МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Иванов Андрей Александрович

Ковариантные непрерывные функторы в категориях Сотр и Р

1.1.3. Геометрия и топология

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

Научные руководители:

доктор физико-математических наук, доцент Комбаров Анатолий Петрович;

доктор физико-математических наук, доцент Садовничий Юрий Викторович

Содержание

Введение			3
1	Глава первая. Обобщения теорем Катетова и Зенора, использу-		
	ющие нормальные и полунормальные функторы		19
	1.1	Категории Сотр и \mathcal{P}	19
	1.2	Нормальные функторы	23
	1.3	Обобщения теорем Катетова и Зенора, использующие нормаль-	
		ные функторы. Паранормальные пространства	28
	1.4	Полунормальные функторы в категориях Сотр и ${\cal P}$	39
	1.5	Обобщение теоремы Добрыниной и теоремы Комбарова для по-	
		лунормальных функторов в категории ${\cal P}$	45
2	Глава вторая. Размерность квантования максимальных сцеп-		
	лен	иных систем	51
	2.1	Метризуемые функторы	51
	2.2	Размерность квантования	56
	2.3	Некоторые свойства размерности квантования максимальных сцеп-	
		ленных систем	61
	2.4	О возможных значениях нижней размерности квантования мак-	
		симальных сцепленных систем	66
Заключение			73
л	Литература		

Актуальность темы и степень её разработанности

Диссертационная работа относится к исследованиям в области общей топологии и теории категорий. В работе исследуются ковариантные функторы в топологических категориях. Несмотря на то, что само понятие категории появилось только в 1945 году в работе С. Эйленберга и С. Маклейна [20], первыми работами, относящимися к этой тематике, можно считать статьи Л. Вьеториса [30] и Т. Важевского [31] 1923 года, посвящённые пространству непустых замкнутых подмножеств в топологическом пространстве X (exp X). Далее отдельные свойства этого пространства изучались в работах различных топологов, а отправной точкой систематического исследования и применения можно считать работу Майкла [27] 1951 года. После того, как в 1981 году Е.В. Щепин ввёл в работе [18] понятие нормального функтора, действующего в категории Сотр компактов и их непрерывных отображений, операция гиперпространства $\exp(\cdot)$ стала одним из первых нетривиальных примеров подобного функтора, и при дальнейшем развитии теории нормальных функторов неоднократно применялась, в том числе и в диссертационной работе.

Одним из применений этой теории стали обобщения классической теоремы Катетова, доказанной в работе [25] в 1948 году. Согласно этой теореме, если куб компакта наследственно нормален, то сам компакт метризуем. Естественным образом возникающий вопрос о том, верно ли это утверждение при замене куба компакта на его квадрат, был решён в следующих работах: во-первых, в 1977 году П. Никош в работе [28] построил отрицательный пример в предположении аксиомы Мартина и отрицании континуум-гипотезы, в 1993 году он вместе с Г. Грюнхаге построил другой отрицательный пример (см. [23]), но уже в предположении континуум-гипотезы, и наконец, в 2002 году П. Ларсон и С. Тодорчевич в работе [26] построили модель теории множеств, в которой из наследственной нормальности квадрата компакта следует метризуемость этого

компакта. Таким образом, вопрос о том, верна ли теорема Катетова при замене куба на квадрат, также известный как проблема Катетова, не зависит от аксиом ZFC.

Другим путём по обобщению теоремы Катетова, которым, в частности, посвящена первая глава работы, является замена куба на целый класс возможных пространств, образованных из искомого компакта, а также изменение требования наследственной нормальности на иные. Последнее происходит, в частности, в работе [32] Ф. Зенора 1971 года: он доказал, что из наследственной счётной паракомпактности куба следует метризуемость компакта. Ключевой же для этой темы является работа [16] В.В. Федорчука 1989 года, в которой он применил понятие нормального функтора для следующего обобщения теоремы Катетова: если для нормального функтора \mathcal{F} степени $\geqslant 3$ в категории Сотр компактов и их непрерывных отображений пространство $\mathcal{F}(X)$ наследственно нормально, то компакт X метризуем. В 2000 году в работе [5] Т.Ф. Жураев доказал аналог теоремы Федорчука, в котором он заменил наследственную нормальность на наследственную счётную паракомпактность. В 2017 году А.П. Комбаров получил результат, обобщающий одновременно результаты Жураева и Федорчука, использовав предложенно в статье [29] в 1984 году П. Никошем понятие паранормального пространства, в частности в работе [13] А.П. Комбарова было доказано следующее: если для нормального функтора \mathcal{F} степени $\geqslant 3$ в категории Comp пространство $\mathcal{F}(X)$ наследственно паранормально, то компакт Xметризуем.

Также, вместо компактов можно рассматривать другой класс топологических пространств. В 1965 году в работе [1] А.В. Архангельский ввёл понятие перистого пространства, позже названного p-пространством. Используя его, М.А. Добрынина в 2011 году рассматривает категорию \mathcal{P} паракомпактных p-пространств и их совершенных отображений (см. [4]), вводит понятие нормального функтора в этой категории и доказывает следующий аналог теоремы Федорчука: если для нормального функтора \mathcal{F} степени $\geqslant 3$ в категории \mathcal{P} про-

странство $\mathcal{F}(X)$ наследственно нормально, то паракомпактное p-пространство X метризуемо. В 2015 году А.П. Комбаров в работе [11] доказал аналог данной теоремы, заменив требование наследственной нормальности $\mathcal{F}(X)$ на наследственную счётную паракомпактность.

Как оказалось, требование к нормальности функтора \mathcal{F} является избыточным в теореме Федорчука. При развитии теории нормальных функторов возникло понятие полунормального функтора в категории Сотр, которое получается, если отказаться от части требований, налагаемых на нормальные функторы. Для них в работе [7] построено особое комбинаторное условие (*) (см. страницу 12), которому, в частности, удовлетворяют все нормальные функторы степени $\geqslant 3$, и доказана теорема, которая гласит, что если для полунормального функтора \mathcal{F} в категории Сотр компактов и их непрерывных отображений его спектр имеет вид $sp\mathcal{F} = \{1, m, n, ...\}$, \mathcal{F} удовлетворяет условию (*) и пространство $\mathcal{F}_n(X) \setminus X$ наследственно нормально, то компакт X метризуем. В частности, условиям этой теоремы удовлетворяет функтор суперрасширения $\lambda(\cdot)$, впервые рассмотренный Дж. де Гроотом в 1969 году(см. [22]), и в последствии встречающийся в работах многих топологов.

В 2017 году в работе [24] вводится понятие порядка метрической аппроксимации, позднее известной как размерность квантования. В данной работе описывается конструкция, позволяющая для метризуемого, полунормального, эпиморфного и сохраняющего вес функтора \mathcal{F} и метрического компакта X определить размерность элементов пространства $\mathcal{F}(X)$. В последующих работах были отмечены взаимосвязи этого понятия с уже известными понятиями. В частности, для функтора $\exp(\cdot)$ это понятие совпадает с ёмкостной размерностью замкнутых подмножеств X, которая была подробно изучена в монографии [14] Я. Б. Песина 1997 года. В 2019 году в работе [8] доказан ряд утверждений, касающихся возможных значений размерности квантования для функтора суперрасширения. В частности доказано, что верхняя ёмкостная размерность достигает всех промежуточных значений от нуля до верхней ёмкостной размерно-

сти объемлющего компакта X на каких-то его подмножествах. Также верхняя размерность квантования для функтора суперрасширения может принимать и принимает на каких-то максимальных сцепленных системах из λX все значения из этого же отрезка. В 2023 году было доказано (см. [10]), что аналогичное утверждение неверно для нижней ёмкостной размерности, в частности, существует компакт X, нижняя ёмкостная размерность которого равна 1, в то время как нижняя ёмкостная размерность любого его собственного непустого замкнутого подмножества равна 0.

Цели и задачи диссертации

Целью диссертационной работы является дальнейшее обобщение упомянутых выше теорем Федорчука, Добрыниной и Комбарова с помощью функторов в категории $\mathcal P$ паракомпактных p-пространств и их совершенных отображений. Также целью работы является исследование нижней размерности квантования для функтора суперрасширения.

В диссертационной работе решаются следующие задачи:

- Получить обобщения упомянутых выше теоремы Добрыниной и теоремы Комбарова, используя понятие нормального функтора в категории Р и паранормального пространства. Определить понятие полунормального функтора в категории Р и получить с его помощью дальнейшее обобщение этих теорем.
- Доказать, что для любого метрического компакта X нижняя размерность квантования для функтора суперрасширения принимает все возможные значения от нуля до нижней ёмкостной размерности X на каких-то максимальных сцепленных системах, или же доказать обратное, построив контрпример.

Основные результаты диссертации

• Теорема, обобщающая теоремы Добрыниной и Комбарова, использующая понятия паранормальности и нормального функтора в категории \mathcal{P} .

- Теорема, являющаяся дальнейшим обобщением ряда известных ранее результатов, посвящённых обобщениям теоремы Катетова при помощи ковариантных функторов, и использующая определение полунормального функтора в категории \mathcal{P} , введённое автором.
- Описание всех возможных промежуточных значений для нижней размерности квантования для функтора суперрасширения.

Положения, выносимые на защиту

- Паракомпактное p-пространство X с наследственно паранормальным пространством $\mathcal{F}(X)$ для нормального функтора \mathcal{F} в категории \mathcal{P} степени $\geqslant 3$ является метризуемым.
- ullet Если куб паракомпактного p-пространства X наследственно паранормален, то X метризуемое пространство.
- Паракомпактное p-пространство X с наследственно паранормальным пространством $\mathcal{F}_n(X) \setminus X$ для полунормального функтора \mathcal{F} в категории \mathcal{P} со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющего условию (*) является метризуемым.
- Для каждого метрического компакта X нижняя размерность квантования для функтора суперрасширения принимает все возможные значения от нуля до нижней ёмкостной размерности X на каких-то максимальных сцепленных системах.

Научная новизна

Полученные в диссертации результаты являются новыми. Ключевые из них:

• Теорема о метризуемости паракомпактного p-пространства X с наследственно паранормальным пространством $\mathcal{F}_n(X) \setminus X$ для полунормального функтора \mathcal{F} в категории \mathcal{P} со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющий условию (*).

• Теорема о том, что для любого неотрицательного числа b, не превосходящего нижнюю ёмкостную размерность метрического компакта (X, ρ) , существует максимальная сцепленная система, нижняя размерность квантования которой равна b, а её носитель совпадает с X.

Теоретическая и практическая ценность работы

Работа имеет теоретический характер, её результаты относятся к таким разделам математики, как общая топология, теория категорий и могут быть использованы для дальнейшего развития этих и смежных областей.

Степень достоверности

Все результаты диссертации являются оригинальными, обоснованы с помощью строгих математических доказательств и опубликованы в открытой печати. Результаты других авторов, используемые в диссертации, отмечены соответствующими ссылками.

Методы исследования

В работе используются методы теории множеств, общей топологии, математического анализа и теории категорий.

Апробация и публикации

Основные результаты диссертационной работы изложены в 3 печатных работах по теме диссертации (общим объёмом 0,9375 п.л.), все из которых опубликованы в научных изданиях, индексируемых в базах данных Web of Science, Scopus, RSCI и рекомендованных для защиты из списка МГУ (см. работы [33]-[35]).

Также результаты этой работы докладывались на научных семинарах и следующих конференциях:

- Кафедральный семинар им. П.С. Александрова (неоднократно, Москва, МГУ, 2021 г., 2022 г., 2023 г., 2024 г., 2025 г.)
- Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов—2023» (Москва, МГУ, 10.04.2023—21.04.2023)
- Научная конференция «Топология и её приложения», посвящённая памяти Е.Г. Пыткеева (международная конференция, Екатеринбург, Институт математики и механики УрО РАН, 07.02.2024—09.02.2024)

Структура и объём диссертации

Диссертация состоит из введения, двух глав, заключения и библиографии. Общий объём диссертации составляет 77 страниц. Библиография включает 35 наименований.

Краткое содержание работы

Введение содержит краткую историю вопросов, актуальность работы, цели, методы, терминологию и основные результаты.

Первая глава посвящена обобщениям упомянутых выше теоремы Добрыниной и теоремы Комбарова для функторов в категории Сотр компактов и их непрерывных отображений и в категории \mathcal{P} паракомпактных p-пространств и их совершенных отображений. Перечислим тут основные определения и результаты этой главы.

В параграфе 1.1 рассматриваются две топологические категории и описывается несколько примеров ковариантных функторов, действующих в этих категориях. В частности, упоминаются функторы гиперпространства $\exp(\cdot)$, k-ой гиперсимметрической степени $\exp_k(\cdot)$ и функтор суперрасширения $\lambda(\cdot)$.

Определение 1.1.1. Категория Сотр — это категория, объектами которой являются компакты, а морфизмами — непрерывные отображения между компактами.

Определение 1.1.2. Для топологического пространства X его гиперпространством $\exp(X)$ называется множество всех его непустых замкнутых подмножеств, снабженное топологией Вьеториса. База данной топологии состоит из множеств

 $O < U_1, ..., U_n > = \{ F \in \exp(X) : F \subset U_1 \cup ... \cup U_n, F \cap U_1 \neq \emptyset, ..., F \cap U_n \neq \emptyset \},$ где $U_1, ..., U_n$ — открытые подмножества в X.

Определение 1.1.3. Пусть X — компакт. Тогда k-ой гиперсимметрической степенью пространства X называется множество $\exp_k(X) = \{F \in \exp(X) : |F| \leqslant k\}$, наделённое топологией, индуцированной топологией Вьеториса.

Определение 1.1.4. Пусть X — топологическое пространство. Система ξ замкнутых подмножеств X называется сцепленной, если любые два её элемента имеют непустое пересечение.

Определение 1.1.5. Если X — топологическое пространство, то через λX обозначается множество всех максимальных по включению сцепленных систем(то есть не содержащихся в других сцепленных системах). Далее такие системы будем называть максимальными сцепленными системами.

Определение 1.1.6. Множество λX с топологией, заданной при помощи следующей предбазы:

$$O(U) = \{ \xi \in \lambda X :$$
 существует такое $F \in \xi$, что $F \subset U \}$,

где U — открытое подмножество X, называется суперрасширением топологического пространства X.

Определение 1.1.7. Топологическое пространство X называется р-пространством (или же перистым пространством), если существует последовательность

 \mathcal{U}_n семейств открытых подмножеств стоун-чеховской компактификации βX такая, что каждая система \mathcal{U}_n покрывает X и для каждого $x \in X$ выполняется включение $\bigcap_{n \in \mathbb{N}} st(x, \mathcal{U}_n) \subset X$, где $st(x, \mathcal{U}_n) = \bigcup \{U \in U_n : x \in U\}$.

Определение 1.1.8. Категория \mathcal{P} — это категория, объектами которой являются паракомпактные p-пространства, а морфизмами — совершенные отображения между паракомпактными p-пространствами.

В параграфе 1.2 рассматриваются нормальные функторы в категориях Сотр и \mathcal{P} , а также ряд сопутствующих понятий(см. [18] и [4]).

Определение 1.2.5. Ковариантный функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется нормальным, если он непрерывен, мономорфен, эпиморфен, сохраняет точку, пустое множество, пересечения, прообразы и вес.

Определение 1.2.6. Пусть \mathcal{F} — мономорфный функтор в категории Сотр, пространство X — компакт, точка $a \in \mathcal{F}(X)$. Тогда подмножество компакта X, задаваемое формулой

$$\operatorname{supp}(a) = \bigcap \{D : D - \operatorname{замкнутое} \operatorname{подмножество} X, a \in \mathcal{F}(D)\},$$

называется носителем точки a.

Определение 1.2.8. Если \mathcal{F} — мономорфный функтор и n — натуральное число такие, что для любого компакта X и для любой точки $a \in \mathcal{F}(X)$ верно неравенство $|\operatorname{supp}(a)| \leqslant n$, то говорят, что степень функтора \mathcal{F} не превосходит n ($\deg \mathcal{F} \leqslant n$). Если для некоторого натурального n верно утверждение $\deg \mathcal{F} \leqslant n$, но не верно $\deg \mathcal{F} \leqslant n-1$, то говорят, что степень \mathcal{F} равна n ($\deg \mathcal{F} = n$).

