VR180 при­

меры искажений цвета, на рисунках 59-62 – искажений резкости.

1.9 Заключение

В данной главе была предложена общая модель искажений цвета и рез­

кости, на основе которой был подготовлен набор данных для обучения и вали­

дации нейросетевого метода оценки искажений. Рассматривались как простые,

глобальные случаи искажений, так и более сложные, локальные случаи. Всего
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(а) Общие результаты анализа относительно
количества просмотров на YouTube.
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(б) Общие результаты анализа относительно
даты публикации видео.
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(в) Общие результаты анализа относительно
длительности видео.
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Рисунок 22 — Результаты анализа искажений резкости в VR180-видео.

в набор данных вошло 9488 различных стереопар, вырезанных из 16 стерео­

скопических фильмов. Для оценки цветовых искажений и искажений резкости

была использована модифицированная модель GridNet, предсказывающая кар­

ты различий по цвету и резкости на основе левого ракурса, интерполированно­

го к нему по карте диспаратности правого ракурса и соответствующей карте

доверия. Итоговый метод аккумулирует предсказанные значения карт искаже­

ний для общей оценки силы искажений в кадре. Разработанный нейросетевой

алгоритм оценки различий по цвету и резкости между ракурсами стереоскопи­

ческого видео был протестирован на искусственной тестовой выборке, показав

значительное улучшение точности работы по сравнению с аналогами, ранее ис­

пользовавшимися при анализе полнометражных стереоскопических фильмов.

Так для оценки различий по цвету было достигнуто увеличение значений корре­

ляций Пирсона на 15% и Спирмена на 10%, а для оценки различий по резкости

корреляции в среднем были улучшены на 20%.
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Также в главе представлены результаты анализа искажений цвета и рез­

кости для 1000 видео в формате VR180, собранных с платформы YouTube. Ни

полученные показатели искажений цвета, ни полученные показатели искажений

резкости не показали существенных трендов по отношению к таким статисти­

кам видео, как количество просмотров, дата публикации и длительность.

Результаты главы опубликованы автором в [2; 3; 17; 22; 24].
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Глава 2. Нейросетевой метод оценки геометрических искажений

между ракурсами стереовидео

2.1 Постановка задачи

Аналогично искажениям цвета и резкости при съемке стереоскопических

видео и видео в формате VR180 также достаточно часто возникают геометри­

ческие искажения между ракурсами. Среди них можно выделить постоянный

вертикальный сдвиг (рисунок 23, слева), поворот (рисунок 23, посередине) и

масштабирование (рисунок 23, справа) одного ракурса относительно другого.

Пример вертикального сдвига одного из ракурсов полнометражного стереоско­

пического фильма представлен на рисунке 24. Помимо данных артефактов так­

же могут возникать и другие геометрические артефакты, например, перспектив­

ные искажения и конвергированные оптические оси [21], которые также приво­

дят к возникновению вертикальных смещений пикселей в стереопаре, однако

для их точного определения необходимо знать внутренние параметры калиб­

ровки камер. Доступом к съемочной аппаратуре обладают операторы фильма,

и оценку параметров можно произвести во время съемки стереоскопического

контента, но в других ситуациях точная оценка данных параметров невозмож­

на. В данной работе источником данных являются только ракурсы отснятого

стереоскопического видео. Поэтому упомянутые выше артефакты не рассмат­

риваются.

Рассматриваемые геометрические искажения (рисунок 23) в первую оче­

редь возникают из-за неправильной калибровки камер. Небольшие несоответ­

ствия в вертикальных положениях камер или небольшие наклоны приводят к

появлению данных артефактов. Если при производстве стереоскопического кон­

тента контролю технического качества уделяется недостаточно внимания, такие

артефакты зачастую попадают в финальный продукт. При просмотре стерео­
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Рисунок 23 — Схематичная иллюстрация типов геометрических искажений,
возникаемых при съемке 3D-видео.

Рисунок 24 — Пример вертикального сдвига между ракурсами стереофильма.
Кадр из фильма “Убойное Рождество Гарольда и Кумара”.

скопических сцен с данными артефактами, зритель часто испытывает диском­

форт [1], вплоть до головных болей, тошноты и головокружения, аналогично

искажениям цвета и резкости.

Формально задачу оценки геометрических искажений можно поставить

следующим образом. Пусть имеются две видеопоследовательности, являющи­

еся левым и правым ракурсами стереоскопического видео. Необходимо для

каждого кадра стереовидео оценить 3 параметра геометрических искажений

– константный вертикальный сдвиг, поворот и масштабирование правого ра­

курса относительно левого. Используя обозначения из раздела 1.1, пусть на

вход алгоритму подается стереовидео 𝑆. На выходе алгоритм должен предоста­

вить оценки трех геометрических искажений между левым и правым ракурсом
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{α𝑖, 𝑘𝑖, 𝑡𝑖}𝑘𝑖=1, α𝑖, 𝑘𝑖, 𝑡𝑖 ∈ R. Вид оценок также зависит от рассматриваемой мо­

дели искажений, представленной в разделе 2.3.

2.2 Обзор существующих алгоритмов

Геометрические искажения между ракурсами стереоскопических видео по­

рождают вертикальные смещения пикселей в одном из ракурсов относительно

другого. Поэтому для оценки геометрических искажений необходимо осуще­

ствить анализ данных смещений, а алгоритмы оценки геометрических искаже­

ний можно разделить на две явные части: сопоставление ракурсов для оценки

возникаемых вертикальных смещений и оценку некоторой модели геометриче­

ских искажений. Для сопоставления ракурсов могут использоваться различные

методы: поиск и сопоставление особых точек в ракурсах [28—30], оценка опти­

ческого потока между ракурсами [31—33], блочное сопоставление ракурсов [34].

Однако эти методы должны быть устойчивыми к искажениям цвета и резкости

между ракурсами стереовидео, которые часто возникают при съемке в 3D.

Непосредственно геометрические искажения могут оцениваться как с ис­

пользованием общей модели, так и отдельно друг от друга, что может улуч­

шить распознавание конкретного искажения, однако не будет учитывать вли­

яние других артефактов на рассматриваемое искажение. Также в отдельный

класс алгоритмов, оценивающих параметры геометрических искажений, выно­

сятся алгоритмы ректификации ракурсов стереовидео, направленные на устра­

нение всех геометрических искажений в стереопаре. В ходе ректификации сте­

реопары оцениваются параметры преобразования ракурсов, из которых также

можно получить оценку исходных геометрических искажений.
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2.2.1 Методы ректификации стереовидео

Для ректификации стереопары необходимо привести ракурсы друг к дру­

гу таким образом, чтобы выполнялось эпиполярное ограничение. Другими сло­

вами, два ракурса стереопары считаются ректифицированными, если все соот­

ветствующие друг другу точки в обоих изображениях лежат на одной и той же

горизонтальной оси. Задача ректификации стереопары с геометрическими иска­

жениями сводится к оценке матриц камер для каждого ракурса, составляющих

искомую фундаментальную матрицу, и преобразованию ракурсов с использова­

нием оцененных матриц.

В работе [68] оценка матриц камер осуществляется путем минимизации

функции энергии с шестью степенями свободы. В методе [69] предлагается де­

композировать искомое преобразование на две части: проективное преобразова­

ние и аффинное преобразование. Проективное преобразование отображает эпи­

полярные линии на бесконечность, в то время как аффинное преобразование

вращает и переносит эпиполярные линии так, чтобы они были паралленьны оси

𝑥. В работе [70] рассматривается проблема ректификации стереопары при нали­

чии различных фокусных расстояний и решается задача нелинейной условной

оптимизации. Большинство методов ректификации основано на использовании

соответствий, полученных с помощью методов поиска особых точек, таких как

SIFT [28], SURF [29] и ORB [30], что сильно ограничивает возможности рек­

тификации в виду сильной разреженности полученных соответствий для опре­

деленных типов кадров. Для устранения этого недостатка в последнее время

начали появляться нейросетевые методы ректификации [71], в которых поиск

соответствий для процесса ректификации осуществляется за счет использова­

ния нейронных сетей, обучаемых непосредственно на данной задаче.

Однако для полноценной работы методов ректификации стереовидео тре­

буются калибровочные параметры камер. Также данные методы имеют тенден­

цию к ухудшению результатов работы при наличии шума в данных. Данные
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факторы серьезно ограничивают применимость методов ректификации на прак­

тике, как для исправления стереоскопических видео, так и для простой оценки

параметров геометрических искажений.

2.2.2 Методы, оценивающие параметры геометрических

искажений

Для оценки параметров геометрических искажений в научной литературе

был предложен ряд методов. В работе [72] осуществляется одновременное вы­

числение двух параметров геометрических искажений: вертикального сдвига и

относительного масштабирования. Для этого осуществляется оценка парамет­

ров следующей модели с помощью метода наименьших квадратов на основе

сопоставлений, полученных с помощью метода SIFT [28]:

𝑦𝑅 = 𝑦𝐿 𝑘 + 𝑡, (31)

где 𝑦𝐿, 𝑦𝑅 – вертикальные координаты соответствующих друг другу точек в

левом и правом ракурсе соотвественно, 𝑘 – параметр масштабирования, 𝑡 –

параметр сдвига. Аналогичный метод используется в работе [73], где вместо по­

иска особых точек используется блочное иерархическое сопоставление ракурсов

и оценивается сразу три геометрических искажения: сдвиг, масштабирование и

поворот:

𝑦𝑅 = [α 𝑘]

⎡⎣𝑥𝐿
𝑦𝐿

⎤⎦+

⎡⎣𝑡𝑥
𝑡𝑦

⎤⎦ , (32)

где 𝑥𝐿, 𝑦𝐿 – координаты точки в левом ракурсе, 𝑦𝑅 – вертикальная коорди­

ната соответствующей точки в правом ракурсе, α – параметр поворота, 𝑘 –

параметр масштабирования, 𝑡𝑥, 𝑡𝑦 – параметры сдвига. Однако использование

метода наименьших квадратов для оценки параметров модели неустойчиво к

шуму в исходных данных, что снижает практичность данных методов.
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В некоторых работах предлагается оценивать геометрические искажения

независимо друг от друга. Так, в работе [74] оценивается вертикальный сдвиг

и поворот одного ракурса относительно другого путем многоступенчатой меди­

анной фильтрации на результатах работы алгоритма блочного сопоставления

ракурсов. Аналогичный подход применяется в работе [55] на основе результа­

тов сопоставления особых точек SIFT. Для оценки вертикального сдвига в рас­

сматриваемом методе анализируется гистограмма вертикальных составляющих

векторов сопоставлений; для оценки масштабирования используются параметр

масштабирования сопоставленных точек из SIFT; для оценки поворота выбира­

ется такой угол поворота, который минимизирует разницу между повернутым

левым ракурсом и исходным правым ракурсом. Однако данные подходы также

малопрактичны, так как в присутствии других искажений либо одновременном

присутствии нескольких рассматриваемых искажений результаты оценки пара­

метров геометрических искажений будут недостоверны.

В целом, для оценки параметров заданной модели геометрических искаже­

ний можно использовать любой оптимизационный метод при условии его устой­

чивости к шуму и выбросам в исходных данных, которые часто встречаются при

сопоставлении ракурсов. Например, для этих целей подходит метод RANSAC

[75], а также его модификации, которые в последнее время берут за основу ней­

росетевые подходы [76; 77]. Также нейронные сети начинают использовать и на

других этапах методов оценки параметров. Так, в работах [78; 79] предлагается

вычислять дополнительные веса с помощью нейронной сети для полученных со­

поставлений перед оценкой модели. Данный шаг может быть использован как

дополнительный этап для лучшей фильтрации сопоставлений между ракурса­

ми стереовидео. Также в работе [80] предлагается заменить этап сопоставления

стереоскопических ракурсов на вычисление полных корреляций между двумя

картами признаков, полученных с помощью нейронной сети. После полного со­

поставления карт признаков авторы работы добавляют регрессионную нейрон­

ную сеть, которая вычисляет матрицу аффинного преобразования для сведения

левого ракурса к правому. Модификация данного метода подразумевает обуче­
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ние регрессионной нейронной сети для предсказания матрицы произвольного

геометрического преобразования. В своей следующей работе [81] авторы допол­

нительно предлагают оценивать матрицу проективного преобразования.

Данная работа базируется на методе [26], который ранее использовался

для анализа 105 полнометражных стереоскопических фильмов. Рассматривае­

мый метод оценивает параметры аффинного преобразования с помощью метода

RANSAC на основе результатов блочного сопоставления ракурсов. Но в виду

случайной природы работы метода RANSAC, результаты вычислений парамет­

ров искажений могут быть нестабильны. Поэтому в данной работе предлагается

использовать нейросетевой регрессор для непосредственной оценки параметров

геометрических искажений.

2.3 Модель геометрических искажений

Пуcть 𝐼𝐿𝑔𝑡 и 𝐼𝑅𝑔𝑡 – соответственно левый и правый ракурсы стереопары, не

содержащей геометрических искажений. Для моделирования описанных иска­

жений достаточно применить аффинное преобразование к одному из ракурсов.