Пусть n — натуральное число. Тогда для мономорфного функтора ${\mathcal F}$ и компакта X имеет место следующее обозначение:

$$\mathcal{F}_n(X) = \{ a \in \mathcal{F}(X) : |\operatorname{supp}(a)| \leq n \}.$$

Определение 1.2.9. Пусть X — компакт, $n \in \mathbb{N}$ и \mathcal{F} — мономорфный функтор в категории Сотр. Рассмотрим отображение $\pi_n : X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$, где n обозначает как натуральное число, так и n-точечное дискретное пространство, а само отображение π_n задаётся формулой $\pi_n(\xi, a) = \mathcal{F}(\xi)(a)$, в которой точка $\xi \in X^n$ в правой части равенства отождествляется с отображением $\xi : n \longrightarrow X$. Тогда π_n называется отображением Басманова (см. [2]).

Для мономорфных функторов в категории \mathcal{P} аналогичным образом определяется понятие носителя supp, понятие $\mathcal{F}_n(X)$ и отображение Басманова π_n .

Определение 1.2.10. Ковариантный функтор \mathcal{F} в категории \mathcal{P} называется нормальным, если он непрерывен, мономорфен, эпиморфен, сохраняет точку, пустое множество, пересечения, прообразы и вес, а также обладает непрерывным отображением Басманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

В параграфе 1.3 подробно описываются упомянутые выше результаты В.В. Федорчука, Т.Ф. Жураева, А.П. Комбарова и М.А. Добрыниной по обобщению теорем Катетова и Зенора при помощи нормальных функторов в категориях Сотр и \mathcal{P} , а также понятие паранормального (по Никошу, см. [29]) пространства.

Определение 1.3.5. Топологическое пространство X называется паранормальным (в смысле Никоша), если для любой счётной дискретной системы замкнутых подмножеств $\{F_n:n<\omega\}$ найдется локально конечная система открытых множеств $\{U_n:n<\omega\}$ такая, что $F_n\subset U_n$, и $F_m\cap U_n\neq\varnothing$ тогда и только тогда, когда $F_m=F_n$.

Также в данном параграфе автором работы сформулирована и доказана следующая теорема.

Теорема 1.3.8. Пусть X — паракомпактное p-пространство, \mathcal{F} — нормальный функтор степени $\geqslant 3$, действующий в категории \mathcal{P} паракомпактных p-

пространств и их совершенных отображений. Тогда если пространство $\mathcal{F}(X)$ наследственно паранормально, то X — метризуемое пространство.

Для её доказательства в этом же параграфе доказываются следующие предложения.

Предложение 1.3.11. Пусть X — паракомпактное p-пространство c единственной неизолированной точкой x_0 , причём $\chi(x_0,X) \geqslant \omega_1$. Тогда гиперсимметрическая степень $\exp_3 X$ не является наследственно паранормальным пространством.

Предложение 1.3.13. Пусть X — паракомпактное p-пространство, причём его гиперсимметрическая степень $\exp_3(X)$ наследственно паранормальна. Тогда пространство X метризуемо.

В параграфе 1.4 рассматриваются полунормальные функторы в категории Сотр и ряд сопутствующих понятий, а также автором вводиться понятие полунормального функтора в категории \mathcal{P} и проверяется несколько простых его свойств в рамках предложений 1.4.6-1.4.9.

Определение 1.4.1. Функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется полунормальным(см. [15]), если он непрерывен, мономорфен, сохраняет пересечения, точку и пустое множество.

Для всех натуральных n имеет место следующее обозначение:

$$\mathcal{F}_{nn}(X) = \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X),$$

где за $\mathcal{F}_0(X)$ принимается пустое множество.

Определение 1.4.2. Степенным спектром полунормального функтора ${\mathcal F}$ называется множество

$$sp(\mathcal{F}) = \{k : k \in \mathbb{N}, \mathcal{F}_{kk}(k) \neq \varnothing\}.$$

Определение 1.4.4. Будем называть функтор \mathcal{F} , действующий в категории

 \mathcal{P} , полунормальным, если он непрерывен, мономорфен, сохраняет пересечения, точку и пустое множество, а также обладает непрерывным отображением Басманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

Пусть $sp(\mathcal{F}) = \{1, m, n, ...\}$. Построим отображение $\varphi_{nm}: n \longrightarrow m$ по формуле $\varphi_{nm}(i) = i$ при i < m, $\varphi(i) = m-1$ при $i \geqslant m$. Будем говорить, что \mathcal{F} удовлетворяет условию (*), если

$$\mathcal{F}(\varphi_{nm})(\mathcal{F}_{nn}(n)) \cap \mathcal{F}_{mm}(m) \neq \varnothing.$$

В параграфе 1.5 формулируется и доказывается основной результат этой главы — теорема, обобщающую теорему Добрыниной и теорему Комбарова при помощи понятия полунормального функтора в категории \mathcal{P} и понятия наследственной паранормальности.

Теорема 1.5.1. Пусть \mathcal{F} — полунормальный функтор в категории \mathcal{P} паракомпактных р-пространств и их совершенных отображений со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющий условию (*). Если для паракомпактного р-пространства X пространство $\mathcal{F}_n(X) \setminus X$ наследственно паранормально, то пространство X метризуемо.

Определение 1.5.3. Пусть X — топологическое пространство, а n — натуральное число. Обобщённой диагональю Δ_n пространства X называется подмножество пространства X^n , состоящее из точек, у которых хотя бы две координаты совпадают.

При доказательстве теоремы 1.5.1 доказывается следующее предложение.

Предложение 1.5.4. Пусть X — паракомпактное p-пространство, причём $\Delta_n - G_\delta$ -множество в X^n . Тогда X метризуемо.

Также в этом параграфе разобрано предложение, показывающее, что теорема 1.5.1 обобщает некоторые ранее известные результаты.

Предложение 1.5.2. Нормальный в категории \mathcal{P} функтор \mathcal{F} степени $\geqslant 3$ обладает степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяет условию (*).

Вторая глава работы посвящена понятию размерности квантования. Рассмотрим основные определения и результаты.

В параграфе 2.1 рассматривается понятие метризуемого функтора в категории Сотр, а также разобраны два примера таких функторов: функтор гиперпространства $\exp(\cdot)$ и функтор суперрасширения $\lambda(\cdot)$.

Определение 2.1.1. Пусть (X, ρ) — метрическое пространство. Тогда следующая точная верхняя грань

$$diam(X) = \sup_{x,y \in X} (\rho(x,y))$$

называется диаметром пространства (X, ρ) .

Определение 2.1.2. Полунормальный функтор \mathcal{F} в категории Сотр компактов и их непрерывных отображений называется метризуемым (по В.В. Федорчуку, см. [17]), если для любой метрики ρ на метризуемом компакте X можно указать совместимую с топологией метрику $\rho_{\mathcal{F}}$ на $\mathcal{F}(X)$ таким образом, чтобы выполнялись следующие условия:

- 1. Если $i:(X,\rho^1)\longrightarrow (Y,\rho^2)$ изометрическое вложение метризуемых компактов, то $\mathcal{F}(i):(\mathcal{F}(X),\rho^1_{\mathcal{F}})\longrightarrow (\mathcal{F}(Y),\rho^2_{\mathcal{F}})$ тоже изометрическое вложение.
- 2. Для любого метризуемого компакта (X, ρ) верно $\rho_{\mathcal{F}}|_{X} = \rho$.
- 3. Для любого метризуемого компакта (X, ρ) верно равенство

$$\operatorname{diam}(\mathcal{F}(X)) = \operatorname{diam}(X).$$

Здесь под ограничением метрики $\rho_{\mathcal{F}}$ на пространство X подразумевается ограничение на $\mathcal{F}_1(X) \subset \mathcal{F}(X)$. Для полунормальных функторов \mathcal{F} в категории

Сотр отображение $X \longrightarrow \mathcal{F}_1(X)$, ставящее в соответствие точке x единственный элемент пространства $\mathcal{F}(\{x\})$, является гомеоморфизмом.

Определение 2.1.3. Если для метризуемого функтора \mathcal{F} , для всех метризуемых компактов X и для всех их метрик ρ заданы метрики $\rho_{\mathcal{F}}$ согласно определению выше, то говорят, что семейство метрик $\rho_{\mathcal{F}}$ задаёт метризацию функтора \mathcal{F} .

Параграф 2.2 посвящён непосредственно понятию размерности квантования и разобрано устройство данных размерностей для двух функторов из предыдущего параграфа. В частности, для функтора $\exp(\cdot)$ размерность квантования совпадает с ёмкостной размерностью.

Определение 2.2.1. Пусть \mathcal{F} — полунормальный функтор в категории Сотр компактов и их непрерывных отображений. Говорят, что функтор \mathcal{F} имеет бесконечную степень, если для любого натурального числа n и для любого бесконечного компакта X верно, что $\mathcal{F}_n(X) \neq \mathcal{F}(X)$.

Пусть \mathcal{F} — метризуемый, эпиморфный, сохраняющий вес функтор в категории Сотр, обладающий бесконечной степенью. Тогда для функтора \mathcal{F} имеет место следующее обозначение для каждого $\xi \in \mathcal{F}(X)$ и каждого вещественного числа $\varepsilon > 0$:

$$N(\xi, \varepsilon, \mathcal{F}(X)) = \min\{n : \rho_{\mathcal{F}}(\xi, \mathcal{F}_n(X)) \leq \varepsilon\}.$$

Определение 2.2.2. Следующие две величины, характеризующие асимптотику роста $N(\xi, \varepsilon, \mathcal{F}(X))$ при стремлении ε к 0, называются верхней и нижней размерностью квантования точки ξ соответственно(см. [8]).

$$\overline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = \sup\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = \infty\},$$

$$\underline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \underline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = 0$$

$$\sup\{\alpha: \underline{\lim}_{\varepsilon\to 0}\varepsilon^{\alpha}N(\xi,\varepsilon,\mathcal{F}(X))=\infty\}.$$

Если множество $\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\}$ оказалось пустым, то считается, что $\overline{\dim}_{\mathcal{F}} \xi = \infty$ (аналогично для нижней размерности квантования).

Определение 2.2.5. Для метрического компакта F верхняя и нижняя ёмкостные размерности определяются по следующим формулам:

$$\overline{\dim}_B F = \overline{\lim}_{\varepsilon \to 0} \frac{\log N(F, \varepsilon)}{-\log \varepsilon},$$

$$\underline{\dim}_B F = \underline{\lim}_{\varepsilon \to 0} \frac{\log N(F, \varepsilon)}{-\log \varepsilon},$$

где $N(F,\varepsilon) = N(F,\varepsilon,\exp F)$.

Параграф 2.3 содержит подробное описание ряда известных результатов для ёмкостной размерности и размерности квантования для функтора суперрасширения, включая описанные выше в кратком обзоре истории этой темы. Формулируется ключевой вопрос этой главы: существует ли компакт с лакунами в множестве значений нижней размерности квантования для функтора суперрасширения, или же для любого компакта на каких-то максимальных сцепленных системах принимаются все возможные значения нижней размерности квантования в промежутке от нуля до нижней ёмкостной размерности объемлющего компакта? В этом же параграфе рассматривается особая конструкция максимальной сцепленной системы $\xi(A,B)$, предложенная Е.В. Кашубой(см. [3]), и автором доказываются следующие важные свойства этой конструкции:

Определение 2.3.5. Пусть $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, а (X, ρ) — метрическое пространство. Множество $A \subset X$ называется ε -разделённым, если для любых различных точек $x, y \in A$ выполняется неравенство $\rho(x, y) > \varepsilon$.

Предложение 2.3.7. Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ множество $D = \{x_1, ..., x_{k+1}\} \cup \{y_1, ..., y_k\}$ является ε -разделённым, то $N(\xi(A, B), \varepsilon/2) \geqslant 2k$.

Предложение 2.3.8. Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ выполнено неравенство $\rho(x_{k+1}, y_{k+1}) \leqslant \varepsilon$, то $N(\xi(A, B), \varepsilon) \leqslant 2k + 1$.

Параграф 2.4 содержит ответ на ключевой вопрос предыдущего параграфа:

Теорема 2.4.1. Пусть (X, ρ) — метрический компакт. Для любого неотрицательного числа $b \leq \underline{\dim}_B X = a \leq \infty$ существует максимальная сцепленная система $\xi \in \lambda X$, для которой $\underline{\dim}_{\lambda}(\xi) = b$ и $\mathrm{supp}(\xi) = X$.

Эта теорема доказывается в этом же параграфе, но, так как доказательство случая b=a несколько отличается от прочих, он выделен в отдельное предложение.

Предложение 2.4.2. Для любого метрического компакта (X, ρ) существует максимальная сцепленная система ξ , для которой

$$\underline{\dim}_{\lambda}\xi = \underline{\dim}_{B}X, \ \overline{\dim}_{\lambda}\xi = \overline{\dim}_{B}X, \operatorname{supp}(\xi) = X.$$

В заключении кратко описаны результаты настоящей работы и представлены возможные направления для развития полученных результатов.

Благодарности

Автор выражает глубокую благодарность своим научным руководителям, доктору физико-математических наук, профессору Анатолию Петровичу Комбарову, и доктору физико-математических наук, профессору Юрию Викторовичу Садовничему за постановку задач, постоянное внимание к работе, помощь и ценные советы, а также всем сотрудникам кафедры общей топологии и геометрии механико-математического факультета МГУ за тёплую доброжелательную атмосферу.

 Γ лава первая. 19

1. Глава первая. Обобщения теорем Катетова и Зенора, использующие нормальные и полунормальные функторы

1.1. Категории Сотр и \mathcal{P}

В настоящей работе все рассматриваемые топологические пространства предполагаются регулярными. Обозначения, не разъясняемые далее, следуют книге [19]. Напомним несколько определений.

Определение 1.1.1. Категория Сотр — это категория, объектами которой являются компакты, а морфизмами — непрерывные отображения между компактами.

Ковариантный функтор \mathcal{F} , действующий из категории Comp в неё же (далее называемый функтором, действующим в категории Comp) ставит в соответствие компакту X компакт $\mathcal{F}(X)$, а непрерывному отображению компактов $f: X \longrightarrow Y$ — отображение $\mathcal{F}(f): \mathcal{F}(X) \longrightarrow \mathcal{F}(Y)$, причём для любого компакта X и тождественного отображения $id_X: X \longrightarrow X$ отображение $\mathcal{F}(id_X): \mathcal{F}(X) \longrightarrow \mathcal{F}(X)$ тоже тождественное, и для композиции любых двух непрерывных отображений компактов f и g верно равенство $\mathcal{F}(f) \circ \mathcal{F}(g) = \mathcal{F}(f \circ g)$.

Простым примером подобного функтора может служить функтор возведения в куб. Данный функтор \mathcal{F} ставит в соответствие компакту X компакт X^3 , а непрерывному отображению $f: X \longrightarrow Y$ отображение $\mathcal{F}(f): X^3 \longrightarrow Y^3$, действующее следующим образом: $\mathcal{F}(f)(x_1, x_2, x_3) = (f(x_1), f(x_2), f(x_3))$.

Другим важным примером является гиперпространство (см. [15], гл. 4).

Определение 1.1.2. Для топологического пространства X его гиперпространством $\exp(X)$ называется множество всех его непустых замкнутых подмно-

жеств, снабженное топологией Вьеториса. База данной топологии состоит из множеств

 $O < U_1,...,U_n >= \{F \in \exp(X) : F \subset U_1 \cup ... \cup U_n, F \cap U_1 \neq \varnothing,..., F \cap U_n \neq \varnothing \},$ где $U_1,...,U_n$ — открытые подмножества в X.

Если X - компакт, то $\exp(X)$ — тоже компакт(см. [15]). Для непрерывного отображения компактов $f: X \longrightarrow Y$ можно задать отображение $\exp(f): \exp(X) \longrightarrow \exp(Y)$ по формуле $\exp(f)(F) = f(F)$. Оно также будет непрерывно. Заданная таким образом операция есть ковариантный функтор $\exp(\cdot)$ в категории Comp (см. [15], гл.7).

Определение 1.1.3. Пусть X — компакт. Тогда k-ой гиперсимметрической степенью пространства X называется пространство $\exp_k(X) = \{F \in \exp(X) : |F| \leq k\}$, наделённое топологией, индуцированной топологией Вьеториса.

Для непрерывных отображений компактов $f: X \longrightarrow Y$ можно задать отображение $\exp_k(f): \exp_k(X) \longrightarrow \exp_k(Y)$ по той же формуле, что и для $\exp(X)$. Эта операция тоже будет ковариантным функтором в категории Сотр (см. [15]).

И ещё одним примером, который нужно здесь упомянуть, является функтор суперрасширения $\lambda(\cdot)$.

Определение 1.1.4. Пусть X — топологическое пространство. Система ξ замкнутых подмножеств X называется сцепленной, если любые два её элемента имеют непустое пересечение.

Определение 1.1.5. Если X — топологическое пространство, то через λX обозначается множество всех максимальных по включению сцепленных систем(то есть не содержащихся в других сцепленных системах). Далее такие системы будем называть максимальными сцепленными системами.

Определение 1.1.6. Множество λX с топологией, заданной при помощи следующей предбазы:

$$O(U) = \{ \xi \in \lambda X : \text{существует такое } F \in \xi, \text{ что } F \subset U \},$$

где U — открытое подмножество X, называется суперрасширением топологического пространства X.

Суперрасширение компакта также является компактом (см. [15]).

Если $f: X \longrightarrow Y$ — непрерывное отображение компактов, то можно определить отображение $\lambda f:\lambda X\longrightarrow \lambda Y$ следующим образом: для максимальной сцепленной системы ξ рассмотрим систему $\{f(F): F \in \xi\}$. Очевидно, эта система замкнутых подмножеств пространства Y является сцепленной. Добавим к системе $\{f(F): F \in \xi\}$ всевозможные замкнутые в Y надмножества её элементов, получив таким образом систему $\lambda f(\xi)$. Система $\lambda f(\xi)$, очевидно, тоже будет сцепленной. Предположим, что $\lambda f(\xi)$ не максимальная, то есть существует замкнутое $K \subset Y$ такое, что для любого $D \in \lambda f(\xi)$ выполняется $D \cap K \neq \emptyset$ и $K \notin \lambda f(\xi)$. В частности, для любого $F \in \xi$ выполняется $f(F) \cap K \neq \emptyset$. Более того, в силу включения $f(F) \subset f(X)$, верно что $f(F) \cap (K \cap f(X)) \neq \emptyset$. Значит для любого $F \in \xi$ выполняется $F \cap f^{-1}(K \cap f(X)) \neq \emptyset$, то есть $f^{-1}(K \cap f(X))$ — замкнутое подмножество пространства X, имеющее непустое пересечение со всеми элементами ξ . Так как система ξ — максимальная, то $f^{-1}(K \cap f(X)) \in \xi$. Но отсюда следует, что множество K является замкнутым надмножеством элемента $K \cap f(X)$ системы $\{f(F) : F \in \xi\}$, что противоречит тому, что $K \notin \lambda f(\xi)$. Значит система $\lambda f(\xi)$ — максимальная. Таким образом задано корректное отображение $\lambda f: \lambda X \longrightarrow \lambda Y$. Операция суперрасширения $\lambda(\cdot)$ будет ковариантным функтором в категории Сотр(см. [15]).

В настоящей работе рассматривается также ещё одна категория.

Определение 1.1.7. Топологическое пространство X называется р-пространством (или же перистым пространством), если существует последовательность

 \mathcal{U}_n семейств открытых подмножеств стоун-чеховской компактификации βX такая, что каждая система \mathcal{U}_n покрывает X и для каждого $x \in X$ выполняется включение $\bigcap_{n \in \mathbb{N}} st(x, \mathcal{U}_n) \subset X$, где $st(x, \mathcal{U}_n) = \bigcup \{U \in U_n : x \in U\}$.

Определение 1.1.8. Категория \mathcal{P} — это категория, объектами которой являются паракомпактные p-пространства, а морфизмами — совершенные отображения между паракомпактными p-пространствами.

Заметим, что композиция совершенных отображений является совершенным отображением (см. [19], 3.7), поэтому категория задана корректно. В качестве ключевой характеристики паракомпактных p-пространств будем использовать следующую теорему:

Теорема 1.1.9. [1] Для того, чтобы топологическое пространство можно было совершенно отобразить на метрическое пространство, необходимо и достаточно, чтобы оно было паракомпактным p-пространством.

Рассмотрим пример ковариантного функтора в данной категории.

Определение 1.1.10. Если X — топологическое пространство, за $\exp_c(X)$ обозначается пространство всех его непустых замкнутых компактных подмножеств, наделённое топологией Вьеториса(см. [15]).

Заметим, что если X — компакт, то данное пространство совпадает с гиперпространством $\exp(X)$, в силу того, что все замкнутые подмножества компакта компактны. Для паракомпактного p-пространства X пространство $\exp_c(X)$ будет паракомпактным p-пространством(см. [4]). Если $f: X \longrightarrow Y$ — совершенное отображение паракомпактных p-пространств, то отображение $\exp_c(f): \exp_c(X) \longrightarrow \exp_c(Y)$ строится аналогично случаю функтора $\exp(\cdot)$ в категории Сотр, по формуле $\exp(f)(K) = f(K)$. Получившееся отображение будет совершенным, а вся операция будет ковариантным функтором в категории $\mathcal{P}(\text{см. [4]})$. Заметим, что если X — компакт, то $\exp_c(X)$ совпадает с гипер-

пространством $\exp(X)$, поэтому функтор \exp_c при ограничении на категорию Сотр совпадает с функтором $\exp(\cdot)$.

1.2. Нормальные функторы

Прежде чем вводить определение нормальных функторов, напомним несколько определений, связанных с понятием обратного спектра топологических пространств.

Определение 1.2.1. Пусть (A,\leqslant) — частично упорядоченное множество, причём направленное, то есть для любых $\alpha,\beta\in A$ существует $\gamma\in A$ такой, что $\alpha\leqslant\gamma$ и $\beta\leqslant\gamma$, а $X_{\alpha},\alpha\in A$ — семейство топологических пространств. Если для любой пары элементов $\alpha,\beta\in A$ таких, что $\alpha\leqslant\beta$ определено непрерывное отображение $p_{\alpha}^{\beta}:X_{\beta}\longrightarrow X_{\alpha}$, удовлетворяющее следующим условиям: при $\alpha=\beta$ отображение p_{α}^{β} это тождественное отображение $id_{X_{\beta}}$, а для тройки $\alpha,\beta,\gamma\in A$ такой, что $\alpha\leqslant\beta\leqslant\gamma$ выполняется равенство $p_{\alpha}^{\gamma}=p_{\beta}^{\gamma}\cdot p_{\alpha}^{\beta}$, то система $\{X_{\alpha},p_{\alpha}^{\beta}:\alpha,\beta\in A\}$ называется обратным спектром топологических пространств.

Определение 1.2.2. Для обратного спектра $S = \{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in A\}$ рассмотрим произведение $\prod_{\alpha \in A} X_{\alpha}$. Если для точки $(x_{\alpha} : \alpha \in A) \in \prod_{\alpha \in A} X_{\alpha}$ данного произведения равенство $x_{\alpha} = p_{\alpha}^{\beta}(x_{\beta})$ выполнено для всех пар индексов $\alpha, \beta \in A$ таких, что $\alpha \leqslant \beta$, то эта точка называется нитью обратного спектра.

Определение 1.2.3. Подмножество $\prod_{\alpha \in A} X_{\alpha}$, состоящее из всех нитей называется пределом обратного спектра S и обозначается $\lim S$. Данное множество обладает топологией, индуцированной из тихоновской топологии произведения $\prod_{\alpha \in A} X_{\alpha}$.

Определение 1.2.4. Пусть $r_{\beta}: \prod_{\alpha \in A} X_{\alpha} \longrightarrow X_{\beta}$ — проекция на сомножитель. Тогда ограничение $p_{\beta} = r_{\beta}|_{\lim S}$ данной проекции на предел обратного спектра называется предельной проекцией.

Заметим также, что при этом множества вида $p_{\beta}^{-1}(U)$ для $\beta \in A$ и открытых $U \subset X_{\beta}$ составляют базу вышеупомянутой топологии пространства $\lim S(\text{см. [15]}).$

Перейдём непосредственно к определению нормального функтора (см. [18]).

Определение 1.2.5. Ковариантный функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется нормальным, если он удовлетворяет следующим свойствам:

1. Функтор ${\mathcal F}$ непрерывен. Это означает следующее: пусть $S = \{X_{\alpha}, p_{\alpha}^{\beta}:$ $\alpha, \beta \in A\}$ — обратный спектр компактов. Тогда несложно видеть, что $\mathcal{F}(S)=\{\mathcal{F}(X_{lpha}),\mathcal{F}(p_{lpha}^{eta}):lpha,eta\in A\}$ тоже будет обратным спектром компактов. Известно(см. [15]), что предел обратного спектра компактов тоже является компактом, значит $\lim S$ и $\lim \mathcal{F}(S)$ — компакты. Рассмотрим предельные проекции $p_{\alpha}: \lim S \longrightarrow X_{\alpha}$. Под действием функтора ${\mathcal F}$ они переходят в отображения ${\mathcal F}(p_{\alpha}): {\mathcal F}(\lim S) \longrightarrow {\mathcal F}(X_{\alpha})$. Обозначим за $p:\mathcal{F}(\lim S)\longrightarrow \prod_{\alpha\in A}\mathcal{F}(X_{\alpha})$ диагональное произведение этих отображений. Пусть $x \in \mathcal{F}(\lim S)$. Покажем, что $p(x) \in \lim \mathcal{F}(S)$, то есть p(x) — нить обратного спектра $\mathcal{F}(S)$. Возьмём произвольную пару индексов $\beta, \gamma \in A$ таких, что $\beta \leqslant \gamma$. Соответствующие данным индексам координаты точки p(x) это $\mathcal{F}(p_{\beta})(x)$ и $\mathcal{F}(p_{\gamma})(x)$. Из определений нити и предельных проекций очевидно следует равенство $p_{\beta} = p_{\beta}^{\gamma} \cdot p_{\gamma}$. Отсюда следует, что $\mathcal{F}(p_\beta^\gamma)\mathcal{F}(p_\gamma)(x)=\mathcal{F}(p_\beta^\gamma\cdot p_\gamma)(x)=\mathcal{F}(p_\beta)(x)$, из чего следует, что $p(x) \in \lim \mathcal{F}(S)$. Значит можно считать, что p есть отображение из компакта $\mathcal{F}(\lim S)$ в компакт $\lim \mathcal{F}(S)$. Если отображение p — гомеоморфизм для любого обратного спектра компактов, то функтор ${\mathcal F}$ называется непрерывным. Более кратко можно сказать, что функтор \mathcal{F} должен быть перестановочен с операцией предела обратного спектра.

- 2. Функтор \mathcal{F} мономорфен. Это означает, что любое вложения компактов $i: X \longrightarrow Y$ под действием функтора \mathcal{F} должно переходить во вложение $\mathcal{F}(i): \mathcal{F}(X) \longrightarrow \mathcal{F}(Y)$. Стоит заметить, что если \mathcal{F} мономорфный функтор, а D замкнутое подмножество компакта X, то D само является компактом и вложение $i: D \longrightarrow X$ под действием функтора \mathcal{F} перейдёт во вложение $\mathcal{F}(i): \mathcal{F}(D) \longrightarrow \mathcal{F}(X)$. Таким образом, совершенно естественным будет отождествить $\mathcal{F}(D)$ с $\mathcal{F}(i)(\mathcal{F}(D))$, и далее, в подобных ситуациях, будем писать $\mathcal{F}(D) \subset \mathcal{F}(X)$.
- 3. Функтор \mathcal{F} сохраняет пересечения. Это значит, что для любого компакта X и для любой системы $\{D_{\alpha}: \alpha \in A\}$ его замкнутых подмножеств выполняется равенство

$$\mathcal{F}(\bigcap_{\alpha \in A} D_{\alpha}) = \bigcap_{\alpha \in A} \mathcal{F}(D_{\alpha}).$$

- 4. Функтор \mathcal{F} сохраняет точку и пустое множество, то есть для любого одноточечного пространства X пространство $\mathcal{F}(X)$ тоже одноточечное, а также $\mathcal{F}(\varnothing) = \varnothing$.
- 5. Функтор \mathcal{F} сохраняет прообразы, то есть для любого отображения компактов $f: X \longrightarrow Y$ и для любого замкнутого $D \in Y$ выполняется равенство

$$(\mathcal{F}(f))^{-1}\mathcal{F}(D) = \mathcal{F}(f^{-1}D).$$

- 6. Функтор \mathcal{F} эпиморфный. Это значит, что для любого сюръективного отображения компактов $f: X \longrightarrow Y$ отображение $\mathcal{F}(f): \mathcal{F}(X) \longrightarrow \mathcal{F}(Y)$ тоже сюръективно.
- 7. Функтор \mathcal{F} сохраняет вес, то есть для любого бесконечного компакта X верно равенство $\omega(X) = \omega(\mathcal{F}(X))$.

Заметим, что формулы в условиях 3 и 5 будут иметь смысл лишь при выполнении условия 2, поэтому про сохранение функтором пересечений или прообразов говорят лишь тогда, когда он мономорфен.

Вышеописанные функторы гиперпространства $\exp(\cdot)$ и k-ой гиперсимметрической степени $\exp_k(\cdot)$ являются нормальными функторами в категории Сотр, ровно как и функтор возведения в конечную степень(см. [18]). Функтор суперрасширения $\lambda(\cdot)$ не является нормальным, так как не сохраняет прообразы, но всем прочим условиям он удовлетворяет(см. [15]).

Определение 1.2.6. Пусть \mathcal{F} — мономорфный функтор в категории Сотр, пространство X — компакт, точка $a \in \mathcal{F}(X)$. Тогда подмножество компакта X, задаваемое формулой

$$\operatorname{supp}(a) = \bigcap \{D: D - \operatorname{замкнутое} \operatorname{подмножество} X, a \in \mathcal{F}(D)\},$$

называется носителем точки a.

Если при этом функтор \mathcal{F} сохраняет пересечения, то $a \in \bigcap \mathcal{F}(D) = \mathcal{F}(\bigcap D) = \mathcal{F}(\operatorname{supp}(a)).$

Определение 1.2.7. Если для любого непрерывного отображения компактов $f: X \longrightarrow Y$ и для любой точки $a \in \mathcal{F}(X)$ выполняется равенство $f(\operatorname{supp}(a)) = \operatorname{supp}(\mathcal{F}(f)(a))$, то говорят, что функтор \mathcal{F} сохраняет носители.

Если функтор \mathcal{F} в категории Сотр мономорфен, сохраняет пересечения и прообразы, то он сохраняет носители(см. [21]).

Определение 1.2.8. Если \mathcal{F} — мономорфный функтор и n — натуральное число такие, что для любого компакта X и для любой точки $a \in \mathcal{F}(X)$ верно неравенство $|\operatorname{supp}(a)| \leqslant n$, то говорят, что степень функтора \mathcal{F} не превосходит n ($\deg \mathcal{F} \leqslant n$). Если для некоторого натурального n верно утверждение $\deg \mathcal{F} \leqslant n$, но не верно $\deg \mathcal{F} \leqslant n-1$, то говорят, что степень \mathcal{F} равна n ($\deg \mathcal{F} = n$).

Несложно видеть, что функтор возведения в степень n, равно как и функтор n-ой гиперсимметрической степени $\exp_n(\cdot)$ обладают степенью n.

Пусть n — натуральное число. Тогда для мономорфного функтора ${\mathcal F}$ и компакта X имеет место следующее обозначение:

$$\mathcal{F}_n(X) = \{ a \in \mathcal{F}(X) : |\operatorname{supp}(a)| \leqslant n \}.$$

Для нормального функтора \mathcal{F} пространство $\mathcal{F}_n(X)$ — замкнутое подмножество $\mathcal{F}(X)$ (см. [21]).