Пусть 𝑝 = [𝑥 𝑦 1]𝑇 и 𝑝′ = [𝑥′ 𝑦′ 1]𝑇 – однородные координаты двух точек до и

после применения преобразования соответственно. Тогда геометрические несо­

ответствия между ракурсами стереовидео можно промоделировать следующим

аффинным преобразованием:

𝑝′ = 𝐴 𝑝, (33)

𝐴 =

⎡⎢⎢⎢⎣
(1 + 𝑘) cos(α) −(1 + 𝑘) sin(α) 0

(1 + 𝑘) sin(α) (1 + 𝑘) cos(α) 𝑡

0 0 1

⎤⎥⎥⎥⎦ , (34)

где α – угол поворота, 𝑘 – коэффициент масштабирования, 𝑡 – вертикальный

сдвиг. Пусть 𝐺 ∈ Rℎ×𝑤×3 – нормированные однородные координаты пикселей

ракурса. Предполагается, что ∀𝑝 = [𝑥 𝑦 1]𝑇 ∈ 𝐺, 𝑥 ∈ [−1, 1), 𝑦 ∈ [−1, 1),
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то есть нормированная координата (−1,−1, 1) соответствует координате пиксе­

ля (0, 0) в изображении, а (1, 1, 1) – координате пикселя (𝑤,ℎ). Для получения

нормированной координатной сетки из ненормированной достаточно применить

преобразование 𝐺 = 𝐺𝑝×𝑁𝑇 , где 𝑁 =

⎡⎢⎢⎢⎣
2/𝑊 0 −1

0 2/𝐻 −1

0 0 1

⎤⎥⎥⎥⎦, а для обратного пре­

образования – 𝐺𝑝 = 𝐺×𝑁𝑇
𝑟 , где 𝑁𝑟 =

⎡⎢⎢⎢⎣
𝑊/2 0 𝑊/2

0 𝐻/2 𝐻/2

0 0 1

⎤⎥⎥⎥⎦. Тогда 𝐺′ = 𝐺×𝐴𝑇 –

нормированные однородные координаты пикселей трансформированного ракур­

са. Следовательно, для получения стереопары с геометрическими искажениями

достаточно интерполировать пиксели исходного правого ракурса по трансфор­

мированным координатам:

𝐼𝑅 = Warp
(︀
𝐼𝑅𝑔𝑡, 𝐺

′)︀ , (35)

где Warp – операция интерполяции изображения по координатной сетке. Таким

образом, в работе рассматривается задача оценки параметров θ =
[︁
α 𝑘 𝑡

]︁
,

задающих моделирующее аффинное преобразование.

На основе предложенной модели был подготовлен набор данных для обу­

чения, валидации и тестирования нейросетевых моделей. При создании набора

данных использовались кадры из 29 полнометражных стереоскопических филь­

мов. Список из 16 стереофильмов, представленных в разделе 1.3, был расширен

следующими фильмами:

1. “Врата дракона”;

2. “Фантом”;

3. “Сумасшедшая езда”;

4. “Другой мир: Пробуждение”;

5. “Дети шпионов 4D”;

6. “Челюсти 3D”;

7. “История дельфина”;
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Рисунок 25 — Распределения значений вычисленных геометрических
искажений в проанализированных 3D-фильмах с соответствующими

стандартными отклонениями.

8. “Пираты Карибского моря: На странных берегах”;

9. “Хранитель времени”;

10. “Повелитель стихий”;

11. “Мушкетёры”;

12. “Санктум”;

13. “Тор”.

Так как эталонные значения геометрических искажений для полномет­

ражных стереоскопических фильмов неизвестны, для их оценки был использо­

ван метод [26], ранее применявшийся при анализе стереофильмов. Данный ме­

тод также оценивает геометрические искажения по трем параметрам: поворота,

масштабирования и вертикального сдвига одного ракурса относительно друго­

го. На рисунке 25 представлены распределения значений данных искажений,

вычисленные по всем проанализированным фильмам. Для каждого рассматри­

ваемого искажения было вычислено стандартное отклонение его распределения

σ, и в набор данных добавлялись только те стереопары, у которых все значения

искажений имели абсолютное значение меньше чем σ
10 . Для избежания дубли­

рования сцен в выборке кадры выбирались с определенным шагом. Всего было

собрано 22800 стереопар.

Весь подготовленный набор данных был разделен на три части: обуча­

ющую (15500 стереопар), валидационную (3600 стереопар) и тестовую (3700
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стереопар, фильмы в тестовой части не пересекаются с фильмами из обучаю­

щей и валидационной частей). Далее каждая отобранная стереопара искажа­

лась путем применения аффинного преобразования к правому ракурсу соглас­

но выражению 35. Параметры аффинного преобразования генерировались по

нормальному распределению с нулевым средним и стандартным отклонением

в 5 раз больше вычисленного выборочного стандартного отклонения. Такой вы­

бор стандартного отклонения расширяет охват возможных значений искаже­

ний, встречающихся в полнометражных стереофильмах. Каждая стереопара

из обучающего набора данных искажалась 9 раз для расширения выборки, а

также в выборку добавлялись неискаженные варианты стереопар. Стереопары

из валидационного и тестового наборов данных добавлялись ровно один раз, в

20% случаев из которых искажения не применялись.

2.4 Описание предложенного алгоритма

Для оценки геометрических искажений между ракурсами стереоскопиче­

ского видео предлагается подход, состоящий из следующих шагов:

1. Вычисление карт диспаратности между левым и правым ракурсами, а

также построение карт доверия к вычисленным картам, характеризую­

щих точность оцененных значений диспаратности. Данный шаг полно­

стью совпадает с первым шагом предложенного нейросетевого метода

оценки искажений цвета и резкости, описанном в разделе 1.4.1.

2. Оценка параметров геометрических искажений с помощью нейронной

сети на основе карты диспаратности, а также соответствующей ей карте

доверия.

Общая схема метода представлена на рисунке 26. Вычисленные параметры гео­

метрических искажений могут далее быть использованы для исправления ра­

курсов путем применения обратного аффинного преобразования к правому ра­
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Вход

Карта
диспаратности

Карта доверияЛевый ракурс

Правый ракурс Сопоставление
ракурсов

Построение
карты доверия

θ = [α, k, t]

Выход

Нейросетевой
регрессор

Данные Шаги
алгоритма

Рисунок 26 — Общая схема предложенного метода оценки геометрических
искажений между ракурсами стереоскопического видео.

Рисунок 27 — Предложенная архитектура нейронной сети для предсказания
геометрических искажений.

курсу. Данная процедура усложняется в случае исправления геометрических

искажений в VR180-видео. Подробнее процесс исправления описан в разделе

2.7.

Для оценки параметров геометрических искажений используется нейросе­

тевая архитектура, аналогичная ResNet-18 [82]. Данная архитектура проиллю­

стрирована на рисунке 27. В начале входной тензор обрабатывается сверточ­

ным слоем размера 7 × 7 с шагом 2. Далее следуют четыре последовательных
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остаточных блоков 𝐿𝑘, где 𝑘 ∈ {64, 128, 256, 512} задает количество карт при­

знаков, вычисляемых в сверточных слоях рассматриваемого блока. На рисунке

28 показана детальная архитектура каждого блока. Количество подблоков в

каждом блоке было выбрано 𝑀 = 4. Уменьшение пространственного разреше­

ния осуществляется за счет использования сверточного слоя с шагом 2 в первом

подблоке каждого блока. Два последних слоя в сети – полносвязные, при этом

последний слой вычисляет вектор θ ∈ R3, содержащий параметры предска­

занных геометрических искажений. В качестве входных данных используется

нормированная карта диспаратности, а также соответствующая карта доверия.

Каждое значение смещения в карте диспаратности (∆𝑥𝑖, ∆𝑦𝑖) нормируется сле­

дующим образом:

(∆𝑥′𝑖, ∆𝑦′𝑖) = (
2∆𝑥𝑖
𝑤

,
2∆𝑦𝑖
ℎ

), 𝑖 = 1,𝑛, 𝑛 = ℎ× 𝑤, (36)

где ℎ – высота изображения, 𝑤 – ширина изображения. Пространственные раз­

меры входного тензора могут быть произвольными – перед полносвязными сло­

ями используется глобальный слой субдискретизации с выбором среднего. Так­

же в отличие от исходной архитектуры в используемой модели не используется

батч-нормализация [83]. Использование батч-нормализации приводило к ухуд­

шению сходимости модели и замедлению скорости обучения.

2.5 Обучение нейронных сетей

Для обучения нейронных сетей, оценивающих геометрические искажения,

предлагается оптимизировать следующий функционал:

𝐿
(︀
θ, θ𝑔𝑡, 𝐼

𝑅, 𝐼𝑅𝑔𝑡, θ𝑏

)︀
= 𝐿𝑆𝐸 (θ, θ𝑔𝑡) + 𝐿𝐺𝑟𝑖𝑑 (θ, θ𝑔𝑡) + 𝐿𝑊𝑎𝑟𝑝

(︀
θ, 𝐼𝑅, 𝐼𝑅𝑔𝑡

)︀
+ 𝐿𝑆𝑖𝑎𝑚 (θ, θ𝑏) , (37)

где θ – вычисленные нейросетью значения геометрических искажений по кар­

там диспаратности и доверия для левого ракурса, θ𝑔𝑡 – эталонные значения

геометрических искажений, 𝐼𝑅 и 𝐼𝑅𝑔𝑡 – правый ракурс стереопары, содержащий
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свертка размера 3
с шагом 2, k фильтров, ReLU

свертка размера 3, 
k фильтров, ReLU

+
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размера 1
с шагом 2,
k фильтров

Первый подблок в блоке Lk

Подблок 1

Подблок 2

...

Подблок M

Блок  Lk

свертка размера 3,
k фильтров, ReLU

свертка размера 3, 
k фильтров, ReLU

+

свертка
размера 1 
k фильтров

Второй и последующие 
подблоки в блоке Lk

Тензор с l < k каналами

Тензор с k каналами

Тензор с l < k каналами

Тензор с k каналами Тензор с k каналами

Тензор с k каналами

Рисунок 28 — Конфигурация блоков нейронной сети для предсказания
геометрических искажений.

и несодержащий геометрические искажения соответственно, θ𝑏 – вычисленные

нейросетью значения геометрических искажений по картам диспаратности и до­

верия для правого ракурса. Данный функционал состоит из двух основных ком­

понент (первые две компоненты) для обучения модели по эталонным значени­

ям геометрических искажений, а также из двух регуляризационных компонент

(последние две компоненты), для которых не требуются эталонные значения

искажений.

Первая компонента оптимизируемого функционала, 𝐿𝑆𝐸, представляет со­

бой взвешенную сумму квадратичных разниц между вычисленными и эталон­

ными значениями геометрических искажений с эмпирически подобранными ве­

сами для каждого типа искажений:

𝐿𝑆𝐸 (θ, θ𝑔𝑡) = 𝑤α (α− α𝑔𝑡)
2 + 𝑤𝑘 (𝑘 − 𝑘𝑔𝑡)

2 + 𝑤𝑡 (𝑡− 𝑡𝑔𝑡)
2 , (38)

где 𝑤α = 1, 𝑤𝑘 = 104 и 𝑤𝑡 = 104.

Вторая компонента, 𝐿𝐺𝑟𝑖𝑑, вычисляет функцию потерь между двумя сет­

ками, преобразованными с помощью аффинных преобразований, построенных

по вычисленным и эталонным значениям геометрических искажений. Пусть

𝐺 ∈ R𝐻×𝑊×3 – однородные координаты точек на плоскости. Для вычисления

данной компоненты были выбраны равноудаленные координаты на плоскости
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[−1; 1]× [−1; 1] с шагом 0.1, таким образом 𝐻 = 𝑊 = 21. При вычислении 𝐿𝐺𝑟𝑖𝑑

вектор параметров геометрических искажений разбивается на три различных

вектора: θ𝑟𝑜𝑡𝑎𝑡𝑒 =
[︁
α 0 0

]︁
, θ𝑠𝑐𝑎𝑙𝑒 =

[︁
0 𝑘 0

]︁
, θ𝑠ℎ𝑖𝑓𝑡 =

[︁
0 0 𝑡

]︁
. Далее после­

довательно применяется каждое аффинное преобразование к исходной сетке 𝐺

как по вычисленным с помощью нейросетевого регрессора значениям, так и по

эталонным значениям для генерации новых сеток, соответствующих одному из

геометрических искажений:

𝐺α = 𝑇 (𝐺, θα), 𝐺α
𝑔𝑡 = 𝑇 (𝐺, θα𝑔𝑡), (39)

𝐺𝑘 = 𝑇 (𝐺α, θ𝑘), 𝐺𝑘
𝑔𝑡 = 𝑇 (𝐺α

𝑔𝑡, θ
𝑘
𝑔𝑡), (40)

𝐺𝑡 = 𝑇 (𝐺𝑘, θ𝑡), 𝐺𝑡
𝑔𝑡 = 𝑇 (𝐺𝑘

𝑔𝑡, θ
𝑡
𝑔𝑡), (41)

где 𝑇 (𝐺, θ) = 𝐺 × 𝐴𝑇 (θ) – операция применения аффинного преобразования

𝐴 с параметрами θ к сетке однородных координат точек на плоскости 𝐺. Взве­

шенная сумма среднеквадратичных ошибок между соотвествующими сетками

и формирует вторую компоненту в оптимизируемом функционале:

𝐿𝐺𝑟𝑖𝑑 (θ, θ𝑔𝑡) = 𝑤α
𝐺𝑟𝑖𝑑 𝑀𝑆𝐸

(︀
𝐺α,𝐺α

𝑔𝑡

)︀
+ 𝑤𝑘

𝐺𝑟𝑖𝑑 𝑀𝑆𝐸
(︀
𝐺𝑘,𝐺𝑘

𝑔𝑡

)︀
+ 𝑤𝑡

𝐺𝑟𝑖𝑑 𝑀𝑆𝐸
(︀
𝐺𝑡,𝐺𝑡

𝑔𝑡

)︀
, (42)

где 𝑀𝑆𝐸(𝐺1,𝐺2) = 1
𝐻𝑊

∑︀𝐻
𝑖=1

∑︀𝑊
𝑗=1

(︁
𝐺1

{𝑖,𝑗} ˘𝐺
2
{𝑖,𝑗}

)︁2

, 𝑤α
𝐺𝑟𝑖𝑑 = 5000, 𝑤𝑘

𝐺𝑟𝑖𝑑 = 3000

и 𝑤𝑡
𝐺𝑟𝑖𝑑 = 3000.

Первая регуляризационная компонента 𝐿𝑊𝑎𝑟𝑝 оценивает качество восста­

новления правого ракурса с внесенными геометрическими искажениями 𝐼𝑅 из

исходного правого ракурса 𝐼𝑅𝑔𝑡 по вычисленным параметрам геометрических ис­

кажений. Для этого аналогично описанной модели искажений исходный пра­

вый ракурс 𝐼𝑅𝑔𝑡 интерполируется по трансформированным координатам, полу­

ченным после применения к ним аффинного преобразования с параметрами θ:

𝐼𝑅Warp = Warp(𝐼𝑅𝑔𝑡,𝐺
′), 𝐺′ = 𝑇 (𝐺, θ). Итоговое значение компоненты функции

стоимости вычисляется как среднеквадратичная ошибка между входным пра­

вым ракурсом 𝐼𝑅 и реконструированным по исходному правому ракурсу 𝐼𝑅𝑔𝑡 и

вычисленным значениям геометрических искажений ракурсом 𝐼𝑅Warp:

𝐿𝑊𝑎𝑟𝑝

(︀
θ, 𝐼𝑅, 𝐼𝑅𝑔𝑡

)︀
= 𝑀𝑆𝐸(𝐼𝑅, 𝐼𝑅Warp). (43)
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Последняя регуляризационная компонента, 𝐿𝑆𝑖𝑎𝑚, оценивает консистент­

ность между нейросетевыми предсказаниями на основе входных данных как

для левого, так и для правого ракурсов. Если вычисление значений геометри­

ческих искажений корректно, то при подаче на вход карты диспаратности и

соответствующей карты доверия правого ракурса нейронная сеть должна вы­

давать такие же по модулю параметры искажений, как и для левого ракурса,

но с противоположным знаком. Другими словами, θ = −1 · θ𝑏. Таким обра­

зом, четвертая компонента оптимизируемого функционала штрафует разницу

между предсказанными векторами параметров для левого и правого ракурсов:

𝐿𝑆𝑖𝑎𝑚(θ, θ𝑏) = 𝐿𝑆𝐸(θ,−θ𝑏). (44)

Для вычисления данной компоненты дополнительно вычисляются параметры

геометрических искажений на основе данных для правого ракурса стереопары

во время обучения. Однако при использовании обученной сети для вычисления

геометрических искажений достаточно карты диспаратности и карты доверия,

построенных только для левого ракурса.

При обучении нейронных сетей был использован метод инициализации

весов He [62], а также оптимизационный метод Adam [65], для которого ис­

пользовались стандартные параметры, за исключением коэффициента скорости

обучения, составившего 10−4, изменявшимся по косиносному правилу с умень­

шающейся амплитудой (рисунок 29). Модели обучались в течение 120 эпох.

Сходимость предложенного метода продемонстрирована на рисунке 30.
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Рисунок 29 — График изменения коэффициената скорости обучения в
зависимости от номера итерации.

Рисунок 30 — Сглаженные графики оптимизируемого во время обучения
функционала на обучающей (слева) и валидационной (справа) выборках.

2.6 Экспериментальная оценка

2.6.1 Выбор оптимизируемого функционала

При разработке метода были обучены различные модели на основе разных

оптимизируемых функционалов. Во-первых, рассматривались разные комбина­

ции базовых компонент оптимизируемого функционала, использующих эталон­

ные значения искажений. В таблице 5 представлены результаты работы модели

при обучении на основе компонент 𝐿𝑆𝐸, 𝐿𝐺𝑟𝑖𝑑 и 𝐿𝑆𝐸 +𝐿𝐺𝑟𝑖𝑑. Как можно видеть

из результатов, одновременное использование двух базовых компонент улучша­

ет точность вычисленных параметров геометрических искажений. Во-вторых,
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Таблица 5 — Результаты сравнения базовых компонент оптимизируемого
функционала. В таблице представлена абсолютная погрешность вычислений
по каждому геометрическому искажению.

Компоненты
Угол поворота

(градусы)

Коэффициент
масштабирования

(процент от начального
разрешения кадра)

Вертикальный сдвиг
(процент от

высоты кадра)

𝐿𝑆𝐸 0.02063 0.0004925 0.0002258
𝐿𝐺𝑟𝑖𝑑 0.01935 0.0004951 0.0002519
𝐿𝑆𝐸 + 𝐿𝐺𝑟𝑖𝑑 0.01925 0.0004862 0.0002237

Таблица 6 — Результаты сравнения регуляризационных компонент
оптимизируемого функционала. В таблице представлена абсолютная
погрешность вычислений по каждому геометрическому искажению.

Компоненты
Угол поворота

(градусы)

Коэффициент
масштабирования

(процент от начального
разрешения кадра)

Вертикальный сдвиг
(процент от

высоты кадра)

Без регуляризации 0.01925 0.0004862 0.0002237
𝐿𝑊𝑎𝑟𝑝 0.01914 0.0004792 0.0002019
𝐿𝑆𝑖𝑎𝑚 0.01879 0.0004582 0.0002225
𝐿𝑊𝑎𝑟𝑝 + 𝐿𝑆𝑖𝑎𝑚 0.01832 0.0004525 0.0002001

рассматривались разные комбинации регуляризационных компонент оптимизи­

руемого функционала при обучении с использованием двух базовых компонент

𝐿𝑆𝐸 и 𝐿𝐺𝑟𝑖𝑑. Таблица 6 демонстрирует результаты работы модели при исполь­

зовании в качестве регуляризационной части 𝐿𝑊𝑎𝑟𝑝, 𝐿𝑆𝑖𝑎𝑚 и 𝐿𝑊𝑎𝑟𝑝+𝐿𝑆𝑖𝑎𝑚. Ана­

логично одновременное использование обеих регуляризационных компонент по­

вышает точность работы нейросетевого регрессора.
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2.6.2 Оценка модели на тестовом наборе данных

На тестовом наборе данных было проведено сравнение предложенного ме­

тода как с нейросетевыми аналогами [78; 80], так и с методом [26], ранее при­

менявшимся при анализе полнометражных стереоскопических фильмов. Оба

нейросетевых аналога были обучены на тренировочной части подготовленно­

го набора данных. Точность работы всех методов была оценена на тестовой

части подготовленного набора данных. Результаты представлены в таблице 7.

Она содержит средние значения абсолютной ошибки между вычисленными и

истинными значениями параметров для каждого из трех рассматриваемых гео­

метрических искажений. “Нулевой вектор” – модель, предсказывающая отсут­

ствие геометрических искажений для каждого примера. Предложенный метод

работает значительно точнее нейросетевых аналогов. Также удалось добиться

увеличения точности работы по сравнению с методом, ранее применявшимся на

практике при анализе полнометражных стереоскопических фильмов, который

также обладает лучшим качеством по сравнению с другими нейросетевыми ме­

тодами. Так, удалось сократить ошибку вычислений на 14.43% при оценке угла

поворота, а при оценке масштабирования и вертикального сдвига – более чем

на 99%.

2.7 Исправление геометрических искажений

Утверждение 1. Для исправления геометрических искажений между ракур­

сами стереоскопического видео достаточно применить аффинное преобразова­

ние с вычисленными параметрами геометрических искажений к левому ракур­

су. Для исправления искажений в видео в формате VR180 необходимо сначала
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Таблица 7 — Результаты тестирования рассматриваемых методов. В таблице
представлена абсолютная погрешность вычислений по каждому
геометрическому искажению.

Метод
Угол поворота

(градусы)

Коэффициент
масштабирования

(процент от начального
разрешения кадра)

Вертикальный сдвиг
(процент от

высоты кадра)

Нулевой вектор 0.63406 0.6507 0.57497
Метод [80] 0.43735 1.23582 0.82534
Метод [78] 0.05115 0.10810 0.19109
Метод [26] 0.01158 0.02622 0.02004
Предложенный метод 0.009909 0.0001952 9.118e-05

перейти к трехмерным координатам на сфере, а только затем применить

найденное аффинное преобразование к левому ракурсу.

Доказательство. Подробности применения аффинного преобразования к од­

ному из ракурсов стереопары представлены в разделе 2.3. Также для исправ­

ления стереопары можно применить аффинное преобразование с параметрами

θ′ = −θ к правому ракурсу. Выбор ракурса для преобразования должен осу­

ществляться оператором или монтажером в зависимости от искомого желаемого

положения камер.

Исправление геометрических искажений усложняется в случае видео в

формате VR180. Для корректного исправления геометрических артефактов в

данном случае необходимо трансформировать сетку координат в трехмерном

пространстве по вычисленным параметрам, вместо двухмерного, чтобы не вно­

сить дополнительных искажений ближе к краям кадра. Искомое видео в фор­

мате VR180 хранится в равнопромежуточной проекции, то есть каждой точке

на сфере фиксированного радиуса с широтой φ и долготой λ ставится в соответ­

ствие точка на изображении с координатами 𝑥 и 𝑦: 𝑦 = φ, 𝑥 = λ с фиксирован­

ной базисной точкой (φ0, λ0) = (0, 0). Пусть 𝐺 ∈ Rℎ×𝑤×3 – нормированные одно­

родные координаты пикселей ракурса видео в формате VR180. Для корректного

перехода к трехмерных координатам необходимо перевести нормированные ко­
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ординаты к угловым координатам, то есть отобразить исходный диапазон зна­

чений [−1, 1) на [−π/2,π/2), для чего достаточно применить преобразование

𝐺𝑠 = 𝐺 × 𝐹 𝑇
𝑠 , где 𝐹𝑠 =

⎡⎢⎢⎢⎣
π/2 0 0

0 π/2 0

0 0 1

⎤⎥⎥⎥⎦. Далее полученные угловые координа­

ты переводятся в трехмерные координаты, считая что радиус сферы равен 1:

𝐺𝑣𝑟,{𝑖,𝑗} =
(︀
cosφ{𝑖,𝑗} · sin λ{𝑖,𝑗}, sinφ{𝑖,𝑗},− cosφ{𝑖,𝑗} · cos λ{𝑖,𝑗}, 1

)︀
∈ Rℎ×𝑤×4. По­

сле данного преобразования для исправления геометрических искажений необ­

ходимо произвести поворот вокруг оси 𝑂𝑧, вертикальный сдвиг по оси 𝑂𝑦, мас­

штабирование по всем координатным плоскостям по вычисленным параметрам.

В такой постановке матрица аффинного преобразования будет выглядеть сле­

дующим образом:

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
(1 + 𝑘) cos(α) −(1 + 𝑘) sin(α) 0 0

(1 + 𝑘) sin(α) (1 + 𝑘) cos(α) 0 𝑡

0 0 (1 + 𝑘) 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (45)

Тогда для получения трансформированной сетки достаточно применить дан­

ное преобразование 𝐺′
𝑣𝑟 = 𝐺𝑣𝑟 × 𝐴𝑇 , перейти обратно к угловым координатам

𝐺′
𝑠,{𝑖,𝑗} =

(︂
arcsin

𝑥{𝑖,𝑗}√
1˘𝑦2{𝑖,𝑗}

, arcsin 𝑦{𝑖,𝑗}, 1

)︂
∈ Rℎ×𝑤×3, а затем обратно к нормиро­

ванным координатам 𝐺′ = 𝐺′
𝑠 ×𝐵𝑇

𝑠 , где 𝐹𝑠 =

⎡⎢⎢⎢⎣
2/π 0 0

0 2/π 0

0 0 1

⎤⎥⎥⎥⎦. Далее кадр в рав­

нопромежуточной проекции интерполируется по полученным нормированным

координатам, как и в случае с обычной стереопарой. Примеры исправления гео­

метрических искажений для кадров видео в формате VR180 представлены на

рисунках 31 и 32.
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До После
Рисунок 31 — Пример исправления вертикально сдвига в видео “Explore

Norway’s Hurtigruten ferry in VR180”. Артефакт наиболее заметен на окне и
рамках картины.

До После
Рисунок 32 — Пример исправления поворота одного ракурса относительно
другого в видео “Charlie Puth In London (VR180 Experience)”. Артефакт

наиболее заметен на центральной красной линии.

2.8 Программная реализация

Предложенный метод для оценки геометрических искажений между ра­

курсами стереоскопических видео реализован на языке Python 3 в виде кон­

сольного приложения. В данном приложении используются следующие модули­

зависимости:

– pytorch – открытая программная библиотека для машинного обучения,

направленная на решение задач построения и тренировки нейронных

сетей;
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– opencv, skimage – открытые библиотеки, использовавшиеся для работы

с изображениями и видео;

– numpy, scipy, matplotlib – многофункциональные открытые библиотеки,

использовавшиеся для быстрой обработки, генерации и визуализации

данных.

– MSU Motion Estimation для сопоставления ракурсов и оценки движе­

ния.

Реализованное консольное приложение аналогично приложению, описанному в

разделе 1.7, включает в себя три основные компоненты для:

– подготовки наборов данных для обучения нейросетевых моделей на ос­

нове предложенной модели геометрических искажений;

– обучения нейросетевых моделей для оценки геометрических искажений

между ракурсами стерескопических видео;

– тестирования и использования на практике обученных моделей для

оценки геометрических искажений.

Также предложенный метод реализован в виде подключаемого модуля к систе­

ме оценки качества стереовидео VQMT3D [67], описание которой приведено в

разделе 1.7. Средняя скорость работы предложенного метода на кадрах с раз­

решением 940×544 составила 0.2027 секунд на кадр. Время работы реализации

замерялось на стационарном компьютере с восьмиядерным процессором серии

AMD Ryzen 7 1700 и графическим ускорителем GeForce GTX 1070.

2.9 Анализ видео в формате VR180

На подготовленном наборе данных из 1000 видео в формате VR180, опи­

санном в разделе 1.8.1, также измерялись значения геометрических искажений.

Для вертикального сдвига результаты продемонстрированы на рисунке 33, для

относительного масштабирования – на рисунке 34, для относительного поворота
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Рисунок 33 — Результаты анализа вертикального сдвига в VR180-видео.
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Рисунок 34 — Результаты анализа относительного масштабирования в
VR180-видео.
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Рисунок 35 — Результаты анализа относительного поворота в VR180-видео.

– на рисунке 35. Результаты анализа продемонстрированы относительно коли­

чества просмотров на YouTube (а), даты публикации (б) и длительности (в)

каждого видео. Аналогично искажениям цвета и резкости геометрические иска­

жения не демонстрируют какие-либо существенные тенденции по отношению

к рассматриваемым статистикам, и для них также справедливы все выводы,

сделанные в разделе 1.8.3.

При этом значительное количество проанализированных видео в форма­

те VR180 демонстрирует наличие по крайней мере одного стереоскопического

артефакта из рассмотренной группы искажений. Рисунки (г) показывают сред­

ние значения оцененных искажений (ось 𝑦) для каждого видео (ось 𝑥). Неболь­

шие стереоскопические искажения встречаются во многих видео, однако также

есть случаи с внушительными значениями артефактов. В левой части графиков

для геометрических искажений также присутствуют плоские области, указыва­

ющие на отсутствие геометрических артефактов в них. Эти области соответ­
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ствуют либо “плоским” видео с одинаковыми ракурсами, либо видео на основе

компьютерной графики.