Определение 1.2.9. Пусть X — компакт, $n \in \mathbb{N}$ и \mathcal{F} — мономорфный функтор в категории Сотр. Рассмотрим отображение $\pi_n : X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$, где n обозначает как натуральное число, так и n-точечное дискретное пространство, а само отображение π_n задаётся формулой $\pi_n(\xi, a) = \mathcal{F}(\xi)(a)$, в которой точка $\xi \in X^n$ в правой части равенства отождествляется с отображением $\xi : n \longrightarrow X$. Тогда π_n называется отображением Басманова (см. [2]).

Для любого непрерывного функтора \mathcal{F} , любого компакта X и любого натурального n отображение π_n непрерывно(см. [2]).

Перейдём теперь к определению понятия нормального функтора в категории \mathcal{P} паракомпактных p-пространств и их совершенных отображений(см. [4]). Для начала, ковариантный функтор \mathcal{F} должен удовлетворять семи свойствам, аналогичным описанным выше для категории Comp, то есть должен быть непрерывен, мономорфен, эпиморфен, сохранять точку, пустое множество, пересечения, прообразы и вес. Эти свойства формулируются абсолютно также, с заменой компактов на паракомпактные p-пространства, их непрерывных отображений на их совершенные отображения, а в пункте 1 рассматриваются только обратные спектры с совершенными проекциями p_{α}^{β} , но для того, чтобы быть уверенными в корректности полученных требований для \mathcal{F} , необходимо вспомнить ещё несколько утверждений.

В пунктах 2, 3 и 5 важным является то, что свойство быть паракомпактным p-пространством наследуется замкнутыми подмножествами(см. [1] и [19]).

Для пункта 1 необходимо отметить, что предел обратного спектра из паракомпактных p-пространств и совершенных p_{α}^{β} тоже будет паракомпактным pпространством, причём предельные проекции будут совершенными отображениями(см. [15] и [19]).

Для мономорфных функторов в категории \mathcal{P} аналогичным образом определяется понятие носителя supp и понятие $\mathcal{F}_n(X)$.

Кроме этих семи требований в случае категории \mathcal{P} накладывается ещё одно. Для мономорфных функторов в категории \mathcal{P} можно абсолютно аналогично определению 1.2.9 задать отображение Басманова π_n , и его непрерывность будет последним требованием, накладываемым на нормальные функторы.

Определение 1.2.10. Ковариантный функтор \mathcal{F} в категории \mathcal{P} называется нормальным, если он непрерывен, мономорфен, эпиморфен, сохраняет точку, пустое множество, пересечения, прообразы и вес, а также обладает непрерывным отображением Басманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

Все прочие утверждения и обозначения, описанные выше в этом параграфе, дословно переносятся на категорию \mathcal{P} с заменой компактов на паракомпактные p-пространства и заменой их непрерывных отображений на совершенные. Также функтор возведения в степень и функтор exp_c являются нормальными в категории $\mathcal{P}(\text{см. [4]})$.

Обобщения теорем Катетова и Зенора, использующие нормальные функторы. Паранормальные пространства

Данная глава посвящена обобщениям следующей классической теоремы, доказанной М. Катетовым в 1948 году.

Теорема 1.3.1. [25] Если для компакта X его куб X^3 наследственно нормален, то X метризуем.

Существует множество работ по обобщению данного результата (см [28], [23], [26], [32]). Здесь же мы рассмотрим некоторые из тех, что используют понятие нормального функтора в категориях Сотр и \mathcal{P} . Первым подобную работу написал В.В. Федорчук в 1989 году. Как было замечено в параграфе 1.2, операция возведения в куб является нормальным функтором в категории Сотр, причём её степень как функтора равна 3. С учётом данного факта, несложно видеть, что из следующей теоремы следует теорема Катетова.

Теорема 1.3.2. [16] Если для нормального функтора \mathcal{F} степени $\geqslant 3$, действующего в категории Сотр компактов и их непрерывных отображений, пространство $\mathcal{F}(X)$ наследственно нормально, то X — метризуемый компакт.

Также в теореме Катетова можно изменить требование наследственной нормальности на другое. В работе [32] 1971 года П. Зенор доказал следующую теорему:

Теорема 1.3.3. [32] Если для компакта X его куб X^3 наследственно счётно паракомпактен, то X метризуем.

В 2000 году Т.Ф. Жураев доказал теорему, схожую с теоремой Федорчука, но обобщающую теорему Зенора.

Теорема 1.3.4. [5] Если для нормального функтора \mathcal{F} степени $\geqslant 3$, действующего в категории Сотр компактов и их непрерывных отображений, пространство $\mathcal{F}(X)$ наследственно счётно паракомпактно, то X — метризуемый компакт.

Рассмотрим теперь класс топологических пространств, называемых паранормальными.

Определение 1.3.5. Топологическое пространство X называется паранормальным (в смысле Никоша, см. [29]), если для любой счётной дискретной системы замкнутых подмножеств $\{F_n:n<\omega\}$ найдется локально конечная система открытых множеств $\{U_n:n<\omega\}$ такая, что $F_n\subset U_n$, и $F_m\cap U_n\neq\varnothing$ тогда и только тогда, когда $F_m=F_n$.

Приведём здесь несколько свойств паранормальных пространств:

1. Любое нормальное пространство является паранормальным.

Покажем это. Рассмотрим произвольную дискретную счетную систему замкнутых множеств $\{F_n:n<\omega\}$ в исходном нормальном пространстве X. Объединение элементов любой дискретной системы замкнутых множеств является замкнутым множеством(см. [19]). Следовательно, множество $\bigcup_{n>1} F_n$ замкнуто. Значит, в силу нормальности X существует замкнутое множество F_1' такое, что $F_1 \subset Int(F_1') \subset F_1'$ и $F_1' \cap (\bigcup_{n>1} F_n) = \emptyset$, где через $Int(F_1')$ обозначена внутренность множества F_1' . Покажем, что система

$$\{F_1'\} \cup \{F_n : 1 < n < \omega\}$$

дискретна. Рассмотрим произвольную точку $x \in X$. Если $x \in F_1'$, то в силу замкнутости $\bigcup_{n>1} F_n$ существует окрестность Ox точки x такая, что $Ox \cap (\bigcup_{n>1} F_n) = \varnothing$.

Если $x \notin F_1'$, то в силу дискретности системы $\{F_n: 1 < n < \omega\}$ существует окрестность Ox точки x и число i > 1 такие, что $Ox \cap F_n = \emptyset$ при n > 1 и $n \neq i$. Тогда $Ox \setminus F_1'$ — окрестность x, пересекающая не более одного элемента системы $\{F_1'\} \cup \{F_n: 1 < n < \omega\}$. Таким образом, дискретность этой системы доказана.

Далее аналогично отделяем F_2 от $F_1' \cup \bigcup_{n>2} F_n$ при помощи F_2' . Снова получаем дискретную систему замкнутых множеств $\{F_1', F_2'\} \cup \{F_n : 2 < n < \omega\}$. По рекурсии проводим эту процедуру для всех $i \in \mathbb{N}$. На каждом шаге i

получим дискретную систему замкнутых множеств $\{F'_k: k \leqslant i\} \cup \{F_n: i < n < \omega\}$. Однако, система $\{Int(F'_n): n < \omega\}$ не обязательно будет локально конечной. Введем обозначение: $V_n = Int(F'_n)$. Заметим, что $V_m \cap V_n = \varnothing$ при $m \neq n$. Рассмотрим следующее множество $K = \{x \in X:$ любая окрестность x пересекается с бесконечным числом множеств $V_n\}$. Пусть $x \notin K$. Тогда существует открытая окрестность Ox, пересекающаяся лишь с конечным числом множеств V_n . Значит, если $y \in Ox$, то $y \notin K$. Следовательно, K замкнуто.

Пусть теперь $x \in F_i$ для некоторого i. Тогда V_i - открытая окрестность x, причем она пересекается лишь с одним из множеств V_n (только с V_i). Отсюда следует, что $K \cap (\bigcup_{n < \omega} F_n) = \varnothing$. В силу нормальности X существует открытые непересекающиеся множества A и B такие, что $K \subset A$ и $\bigcup_{n < \omega} F_n \subset B$. Положим $U_n = V_n \cap B$. Для всех $n < \omega$ выполняется включение $F_n \subset U_n$, и $F_m \cap U_n \neq \varnothing$ тогда и только тогда, когда $F_m = F_n$.

Покажем что система $\{U_n: n < \omega\}$ локально конечна. Предположим противное: пусть существует точка $x \in X$ такая, что любая ее окрестность пересекается с бесконечным числом множеств U_n . Но тогда, поскольку $U_n \subset V_n$, любая окрестность x будет пересекаться с бесконечным числом множеств V_n . Следовательно $x \in K \subset A$, и A – окрестность x, не пересекающаяся ни с одним из U_n . Противоречие.

Значит, $\{U_n:n<\omega\}$ - локально конечная система, и X – паранормальное пространство. Таким образом, любое нормальное пространство паранормально.

2. Любое счётно паракомпактное пространство является паранормальным.

Действительно, рассмотрим произвольную дискретную счетную систему замкнутых множеств $\{F_n: n<\omega\}$ в некотором произвольно выбранном счетно паракомпактном пространстве X. Так как множество $(\bigcup_{n<\omega} F_n)$ за-

 $n \neq i$

мкнуто и $F_i \cap F_j = \varnothing$ при $i \neq j$, то система $\{V_i = X \setminus (\bigcup_{\substack{n < \omega \\ n \neq i}} F_n) : i < \omega\}$ будет открытым счетным покрытием пространства X. В силу счетной параком-пактности X существует локально конечное открытое покрытие $\{U_n : n < \omega\}$ такое, что $U_i \subset V_i$ для любого i. По построению $U_i \cap F_j = \varnothing$ при $i \neq j$, а значит $F_i \subset U_i$, поскольку $\{U_n : n < \omega\}$ — покрытие. Следовательно пространство X паранормально.

3. Из вполне регулярности не следует паранормальность. Например, плоскость Немыцкого (см. [19]) не паранормальна.

В самом деле, пусть L - плоскость Немыцкого. Будем рассматривать на ней координаты, индуцированные с обычной плоскости: $(x,y) \in L \Leftrightarrow y \geqslant 0$. Обозначим через $W_i(x)$ $(i \in \mathbb{N}, x \in \mathbb{R})$ открытый круг радиуса 1/i с центром в (x,1/i) (расстояния как на подмножестве обычной плоскости, топология самой плоскости Немыцкого не метризуема, см. [19]), и пусть $V_i(x) = W_i(x) \cup \{(x,0)\}$. Множества $V_i(x)$ составляют базу топологии пространства L в точках множества $L_1 = \{(x,0) \in L\}$. Для любой точки $(x,y) \in L \setminus L_1$ существует окрестность вида $W_{1/y}(x)$, не пересекающая L_1 . Следовательно L_1 замкнуто. Пусть теперь A - произвольное подмножество L_1 . Тогда $L_1 \setminus \bigcup_{\substack{(a,0) \in A \\ (a,0) \in A}} V_1(a)) = L_1 \setminus \bigcup_{\substack{(a,0) \in A \\ (a,0) \in A}} \{(a,0)\}\} = L_1 \setminus A$ - замкнутое множество. Значит, любое подмножество L_1 замкнуто в топологии плоскости Немыцкого.

Положим теперь $Q = \{(q,0) \in L_1 : q \in \mathbb{Q}\}$, где \mathbb{Q} — множество рациональных чисел. Заметим, что замыкание $\overline{V_i}(a)$ совпадает с замыканием в обычной топологии плоскости и $\overline{V_i}(a) \cap L_1 = V_i(a) \cap L_1 = \{(a,0)\}$. Предположим, что простраство L паранормально. Рассмотрим дискретную счетную систему замкнутых одноточечных множеств $\{\{(q,0)\}: q \in \mathbb{Q}\}$. Для этой системы по нашему предположению существует локально конечная система открытых множеств $\{U_q: q \in \mathbb{Q}\}, (q,0) \in U_p \Leftrightarrow q = p$. Для лю-

бой точки $(q,0) \in Q$, фиксируем ее базовую окрестность $V_{i(q)}(q) \subset U_q$. Система таких окрестностей тоже локально конечна. Теперь произвольно фиксируем точку $(b,0) \in L_1 \setminus Q$. Для неё существует окрестность $V_k(b)$, пересекающаяся лишь с конечным числом множеств $V_{i(q)}(q)$. А значит, $O(b) = V_k(b) \setminus \bigcup_{q \in \mathbb{Q}} \overline{V_{i(q)}(q)}$ – открытое множество, содержащее точку (b,0). Строим такие окрестности O(b) для всех точек $(b,0) \in L_1 \setminus Q$. Положим $O_1 = \bigcup_{q \in \mathbb{Q}} V_{i(q)}(q)$, $O_2 = \bigcup_{b \in \mathbb{R} \setminus \mathbb{Q}} O(b)$. Имеем O_1 , O_2 – открытые, $O_1 \cap O_2 \cap O_3 \cap$

4. Образ паранормального (наследственно паранормального) пространства при совершенном отображении паранормален (наследственно паранормален).

Доказательство данного факта есть в работе [13].

Принимая во внимание свойства 1 и 2, становиться очевидно, что из следующей теоремы, доказанной $A.\Pi.$ Комбаровым в 2017 году, следуют одновременно теоремы 1.3.2 и 1.3.4.

Теорема 1.3.6. [13] Если для нормального функтора \mathcal{F} степени $\geqslant 3$, действующего в категории Сотр компактов и их непрерывных отображений, пространство $\mathcal{F}(X)$ наследственно паранормально, то X — метризуемый компакт.

Однако, подобные результаты можно получить не только для компактов. В частности, вместо категории Сотр можно рассмотреть более широкую категорию \mathcal{P} . Данную тему развивает М.А. Добрынина в уже упоминавшейся в предыдущих параграфах работе [4]. Ключевой там является следующая теорема.

Теорема 1.3.7. [4] Пусть X — паракомпактное p-пространство, \mathcal{F} — нормальный функтор степени $\geqslant 3$, действующий в категории \mathcal{P} паракомпактных p-пространств u их совершенных отображений. Тогда если пространство $\mathcal{F}(X)$ наследственно нормально, то X — метризуемое пространство.

Естественным образом возникает вопрос — можно ли по аналогии с теоремами 1.3.2-1.3.6 заменить в данном утверждении требование наследственной нормальности $\mathcal{F}(X)$ на требование наследственной счётной паракомпактности или наследственной паранормальности? В работе [11] А.П. Комбарова в 2015 году получен утвердительный ответ на первую часть данного вопроса. В работе автора [33] от 2021 года данный вопрос закрыт окончательно при помощи следующей теоремы:

Теорема 1.3.8. [33] Пусть X — паракомпактное p-пространство, \mathcal{F} — нормальный функтор степени $\geqslant 3$, действующий в категории \mathcal{P} паракомпактных p-пространств u их совершенных отображений. Тогда если пространство $\mathcal{F}(X)$ наследственно паранормально, то X — метризуемое пространство.

Определение 1.3.9. Топологическое пространство X называется пространством точечно-счётного типа, если для любой точки $x \in X$ существует компактное подмножество $K \subset X$ такое, что $x \in K$ и $\chi(K,X) \leqslant \omega_0$.

В работе [1] доказана следующая теорема:

Теорема 1.3.10. [1] Каждое вполне регулярное p-пространство является пространством точечно-счётного типа.

Отсюда непосредственно следует, что все паракомпактные p-пространства являются пространствами точечно-счётного типа.

Теперь докажем первое из вспомогательных утверждений, необходимых для доказательства теоремы 1.3.8.

Предложение 1.3.11. [33] Пусть X — паракомпактное p-пространство c единственной неизолированной точкой x_0 , причём $\chi(x_0, X) \geqslant \omega_1$. Тогда гиперсимметрическая степень $\exp_3 X$ не является наследственно паранормальным пространством.

Доказательство. [33] Как следует из теоремы 1.3.10, в пространстве X для точки x_0 найдётся компакт K такой, что $x_0 \in K$ и $\chi(K,X) \leqslant \omega_0$. Имеем $x_0 \in K \subset X$, где K — компакт, поэтому имеет место неравенство $\chi(x_0,X) \leqslant \chi(x_0,K)\chi(K,X)$ (см. [19]). Из условия имеем $\chi(x_0,X) \geqslant \omega_1$. Объединив эти три неравенства, получаем, что $\chi(x_0,K) \geqslant \omega_1$, то есть пространство K не имеет в x_0 счётной базы, а потому не удовлетворяет первой аксиоме счётности, и, следовательно, не может быть метризуемым. Как отмечалось в Параграфе 1.2, гиперсимметрическая степень \exp_3 это нормальный функтор степени 3 в категории Сотр, поэтому из теоремы 1.3.6 следует, что пространство $\exp_3(K)$ не наследственно паранормально. Так как $\exp_3(K) \subset \exp_3(X)$, то и пространство $\exp_3(X)$ не может быть наследственно паранормальным.

Дальше нам понадобиться следующая теорема, доказанная в работе [12]:

Теорема 1.3.12. [12] Если произведение $X \times Y$ наследственно паранормально, то или пространство X совершенно нормально, или все счётные подмножества пространства Y замкнуты.

Докажем ещё одно утверждение.

Предложение 1.3.13. [33] Пусть X — паракомпактное p-пространство, причём его гиперсимметрическая степень $\exp_3(X)$ наследственно паранормальна. Тогда пространство X метризуемо.

Если все его точки изолированы, то, очевидно, пространство X метризуемо.

Пусть в X ровно одна неизолированная точка x_0 . Если $\chi(x_0, X) \geqslant \omega_1$, то, согласно предложению 1.3.11, пространство $\exp_3(X)$ не наследственно паранормально, что противоречит условию настоящего предложения. Поэтому $\chi(x_0, X) \leqslant \omega_0$, то есть у пространства X в точке x_0 есть счётная база, которую мы обозначим за O_n . Рассмотрим семейство множеств $\{O_n, n \in \mathbb{N}\} \cup \{\{x\}: x \in X, x \neq x_0\}$. Во-первых, данное семейство является базой топологии пространства X, так как все точки X, отличные от x_0 , изолированные. Во-вторых, оно представимо в виде объединения счётного числа дискретных семейств $O_n \cup \{\{x\}: x \notin O_n\}$, а значит искомое семейство есть σ -дискретная база X. Следовательно, по метризационной теореме Бинга (см. [19]), топологическое пространство X будет метризуемым.

Последним будет случай, при котором в X есть хотя бы две неизолированные точки x_1 и x_2 . Выберем открытые множества U_1,U_2,V_1 и V_2 такие, что $x_1 \in V_1 \subset \overline{V_1} \subset U_1, \ x_2 \in V_2 \subset \overline{V_2} \subset U_2$ и $U_1 \cap U_2 = \varnothing$. Положим $F_1 = X \setminus U_1$ и $F_2 = X \setminus U_2$. Зададим также отображение $f: \overline{V_1} \times \exp_2(F_1) \longrightarrow \exp_3(X)$ при помощи формул $f(x,\{y,z\}) = \{x,y,z\}, f(x,\{y\}) = \{x,y\}$. Покажем, что f является гомеоморфизмом между $\overline{V_1} \times \exp_2(F_1)$ и некоторым подпространством $\exp_3(X)$.

В силу построения $\overline{V_1} \cap F_1 = \varnothing$, отсюда легко видеть, что f — инъективное отображение. Пусть W — произвольное множество из базы топологии Вьеториса $\exp_3(X)$, оно будет иметь вид $W = O < W_1, W_2, ..., W_k >$, где $W_1, W_2, ..., W_k$ — открытые подмножества X. Зафиксируем произвольно точку w множества $f^{-1}(W)$. Она имеет вид $w = (w_1, \{w_2, w_3\})$ или $w = (w_1, \{w_2\})$, где $w_1 \in \overline{V_1}$, $w_2 \in F_1$, $w_3 \in F_1$. Обозначим $\widetilde{W_i} = \bigcap_{w_i \in W_j} W_j$. Тогда у точки w будет открытая окрестность $\widetilde{W} = \widetilde{W_1} \times O < \widetilde{W_2}, \widetilde{W_3} >$ или $\widetilde{W} = \widetilde{W_1} \times O < \widetilde{W_2} >$, и для неё верно включение $f(\widetilde{W}) \subset W$. Значит прообраз $f^{-1}(W)$ открыт и отображение f непрерывно.

Рассмотрим теперь G — открытое множество из $\overline{V_1} \times \exp_2(F_1)$, имеющее

вид $G = G_1 \times O < G_2, G_3, ..., G_l >$, где G_1 — открытое в $\overline{V_1}$, а $G_2, G_3, ..., G_l$ — открытые в F_1 . В силу замкнутости $\overline{V_1}$ и F_1 можно построить такие открытые в X подмножества $\widetilde{G_1}, \widetilde{G_2}, ..., \widetilde{G_l}$, что $\widetilde{G_i} \cap (\overline{V_1} \cup F_1) = G_i$ при $i = \overline{1, l}$. Обозначим $\widetilde{G} = O < \widetilde{G_1}, \widetilde{G_2}, ..., \widetilde{G_l} >$. Это будет открытое подмножество $\exp_3(X)$. Заметим, что $f(G) = \widetilde{G} \cap f(\overline{V_1} \times \exp_2(F_1))$ — открытое подмножество $f(\overline{V_1} \times \exp_2(F_1))$, а значит отображение f^{-1} непрерывно.

Итак, отображение f является вложением и $\overline{V_1} \times \exp_2(F_1)$ будет наследственно паранормальным пространством, так как оно гомеоморфно подпространству наследственно паранормального пространства $\exp_3(X)$. Множества $\overline{V_1}$ и F_1 — замкнутые подмножества паракомпактного p-пространства X, а значит тоже являются паракомпактными p-пространствами. Докажем, что в $\overline{V_1}$ найдётся счётное незамкнутое подмножество. Если $\chi(x_1, \overline{V_1}) \leqslant \omega_0$, то в качестве этого подмножества возьмём последовательность точек, сходящуюся к x_1 . Если $\chi(x_1,\overline{V_1})\geqslant \omega_1$, то в силу теоремы 1.3.10 существует компакт $K\subset \overline{V_1}$ такой, что $x_1 \in K$ и $\chi(K, \overline{V_1}) \leqslant \omega_0$. Тогда, по аналогии с доказательством предыдущего предложения, $\chi(x_1,K)\geqslant \omega_1$ и компакт K бесконечен. Зафиксируем в нём произвольное счётное подмножество $D \subset K$. Если оно незамкнуто в $\overline{V_1}$, то это и будет необходимое нам подмножество, если же замкнуто, то оно является компактом. Бесконечный компакт не может быть дискретным, поэтому в D есть неизолированная точка d. Тогда $D\setminus\{d\}$ — счётное незамкнутое подмножество \overline{V}_1 . Итак, \overline{V}_1 содержит счётное незамкнутое подмножество и $\overline{V_1} \times \exp_2(F_1)$ наследственно паранормально, а значит, согласно теореме 1.3.12, пространство $\exp_2(F_1)$ совершенно нормально. Отсюда следует метризуемость F_1 (см. [4]). Аналогично можно доказать метризуемость F_2 . Получаем, что Xесть объединение двух замкнутых метризуемых подпространств $X = F_1 \cup F_2$, а следовательно(см. [19], 4.4.19), X метризуемо.

Доказательство. [33]

Пусть \mathcal{F} — нормальный функтор степени $\geqslant 3$, действующий в категории Р. Тогда, согласно определению степени функтора, существует паракомпактное p-пространство X и точка $a \in \mathcal{F}(X)$ такие, что $|\operatorname{supp}(a)| = n \geqslant 3$. Функтор ${\mathcal F}$ сохраняет пересечения, поэтому $a\in {\mathcal F}(\mathrm{supp}(a))={\mathcal F}(n)$ (здесь снова под n подразумевается n-точечное дискретное пространство). Отобразим сюръективно пространство n на дискретное трёхточечное пространство 3 при помощи кокой-нибудь функции f. Функтор \mathcal{F} сохраняет носители, поэтому верно равенство $\operatorname{supp}(\mathcal{F}(f)(a)) = f(\operatorname{supp}(a)) = 3$. То есть точка $b = \mathcal{F}(f)(a) \in \mathcal{F}(3)$ обладает носителем из трёх точек. Обозначим $\mathcal{F}_b(X) = \pi_3(X^3 \times \{b\})$. Если $c \in \mathcal{F}_b(X)$, то, согласно определению отображения Басманова, $c = \mathcal{F}(\xi)(b)$, где $\xi: 3 \longrightarrow X$ — некоторое отображение. В силу сохранения функтором ${\mathcal F}$ носителей верно равенство $\operatorname{supp}(c) = \xi(\operatorname{supp}(b))$, то есть носитель c — некоторое не более чем 3-точечное подмножество X. Значит можно рассматривать операцию supp как отображение $\operatorname{supp}: \mathcal{F}_b(X) \longrightarrow \exp_3(X)$. Построенное таким образом отображение является совершенным эпиморфизмом(см. [4]). Пространство $\mathcal{F}_b(X)$ наследственно паранормально, так как $\mathcal{F}_b(X) \subset \mathcal{F}(X)$, а следовательно, $\exp_3(X)$ тоже наследственно паранормально, в силу вышеописанного свойства 4 паранормальных пространств. Теперь из предложения 1.3.13 следует, что пространство X метризуемо.

В качестве одного из возможных следствий теоремы 1.3.8 приведём в пример аналог теоремы Катетова. Так как возведение в куб есть нормальный функтор степени 3 в категории $\mathcal P$ паракомпактных p-пространств и их совершенных отображений, а потому имеет место следующее:

Следствие 1.3.14. Если для паракомпактного p-пространства X его куб X^3 наследственно паранормален, то X метризуемое пространство.

1.4. Полунормальные функторы в категориях Comp и $\mathcal P$

В предыдущем разделе мы рассмотрели обобщения теоремы 1.3.2, полученные путём изменения накладываемых требований на пространство $\mathcal{F}(X)$ и переходом к более широкой категории пространств X. В данном же параграфе мы рассмотрим способ, подразумевающий ослабление требований, накладываемые непосредственно на функтор \mathcal{F} .

Определение 1.4.1. Функтор \mathcal{F} , действующий в категории Сотр компактов и их непрерывных отображений называется полунормальным (см. [15]), если он непрерывен, мономорфен, сохраняет пересечения, точку и пустое множество.

Заметим, что для полунормальных функторов определены понятия носителя supp и пространства $\mathcal{F}_n(X)$. Очевидно, что все нормальные функторы в категории Comp являются полунормальными в этой категории.

Также для всех натуральных n имеет место следующее обозначение:

$$\mathcal{F}_{nn}(X) = \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X),$$

где за $\mathcal{F}_0(X)$ принимается пустое множество.

Определение 1.4.2. [6] Степенным спектром полунормального функтора \mathcal{F} называется множество

$$sp(\mathcal{F}) = \{k : k \in \mathbb{N}, \mathcal{F}_{kk}(k) \neq \varnothing\}.$$

Степенной спектр всех полунормальных функторов содержит число 1, а степенной спектр нормального функтора представляет из себя либо начальный отрезок натурального ряда, либо всё множество $\mathbb{N}(\text{см. [6]})$.

В работе [7] есть следующая теорема, обобщающая теорему 1.3.2 при помощи понятия полунормального функтора:

Теорема 1.4.3. [7] Пусть $X - \kappa$ омпакт, $\mathcal{F} - n$ олунормальный функтор в категории Сотр компактов и их непрерывных отображений, $sp(\mathcal{F}) = \{1, m, n, ...\}$ и \mathcal{F} удовлетворяет условию (*). Тогда если пространство $\mathcal{F}_n(X) \setminus X$ наследственно нормально, то пространство X метризуемо.

Как можно видеть, требование, накладываемое на степень, сменилось требованием наличия хотя бы трёх чисел в спектре функтора \mathcal{F} . Также появилось ещё одно требование, обозначенное как условие (*). Сформулируем его здесь.

Пусть $sp(\mathcal{F}) = \{1, m, n, ...\}$. Построим отображение $\varphi_{nm}: n \longrightarrow m$ по формуле $\varphi_{nm}(i) = i$ при i < m, $\varphi(i) = m-1$ при $i \geqslant m$. Будем говорить, что \mathcal{F} удовлетворяет условию (*), если

$$\mathcal{F}(\varphi_{nm})(\mathcal{F}_{nn}(n)) \cap \mathcal{F}_{mm}(m) \neq \varnothing.$$

Как доказано в работе [7], все нормальные функторы в категории Сотр, а также несколько часто встречающихся полунормальных функторов, включая функтор суперрасширения $\lambda(\cdot)$, удовлетворяют данному условию. Тут стоит также заметить, что в категории Сотр для полунормального \mathcal{F} пространство $\mathcal{F}_1(X)$ гомеоморфно X, и в формулировке теоремы 1.4.3 под $\mathcal{F}_n(X) \setminus X$ подразумевается $\mathcal{F}_n(X) \setminus \mathcal{F}_1(X)$. Очевидно, пространство $\mathcal{F}_n(X) \setminus X$ есть подпространство $\mathcal{F}(X)$, а значит теорема 1.3.2 действительно следует из теоремы 1.4.3.

С оглядкой на результаты, рассмотренные в параграфе 1.3, можно задать вопрос: возможно ли перенести данный результат на более широкую категорию \mathcal{P} паракомпактных p-пространств и их совершенных отображений? Исследованию данного вопроса посвящена работа автора [34] и оставшаяся часть настоящей главы.

Начнём с того, что введём определение полунормального функтора в категории $\mathcal{P}.$

Определение 1.4.4. Будем называть функтор \mathcal{F} , действующий в категории \mathcal{P} , полунормальным, если он непрерывен, мономорфен, сохраняет пересечения,

точку и пустое множество, а также обладает непрерывным отображением Басманова $\pi_n: X^n \times \mathcal{F}(n) \longrightarrow \mathcal{F}(X)$ для любого натурального n и любого паракомпактного p-пространства X.

Как видно из параграфа 1.2, для полунормальных функторов в категории \mathcal{P} определено понятие носителя supp и для любого паракомпактного p-пространства X и точки $a \in \mathcal{F}(X)$ сохраняется включение $a \in \mathcal{F}(\operatorname{supp}(a))$. Аналогично определяются и пространства $\mathcal{F}_n(X)$. В работе [4] утверждается, что для любого нормального функтора \mathcal{F} в категории \mathcal{P} и для любого паракомпактного p-пространства X все пространства $\mathcal{F}_n(X)$ являются замкнутыми подмножествами пространства $\mathcal{F}(X)$, а пространство $\mathcal{F}_1(X)$ гомеоморфно пространству X и можно считать, что $X \subset \mathcal{F}(X)$, а также что имеет место включение $\operatorname{Im}(\pi_n) \subset \mathcal{F}_n(X)$. Покажем, что на самом деле это верно и для полунормальных функторов в категории \mathcal{P} .

Определение 1.4.5. [19] Многозначное отображение f, сопоставляющее точкам пространства Y замкнутые подмножества пространства X называется полунепрерывным снизу, если для любого открытого подмножества $U \subset X$ множество $\{y \in Y : f(y) \cap U \neq \emptyset\}$ открыто в Y.

Предложение 1.4.6. Пусть X — паракомпактное p-пространство, \mathcal{F} — полунормальный функтор в категории \mathcal{P} . Тогда многозначное отображение $\sup : \mathcal{F}(X) \longrightarrow X$ полунепрерывно снизу.

Доказательство. Докажем равенство $\{y \in \mathcal{F}(X) : \sup y \subset D\} = \mathcal{F}(D)$, где D — любое замкнутое подмножество X. Действительно, пусть y принадлежит левому множеству. Для него $\sup y \subset D$, а значит, в силу мономорфности выполняется $\mathcal{F}(\sup y) \subset \mathcal{F}(D)$, а в силу сохранения пересечений $y \in \mathcal{F}(\sup y)$. Прямое включение доказано. Обратное включение напрямую следует из определения носителя.

Заметим также, что для замкнутого $D \subset X$ и мономорфного \mathcal{F} , множество $\mathcal{F}(D)$ — замкнутое подмножество $\mathcal{F}(X)$, как совершенный образ замкну-

того множества при включении $\mathcal{F}(D)\longrightarrow \mathcal{F}(X)$, полученного под действием функтора \mathcal{F} из включения $D\longrightarrow X$.