В приложении на рисунках 63-66 представлены найденные в VR180 при­

меры вертикального сдвига одного ракурса относительно другого, на рисунках

67-70 – масштабирования одного ракурса относительно другого, на рисунках

71-74 – поворота одного ракурса относительно другого.

2.10 Заключение

В рамках главы предложен новый метод для автоматической оценки гео­

метрических искажений между ракурсами стереовидео. Ключевой особенно­

стью метода является использование нейросетевого регрессора для непосред­

ственного предсказания параметров геометрических искажений. Для обучения

и тестирования нейросети подготовлен набор данных из 22800 стереопар, пре­

образованных по предложенной модели геометрических искажений. Данная мо­

дель поддерживает три геометрических искажения: вертикальный сдвиг, мас­

штабирование и поворот одного ракурса относительно другого. Предложенный

метод показал высокую точность работы по сравнению с аналогами, включая

метод, ранее использовавшийся для анализа полнометражных стереоскопиче­

ских фильмов. Удалось добиться уменьшения погрешности вычислений метода

при оценке угла поворота более чем на 14%, а при оценке относительного мас­

штабирования и вертикального сдвига более чем на 99%. Результаты работы

предложенного метода можно непосредственно использовать для исправления

геометрических искажений между ракурсами стереовидео, в том числе и для

видео в формате VR180, для которых в данной главе был описан метод их

исправления.

Также в главе представлены результаты анализа геометрических искаже­

ний для 1000 видео в формате VR180, собранных с платформы YouTube. Подво­
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дя итог, ни один из оцененных технических параметров не показал существен­

ных трендов по отношению к таким статистикам видео, как количество про­

смотров, дата публикации и длительность. Большинство проанализированных

видео в формате VR180 содержит как минимум одно серьезное стереоскопиче­

ское искажение, что может привести к возникновению у зрителей дискомфорта

после просмотра нескольких таких видео. Данная ситуация свидетельствует о

необходимости разработки инструментов контроля качества и исправления сте­

реоскопических искажений, которые бы помогли как профессионалам, так и

любителям создавать более качественный стереоскопический контент.

Основные результаты главы опубликованы автором в работе [3; 22; 24].
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Глава 3. Нейросетевой метод поиска перепутанных ракурсов в

стереовидео

3.1 Постановка задачи

Перепутанный порядок ракурсов – артефакт, при котором в сцене стерео­

видео на месте левого ракурса оказывается правый и наоборот (рисунок 36).

Данное искажение встречается достаточно редко в стереофильмах, но наличие

даже одной сцены с перепутанными ракурсами может вызвать серьезный дис­

комфорт у зрителей при ее просмотре [1]. При этом этот артефакт встречается

в стереофильмах вне зависимости от способа их создания. На рисунке 37 пред­

ставлены примеры перепутанных ракурсов в полнометражных стереофильмах

для разного способа производства. Эффект перепутанных ракурсов может воз­

никнуть как при простом изменении порядка левого и правого ракурса, так

и при неправильном редактировании готового видеоматериала: неправильной

конвертации из 2D в 3D, например из-за неточной карты глубины или некаче­

ственного метода конвертации, а также добавлением титров и элементов ком­

пьютерной графики на неправильную глубину.

Рисунок 36 — Схематичный пример перепутанных ракурсов в стереовидео.
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Левый ракурс Карта диспаратности

Случай, в котором левый и правый ракурс перепутаны полностью, что чаще
всего случается при съемке 3D-фильмов (кадр из фильма “Сталинград”).

Случай некорректного наложения компьютерной графики на исходные кадры
(кадр из фильма “Хроники Нарнии: Покоритель Зари”).

Случай эффекта перепутанных ракурсов, полученный в результате
некачественной конвертации из 2D в 3D (кадр из фильма “Щелкунчик и

Крысиный король”).
Рисунок 37 — Примеры кадров с перепутанными ракурсами, найденных в
полнометражных стереофильмах, для различных методов производства
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При просмотре сцены с неправильном порядком ракурсов зритель наблю­

дает невозможную в реальности картину: из-за смены порядка ракурсов меня­

ются знаки значений диспаратности для каждой точки изображения, что при­

водит к инвертированию значений расстояний до объектов. То есть ближние

точки пространства переходят в дальние и наоборот. При этом человеческий

мозг помимо бинокулярных признаков для определения расстояния до объек­

тов использует также монокулярные, основанные на опыте, что приводит к кон­

фликту восприятия сцены и порождает дискомфорт. И хотя сила дискомфорта

зависит от набора параметров сцены, например, величины диапазона параллак­

са, характера движения объектов, освещенность сцены, перепутанные ракурсы

оказывают негативное влияние на зрителей, из-за чего необходим строгий кон­

троль при производстве стереоскопических видео, не допускающий появление

рассматриваемого искажения в финальном продукте. При этом можно доста­

точно тривиально исправить данное искажение при его обнаружении, для чего

нужно изменить подачу ракурсов с одного глаза на другой.

Задача поиска перепутанных ракурсов в стереовидео является задачей

бинарной классификации сцен 3D-видео на 2 класса:

– сцены с правильным порядком ракурсов;

– сцены с перепутанным порядком ракурсов.

Рассмотрим формальную постановку данной задачи, используя обозначения

из раздела 1.1. Введем дополнительно обозначение сцены стереоскопическо­

го видео. Сцена 𝑆𝑐𝐼𝑖 ⊂ 𝐼 – непрерывный фрагмент видеопоследовательности

{𝐼𝑡}𝑘2𝑡=𝑘1
, 1 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ 𝑛, с похожим содержанием. Сцены одной видеопоследо­

вательности не пересекаются между собой. Предполагается, что левый и правый

ракурсы стереовидео имеют одинаковое разбиение на сцены. Тогда под сценой

стереовидео 𝑆𝑐𝑆𝑖 подразумевается упорядоченная пара непрерывных фрагмен­

тов видеопоследовательностей
(︀
{𝐼𝐿𝑡 }

𝑘2
𝑡=𝑘1

, {𝐼𝑅𝑡 }
𝑘2
𝑡=𝑘1

)︀
, соответствующих левому и

правому ракурсу. На вход алгоритму подается стереовидео 𝑆. На выходе алго­

ритм должен предоставить оценку вероятности наличия перепутанных ракур­

сов {𝑝𝑖}𝑚𝑖=1, 𝑝𝑖 ∈ R[0,1] для каждой сцены стереовидео 𝑆𝑐𝑆𝑖 , 𝑖 = 1,𝑚.
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3.2 Обзор существующих алгоритмов

Для определения порядка ракурсов необходимо при помощи некоторых

признаков произвести оценку карты диспаратности и сравнить ее с полученной

при использовании бинокулярных признаков (то есть при сопоставлении ракур­

сов стереопары) картой диспаратности, в которой при наличии перепутанных

ракурсов значения диспаратности будут иметь неправильный знак. Используе­

мые для оценки диспаратности признаки можно классифицировать следующим

образом:

– Использование методов упорядочивания глубины. Данные алгоритмы

используют монокулярные признаки для оценки карты диспаратности,

то есть строят эти карты по одному из ракурсов.

– Проверка предположений о распределении диспаратности. Большин­

ство сцен стереофильмов обладают похожей структурой (например, уве­

личение расстояния до объектов при переходе от нижней части кадра к

верхней), так что они имеют схожие карты диспаратности. В методах,

использующих данные признаки, проводится проверка карт диспарат­

ности, полученных в ходе сопоставления двух ракурсов, на соответствие

таким предположениям.

– Анализ областей открытия в стереопаре. Области открытия в стерео­

паре – это области одного из ракурсов, видимые в нем и невидимые в

другом ракурсе. Для таких областей справедлив следующий факт: об­

ласти открытия в левом ракурсе находятся слева от объектов переднего

плана, а в правом ракурсе – справа. Методы, основанные на анализе об­

ластей открытия, проверяют справедливость этого факта для каждой

стереопары.

– Анализ областей открытия/закрытия по движению. Области открыти­

я/закрытия по движению – это области текущего кадра, видимые в нем

и невидимые в предыдущем/следующем кадре соответственно. В боль­
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шинстве сцен стереовидео присутствует движение объектов переднего

плана, которое и порождает области открытия/закрытия, по которым

можно определить местоположения перекрытия объектов заднего плана

объектами переднего плана и выяснить порядок этих объектов относи­

тельно друг друга.

3.2.1 Методы упорядочивания глубины

Метод [84] основан на использовании карты внимания для осуществления

сегментации кадра на передний и задний план, а для определения порядка ра­

курсов вычисляются средние значения диспаратности у пикселей соответству­

ющих областей. Под вниманием понимается свойство объекта выделяться на

фоне соседних объектов, а карта внимания содержит вероятность того, что че­

ловек во время просмотра видео будет смотреть на конкретную область кадра.

В работе [84] предполагается, что объекты с высоким вниманием являются объ­

ектами переднего плана. В качестве заднего плана берутся пиксели, не принад­

лежащие объектам переднего плана. Для сопоставления ракурсов использует­

ся метод поиска особых точек SIFT. В качестве значений диспаратности для

найденных особых точек берется разница горизонтальных координат соответ­

ствующих друг другу особых точек левого и правого ракурса. Предложенный

в работе [84] подход был протестирован на 40 стереопарах, в половине кото­

рых порядок ракурсов был изменен. В ходе тестирования было показано, что

данный метод превосходит субъективную оценку респондентов, которые часто

затруднялись в определении порядка ракурсов при просмотре тестовых сте­

реопоследовательностей. Тем не менее, качество работы данного метода суще­

ственно зависит от точности метода построения карты внимания, а также вы­

полнения условия о нахождении объектов переднего плана в салиентной зоне,

что делает этот метод не применимым при анализе полнометражных фильмов.



90

Также не для всех сцен стереофильмов будет справедлив тот факт, что сали­

ентные объекты находятся на переднем плане, что зависит, в первую очередь,

от структурной сложности сцены. Для оценки карты диспаратности по одному

из ракурсов также могут быть использованы и другие методы упорядочивания

глубины, например [85—87]. Данные методы позволяют по заданной видеопосле­

довательности восстановить относительный порядок объектов в сцене. Однако

большинство этих алгоритмов не применимо на практике при анализе полномет­

ражных стереофильмов, так как они обладают низкой точностью и высокой вы­

числительной сложностью. Исключением являются нейросетевые методы для

предсказания карт диспаратности по одному изображению, например [88; 89]. В

данных работах были получены относительно точные результаты при предска­

зании карт диспаратности по изображениям из наборов данных NYUDepth и

KITTI, что демонстрирует возможность обучения сверточных нейронных сетей

монокулярным признакам упорядочивания глубины. Также в некоторых рабо­

тах [90; 91] обучение нейросетевых моделей осуществляется сразу на нескольких

наборах данных. Такая стратегия позволяет повысить обобщаемость методов на

потенциальные варианты использования и в целом увеличивает практичность.

Таким образом, многообещающим шагом для улучшения методов поиска пе­

репутанных ракурсов является применение сверточных нейронных сетей для

решения данной задачи.

3.2.2 Метод, основанный на проверке предположения о

распределении диспаратности

Описанный в работе [92] алгоритм поиска перепутанных ракурсов в сте­

реовидео основан на проверке предположения о пространственном распределе­

нии диспаратности. Предполагается, что объекты, расположенные в нижней

части кадра, находятся ближе к камере, чем объекты, находящиеся в верхней
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части кадра, а объекты, расположенные в центре кадра, – ближе, чем объекты

в левой и правой частях кадра. Для проверки этого предположения строится

шаблонная карта диспаратности, следующая описанному выше условию, путем

усреднения карт диспаратности по 6000 кадрам, а для определения порядка

ракурсов достаточно посчитать корреляцию исследуемой карты диспаратности

с шаблонной. Благодаря своей простоте рассматриваемый метод имеет низкую

вычислительную сложность, так как заключается в вычислении корреляции

между анализируемой и шаблонной картами диспаратности. Однако он также

обладает низкой точностью, так как большое количество сцен в стереовидео не

будут следовать указанному выше предположению о распределении диспарат­

ности. Описанный метод можно надежно использовать при анализе стереови­

део на наличие перепутанных ракурсов в некоторых случаях (например, при

анализе спортивных телетрансляций), когда заведомо известны возможные по­

ложения камер и пространственная структура кадров, для которых возможно

посчитать шаблонную карту диспаратности. Но в случае анализа полнометраж­

ных стереофильмов данный подход будет иметь большое число ошибок второго

рода, поэтому он не применим на практике.

3.2.3 Метод на основе анализа положения областей открытия в

стереопаре

Для проверки предположения об областях открытия в стереопаре в методе

[93] анализируются центроиды данных карт: в случае выполнения этого предпо­

ложения центроида областей открытия в левом ракурсе будет находится левее,

чем соответствующая центроида в правом ракурсе. Поэтому для определения

порядка ракурсов в данной работе предлагается вычислять разницу горизон­

тальных координат центроидов. Рассматриваемый метод был протестирован

всего на 52 последовательностях, что не гарантирует практической примени­



92

мости. Также проверки данного предположения может быть недостаточно, так

как его качество сильно зависит от ширины областей открытия в конкретной

сцене.

3.2.4 Композиционные методы

В методе, описанном в работе [94], используется два критерия для опреде­

ления порядка ракурсов в стереовидео:

– Анализ областей открытия. Для проверки утверждения о расположе­

нии областей открытия в анализируемой стереопаре осуществляется

анализ границ рядом с областями открытия. Больше границ должно

наблюдаться на той стороне областей открытия, которая примыкает к

объекту переднего плана, поэтому таким способом можно определить

положение областей открытия относительно объектов переднего плана.