Пусть теперь U — некоторое открытое подмножество X. Надо доказать открытость множества $\{y \in \mathcal{F}(X) : \operatorname{supp}(y) \cap U \neq \varnothing\}$. Итак, имеем $\{y \in \mathcal{F}(X) : \operatorname{supp}(y) \cap U \neq \varnothing\} = \mathcal{F}(X) \setminus \{y \in \mathcal{F}(X) : \operatorname{supp}(y) \subset X \setminus U\}$. В силу замкнутости $X \setminus U$ получаем равенство $\{y \in \mathcal{F}(X) : \operatorname{supp}(y) \subset X \setminus U\} = \mathcal{F}(X \setminus U)$. Последнее множество замкнуто в $\mathcal{F}(X)$, а значит $\{y \in \mathcal{F}(X) : \operatorname{supp}(y) \cap U \neq \varnothing\}$ — открыто. Значит $\{y \in \mathcal{F}(X) : \operatorname{supp}(y) \cap U \neq \varnothing\}$ — открыто.

Предложение 1.4.7. Пусть X — паракомпактное p-пространство, \mathcal{F} — полунормальный функтор в категории \mathcal{P} , n — натуральное число. Тогда пространство $\mathcal{F}_n(X)$ — замкнутое подмножество пространства $\mathcal{F}(X)$.

Доказательство. Рассмотрим произвольную точку $y \in \mathcal{F}(X) \setminus \mathcal{F}_n(X)$. Мощность её носителя больше n, поэтому найдутся различные $x_1, x_2, ..., x_{n+1} \in \text{ supp } y$. Так как X — хаусдорфово, существуют открытые $U_1, U_2, ..., U_{n+1} \subset X$ такие, что $x_i \in U_i$ для всех $i = \overline{1, n+1}$, и $U_i \cap U_j \neq \emptyset$ тогда, и только тогда, когда i = j. Обозначим $\widetilde{U}_i = \{z \in \mathcal{F}(X) : \text{ supp } z \cap U_i \neq \emptyset\}$. Согласно предложению 1.4.6, все эти множества \widetilde{U}_i открыты в $\mathcal{F}(X)$. Рассмотрим теперь множество $\widetilde{U} = \bigcap_{i=\overline{1,n+1}} \widetilde{U}_i$. Во-первых, оно открыто в $\mathcal{F}(X)$. Во-вторых, пусть $w \in \widetilde{U}$. Тогда $\sup z \cap U_i \neq \emptyset$, а семейство множеств $\{U_i, i = \overline{1, n+1}\}$ — дизьюнктное, поэтому в носителе $\sup z$ есть по крайней мере n+1 точка, то есть $w \in \mathcal{F}(X) \setminus \mathcal{F}_n(X)$, а значит и $\widetilde{U} \subset \mathcal{F}(X) \setminus \mathcal{F}_n(X)$. Также, очевидно, $y \in \widetilde{U}$, то есть \widetilde{U} — открытая окрестность y, целиком лежащая в $\mathcal{F}(X) \setminus \mathcal{F}_n(X)$. В силу произвольности выбора y получаем, что $\mathcal{F}(X) \setminus \mathcal{F}_n(X)$ — открыто в $\mathcal{F}(X)$, а значит $\mathcal{F}_n(X)$ замкнуто.

Предложение 1.4.8. Пусть X — паракомпактное p-пространство, \mathcal{F} — полунормальный функтор в категории \mathcal{P} . Тогда пространство X гомеоморфно пространству $\mathcal{F}_1(X)$.

Доказательство. В доказательстве предложения 1.4.6 имеет место равенство $\{y \in \mathcal{F}(X) : \operatorname{supp} y \subset D\} = \mathcal{F}(D)$ для всех замкнутых множеств D, лежащих в X. Если рассмотреть это равенство для всех одноточечные множеств $\{x\} \subset X$, то, в силу того, что у точек $y \in \mathcal{F}(X)$ не бывает пустого носителя, получим равенство $\{y \in \mathcal{F}(X) : \operatorname{supp} y = \{x\}\} = \mathcal{F}(\{x\})$. В силу того, что $\mathcal{F}(X)$ сохраняет точки, получаем, что для каждой точки $x \in X$ существует ровно одна точка $y \in \mathcal{F}(X)$ такая, что $\sup y = \{x\}$, причём это элемент одноточечного пространства $\mathcal{F}(\{x\})$. И наоборот, для каждой точки $y \in \mathcal{F}_1(X)$, очевидно, существует ровно одна точка $x \in X$ такая, что $\sup y = \{x\}$ и $\mathcal{F}(\{x\}) = \{y\}$. Таким образом построено взаимно-однозначное отображение $f : X \longrightarrow \mathcal{F}_1(X)$. Докажем, что это гомеоморфизм.

Рассмотрим отображение Басманова $\pi_1: X \times \mathcal{F}(1) \longrightarrow \mathcal{F}(X)$. Несложно заметить, что на $X = X \times \mathcal{F}(1)$ оно действует точно также, как и построенное выше отображение f. Пусть множество C — замкнутое подмножество $\mathcal{F}_1(X)$. Так как, согласно предложению 1.4.7, пространство $\mathcal{F}_1(X)$ замкнуто в $\mathcal{F}(X)$, то, значит, и C замкнуто в $\mathcal{F}(X)$. Тогда прообраз C при отображении π_1 будет тоже замкнут, так как отображение Басманова непрерывно. Но прообразы C при π_1 и f в пространстве X совпадают, а значит $f^{-1}(C)$ — замкнуто и, следовательно, f — непрерывно.

Пусть теперь $U \subset X$ — открытое подмножество. Тогда $f(U) = \{y \in \mathcal{F}_1(X) : \sup y \subset U\} = \{y \in \mathcal{F}(X) : \sup y \cap U \neq \varnothing\} \cap \mathcal{F}_1(X)$. Из предложения 1.4.6 следует, что множество $\{y \in \mathcal{F}(X) : \sup y \cap U \neq \varnothing\}$ открыто в $\mathcal{F}(X)$, а значит f(U) — открыто в $\mathcal{F}_1(X)$. Значит f^{-1} —тоже непрерывно и f — гомеоморфизм.

Предложение 1.4.9. Пусть $\mathcal{F}-$ полунормальный функтор в категории $\mathcal{P},$ X- паракомпактное p-пространство, n- натуральное число. Тогда $\mathrm{Im}(\pi_n)\subset \mathcal{F}_n(X)$.

Доказательство. Пусть $f: X \longrightarrow Y$ — произвольное совершенное отображе-

ние паракомпактных p-пространств, $c \in \mathcal{F}(X)$ — произвольная точка. Обозначим $d = \mathcal{F}(f)(c)$, $C = \operatorname{supp} c$. Множество C замкнуто в X, а f(C) замкнуто в Y, как образ замкнутого множества при совершенном отображении. Значит C и f(C) — паракомпактные p-пространства. Имеют место вложения $i_C : C \longrightarrow X$ и $i_{f(C)} : f(C) \longrightarrow Y$. Рассмотрим также ограничение отображения f на C через $g = f|_C : C \longrightarrow f(C)$. Имеет место равенство $f \circ i_C = i_{f(C)} \circ f|_C$. К этим четырём функциям можно применить функтор \mathcal{F} . Получим равенство $\mathcal{F}(f) \circ \mathcal{F}(i_C) = \mathcal{F}(i_{f(C)}) \circ \mathcal{F}(f|_C)$. Функтор \mathcal{F} сохраняет пересечения, поэтому $c \in \mathcal{F}(C)$. Применяя композиции функций из равенства выше к точке c, и имея ввиду то, что, в силу мономорфности \mathcal{F} , отображение $\mathcal{F}(i_C)$ есть вложение $\mathcal{F}(C)$ в $\mathcal{F}(X)$, получаем $d = \mathcal{F}(f)(c) = \mathcal{F}(i_{f(C)}) \circ \mathcal{F}(f|_C)(c)$. Но $\mathcal{F}(i_{f(C)})$ это вложение $\mathcal{F}(f(C))$ в $\mathcal{F}(Y)$, а значит имеет место включение $d \in \mathcal{F}(f(C))$. Следовательно, $\operatorname{supp} \mathcal{F}(f)(c) = \operatorname{supp} d \subset f(C) = f(\operatorname{supp} c)$. Таким образом, мы показали, что для полунормальных в категории \mathcal{P} функторов носитель точки не возрастает.

Перейдём теперь к доказательству непосредственно настоящего предложения. Предположим обратное, что существует $k \in \text{Im}(\pi_n)$ такое, что $|\operatorname{supp} k| > n$. Как элемент образа π_n , точка k представима в виде k = F(g)(l), где $g: n \longrightarrow X$ — некоторое отображение, а $l \in \mathcal{F}(n)$ — некоторая точка. По доказанному выше включению $\sup k = \sup F(g)(l) \subset f(\sup l)$. Но $|f(\sup l)| \leqslant |\sup l| \leqslant n$, в то время как $|\sup k| > n$. Противоречие. Значит для всех $k \in \text{Im}(\pi_n)$ верно неравенство $|\sup k| \leqslant n$ и $\text{Im}(\pi_n) \subset \mathcal{F}_n(X)$.

Далее для полунормальных функторов \mathcal{F} под $\mathcal{F}_n(X)\setminus X$ будет подразумеваться $\mathcal{F}_n(X)\setminus \mathcal{F}_1(X)$.

Введём множества $\mathcal{F}_{nn}(X)$ и $sp(\mathcal{F})$ для полунормального функтора \mathcal{F} в категории \mathcal{P} аналогично случаю категории Comp:

$$\mathcal{F}_{nn}(X) = \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X),$$

 $sp(\mathcal{F}) = \{k : k \in \mathbb{N}, \mathcal{F}_{kk}(k) \neq \emptyset\}.$

Полунормальный функтор \mathcal{F} сохраняет точку, поэтому $1 \in sp(\mathcal{F})$. Если в степенном спектре \mathcal{F} есть хотя бы три числа $sp(\mathcal{F}) = \{1, m, n, ...\}$, то будем так же по аналогии рассматривать отображения $\varphi_{nm} : n \longrightarrow m$ и условие (*).

1.5. Обобщение теоремы Добрыниной и теоремы Комбарова для полунормальных функторов в категории \mathcal{P}

Ключевым результатом работы автора [34] является следующая теорема:

Теорема 1.5.1. [34] Пусть \mathcal{F} — полунормальный функтор в категории \mathcal{P} паракомпактных р-пространств и их совершенных отображений со степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяющий условию (*). Если для паракомпактного р-пространства X пространство $\mathcal{F}_n(X) \setminus X$ наследственно паранормально, то пространство X метризуемо.

Заметим, что из данной теоремы следуют теоремы параграфа 1.3, касающиеся категории \mathcal{P} . Действительно, нормальные функторы являются полунормальными, $\mathcal{F}_n(X) \setminus X$ является подпространством $\mathcal{F}(X)$ и имеет место следующее:

Предложение 1.5.2. [34] Нормальный в категории \mathcal{P} функтор \mathcal{F} степени $\geqslant 3$ обладает степенным спектром $sp(\mathcal{F}) = \{1, m, n, ...\}$ и удовлетворяет условию (*).

Доказательство. [34] Покажем, что степенной спектр любого нормального в категории \mathcal{P} функтора представляет из себя либо начальный отрезок натурального ряда, либо всё множество натуральных чисел. Спектр непуст, так как он содержит 1. Пусть $k \in sp(\mathcal{F})$ и l < k. Возьмём произвольное $\xi \in \mathcal{F}_{kk}(k)$. Нормальный функтор \mathcal{F} сохраняет носители, поэтому $supp(\mathcal{F}(\varphi_{kl})(\xi)) = \varphi_{kl}(supp(\xi)) = l$. Следовательно, $\mathcal{F}(\varphi_{kl})(\xi) \in \mathcal{F}_{ll}(l)$ и $l \in sp(\mathcal{F})$.

Если степень нормального функтора $\geqslant 3$, то в пространстве $\mathcal{F}(3)$ найдётся точка с носителем мощности 3(см. построение точки b в доказательстве теоремы 1.3.8). Значит $\mathcal{F}_{33}(3) \neq \emptyset$ и $3 \in sp(\mathcal{F})$, а значит в спектре $sp(\mathcal{F})$ как минимум есть элементы 1, 2 и 3.

Проверим выполнения условия (*). В данной ситуации φ_{nm} имеет вид φ_{32} : $3 \longrightarrow 2$, $\varphi_{32}(0) = 0$, $\varphi_{32}(1) = 1$, $\varphi_{32}(2) = 1$. Рассмотрим в $\mathcal{F}_{33}(3)$ точку b с мощностью носителя 3. Функтор \mathcal{F} сохраняет носители, а значит $\sup(\mathcal{F}(\varphi_{32})(b)) = \varphi_{32}(\sup(b)) = 2$. Значит $(\mathcal{F}(\varphi_{32})(b)) \in (\mathcal{F}(\varphi_{32})(\mathcal{F}_{33}(3)) \cap \mathcal{F}_{22}(2)$, то есть условие (*) выполняется.

Прежде чем приступать к доказательству теоремы 1.5.1, докажем вспомогательное утверждение.

Определение 1.5.3. Пусть X — топологическое пространство, а n — натуральное число. Обобщённой диагональю Δ_n пространства X называется подмножество пространства X^n , состоящее из точек, у которых хотя бы две координаты совпадают.

Предложение 1.5.4. [34] Пусть X — паракомпактное p-пространство, причём Δ_n — G_δ -множество в X^n . Тогда X метризуемо.

Доказательство. Пусть $x_1, x_2, ..., x_{n-1}$ — попарно различные точки в X. Тогда существует открытое множество U такое, что $x_{n-1} \in U$ и $x_1, x_2, ..., x_{n-2} \notin \overline{U}$. Верно следующее равенство:

$$(\{x_1\} \times ... \times \{x_{n-2}\} \times \overline{U}^2) \cap \Delta_n = \{x_1\} \times ... \times \{x_{n-2}\} \times \Delta_{\overline{U}}.$$

Из него следует, что диагональ $\Delta_{\overline{U}}-G_{\delta}$ -множество в \overline{U}^2 . Паракомпакт с диагональю типа G_{δ} метризуем тогда и только тогда, когда он допускает совершенное отображение на метризуемое пространство (см. [19] п. 5.5.7b). Поэтому \overline{U} — метризуемое пространство. Пространство X также будет метризуемо как локально метризуемый паракомпакт (см. [19] п. 5.4.A).

Перейдём к доказательству непосредственно теоремы 1.5.1(см. [34]).

Если все точки X изолированные, то X, очевидно, метризуемо.

Предположим, что в X есть хотя бы две неизолированные точки. В силу условия (*) существует точка $\delta \in \mathcal{F}_{nn}(n)$ такая, что $\mathcal{F}(\varphi_{nm})(\delta) = \eta \in \mathcal{F}_{mm}(m)$. Выберем в X набор различных точек $x_1, x_2, ..., x_m$, где x_1 — неизолированная точка в X. Пусть U и V — окрестности x_1 и x_m такие, что $x_2, x_3, ..., x_{m-1} \notin \overline{U} \cup \overline{V}$ и $\overline{U} \cap \overline{V} = \emptyset$. Рассмотрим следующее подмножество X^n

$$T = \overline{U} \times \{x_2\} \times \dots \times \{x_{m-1}\} \times \overline{V}^{n-m+1}$$

и отображение

$$f = \pi_n|_{T \times \{\delta\}} : T \times \{\delta\} \longrightarrow \mathcal{F}_n(X).$$

Очевидно, что $T \times \{\delta\}$ гомеоморфно T. Заметим, что в качестве области значений f рассматривается именно $\mathcal{F}_n(X)$, это можно сделать в силу предложения 1.4.9. Отображение f порождает на T разбиение $R = \{f^{-1}(\xi) : \xi \in \mathcal{F}_n(X)\}$. Докажем, что каждый элемент R лежит в некотором слое $\{y\} \times \{x_2\} \times \ldots \times \{x_{m-1}\} \times \overline{V}^{n-m+1} = T_y$ произведения T и на всех слоях разбиение одинаково.