– Второй критерий основан на проверке предположения о распределении

диспаратности. Данный критерий используется в случае, когда вычис­

ленные области открытия имеют слишком маленькую ширину и непри­

годны для анализа либо когда области открытия вообще не обнаружи­

ваются алгоритмом поиска областей открытия. Проверяемое предполо­

жение о распределении диспаратности основано на следующем факте:

стереографы обычно организовывают сцену таким образом, чтобы объ­

екты, находящиеся перед плоскостью экрана, занимали треть простран­

ства кадра, а объекты, находящиеся за плоскостью экрана, – две трети,

в результате чего больше положительных значений будет у карты дис­

паратности левого ракурса, а у карты диспаратности правого ракурса

– отрицательных.

Однако метод [94] показал большое число ложных срабатываний при его

использовании для анализа полнометражных стереофильмов. Идеи метода [94]
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были развиты в работе [16], в которой для поиска перепутанных ракурсов были

предложены 3 дополнительных критерия: анализ перспективы; анализ «выпа­

дающих» объектов; анализ областей открытия/закрытия по движению; а также

был переработан критерий по анализу областей открытия в стереопаре.

Часто в сценах объекты с меньшей глубиной находятся внизу кадра, а объ­

екты с большей глубиной – вверху кадра. Критерий по анализу перспективы

основан на предположении, что чем ближе объект к низу кадра, тем меньше его

глубина. Для проверки данного предположения вычисляется среднее значение

диспаратности в каждой строке, взвешенное на значения карты доверия для

карты диспаратности. Аналогичным образом вычисляется среднее значение до­

верия для каждой строки. В качестве результата описанный признак выдает

сумму разностей средних значений диспаратности соседних строк, взвешенных

на среднее доверие.

Критерий по анализу «выпадающих» объектов проверяет наличие в цен­

тре экрана выпуклого объекта, окруженного объектами заднего плана, что ча­

сто справедливо для полнометражных фильмов, так как в центре обычно нахо­

дится объект интереса зрителей. Для проверки этого в каждой строке и столбце

карты диспаратности левого ракурса перебираются всевозможные пары точек,

и вычисляется разница между значениями диспаратности точек, находящихся

между рассматриваемыми точками, и средним значением диспаратности рас­

сматриваемых точек. Тогда, если выбранные точки лежат на одном и том же

уровне карты диспаратности, предполагается, что диспаратность точек, нахо­

дящихся между рассматриваемыми, будет меньше или совпадает со средним

значением диспаратности этих точек. Алгоритм аккумулирует вычисленную

разницу диспаратности для всевозможных пар точек в каждой строке и столб­

це карты диспаратности.

Критерий по анализу областей открытия в стереопаре определяет поло­

жение отрезков вычисленных областей открытия по отношению к объекту пе­

реднего плана за счет анализа соседних областей треугольной формы, распо­
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ложенных по горизонтали. Если цвета объектов переднего и заднего плана в

анализируемом кадре отличаются, то можно определить, с какой стороны от

рассматриваемого отрезка области открытия находится объект переднего пла­

на. Для каждого отрезка области открытия вычисляются цветовые гистограм­

мы соседних областей, разреженные до 16 градаций по каждому каналу. Далее

для каждого пикселя отрезка вычисляется его координата в гистограмме, по

которой вычисляется разница значений гистограмм, взвешенная на доверие.

В критерии по анализу областей открытия/закрытия по движению осу­

ществляется определение объектов переднего плана за счет движения в сцене и

анализу их глубины. Для обнаружения точек объектов переднего плана, пред­

положительно перекрывающих рассматриваемые точки области открытия/за­

крытия, для них протягиваются вектора движения из карты векторов движе­

ния, построенной для кадров, в которых эти точки являются видимыми. Для

областей открытия такими кадрами будут текущий и следующий кадры, а для

областей закрытия – предыдущий и текущий кадры. Тогда при выполнении

предположения о достаточно постоянном поле векторов движения переход по

протянутому вектору движения в следующий кадр (для точек областей закры­

тия) или в предыдущий кадр (для точек областей открытия) приводит в точку,

перекрывающую рассматриваемую точку области открытия/закрытия. Далее

для полученной перекрывающей точки выполняется переход по обратной карте

векторов движения в текущий кадр, в результате чего получается искомая пара

точек: точка области открытия/закрытия и перекрывающая её точка. В данном

критерии вычисляется взвешенная на доверие разница средних значений дис­

паратности в соседних для данных точек областях. Полученные для каждой

пары точек значения суммируются.

Для получения финального результата метод [16] осуществляет простую

классификацию кадра на наличие/отсуствие в нем перепутанных ракурсов пу­

тем определения знака взвешенной суммы результатов работы критериев. Для

увеличения скорости работы метода вычисления производятся только для од­

ного кадра сцены. Хотя метод [16] был успешно применен для анализа 105 пол­
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нометражных фильмов, в ходе анализа все равно было получено большое число

ложноположительных срабатываний.

3.3 Описание предложенного алгоритма

Предложенный метод осуществляет классификацию сцены на наличие/от­

сутствие перепутанных ракурсов по усредненному по сцене значению нейросе­

тевого признака, предсказывающего вероятность наличия перепутанных ракур­

сов в кадре. Данный метод состоит из следующих шагов при обработке одного

кадра:

1. Вычисление карт диспаратности между левым и правым ракурсами,

карт векторов движения между текущим и предыдущим, текущим и

следующим кадрами, а также построение карт доверия к вычислен­

ным картам диспаратности, характеризующих точность вычисленных

векторов. Вычисление карт диспаратности, векторов движения, а так­

же их доверия, совпадает с аналогичным шагом для методов оценки

искажений цвета и резкости, описанном в разделе 1.4.1.

2. Определение пригодности кадра для анализа на наличие/отсутствие

перепутанных ракурсов. Из рассмотрения исключаются кадры с кон­

стантной диспаратностью и/или с низкой яркостью.

3. Вычисление областей открытия/закрытия по движению.

4. Нейросетевая оценка вероятности наличия перепутанных ракурсов в

кадре на основе левого ракурса, соответствующей карты диспаратно­

сти, карты доверия и карты областей открытия/закрытия.

На рисунке 38 представлена общая схема работы предложенного метода. Фор­

мально, результатом работы предложенного алгоритма для сцены является чис­

ло:

𝑥 =
1

𝑛𝐴

∑︁
𝑗∈𝐴

𝑥𝑗, (46)
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Рисунок 38 — Общая схема предложенного метода поиска перепутанных
ракурсов в стереовидео.

где 𝑥𝑗, 𝑗 = 1,𝑛 – значение нейросетевого признака 𝑗-го кадра анализируемой

сцены, 𝑛 – число кадров в сцене, 𝑛𝐴 = |𝐴| – число подходящих для анализа

кадров в сцене, 𝐴 = {𝑘𝑗|1 ⩽ 𝑘𝑗 ⩽ 𝑛} – множество номеров кадров сцены,

подходящих для анализа.

3.3.1 Определение пригодности кадра для анализа

В предложенном методе при анализе сцены не учитываются кадры с по­

стоянной диспаратностью и кадры с очень низкой яркостью, которые считаются

непригодными для анализа. Для кадров с постоянной диспаратностью не име­

ет смысла проводить анализ на наличие перепутанных ракурсов, а при анализе

кадров с очень низкой яркостью часто возникают ошибки при вычислении карт
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“Неплоская” карта диспаратности с построенной по ней гистограммой.
σ𝑑𝐿 = 92.72.

“Плоская” карта диспаратности с построенной по ней гистограммой. σ𝑑𝐿 = 0.
Рисунок 39 — Примеры вычисленных стандартных отклонений диспаратности

для кадра с переменной диспаратностью и для кадра с постоянной
диспаратностью.

диспаратности и векторов движения. При этом возникающий дискомфорот при

просмотре «темных» кадров с перепутанными ракурсами значительно меньше,

чем при просмотре «ярких» кадров [1], что в целом позволяет не учитывать

такие кадры при анализе стереофильмов.

Для исключения из рассмотрения кадров с постоянной диспаратностью

строится взвешенная гистограмма карты диспаратности левого ракурса 𝑑𝐿, где

в качестве весов выступают значения доверия к рассматриваемой карте conf𝑑
𝐿

:

𝐻𝑑𝐿

𝑘 =
∑︁
1⩽𝑖⩽ℎ
1⩽𝑗⩽𝑤
𝑑𝐿𝑖𝑗=𝑘

conf𝑑
𝐿

𝑖𝑗 , (47)

где 𝑘 – индекс гистограммы. В построенной гистограмме отбрасываются 5%

максимальных и 5% минимальных значений для уменьшения влияния выбро­
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“Яркий” кадр с построенной по нему гистограммой яркости. 𝑌 𝐿
= 150.55.

“Темный” кадр с построенной по нему гистограммой яркости. 𝑌 𝐿
= 10.48.

Рисунок 40 — Примеры вычисленных средних значений яркости для кадров с
высокой и низкой яркостью. Кадры из фильма “Мстители”.

сов, и вычисляется стандартное отклонение диспаратности:

σ𝑑𝐿 =

⎯⎸⎸⎷∑︀𝑘2
𝑖=𝑘1

𝐻𝑑𝐿
𝑖 𝑖2∑︀𝑘2

𝑖=𝑘1
𝐻𝑑𝐿

𝑖

−
(︂∑︀𝑘2

𝑖=𝑘1
𝐻𝑑𝐿

𝑖 𝑖∑︀𝑘2
𝑖=𝑘1

𝐻𝑑𝐿
𝑖

)︂2

, (48)

где 𝑘1, 𝑘2, 𝑘1 < 𝑘2 – нижняя и верхняя границы индексов гистограммы. Если

полученное стандартное отклонение диспаратности оказалось слишком малым,

то кадр не используется для анализа. Примеры карт диспаратности, построен­

ных по ним гистограмм и вычисленных значений σ𝑑𝐿 представлены на рисунке

39.

Для исключения из рассмотрения кадров с очень низкой яркостью, вы­

числяется яркость левого ракурса 𝑌 𝐿 и строится гистограмма яркости:

𝐻𝑌 𝐿

𝑘 = #
{︀
𝑦 ∈ 𝑌 𝐿 | 𝑦 = 𝑘

}︀
, (49)

где # – оператор вычисления числа элементов. В построенной гистограмме от­

брасываются 10% максимальных значений для уменьшения влияния небольших
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ярких участков изображения, и вычисляется среднее значение яркости:

𝑌
𝐿
=

∑︀255
𝑖=0𝐻

𝑌 𝐿

𝑖 𝑖∑︀255
𝑖=0𝐻

𝑌 𝐿

𝑖

. (50)

Если полученное среднее значение яркости оказалось слишком малым, то кадр

не используется для анализа. Примеры кадров, построенных по ним гистограмм

яркости и средних значений яркости представлены на рисунке 40.

3.3.2 Вычисление областей открытия/закрытия по движению

Для вычисления областей открытия/закрытия по движению использует­

ся подход на основе вычисления меры достоверности карт векторов движения

FBC (forward-backward consistency), аналогичной мере достоверности сопостав­

ления LRC для карт диспаратности, описанной в разделе 1.4.1. Пусть пиксель с

координатами 𝑥 = (𝑥1, 𝑥2) одного кадра соответствует пикселю с координатами

𝑥′ = (𝑥′1, 𝑥
′
2) = 𝑥 + 𝑣𝑥 другого кадра. Тогда мера достоверности сопоставления

для него равна:

fbc = 1˘max

(︂
min

(︂
1

255

(︂
dif21
ℎ

+
dif22
𝑤

)︂
, 0

)︂
, 1

)︂
, (51)

dif = (dif1,dif2) = 𝑣′𝑥′ + 𝑣𝑥, (52)

где 𝑣𝑥 – вектор движения пикселя с координатами 𝑥 в первом кадре, 𝑣′𝑥′ – вектор

движения пикселя с координатами 𝑥′ во втором кадре. Пусть fbc𝑝𝑟𝑒𝑣 – вычислен­

ная мера достоверности FBC для текущего кадра относительно предыдущего

кадра, а fbc𝑛𝑒𝑥𝑡 – вычисленная мера достоверности FBC для текущего кадра

относительно следующего кадра. Тогда occ = fbc𝑝𝑟𝑒𝑣 + fbc𝑛𝑒𝑥𝑡 формирует карту

областей открытия/закрытия для текущего кадра. Пример вычисленной карты

областей открытия/закрытия представлен на рисунке 41
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Рисунок 41 — Левый ракурс с вычисленной для него картой областей
открытия/закрытия по движению, изображенной красным цветом. Большая

часть областей открытия/закрытия обрамляет движущиеся объекты,
находящиеся на переднем плане. Кадр из фильма “Гарри Поттер и Дары

Смерти: Часть I”.

3.3.3 Архитектура нейронной сети

Для предсказания вероятности наличия перепутанных ракурсов в кадре

была также использована архитектура нейронной сети, аналогичная ResNet-18

[82], как и в методе по оценке геометрических искажений в разделе 2.4. В моди­

фикации архитектуры не используется батч-нормализация [83], а также было

использовано четыре остаточных блока перед каждым увеличением размера

канала признаков. Помимо этого, последний слой сети предсказывает вектор

из двух значений, представляющих из себя вероятность наличия и отсутствия

перепутанных ракурсов в стереовидео соответственно после применения к этим

значениям функции Softmax. Входными данными для сети являются яркость

левого ракурса, соответствующая карта диспаратности и карта доверия к ней,



101

Рисунок 42 — Пример сцены (левый ракурс и карта диспаратности),
непригодной для анализа перепутанных ракурсов, так как изменение порядка

ракурсов в данной сцене не изменит ее восприятие зрителями. Кадр из
фильма “Тор 2: Царство тьмы”.

а также карта областей открытия/закрытия по движению. Этой информации

обычно достаточно для подготовленного человека, чтобы определить наличие

перепутанных ракурсов. При этом пространственная размерность входных дан­

ных может быть произвольной благодаря использованию глобального слоя суб­

дискретизации с выбором среднего перед финальным полносвязным слоем.

3.3.4 Оценка пригодности сцены для анализа

При использовании предложенной нейросетевой архитектуры для пред­

сказания наличия перепутанных ракурсов достаточно просто осуществить про­

верку пригодности сцены для ее анализа. Для этого достаточно получить выход

сети как для одного порядка входных ракурсов, так и для другого. Далее мож­

но сравнить усредненные показатели по сцене для одного и другого порядка

ракурсов. Если полученное значение будет одновременно больше или меньше

0.5, значит сеть одновременно для двух порядков ракурсов предсказывает ли­

бо перепутанность, либо неперепутанность. Такой исход может возникнуть при

анализе плоских сцен, а также сцен, в которых изменение порядка ракурсов не

влияет на восприятие сцены. Пример такой сцены представлен на рисунке 42.
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3.3.5 Определение смены сцены

Определение последнего кадра сцены осуществляется за счет сравнения

гистограмм яркости блоков левого ракурса для текущего и следующего кадра.

Для каждого кадра по их яркости 𝑌 𝐿
𝑡 строятся гистограммы блоков размера

32× 32, разреженные до 64 градаций:

𝐻
𝑌 𝐿
𝑡

𝑖𝑗,𝑘 = #
{︀
𝑦 ∈ 𝐵

𝑌 𝐿
𝑡

𝑖𝑗 |
⌊︁𝑦
4

⌋︁
= 𝑘

}︀
, (53)

где 𝑖 = 1,ℎ𝑏, 𝑗 = 1,𝑤𝑏 – вертикальная и горизонтальная координаты гистограмм

блоков яркости, ℎ𝑏 =
⌊︁

ℎ
32

⌋︁
,𝑤𝑏 =

⌊︁
𝑤
32

⌋︁
– число блоков по вертикали и горизон­

тали соответственно, 𝑡 – номер кадра, 𝐵𝑌 𝐿
𝑡

𝑖𝑗 – блок яркости 𝑌 𝐿
𝑡 с координатами

(32 𝑖, 32 𝑗). При сравнении текущего и следующего кадра вычисляется разность

между полученными гистограммами блоков яркости:

Dif𝐻
𝑌 𝐿
𝑡 ,𝐻𝑌 𝐿

𝑡+1

𝑖𝑗,𝑘 = 𝐻
𝑌 𝐿
𝑡

𝑖𝑗,𝑘 −𝐻
𝑌 𝐿
𝑡+1

𝑖𝑗,𝑘 . (54)

Дополнительно осуществляется свертка полученных разностей гистограмм с

ядром {0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05} для сглаживания результата. Значения,

необходимые для фильтрации левой и правой границы гистограммы, достраи­

ваются путем зеркального отражения. Все вычисленные разности аккумулиру­

ются следующим образом:

Dif𝑌
𝐿
𝑡 ,𝑌 𝐿

𝑡+1 =
1

1024ℎ𝑏𝑤𝑏

ℎ𝑏∑︁
𝑖=1

𝑤𝑏∑︁
𝑗=1

63∑︁
𝑘=0

|Dif𝐻
𝑌 𝐿
𝑡 ,𝐻𝑌 𝐿

𝑡+1

𝑖𝑗,𝑘 |. (55)

Данное значение характеризует степень похожести текущего кадра на следу­

ющий кадр. Предполагается, что при смене сцены это число будет большим,

а также оно будет сильно отличаться от аналогичных значений для предыду­

щих и следующих кадров. Для проверки последнего утверждения вычисляется

следующая характеристика:

Dis𝑌
𝐿
𝑡 = 6Dif𝑌

𝐿
𝑡 ,𝑌 𝐿

𝑡+1 −
∑︁

𝑘∈[−3,−1]∪[1,3]

Dif𝑌
𝐿
𝑡+𝑘,𝑌

𝐿
𝑡+𝑘+1. (56)
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Dif𝑌
𝐿
𝑡−1,𝑌

𝐿
𝑡 = 0.0676

Dis𝑌
𝐿
𝑡−1 = −1.123

Dif𝑌
𝐿
𝑡 ,𝑌 𝐿

𝑡+1 = 1.3105

Dis𝑌
𝐿
𝑡 = 7.6222

Dif𝑌
𝐿
𝑡+1,𝑌

𝐿
𝑡+2 = 0.0178

Dis𝑌
𝐿
𝑡+1 = −1.3888

Dif𝑌
𝐿
𝑡+2,𝑌

𝐿
𝑡+3 = 0.0181

Dis𝑌
𝐿
𝑡+2 = −1.3436

Рисунок 43 — Пример смены сцены и соответствующих кадрам значений
Dif𝑌

𝐿
𝑡 ,𝑌 𝐿

𝑡+1 и Dis𝑌
𝐿
𝑡 . Кадры из фильма “Новый Человек-паук”.

Если в ходе анализа яркости кадра 𝑌 𝐿
𝑡 значения Dif𝑌

𝐿
𝑡 ,𝑌 𝐿

𝑡+1 и Dis𝑌
𝐿
𝑡 превысили

определенные пороги, то считается, что рассматриваемый кадр является по­

следним в сцене. Пример определения смены сцены представлен на рисунке

43.

3.4 Обучение нейронных сетей

Задача поиска перепутанных ракурсов в стереовидео является задачей

бинарной классификации сцен 3D-видео на 2 класса. Поэтому для обучения

нейронной сети для определения порядка ракурсов достаточно использовать

бинарную кросс-энтропию в качестве оптимизируемой функции:

𝐿𝐶𝐸(𝑦, 𝑝) = − 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log(𝑝𝑖1) + (1− 𝑦𝑖) log(𝑝𝑖2)),

где 𝑁 – число примеров, используемых на каждой итерации обучения, 𝑦𝑖 –

метка о наличии/отсутствии перепутанных ракурсов в примере 𝑖, 𝑝𝑖𝑗 – вы­

ходные значения сверточной нейронной сети для примера 𝑖. Дополнительно

для предотвращения переобучения в оптимизируемой функции используется

𝐿2-регуляризация с коэффициентом 0.0005 для всех весов в сети.

Для обучения нейронной сети был подготовлен обучающий набор данных

на основе кадров из полнометражных стереоскопических фильмов, ранее ис­

пользованных для обучения методов оценки искажений цвета и резкости. Спи­
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Рисунок 44 — Сглаженные графики оптимизируемого во время обучения
функционала на обучающей (слева) и валидационной (справа) выборках.

сок фильмов представлен в разделе 1.3. При этом сам порядок ракурсов выби­

рался во время обучения случайно.

В качестве метода инициализации весов сети был использован метод

Xavier [64], а для оптимизации был выбран алгоритм Adam [65]. Предложенная

нейронная сеть обучалась в течение 60 эпох с коэффициентом скорости обуче­

ния 10−4, который уменьшался в 10 раз каждые 40 эпох. Количество примеров

из набора данных, используемых на одной итерации обучения, было равно 8.

Размер входных данных при обучении – 928 × 512. Сходимость рассматривае­

мого метода продемонстрирована на рисунке 44.

3.5 Экспериментальная оценка

На тестовой выборке, состоящей из 900 сцен длиной в 30 кадров, было

проведено сравнение предложенного алгоритма поиска перепутанных ракурсов

с аналогами [16; 92; 94], применявшимися на практике при анализе полномет­

ражных стереофильмов, а также с современными нейросетевыми методами по­

строения карт диспаратности по одному кадру [90; 91]. Для использования по­

следних методов в задаче оценки порядка ракурсов вычислялась корреляция

Пирсона между предсказанными картами диспаратности и картами, вычислен­
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Таблица 8 — Результаты тестирования алгоритмов поиска перепутанных
ракурсов в стереовидео.

aaaaaaaaaaaaaaaaaaa
Алгоритм

Показатель
AUC Точность F-мера

Метод [92] 0.7223 0.6614 0.6683
Метод [94] 0.901 0.8378 0.8409
Метод [16] 0.957 0.8946 0.8928
Метод [90] 0.9913 0.8394 0.8613
Метод [91] 0.9899 0.8256 0.8515
Предложенный метод 0.9963 0.9784 0.9789

ными с помощью блочного метода компенсации движения [34]. Положительная

корреляция указывает на совпадение порядка ракурсов, в то время как отрица­

тельная – на их перепутанность. Во время тестирования для всех оцениваемых

алгоритмов вычислялись следующие показатели:

– площадь под ROC-кривой;

– точность на тестовой выборке;

– F-мера.

Сравнение методов проводилось без использования дополнительных методов

фильтрации результатов, описанных в разделах 3.3.1 и 3.3.4. Полученные по­

казатели представлены в таблице 8. По результатам тестирования видно, что

предложенный метод поиска перепутанных ракурсов в стереовидео превосходит

существующие аналоги по качеству классификации. При этом удалось улуч­

шить точность классификации более чем на 8% по сравнению с ранее приме­

нявшимися на практике методами. Можно заметить, что нейросетевые методы

построения карт диспаратности в целом неплохо справляются с задачей опреде­

ления порядка ракурсов и даже обгоняют специализированные методы поиска

перепутанных ракурсов, что в очередной раз демонстрирует их высокий потен­

циал на данной задаче. Однако для определения порядка ракурсов достаточно

использования небольших, легковесных классификационных моделей, как по­
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казывает данное сравнение, а восстановление полной карты диспаратности с

помощью моделей типа кодировщик-декодировщик является излишним. Также

в предложенном методе за счет использования меньшего числа критериев для

оценки перепутанных ракурсов удалось достичь ускорения предложенного мето­

да по сравнению с предшественником. Так предложенный метод обрабатывает

4.68 тестовых кадра в секунду, в то время как метод [16] – 0.58 тестовых кадра

в секунду.

3.6 Программная реализация

Предложенный метод поиска перепутанных ракурсов в стереоскопических

видео реализован на языке Python 3 в виде консольного приложения. В данном

приложении используются следующие модули-зависимости:

– pytorch – открытая программная библиотека для машинного обучения,

направленная на решение задач построения и тренировки нейронных

сетей;

– opencv, skimage – открытые библиотеки, использовавшиеся для работы

с изображениями и видео;

– numpy, scipy, matplotlib – многофункциональные открытые библиотеки,

использовавшиеся для быстрой обработки, генерации и визуализации

данных.

– MSU Motion Estimation для сопоставления ракурсов и оценки движе­

ния.

Реализованное консольное приложение, аналагично приложению, описанному

в разделе 1.7, включает в себя три основные компоненты для:

– подготовки наборов данных для обучения нейросетевых моделей для

предсказания вероятности наличия перепутанных ракурсов в кадре;
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– обучения нейросетевых моделей для предсказания вероятности наличия

перепутанных ракурсо;

– тестирования и использования на практике обученных моделей для по­

иска перепутанных ракурсов в сценах стереоскопических видео.

Также предложенный метод реализован в виде подключаемого модуля к систе­

ме оценки качества стереовидео VQMT3D [67], описание которой приведено в

разделе 1.7. Средняя скорость работы предложенного метода на кадрах с раз­

решением 940×544 составила 0.2137 секунд на кадр. Время работы реализации

замерялось на стационарном компьютере с восьмиядерным процессором серии

AMD Ryzen 7 1700 и графическим ускорителем GeForce GTX 1070.

3.7 Анализ видео в формате VR180

Для поиска перепутанных ракурсов в VR180 было проанализировано 50

наиболее просматриваемых видео в формате VR180. Перепутанные ракурсы

встречаются редко в стереовидео, однако даже одна сцена с перепутанными

ракурсами может вызвать серьезный дискомфорт у зрителя [1]. С помощью

предложенного метода поиска перепутанных ракурсов в стереовидео была най­

дена 21 сцена с перепутанными ракурсами в 10 видео. Согласно данному резуль­

тату вероятность встретить сцену с перепутанными ракурсами в VR180-видео

составляет 20%. При этом в большинстве случаев перепутанные ракурсы возни­

кают из-за неграмотного наложения элементов компьютерной графики и/или

титров поверх отснятого материала, что неудивительно, так как съемкой видео

в формате VR180 занимаются любители, не обладающие знаниями о компози­

ции трехмерных сцен, а также из-за отсутствия необходимых инструментов для

проверки диспаратности добавленных в видео объектов. В приложении проде­

монстрированы примеры найденных сцен с перепутанными ракурсами (рисунки

75-81).
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3.8 Заключение

В данной главе предложен метод автоматического поиска перепутанных

ракурсов в стереовидео. Разработанный метод для каждой сцены стереовидео

вычисляет вероятность наличия в ней перепутанных ракурсов. Данный метод:

– Использует в качестве основного признака результаты работы нейрон­

ной сети, вычисляющей вероятность наличия перепутанных ракурсов в

кадре на основе исходного левого ракурса, и соответссвующих ему карт

диспаратности, доверия и областей открытия/закрытия;

– Превзошел аналоги, использовавшиеся ранее для анализа полнометраж­

ных стереофильмов на предмет наличия/отсутствия перепутанных ра­

курсов, на подготовленной эталонной выборке, состоящей из 900 сцен

по 30 кадров. При этом удалось добиться увеличения точности класси­

фикациина на 8%.

С помощью предложенного метода проанализировано 50 наиболее про­

сматриваемых VR180-видео, в 10 из которых была найдена 21 сцена с пере­

путанными ракурсами. Поэтому вероятность встретить данные искажения при

просмотре видео в формате VR180 остается достаточно высокой.

Результаты главы опубликованы автором в [1; 3; 19; 20; 24].
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Приложение A. Дополнительные результаты анализа видео в

формате VR180

A.1 Методология

Для оценки технического качества видео в формате VR180 рассматрива­

лись следующие стереоскопические параметры:

1. Положительный параллакс;

2. Отрицательный параллакс;

3. Цветовые искажения;

4. Искажения резкости;

5. Вертикальный сдвиг одного ракурса относительно другого;

6. Поворот одного ракурса относительно другого;

7. Разница в масштабе между ракурсами;

8. Перепутанные ракурсы.