Пусть $z=(z_1,z_2,...,z_n)\in T$. Докажем следующие включения:

$$\{z_1, ..., z_{m-1}\} \subset \text{supp}(f(z)) \subset \{z_1, ..., z_n\}.$$

Заметим, что $f(z) = \pi_n(z, \delta) = \mathcal{F}(z)(\delta)$. Если все координаты z различны (то есть отображение $z: n \longrightarrow \{z_1, ..., z_n\} \subset Z$ инъективно), то $\mathrm{supp}(f(z)) = \{z_1, ..., z_n\}$ в силу того, что $\mathrm{supp}(\delta) = n$. Если у z есть совпадающие координаты, то рассмотрим отображение $q: \{z_1, ..., z_n\} \longrightarrow \{z_1, ..., z_m\}$, задаваемое следующим правилом: $q(z_i) = z_i$ при $i \leq m, \ q(z_i) = z_m$ при i > m. Тогда отображение $q \circ z$ гомеоморфно φ_{nm} . Поэтому

$$|\operatorname{supp}(\mathcal{F}(q \circ z)(\delta))| = |\operatorname{supp}(\mathcal{F}(\varphi_{nm})(\delta))| = m.$$

Следовательно, $\operatorname{supp}(\mathcal{F}(q \circ z)(\delta)) = \{z_1, ..., z_m\}$, а значит

$$\{z_1, ..., z_{m-1}\} \subset \operatorname{supp}(\mathcal{F}(z)(\delta)).$$

Из этого равенства также следует, что

$$|\operatorname{supp}(f(z))| \geqslant m \geqslant 2.$$

Пусть теперь $z^i=\{z_1^i,...,z_n^i\},\ i=1,2$, причём $z_1^1\neq z_1^2$. Так как $z_1^i\in \mathrm{supp}(f(z^i))\subset \{z_1^i,...,z_n^i\}$, то $f(z^1)\neq f(z^2)$. Поэтому любой элемент разбиения R не может пересекать два разных слоя T_y одновременно.

Докажем, что если для некоторого $z_1 \in \overline{U}$ выполняется равенство

$$f(z_1, z_2^1, ..., z_n^1) = f(z_1, z_2^2, ..., z_n^2),$$

то для любого $z_1' \in \overline{U}$ выполняется равенство

$$f(z'_1, z^1_2, ..., z^1_n) = f(z'_1, z^2_2, ..., z^2_n).$$

Обозначим

$$a^k=(z_1,z_2^k,...,z_n^k), b^k=(z_1',z_2^k,...,z_n^k), A^k=\{z_1,z_2^k,...,z_n^k\}, B^k=\{z_1',z_2^k,...,z_n^k\}$$
 для k=1,2.

Зададим отображения $q_k:A^k\longrightarrow B^k$ следующим образом: $q_k(z_1)=z_1',q_k(z_i^k)=z_i^k.$ Имеем $b^k=q_k\circ a^k$ и $q_1|_{A^1\cap A^2}=q_2|_{A^1\cap A^2}.$ Значит

$$\mathcal{F}(a^1)(\delta) = \mathcal{F}(a^2)(\delta) \in \mathcal{F}(A^1) \cap \mathcal{F}(A^2) = \mathcal{F}(A^1 \cap A^2).$$

Поэтому

$$f(b^{1}) = \mathcal{F}(b^{1})(\delta) = \mathcal{F}(q_{1}|_{A^{1} \cap A^{2}})(\mathcal{F}(a^{1})(\delta)) =$$
$$= \mathcal{F}(q_{2}|_{A^{1} \cap A^{2}})(\mathcal{F}(a^{2})(\delta)) = \mathcal{F}(b^{2})(\delta) = f(b^{2}).$$

Итак, доказано, что разбиение R порождает на всех слоях T_y одинаковые разбиения R'. Слои T_y гомеоморфны \overline{V}^{n-m+1} , а значит факторпространство

 $T/R = f(T) \subset \mathcal{F}_n(X)$ гомеоморфно произведению $\Pi = \overline{U} \times (\overline{V}^{n-m+1}/R')$. Из неравенства $|\sup(f(z))| \geqslant 2$ следует, что $\Pi \subset \mathcal{F}_n(X) \setminus X$, следовательно, Π наследственно паранормально. Пространство \overline{U} замкнуто в X, а значит является паракомпактным p-пространством. Оно содержит неизолированную точку x_1 , следовательно, содержит счётное незамкнутое подмножество (рассуждение аналогично поиску счётного незамкнутого подмножества в множестве $\overline{V_1}$ при доказательстве предложения 1.3.13). Значит, по теореме 1.3.12, \overline{V}^{n-m+1}/R' — совершенно нормально.

Рассмотрим произвольный слой T_y и обозначим для него

$$g = f|_{T_y} : \overline{V}^{n-m+1} \longrightarrow \overline{V}^{n-m+1}/R' \subset \mathcal{F}_n(X).$$

Если x — произвольная точка в обобщенной диагонали Δ_{n-m+1} произведения \overline{V}^{n-m+1} , то $\mathrm{supp}(g(x)) < n$. Если $x \in \overline{V}^{n-m+1} \setminus \Delta_{n-m+1}$, то $\mathrm{supp}(g(x)) = n$. Следовательно $g^{-1}(g(\Delta_{n-m+1})) = \Delta_{n-m+1}$. Значит $g(\Delta_{n-m+1})$ — замкнуто и Δ_{n-m+1} — G_{δ} -множество в \overline{V}^{n-m+1} . Из предложения 1.5.4 следует, что \overline{V} метризуемо. Таким образом можно получить метризуемую окрестность любой точки, кроме x_1 . Можно построить метризуемую окрестность этой точки аналогичным способом, выбрав за x_1 вторую неизолированную в X точку. Значит X — локально метризуемый паракомпакт, а следовательно X — метризуемое пространство (см. [19]).

Рассмотрим последний случай: пусть теперь X содержит ровно одну неизолированную точку x_0 . Предположим, что $\chi(x_0,X)\geqslant \omega_1$. Паракомпактное p-пространство X является пространством точечно-счетного типа, поэтому существует компакт $K\subset X$ такой, что $x_0\in K$ и $\chi(K,X)\leqslant \omega_0$. Из формулы $\chi(x_0,X)\leqslant \chi(x_0,K)\times \chi(K,X)$ (см. [19]) следует, что $\chi(x_0,K)\geqslant \omega_1$. Поэтому K — неметризуемый компакт с единственной неизолированной точкой x_0 . Значит K — александровская компактификация несчетного дискретного пространства. K можно представить в виде объединения $K=\{x_0\}\cup A\cup B\cup C$, где A,B и C — непересекающиеся дискретные множества, причём A — счётно, а B

и C — несчётны. Зафиксируем произвольно различные $x_3, ..., x_n \in B$. Положим $y_i = (x_0, a_i, x_3, ..., x_n)$, где $\bigcup_{i < \omega_0} \{a_i\} = A$. Система $(y_i)_{i < \omega_0}$ дискретна в $K^n \setminus \Delta_n$. Рассмотрим произвольную счётную систему открытых в $K^n \setminus \Delta_n$ множеств U_i такую, что для всех $n < \omega_0$ выполняется $y_n \in U_n$. Тогда существуют конечные $D_i \subset K \setminus \{x_0\}$ такие, что для множеств $Y_i = \{(s, a_i, x_3, ..., x_n) \in K^n | s \in K \setminus D_i\}$ верно, что $y_i \in Y_i \setminus \Delta_n \subset U_i$.

В силу несчётности C существует $w \in C \setminus (\bigcup_{i < \omega_0} D_i)$. Любая окрестность точки $(w, x_0, x_3, ..., x_n)$ в пространстве $K^n \setminus \Delta_n$ пересекается со счётным числом множеств U_i . Значит такая система множеств U_i не может быть локально конечной в $K^n \setminus \Delta_n$.

Положим теперь

$$h = \pi_n|_{K^n \times \{\delta\}} : K^n \longrightarrow \mathcal{F}_n(X).$$

Тогда $h^{-1}(h(\Delta_n)) = \Delta_n$, а следовательно отображение $h|_{K^n \setminus \Delta_n}$ — замкнуто. Если $i \neq j$, то $\mathrm{supp}(h(y_i)) = \{x_0, a_i, x_3, ..., x_n\} \neq \{x_0, a_j, x_3, ..., x_n\} = \mathrm{supp}(h(y_j))$ и $h(y_i) \neq h(y_j)$. Поэтому $h(y_i)$ — счётная дискретная система замкнутых множеств в $h(K^n \setminus \Delta_n)$. Заметим, что $h(K^n \setminus \Delta_n) \subset h(X^n \setminus \Delta_n) \subset \mathcal{F}_n(X) \setminus X$, а значит $h(K^n \setminus \Delta_n)$ наследственно паранормально. Следовательно существует счётная, локально конечная система открытых в $h(K^n \setminus \Delta_n)$ множеств V_i таких, что $h(y_i) \in V_i$. Но тогда $h^{-1}(V_i)$ — счётная, локально конечная система открытых в $K^n \setminus \Delta_n$ множеств, причём $y_i \in h^{-1}(V_i)$. Но как доказано выше, такого быть не может. Противоречие. Значит $\chi(x_0, X) \leqslant \omega_0$, и пространство X метризуемо по теореме Бинга (см. [19]).

 Γ лава вторая. 51

2. Глава вторая. Размерность квантования максимальных сцепленных систем

2.1. Метризуемые функторы

Рассматриваемое в настоящей главе понятие впервые появилось в работе [24] под названием «порядок метрической аппроксимации». Также это же понятие встречается под названием «размерность финитной аппроксимации» (см. [9]). В работах после 2020 года название сменилось на «размерность квантования», которым мы и будем здесь пользоваться. Для введения данного определения необходимо напомнить ряд дополнительных сведений.

Определение 2.1.1. Пусть (X, ρ) — метрическое пространство. Тогда следующая точная верхняя грань

$$diam(X) = \sup_{x,y \in X} (\rho(x,y))$$

называется диаметром (X, ρ) .

Заметим, что для метрического компакта (X, ρ) множество $\{\rho(x, y) : x, y \in X\}$ ограничено и диаметр (X, ρ) конечен. Также для компакта верно другое равенство $\operatorname{diam}(X) = \max_{x,y \in X} (\rho(x, y))$.

Определение 2.1.2. Полунормальный функтор \mathcal{F} в категории Сотр компактов и их непрерывных отображений называется метризуемым (по В.В. Федорчуку, см. [17]), если для любой метрики ρ на метризуемом компакте X можно указать совместимую с топологией метрику $\rho_{\mathcal{F}}$ на $\mathcal{F}(X)$ таким образом, чтобы выполнялись следующие условия:

1. Если $i:(X,\rho^1)\longrightarrow (Y,\rho^2)$ — изометрическое вложение метризуемых компактов, то $\mathcal{F}(i):(\mathcal{F}(X),\rho^1_{\mathcal{F}})\longrightarrow (\mathcal{F}(Y),\rho^2_{\mathcal{F}})$ — тоже изометрическое вложение.

- 2. Для любого метризуемого компакта (X, ρ) верно $\rho_{\mathcal{F}}|_{X} = \rho$.
- 3. Для любого метризуемого компакта (X, ρ) верно равенство

$$diam(\mathcal{F}(X)) = diam(X).$$

Здесь под ограничением метрики $\rho_{\mathcal{F}}$ на пространство X подразумевается ограничение на $\mathcal{F}_1(X) \subset \mathcal{F}(X)$. Для полунормальных функторов \mathcal{F} в категории Сотр отображение $X \longrightarrow \mathcal{F}_1(X)$, ставящее в соответствие точке x единственный элемент пространства $\mathcal{F}(\{x\})$, является гомеоморфизмом.

Определение 2.1.3. Если для метризуемого функтора \mathcal{F} , для всех метризуемых компактов X и для всех их метрик ρ заданы метрики $\rho_{\mathcal{F}}$ согласно определению выше, то говорят, что семейство метрик $\rho_{\mathcal{F}}$ задаёт метризацию функтора \mathcal{F} .

В дальнейшем, при рассмотрении метризуемого функтора \mathcal{F} будем считать, что на нём задана конкретная метризация. Рассмотрим примеры таких функторов.

Функтор $\exp(\cdot)$ в категории Comp является метризуемым функтором. Как упоминалось в параграфе 1.2, этот функтор является нормальным. Пусть X — компакт с метрикой ρ . Здесь и далее для вещественного числа $\varepsilon > 0$, точки $a \in X$ и множества $A \subset X$ будем использовать стандартные обозначение

$$B(A,\varepsilon) = \{x \in X : \rho(x,A) \leqslant \varepsilon\}, \ O(A,\varepsilon) = \{x \in X : \rho(x,A) < \varepsilon\},$$

$$B(a,\varepsilon) = \{x \in X : \rho(x,a) \leqslant \varepsilon\}, \ O(a,\varepsilon) = \{x \in X : \rho(x,a) < \varepsilon\}.$$

В качестве метрики $\rho_{\rm exp}$ можно взять метрику Хаусдорфа ρ_H (см. [15]), которая задаётся по следующей формуле:

$$\rho_{\mathrm{exp}}(F,G) = \inf\{\varepsilon: F \subset B(G,\varepsilon), G \subset B(F,\varepsilon)\}, F,G \in \exp X.$$

Данная метрика задана корректно и совместима с топологией Вьеториса на $\exp(X)$. Убедимся, что она действительно задаёт метризацию функтора $\exp(\cdot)$, проверив выполнения условий 1-3.

Пусть $i:(X,\rho^1)\longrightarrow (Y,\rho^2)$ — изометрическое вложение метризуемых компактов. Тогда, в силу мономорфности функтора $\exp(\cdot)$ отображение $\exp i$: $(\exp X, \rho_H^1) \longrightarrow (\exp Y, \rho_H^2)$ тоже вложение. Проверим, что $\exp i$ — изометрия. Зафиксируем произвольно $F,G \in \exp X$. Пространство X вложено в Y, поэтому можно считать, что $F, G \subset X \subset Y$. По определению функтора $\exp(\cdot)$, $(\exp i)(F) = i(F) = F$, $(\exp i)(G) = i(G) = G$. Обозначим $l = \rho_H^1(F,G)$. По определению метрики Хаусдорфа, для любого $\varepsilon > 0$ $F \subset B^1(G, l + \varepsilon)$, а значит и $F=i(F)\subset i(B^1(G,l+arepsilon))\subset B^2(G,l+arepsilon)$, в силу изометричности i(здесь обозначения B^1 и B^2 относятся к ρ^1 и ρ^2 соответственно). Аналогично, $G\subset B^2(F,l+arepsilon)$ для любого arepsilon>0. Значит $ho_H^2(G,F)\leqslant l$. Зафиксируем теперь произвольно ε такой, чтобы $0<\varepsilon< l.$ Не ограничивая общности, будем считать, что $F \setminus B^1(G, l-\varepsilon) \neq \emptyset$, то есть существует $x \in F$ такой, что $\rho^1(x, G) > l-\varepsilon$. Отображение i — изометрия, поэтому $\rho^2(i(x),i(G))=\rho^2(x,G)=\rho^1(x,G)>l-\varepsilon$. Получаем $x \in F \setminus B^2(G, l-\varepsilon) \neq \emptyset$, а значит $\rho_H^2(G, F) > l-\varepsilon$. В силу произвольности выбора ε получаем $ho_H^2(G,F)\geqslant l.$ Значит $ho_H^2(G,F)=
ho_H^1(G,F)$ и условие 1 для метрики Хаусдорфа выполняется.

Пусть $\{x\}, \{y\} \in \exp_1(X)$, а $r = \rho(x,y)$. Очевидно, что $\rho^2(\{x\}, \{y\}) = \inf\{\varepsilon: x \in B(y,\varepsilon), y \in B(x,\varepsilon)\} = r$ и условие 2 для метрики Хаусдорфа выполняется.

Пусть $d = \operatorname{diam}(X)$. Пространство $X - \operatorname{компакт}$, поэтому существуют точки $x,y \in X$ такие, что $\rho(x,y) = d$. Тогда, по условию 2, $\rho_H(\{x\},\{y\}) = d$. Значит $\operatorname{diam}(\exp X) \geqslant d$. Заметим, что для любого непустого подмножества $C \subset X$ имеет место B(C,d) = X, поэтому для любых $F,G \in \exp X$ выполняется неравенство $\rho_H(F,G) \leqslant d$. Значит и $\operatorname{diam}(\exp X) \leqslant d$. Отсюда вытекает, что условие 3 тоже выполнено для метрики Хаусдорфа.