Таким образом, помимо рассматриваемых в данной работе стереоскопических

искажений также оценивалась величина параллакса в видео. Для этого исполь­

зовался модифицированный метод из работы [95] по поиску экстремальных по­

ложительных и отрицательных значений диспаратности. Основное отличие мо­

дификации заключается в вычислении взвешенной гистограммы значений дис­

паратности с использованием соответствующих значений доверия, вычисление

которого описано в разделе 1.4.1, вместо использования гистограммы, не учи­

тывающей доверия, в базовом методе. В остальном, используемый метод не

отличается от базового, и построенная гистограмма значений диспаратности

используется для нахождения положительного и отрицательного параллакса в

кадре путем вычисления 5 и 95 перцентилей в ней.
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A.2 Анализ параллакса

На рисунке 45 представлены средние значения диспаратности для наибо­

лее близких и наиболее удаленных объектов в проанализированных видео. По­

ложительные значения диспаратности соответствуют объектам, находящимся

за плоскостью экрана, в то время как отрицательные значения – объектам, на­

ходящимся перед плоскостью экрана. На графике индивидуальные видео пред­

ставлены в виде линий, соединяющих точки, представляющие значения наи­

большего положительного и наименьшего отрицательного параллаксов в видео,

измеренные в процентах от ширины экрана. Данные линии соответствуют при­

близительному расстоянию между объектами, находящимися дальше всего от

зрителей, и объектами, находящимися ближе всего к зрителям. Чем длиннее

линия, тем больше диапазон параллакса в видео и более заметен 3D-эффект. Ри­

сунок 45 демонстрирует ряд видео с несущественным диапазоном параллакса,

однако среди проанализированных видео также встречаются видео с огромным

диапазоном параллакса. На графике также изображены линии тренда для поло­

жительных и отрицательных значений диспаратности, показывающие средние

диапазоны параллакса в зависимости от даты выпуска видео. Видео с диапа­

зоном параллакса больше среднего, вероятно, могут вызвать дискомфорт при

просмотре на некоторых шлемах виртуальной реальности, – неутешительный

вывод, так как диапазон параллакса трудно изменить во время постобработки

видео. Дополнительно ряд видео обладает значительным положительным па­

раллаксом. Так как левый и правый ракурсы находятся непосредственно перед

соответствующими глазами зрителя при просмотре видео в шлеме виртуальной

реальности, нулевое значение параллакса (0%) соответствует объектам, нахо­

дящимся на максимально удаленном от зрителя расстоянии, то есть на уровне

“бесконечности”. Для сравнения, нулевое значение параллакса для обычного сте­

реоскопического формата соответствует объектам, находящимся на уровне плос­

кости экрана. Поэтому значения положительного параллакса в VR180-видео
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Рисунок 45 — Общие результаты анализа диапазонов параллакса в
VR180-видео относительно даты их публикации. Для удобства просмотра

также представлены увеличенные фрагменты для разных временных
отрезков.

должны быть как можно меньше, так как они соответствуют объектам, находя­

щимся за уровнем “бесконечности” – невозможная ситуация для мозга зрителя.

То есть при просмотре сцены со значительным положительным параллаксом

в формате VR180 с большой вероятностью зрители будут испытывать диском­

форт.

Рисунок 46 демонстрирует разбиение сцен каждого видео по соответству­

ющим значениям диапазона параллакса. На оси 𝑥 представлены различные ви­

део, в то время как на оси 𝑦 отложены столбцы для представления количества

кадров в каждом видео с хорошими, промежуточными и плохими значениями

диапазонов параллакса. Почти все кадры видео на левой части графика обла­
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Рисунок 46 — Диапазон параллаксов для каждого кадра видео в формате
VR180, отсортированные по количеству кадров с низким диапазоном

параллакса.

дают маленьким диапазоном параллакса, то есть 3D-эффект в них может быть

совсем не заметен. Видео в центре графика обладают средними значениями

диапазонов параллакса, но в них все равно встречаются сцены с слишком ма­

леньким, либо слишком высоким диапазоном параллаксов. Несколько видео в

правой части графика в основном состоят из кадров с огромными значения­

ми диапазонов параллакса. Согласно рисунку 46, общая ситуация значительно

лучше по сравнению с предыдущим графиком: большинство кадров обладает

средними значениями диспаратности, а огромные диапазоны параллакса встре­

чаются довольно редко. Однако большое количество кадров слишком “плоские”,

то есть обладают небольшими значениями диапазонов параллакса, и восприни­

маемый стереоэффект от просмотра таких сцен будет незначительным.

На рисунках 47-50 продемонстрированы найденные примеры с большими

положительными значениями диспаратности, а на рисунках 51-54 – с большими

отрицательными значениями диспаратности.
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Рисунок 47 — Визуализация кадра
#12745 с большими положительными
значениями диспаратности из видео

youtu.be/AVTcC513iLQ.

Рисунок 48 — Визуализация кадра
#3864 с большими положительными
значениями диспаратности из видео

youtu.be/KAoQwCVQFDU.

Рисунок 49 — Визуализация кадра
#2346 с большими положительными
значениями диспаратности из видео

youtu.be/hhaIcogfH1k.

Рисунок 50 — Визуализация кадра
#11084 с большими положительными
значениями диспаратности из видео

youtu.be/L1TIZ8w-41M.
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Рисунок 51 — Визуализация кадра
#7574 с большими отрицательными
значениями диспаратности из видео

youtu.be/vwKjoXx2Ic.

Рисунок 52 — Визуализация кадра
#498 с большими отрицательными
значениями диспаратности из видео

youtu.be/8MY42p1_yh4.

Рисунок 53 — Визуализация кадра
#9431 с большими отрицательными
значениями диспаратности из видео

youtu.be/AVTcC513iLQ.

Рисунок 54 — Визуализация кадра
#6353 с большими отрицательными
значениями диспаратности из видео

youtu.be/CHh3pgJXhwM.
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A.3 Примеры найденных стереоскопических искажений в VR180

В данном разделе на рисунках 55-81 приведены примеры кадров со стерео­

скопическими искажениями, найденные в ходе анализа 1000 видео в формате

VR180.

Рисунок 55 — Визуализация кадра #1382 с цветовыми искажениями из видео
youtu.be/0dhvLX4aoSk. Слева представлена шахматная визуализация, а

справа – цветовая разница между ракурсами.
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Рисунок 56 — Визуализацrя кадра #1267 с цветовыми искажениями из видео
youtu.be/2vwKjoXx2Ic. Слева представлена шахматная визуализация, а

справа – цветовая разница между ракурсами.

Рисунок 57 — Визуализация кадра #2436 с цветовыми искажениями из видео
youtu.be/9t2SCT68NJ8. Слева представлена шахматная визуализация, а

справа – цветовая разница между ракурсами.
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Рисунок 58 — Визуализация кадра #2259 с цветовыми искажениями из видео
youtu.be/HBasBaz22dE. Слева представлена шахматная визуализация, а

справа – цветовая разница между ракурсами.
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Рисунок 59 — Визуализация кадра
#860 с искажениями резкости из

видео youtu.be/2vwKjoXx2Ic.

Рисунок 60 — Визуализация кадра
#3641 с искажениями резкости из

видео youtu.be/8MY42p1_yh4.

Рисунок 61 — Визуализация кадра
#6152 с искажениями резкости из

видео youtu.be/AVTcC513iLQ.

Рисунок 62 — Визуализация кадра
#3129 с искажениями резкости из

видео youtu.be/KAoQwCVQFDU.
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Рисунок 63 — Визуализация кадра #814 с вертикальным сдвигом из видео
youtu.be/0dhvLX4aoSk.

Рисунок 64 — Визуализацrя кадра #2749 с вертикальным сдвигом из видео
youtu.be/ALMiuV4FsgU.
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Рисунок 65 — Визуализация кадра #630 с вертикальным сдвигом из видео
youtu.be/AVTcC513iLQ.

Рисунок 66 — Визуализация кадра #9361 с вертикальным сдвигом из видео
youtu.be/l-RuiC2iyug.
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Рисунок 67 — Визуализация кадра #1824 с масштабированием из видео
youtu.be/CJd4NKVmp7o.

Рисунок 68 — Визуализацrя кадра #1630 с масштабированием из видео
youtu.be/hhaIcogfH1k.
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Рисунок 69 — Визуализация кадра #5311 с масштабированием из видео
youtu.be/GCOBkMd2Iw.

Рисунок 70 — Визуализация кадра #768 с масштабированием из видео
youtu.be/xfEX2de3N4U.
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Рисунок 71 — Визуализация кадра #7022 с поворотом из видео
youtu.be/2vwKjoXx2Ic.

Рисунок 72 — Визуализацrя кадра #4302 с поворотом из видео
youtu.be/AVTcC513iLQ.
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Рисунок 73 — Визуализация кадра #2690 с поворотом из видео
youtu.be/hhaIcogfH1k.

Рисунок 74 — Визуализация кадра #8193 с поворотом из видео
youtu.be/tGCOBkMd2Iw.
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Рисунок 75 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного наложения компьютерной графики. Кадр из видео “The Aces”.
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Рисунок 76 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного наложения титров. Кадр из видео “All Time Low - Dressing

Room Tour at Lollapalooza”.

Рисунок 77 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного наложения элементов компьютерной графики титров. Кадр из

видео “Lift The Car Off The Baby | Yosemite Higher Spire Free”.

Рисунок 78 — Пример сцены с полностью перепутанными ракурсами. Кадр из
видео “Hayley Kiyoko - VR180”.
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Рисунок 79 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного наложения титров. Кадр из видео “The Man - VR180”.

Рисунок 80 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного использования спецэффектов. Кадр из видео “Google Pixel 2 —

Up-close in VR180”.

Рисунок 81 — Пример сцены с перепутанными ракурсами, возникшими из-за
неправильного наложения элементов компьютерной графики. Кадр из видео

“Best Gaming Console (VR180)”.
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Заключение

В ходе диссертационного исследования были получены следующие основ­

ные результаты:

1. Разработан новый нейросетевой метод одновременной оценки цветовых

искажений и искажений резкости между ракурсами стереоскопического

видео. Предложенный метод значительно сократил число ложнополо­

жительных срабатываний за счет одновременного учета рассматрива­

емых искажений и по результатам объективного сравнения превзошел

аналоги, ранее использовавшиеся при анализе полнометражных стерео­

скопических фильмов.

2. Разработан новый нейросетевой метод оценки геометрических иска­

жений между ракурсами стереоскопического видео. По результатам

объективного сравнения предложенный метод превзошел аналоги, ра­

нее использовавшиеся при анализе полнометражных стереоскопиче­

ских фильмов. Предложенный метод также позволяет автоматически

исправлять найденные геометрические искажения.

3. Разработан новый нейросетевой метод поиска перепутанных ракурсов

в стереоскопических видео. По результатам объективного сравнения

предложенный алгоритм превзошел аналоги, ранее использовавшиеся

при анализе полнометражных стереоскопических фильмов.

4. Проведено исследование объективного качества 1000 VR180-видео с

помощью разработанных методов. Исследование показало наличие по

меньшей мере одного вида стереоскопического искажения в каждом из

проанализированных материалов.

Предложенные алгоритмы могут быть использованы для разработки про­

граммных инструментов автоматического контроля качества стереоскопиче­

ских видео, включая видео в формате виртуальной реальности, а также послу­

жить основой для создания автоматических методов их исправления. Предло­
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женная методология объективной оценки качества видео в формате VR180 мо­

жет быть использована для анализа стереоскопического качества новых видео,

а результаты представленного анализа могут послужить их отправной точкой.

Дальнейшее развитие темы исследования может включать в себя:

– Исследование нейросетевых методов исправления искажений цвета и

резкости. Для успешного исправления данных артефактов необходимо

также восстанавливать значения в областях, которые не были успешно

сопоставлены методом построения карт диспаратности, что подразуме­

вает исследование методов по восстановлению деталей и/или пикселей

в неизвестных областях.

– Исследование метода поиска объектов с неправильной глубиной. Как

показало проведенное сравнение видео в формате VR180, большинство

найденных сцен с перепутанными ракурсами возникают из-за непра­

вильной постобработки видео путем неверного наложения компьютер­

ной графики и/или титров.

– Исследование нейросетевых методов оценки и исправления других сте­

реоскопических артефактов. Например, оценка временного сдвига меж­

ду ракурсами стереоскопического видео и его исправление, что акту­

ально для 3D-съемки. Или оценка размытости границ и поиск плоских

объектов и сцен, что актуально для конвертации из 2D в 3D.

Данная работа была поддержана грантом СТАРТ-19-1 по теме “Разра­

ботка системы автоматической объективной оценки качества и исправления

стереоскопических видео и видео в формате VR180”. Также работа была ча­

стично поддержана грантами РФФИ 15-01-08632 а про теме “Автоматизация

создания и контроля качества стерео видео” и РФФИ №19-01-00785 по те­

ме “Разработка нейросетевых алгоритмов обработки и сжатия видеопоследо­

вательностей”. Обучение нейросетевых моделей производилось с использова­

нием высокопроизводительного кластера IBM Polus факультета ВМК МГУ:

https://hpc.cmc.msu.ru/polus.



130

Список литературы

1. Antsiferova A., Vatolin D. The influence of 3D video artifacts on discomfort

of 302 viewers // 2017 International Conference on 3D Immersion (IC3D). —

IEEE. 2017. — С. 1—8.

2. Рожкова Г., Васильева Н. Сравнительные трудности восприятия фильмов

в 2D и 3D форматах // Мир техники кино. — 2010. — Т. 4, № 2. — С. 12—18.

3. Рожкова Г., Алексеенко С. Зрительный дискомфорт при восприятии сте­

реоскопических изображений как следствие непривычного распределения

нагрузки на различные механизмы зрительной системы // Мир техники

кино. — 2011. — Т. 5, № 3. — С. 12—21.

4. Рожкова Г., Крутцова Е., Забалуева Н. Влияние наклона головы к плечу

при просмотре фильмов 3D формата: общие закономерности и индивиду­

альные особенности // Мир техники кино. — 2012. — Т. 6, № 3. — С. 17—

21.

5. Васильева Н., Рожкова Г., Рожков С. О пользе и вреде современных тех­

нологий формирования стереокиноизображений для людей с различным

состоянием зрительных функций // Мир техники кино. — 2011. — Т. 5,

№ 1. — С. 7—15.

6. Рожков С., Рожкова Г. Искажения пространственных образов в стерео­

кино: иллюзии уменьшения, увеличенияи уплощения объектов // Мир тех­

ники кино. — 2013. — Т. 7, № 3. — С. 13—20.

7. Vergence–accommodation conflicts hinder visual performance and cause visual

fatigue / D. M. Hoffman [и др.] // Journal of vision. — 2008. — Т. 8, № 3. —

С. 33—33.



131

8. The zone of comfort: Predicting visual discomfort with stereo displays /

T. Shibata [и др.] // Journal of vision. — 2011. — Т. 11, № 8. — С. 11—

11.

9. Johnson P. V., Kim J., Banks M. S. Visible artifacts and limitations in

stereoscopic 3D Displays // Information Display. — 2017. — Т. 33, № 1. —

С. 12—17.

10. Display-size dependent effects of 3D viewing on subjective impressions /

Y. Miyashita [и др.] // ACM Transactions on Applied Perceptions (TAP). —

2022. — Т. 19, № 2. — С. 1—15.

11. Lambooij M. T., IJsselsteijn W. A., Heynderickx I. Visual discomfort in

stereoscopic displays: a review // Stereoscopic Displays and Virtual Reality

Systems XIV. — 2007. — Т. 6490. — С. 183—195.

12. Morita T., Ando H. Effects of viewing conditions on fatigue caused by watching

3DTV // The 2012 Annual Technical Conference & Exhibition. — SMPTE.

2012. — С. 1—9.

13. Influence of chroma variations on naturalness and image quality of stereoscopic

images / A. Kuijsters [и др.] // Human Vision and Electronic Imaging XIV.

Т. 7240. — SPIE. 2009. — С. 461—469.

14. An objective method for 3D quality prediction using visual annoyance and

acceptability level / D. Khaustova [и др.] // Stereoscopic Displays and

Applications XXVI. Т. 9391. — International Society for Optics, Photonics.

2015. — 93910P.

15. Automatic detection of artifacts in converted S3D video / A. Bokov [и др.] //

Stereoscopic Displays and Applications XXV. Т. 9011. — International Society

for Optics, Photonics. 2014. — С. 901112.

16. Toward fully automatic channel-mismatch detection and discomfort predic-

tion for S3D video / A. Bokov [et al.] // 2016 International Conference on

3D Imaging (IC3D). — Liege, 2016. — P. 1–7.



132

17. Lavrushkin S., Lyudvichenko V., Vatolin D. Local Method of Color-

Difference Correction Between Stereoscopic-Video Views // Proceedings of

the 2018 3DTV Conference: The True Vision - Capture, Transmission and

Display of 3D Video (3DTV-CON). — 2018. — P. 1–4.

18. Автоматическое обнаружение и оценка цветовых искажений с использова­

нием карт доверия / С. Д. Грохольский [и др.] // International Journal of

Open Information Technologies. — Москва, 2017. — Т. 5, № 5. — С. 1—8.

19. Lavrushkin S., Vatolin D. Channel-Mismatch Detection Algorithm for

Stereoscopic Video Using Convolutional Neural Network // Proceedings of

the 2018 3DTV Conference: The True Vision - Capture, Transmission and

Display of 3D Video (3DTV-CON). — 2018. — P. 1–4.

20. Лаврушкин С. В., Ватолин Д. С. Разработка метода поиска перепутанных

ракурсов в стереофильмах // Мир техники кино. — 2018. — 2018—1(12). —

С. 12—17.

21. Malyshev K., Lavrushkin S., Vatolin D. Stereoscopic Dataset from A Video

Game: Detecting Converged Axes and Perspective Distortions in S3D

Videos // 2020 International Conference on 3D Immersion (IC3D). — IEEE,

2020.

22. Lavrushkin S., Kozhemyakov K., Vatolin D. Neural-Network-Based De-

tection Methods for Color, Sharpness, and Geometry Artifacts in Stereo-

scopic and VR180 Videos // 2020 International Conference on 3D Immersion

(IC3D). — IEEE, 2020.

23. Нейросетевой алгоритм поиска областей открытия/закрытия в видеопосле­

довательностях / М. С. Великанов [и др.] // International Journal of Open

Information Technologies. — Москва, 2020. — Т. 8, № 3. — С. 1—7.

24. Stereoscopic quality assessment of 1,000 VR180 videos using 8 metrics /

S. Lavrushkin [и др.] // Electronic Imaging. — 2021. — Т. 33. — С. 1—7.



133

25. Свидетельство о гос. регистрации программы для ЭВМ. Система для

обучения и тестирования нейросетевых методов объективной оценки ка­

чества и исправления стереоскопических видео / С. В. Лаврушкин. —

№ 2021610246 ; заявл. 07.12.2020 ; опубл. 12.01.2021, 2020665915 (Рос. Фе­

дерация).

26. Trends in S3D-movie quality evaluated on 105 films using 10 metrics /

D. Vatolin [и др.] // Electronic Imaging. — 2016. — Т. 2016, № 5. — С. 1—10.

27. Vatolin D., Bokov A. Sharpness mismatch and 6 other stereoscopic artifacts

measured on 10 Chinese S3D movies // Electronic Imaging. — 2017. — Т. 2017,

№ 5. — С. 137—144.

28. Lowe D. G. Distinctive image features from scale-invariant keypoints //

International journal of computer vision. — 2004. — Т. 60, № 2. — С. 91—

110.

29. Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features //

European conference on computer vision. — Springer. 2006. — С. 404—417.

30. ORB: An efficient alternative to SIFT or SURF / E. Rublee [и др.] // 2011

International conference on computer vision. — Ieee. 2011. — С. 2564—2571.

31. Teed Z., Deng J. RAFT: Recurrent All-Pairs Field Transforms for Optical

Flow // 16th European Conference on Computer Vision, ECCV 2020. —

Springer Science, Business Media Deutschland GmbH. 2020. — С. 402—419.

32. Bar-Haim A., Wolf L. Scopeflow: Dynamic scene scoping for optical flow //

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. — 2020. — С. 7998—8007.

33. Maskflownet: Asymmetric feature matching with learnable occlusion mask /

S. Zhao [и др.] // Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. — 2020. — С. 6278—6287.



134

34. Fast video super-resolution via classification / K. Simonyan [и др.] // 2008

15th IEEE international conference on image processing. — IEEE. 2008. —

С. 349—352.

35. Pentland A. P. A new sense for depth of field // IEEE transactions on pattern

analysis and machine intelligence. — 1987. — № 4. — С. 523—531.

36. Elder J. H., Zucker S. W. Local scale control for edge detection and

blur estimation // IEEE Transactions on pattern analysis and machine

intelligence. — 1998. — Т. 20, № 7. — С. 699—716.

37. Zhuo S., Sim T. Defocus map estimation from a single image // Pattern

Recognition. — 2011. — Т. 44, № 9. — С. 1852—1858.

38. Levin A., Lischinski D., Weiss Y. A closed-form solution to natural image

matting // IEEE transactions on pattern analysis and machine intelligence. —

2007. — Т. 30, № 2. — С. 228—242.

39. Cao Y., Fang S., Wang Z. Digital multi-focusing from a single photograph

taken with an uncalibrated conventional camera // IEEE Transactions on

image processing. — 2013. — Т. 22, № 9. — С. 3703—3714.

40. Karaali A., Jung C. R. Adaptive scale selection for multiresolution defocus

blur estimation // 2014 IEEE International Conference on Image Processing

(ICIP). — IEEE. 2014. — С. 4597—4601.

41. Karaali A., Jung C. R. Edge-based defocus blur estimation with adaptive scale

selection // IEEE Transactions on Image Processing. — 2017. — Т. 27, № 3. —

С. 1126—1137.

42. Chakrabarti A., Zickler T., Freeman W. T. Analyzing spatially-varying blur //

2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. — IEEE. 2010. — С. 2512—2519.

43. Estimating spatially varying defocus blur from a single image / X. Zhu

[и др.] // IEEE Transactions on Image Processing. — 2013. — Т. 22, № 12. —

С. 4879—4891.



135

44. Non-parametric blur map regression for depth of field extension / L. D’Andrès

[и др.] // IEEE Transactions on Image Processing. — 2016. — Т. 25, № 4. —

С. 1660—1673.

45. Alireza Golestaneh S., Karam L. J. Spatially-varying blur detection based on

multiscale fused and sorted transform coefficients of gradient magnitudes //

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. — 2017. — С. 5800—5809.

46. Narvekar N. D., Karam L. J. A no-reference image blur metric based on the

cumulative probability of blur detection (CPBD) // IEEE Transactions on

Image Processing. — 2011. — Т. 20, № 9. — С. 2678—2683.

47. Kumar J., Chen F., Doermann D. Sharpness estimation for document and

scene images // Proceedings of the 21st International Conference on Pattern

Recognition (ICPR2012). — IEEE. 2012. — С. 3292—3295.

48. A local metric for defocus blur detection based on CNN feature learning /

K. Zeng [и др.] // IEEE Transactions on Image Processing. — 2018. — Т. 28,

№ 5. — С. 2107—2115.

49. A unified approach of multi-scale deep and hand-crafted features for defocus

estimation / J. Park [и др.] // Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. — 2017. — С. 1736—1745.

50. Deep defocus map estimation using domain adaptation / J. Lee [и др.] //

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. — 2019. — С. 12222—12230.

51. R2MRF: Defocus Blur Detection via Recurrently Refining Multi-Scale Residual

Features / C. Tang [и др.] // Proceedings of the AAAI Conference on Artificial

Intelligence. Т. 34. — 2020. — С. 12063—12070.

52. Cun X., Pun C.-M. Defocus blur detection via depth distillation // European

Conference on Computer Vision. — Springer. 2020. — С. 747—763.



136

53. Karaali A., Harte N., Jung C. R. Deep Multi-Scale Feature Learning for

Defocus Blur Estimation // arXiv preprint arXiv:2009.11939. — 2020.

54. Winkler S. Efficient measurement of stereoscopic 3D video content issues //

Image Quality and System Performance XI. Т. 9016. — International Society

for Optics, Photonics. 2014. — 90160Q.

55. A stereo camera distortion detecting method for 3DTV video quality

assessment / Q. Dong [и др.] // 2013 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference. — IEEE. 2013. —

С. 1—4.

56. Devernay F., Pujades S., AV V. C. Focus mismatch detection in stereoscopic

content // Stereoscopic Displays and Applications XXIII. Т. 8288. —

International Society for Optics, Photonics. 2012. — 82880E.

57. Liu M., Müller K. Automatic analysis of sharpness mismatch between

stereoscopic views for stereo 3D videos // 2014 International Conference on

3D Imaging (IC3D). — IEEE. 2014. — С. 1—6.

58. VQMT3D Project: Report 10 on 3D-video Quality Analysis. — [Online]. https:

//videoprocessing.ai/stereo_quality/report10.html.

59. Egnal G., Wildes R. P. Detecting binocular half-occlusions: Empirical

comparisons of five approaches // IEEE Transactions on pattern analysis and

machine intelligence. — 2002. — Т. 24, № 8. — С. 1127—1133.

60. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for

biomedical image segmentation // International Conference on Medical image

computing and computer-assisted intervention. — Springer. 2015. — С. 234—

241.

61. Residual Conv-Deconv Grid Network for Semantic Segmentation / D. Fourure

[и др.] // BMVC 2017. — 2017.



137

62. Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification / K. He [и др.] // Proceedings of the IEEE international

conference on computer vision. — 2015. — С. 1026—1034.

63. Fast global image smoothing based on weighted least squares / D. Min [и др.] //

IEEE Transactions on Image Processing. — 2014. — Т. 23, № 12. — С. 5638—

5653.

64. Glorot X., Bengio Y. Understanding the difficulty of training deep feedforward

neural networks // Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics. — JMLR Workshop, Conference

Proceedings. 2010. — С. 249—256.

65. Kingma D. P., Ba L. J. Adam: A Method for Stochastic Optimization //

International Conference on Learning Representations (ICLR). — 2015.

66. A naturalistic open source movie for optical flow evaluation / D. J. Butler

[и др.] // European Conference on Computer Vision. — Springer. 2012. —

С. 611—625.

67. Video Quality Measurement Tool 3D Project. — [Online]. https : / /

videoprocessing.ai/stereo_quality/.

68. Al-Zahrani A., Ipson S. S., Haigh J. Applications of a direct algorithm for the

rectification of uncalibrated images // Information Sciences. — 2004. — Т. 160,

№ 1—4. — С. 53—71.

69. Loop C., Zhang Z. Computing rectifying homographies for stereo vision //

Proceedings. 1999 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (Cat. No PR00149). Т. 1. — IEEE. 1999. — С. 125—

131.

70. Stereo rectification of uncalibrated and heterogeneous images / S. Kumar

[и др.] // Pattern Recognition Letters. — 2010. — Т. 31, № 11. — С. 1445—

1452.



138

71. Nguyen T. P., Tran T. H.-P., Jeon J. W. Multi-level Feature Pooling

Network for Uncalibrated Stereo Rectification in Autonomous Vehicles // IEEE

Transactions on Industrial Electronics. — 2020.

72. Correcting unsynchronized zoom in 3d video / C. Doutre [и др.] // Proceedings

of 2010 IEEE International Symposium on Circuits and Systems. — IEEE.

2010. — С. 3244—3247.

73. Pekkucuksen I. E., Batur A. U., Zhang B. A real-time misalignment

correction algorithm for stereoscopic 3D cameras // Stereoscopic Displays and

Applications XXIII. Т. 8288. — International Society for Optics, Photonics.

2012. — 82880J.

74. Voronov A., Borisov A., Vatolin D. System for automatic detection of distorted

scenes in stereo video // Proceedings of Sixth International Workshop on Video

Processing and Quality Metrics (VPQM). — 2012.

75. Fischler M. A., Bolles R. C. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography //

Communications of the ACM. — 1981. — Т. 24, № 6. — С. 381—395.

76. Dsac-differentiable ransac for camera localization / E. Brachmann [и др.] //

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. — 2017. — С. 6684—6692.

77. Brachmann E., Rother C. Neural-guided RANSAC: Learning where to sample

model hypotheses // Proceedings of the IEEE/CVF International Conference

on Computer Vision. — 2019. — С. 4322—4331.

78. Learning to find good correspondences / K. M. Yi [и др.] // Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. — 2018. —

С. 2666—2674.

79. Acne: Attentive context normalization for robust permutation-equivariant

learning / W. Sun [и др.] // Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. — 2020. — С. 11286—11295.



139

80. Rocco I., Arandjelovic R., Sivic J. Convolutional neural network architecture

for geometric matching // Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. — 2017. — С. 6148—6157.
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