Значит, функтор $\exp(\cdot)$ метризуем при помощи метрики Хаусдорфа .

Вторым важным для нас примером является функтор суперрасширения $\lambda(\cdot)$. Он удовлетворяет всем условиям нормальности, кроме сохранения прообразов (см. [15]). Если X — метризуемый компакт, ρ — некоторая метрика на нём,

то на пространстве λX определена метрика ho_{λ} согласно следующей формуле:

$$\rho_{\lambda}(\xi, \eta) = \inf\{\varepsilon : \forall F \in \xi \ B(F, \varepsilon) \in \eta\}.$$

Данная метрика определена корректно и она согласована с топологией суперрасширения λX (см. [15]). Прежде чем проверять выполнение условий 1-3 для данной метрики, упомянем два важных свойства максимальных сцепленных систем, которые мы будем в дальнейшем неоднократно применять.

Предложение 2.1.4. [15] Сцепленная система ξ пространства X является максимальной сцепленной системой тогда и только тогда, когда выполнено следующее условие: если замкнутое множество $A \subset X$ пересекается с кажедым элементом ξ , то $A \in \xi$.

Отсюда тривиальным образом вытекает следующее: замкнутое надмножество элемента максимальной сцепленной системы ξ тоже является элементом ξ . Следовательно, пространство X всегда является элементом любой максимальной сцепленной системы $\xi \in \lambda X$

Предложение 2.1.5. [15] Пусть A — замкнутое подмножество пространства X. Тогда всякая максимальная сцепленная система ξ пространства A содержится в единственной максимальной сцепленной системе $\xi_X = \{F \subset X : F \text{ замкнуто } u \ F \cap A \in \xi\}$ пространства X.

Пусть $i:(X,\rho^1)\longrightarrow (Y,\rho^2)$ — изометрическое вложение метризуемых компактов. Тогда отображение $\lambda i:(\lambda X,\rho^1_\lambda)\longrightarrow (\lambda Y,\rho^2_\lambda)$ тоже вложение. Пусть $\xi,\eta\in\lambda X$. Тогда $\lambda i(\xi)=\xi_Y$, где ξ_Y — единственное дополнение сцепленной системы ξ до максимальной в пространстве Y (см. предложение 2.1.5). Аналогично, $\lambda i(\eta)=\eta_Y$. Обозначим $l=\rho^1_\lambda(\xi,\eta)$. Значит, для любого $\varepsilon>0$ и для любого $F\in\xi$ выполняется включение $B^1(F,l+\varepsilon)\in\eta$. Пусть $D\in\xi_Y$. Тогда $D\cap X\in\xi$ и $B^1(D\cap X,l+\varepsilon)\in\eta\subset\eta_Y$. В силу изометричности i выполнено включение $B^1(D\cap X,l+\varepsilon)\subset B^2(D\cap X,l+\varepsilon)$, а значит множество $B^2(D,l+\varepsilon)$

будет элементом η_Y . Итак, для любого $\varepsilon > 0$ и для любого $D \in \xi_Y$ выполнено $B^2(D, l + \varepsilon) \in \eta_Y$. Значит, $\rho_\lambda^2(\xi_Y, \eta_Y) \leqslant l$. Зафиксируем теперь произвольно число ε такое, чтобы $0 < \varepsilon < l$. По определению ρ_λ^1 , существует множество $G \in \xi$ такое, что $B^1(G, l - \varepsilon) \notin \eta$, а значит, по предложению 2.1.4, существует $H \in \eta$ такое, что $B^1(G, l - \varepsilon) \cap H = \emptyset$. Заметим, что $B^2(G, l - \varepsilon) \setminus B^1(G, l - \varepsilon) \subset Y \setminus X$, а $H \subset X$, поэтому $B^2(G, l - \varepsilon) \cap H = \emptyset$. Итак, имеем $F \in \xi \subset \xi_Y$ такое, что для некоторого $H \in \eta \subset \eta_Y$ выполнено $B^2(G, l - \varepsilon) \cap H = \emptyset$, значит, по предложению 2.1.5 $B^2(G, l - \varepsilon) \notin \eta_Y$, а следовательно $\rho_\lambda^2(\xi_Y, \eta_Y) \geqslant l - \varepsilon$. В силу произвольности выбора ε получаем $\rho_\lambda^2(\xi_Y, \eta_Y) = l$ и условие 1 для метрики ρ_λ выполняется.

Пусть теперь $x, y \in X$. При гомеоморфизме между X и $\lambda_1(X)$ они перейдут в максимальные сцепленные системы $\xi(x)$ и $\xi(y)$ соответственно. Данные максимальные сцепленные системы по сути являются семействами всех замкнутых подмножеств X, содержащих x(или y). С учётом этого можно записать

$$\rho_{\lambda}(\xi(x),\xi(y))=\inf\{\varepsilon: \forall F\subset X \text{ таких, что } F-\text{ замкнуто и } x\in F$$
 выполнено $y\in B(F,\varepsilon)\}$

С одной стороны, очевидно, что $\rho_{\lambda}(\xi(x),\xi(y)) \geqslant \rho(x,y)$, так как если в выражении выше взять в качестве F одноточечное множество $\{x\}$, то $y \in B(\{x\},\varepsilon)$ только если $\varepsilon \geqslant \rho(x,y)$. С другой стороны, если $x \in F$, то $y \in B(F,\rho(x,y))$, а потому $\rho_{\lambda}(\xi(x),\xi(y)) \leqslant \rho(x,y)$. Следовательно условие 2 для метрики ρ_{λ} выполняется.

Пусть $\operatorname{diam}(X) = d$. По рассуждениям, аналогичным проведённым для функтора $\exp(\cdot)$, $\operatorname{diam}(\lambda X) \geqslant d$. Заметим, что для любого непустого подмножества $A \subset X$ выполняется равенство B(A,d) = X. Следовательно, B(A,d) есть элемент каждой максимальной сцепленной системы из λX . Значит для любых двух максимальных сцепленных систем $\xi, \eta \in \lambda X$ верно, что $d \in \{\varepsilon : \forall F \in \xi \ B(F,\varepsilon) \in \eta\}$, то есть $\rho_{\lambda}(\xi,\eta) \leqslant d$ а значит $\operatorname{diam}(\lambda(X)) \leqslant d$. Таким образом $\operatorname{diam}(X) = \operatorname{diam}(\lambda X)$ и условие 3 для метрики ρ_{λ} выполняется.

Итак, функтор суперрасширения является метризуемым при помощи метрики $\rho_{\lambda}.$

В дальнейшем при рассмотрении в настоящей главе функторов $\exp(\cdot)$ и $\lambda(\cdot)$ мы будем считать что на них задана метризация метрикой Хаусдорфа ρ_H и метрикой ρ_λ соответственно.

2.2. Размерность квантования

Перейдём теперь непосредственно к понятию размерности квантования (см. [24] и [8]).

Определение 2.2.1. Пусть \mathcal{F} — полунормальный функтор в категории Сотр компактов и их непрерывных отображений. Говорят, что функтор \mathcal{F} имеет бесконечную степень, если для любого натурального числа n и для любого бесконечного компакта X верно, что $\mathcal{F}_n(X) \neq \mathcal{F}(X)$.

Будем далее считать, что функтор \mathcal{F} обладает бесконечной степенью, эпиморфен, сохраняет вес топологических пространств, и метризуем при помощи семейства метрик $\rho_{\mathcal{F}}$.

Известно(см. [18]), что для таких функторов \mathcal{F} множество $\bigcup_{n\in\mathbb{N}}\mathcal{F}_n(X)$ всюду плотно в $\mathcal{F}(X)$ для любого компакта X.

Также, для такого функтора \mathcal{F} и метрического компакта (X, ρ) имеет место возрастающая последовательность замкнутых подмножеств

$$X = \mathcal{F}_1(X) \subset \mathcal{F}_2(X) \subset ... \subset \mathcal{F}_n(X) \subset ... \mathcal{F}(X).$$

Пространство $\mathcal{F}(X)$ при этом обладает метрикой $\rho_{\mathcal{F}}$. Следуя работе [8], введём следующее обозначение для каждого $\xi \in \mathcal{F}(X)$ и каждого вещественного числа $\varepsilon > 0$:

$$N(\xi, \varepsilon, \mathcal{F}(X)) = \min\{n : \rho_{\mathcal{F}}(\xi, \mathcal{F}_n(X)) \le \varepsilon\}.$$

Заметим что, в силу того, что $\bigcup_{n\in\mathbb{N}} \mathcal{F}_n(X)$ всюду плотно в $\mathcal{F}(X)$, данная формула корректна. Суть числа $N(\xi,\varepsilon,\mathcal{F}(X))$ в следующем: оно показывает, насколько хорошо та или иная точка $\xi\in\mathcal{F}(X)$ приближается точками с конечными носителями. Далее, если понятно о каком функторе \mathcal{F} и компакте X идёт речь, будем писать просто $N(\xi,\varepsilon)$. Легко видеть, что при стремлении ε к нулю возможны два варианта изменения $N(\xi,\varepsilon)$. Если для некоторого натурального n точка $\xi\in\mathcal{F}_n(X)\setminus\mathcal{F}_{n-1}(X)$, то начиная с некоторого ε величина $N(\xi,\varepsilon)$ будет постоянно равна n. Если же $\xi\notin\bigcup_{n\in\mathbb{N}}\mathcal{F}_n(X)$, то величина $N(\xi,\varepsilon)$ будет неограниченно расти.

Определение 2.2.2. Следующие две величины, характеризующие асимптотику роста $N(\xi, \varepsilon, \mathcal{F}(X))$ при стремлении ε к 0, называются верхней и нижней размерностью квантования точки ξ соответственно(см. [8]).

$$\overline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = \sup\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = \infty\},$$

$$\underline{\dim}_{\mathcal{F}}\xi = \inf\{\alpha : \underline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\} = \sup\{\alpha : \underline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = \infty\}.$$

Если множество $\{\alpha : \overline{\lim}_{\varepsilon \to 0} \varepsilon^{\alpha} N(\xi, \varepsilon, \mathcal{F}(X)) = 0\}$ оказалось пустым, то считается, что $\overline{\dim}_{\mathcal{F}} \xi = \infty$ (аналогично для нижней размерности квантования).

Очевидно, что $0 \leqslant \underline{\dim}_{\mathcal{F}} \xi \leqslant \overline{\dim}_{\mathcal{F}} \xi$. Следующие две теоремы из работы [24] дают более удобные для применения на практике выражения верхней и нижней размерностей квантования(см. также [8] или [35]).

Теорема 2.2.3. [24] Имеют место равенства:

$$\overline{\dim}_{\mathcal{F}} \xi = \overline{\lim}_{\varepsilon \to 0} \frac{\log N(\xi, \varepsilon, \mathcal{F}(X))}{-\log \varepsilon},$$

$$\underline{\dim}_{\mathcal{F}} \xi = \underline{\lim}_{\varepsilon \to 0} \frac{\log N(\xi, \varepsilon, \mathcal{F}(X))}{-\log \varepsilon}.$$

Следующая теорема позволяет рассматривать вместо пределов при $\varepsilon \to 0$ предел по некоторой последовательности $\varepsilon_n \to 0$.

Теорема 2.2.4. [24] Если последовательность $\varepsilon_n > 0 : n \in \mathbb{N}$ сходится к нулю монотонно и существует c > 0 такое, что для любого $n \in \mathbb{N}$ $\varepsilon_{n+1} \geqslant c\varepsilon_n$, то

$$\overline{\dim}_{\mathcal{F}}\xi = \overline{\lim}_{n \to \infty} \frac{\log N(\xi, \varepsilon_n)}{-\log \varepsilon_n},$$

$$\underline{\dim}_{\mathcal{F}} \xi = \underline{\lim}_{n \to \infty} \frac{\log N(\xi, \varepsilon_n,)}{-\log \varepsilon_n}.$$

Легко видеть, что последовательность $\varepsilon_n=1/n$ удовлетворяет условию теоремы с c=1/2. Для неё знаменатель дроби обратится в $\log n$.

В дальнейшем мы иногда будем использовать обозначение $\dim_{\mathcal{F}}$ в тех случаях, когда обе размерности квантования $\overline{\dim}_{\mathcal{F}}$ и $\underline{\dim}_{\mathcal{F}}$ известны и равны.

Теперь вернёмся к рассмотрению примеров. Начнём с функтора гиперпространства $\exp(\cdot)$. Он нормален и метризуем метрикой Хаусдорфа ρ_H . Для любого $F \in \exp X$ выполняется $\sup(F) = F$. Таким образом, $\mathcal{F}_n(X) = \{F: |F| \leq n\}$ и $X \notin \mathcal{F}_n(X)$, если X — бесконечный компакт. Следовательно, степень функтора $\exp(\cdot)$ бесконечна. Таким образом, для $F \in \exp X$ можно определить величину $N(F, \varepsilon, \exp X)$, а также верхнюю и нижнюю размерности квантования $\overline{\dim}_{\exp} F$ и $\underline{\dim}_{\exp} F$. При этом нетрудно показать, что значение $N(F, \varepsilon, \exp X)$ равно наименьшему числу замкнутых ε -шаров(то есть множеств вида $B(x, \varepsilon)$, где $x \in X$), покрывающих F. Эта числовая характеристика замкнутого подмножества метрического компакта традиционно обозначается через $N(F, \varepsilon)$. Асимптотику возрастания $N(F, \varepsilon)$ при $\varepsilon \to 0$ характеризуют ёмкостные размерности $\overline{\dim}_B F$ и $\underline{\dim}_B F$ замкнутого подмножества F (смотри, например, монографию Я.Б. Песина [14]).

Определение 2.2.5. [14] Для метрического компакта F верхняя и нижняя ёмкостные размерности определяются по следующим формулам:

$$\overline{\dim}_B F = \overline{\lim}_{\varepsilon \to 0} \frac{\log N(F, \varepsilon)}{-\log \varepsilon},$$

$$\underline{\dim}_B F = \underline{\lim}_{\varepsilon \to 0} \frac{\log N(F, \varepsilon)}{-\log \varepsilon}.$$

С учётом теоремы 2.2.3 видно, что верхняя и нижняя размерности квантования $\overline{\dim}_{\exp} X$ и $\underline{\dim}_{\exp} X$ совпадают с верхней и нижней ёмкостными размерностями $\overline{\dim}_B X$ и $\underline{\dim}_B X$ соответственно. В связи с этим, вместо обозначений $\overline{\dim}_{\exp}$ и $\underline{\dim}_{\exp}$ в дальнейшем будем использовать обозначения $\overline{\dim}_B$ и $\underline{\dim}_B$. Здесь стоит отметить, что, несмотря на схожесть определений, свойства верхней и нижней ёмкостная размерности отличаются. Например, для конечного набора замкнутых подмножеств $\mathcal{F}_i \subset X, i=\overline{1,n}$ выполняется следующее равенство, описывающее верхнюю ёмкостную размерность суммы:

$$\overline{\dim}_B(\bigcup_{i=\overline{1,n}} F_i) = \max_{i=\overline{1,n}} (\overline{\dim}_B F_i),$$

в то время как для нижней ёмкостной размерности аналогичное утверждение вообще говоря неверно(см. [14]).

Прежде чем приступать к обсуждению размерности квантования для функтора суперрасширения $\lambda(\cdot)$, приведём необходимые в дальнейшем его свойства и конструкции. Пусть X — компакт, $F \in \xi \in \lambda X$ — минимальный по включению элемент максимальной сцепленной системы ξ , то есть не существует $D \in \xi$ такого, что $D \subset F$. Пусть A — некоторое замкнутое подмножество X, такое, что $\xi \in \lambda A$. Последнее включение означает что существует максимальная сцепленная система $\eta \in \lambda A$, которая, согласно предложению 2.1.5, содержится в единственной максимальной сцепленной системе $\xi = \eta_X = \{C \subset X : C$ замкнуто и $C \cap A \in \eta\}$. Предположим, что $F \not\subset A$. Так как $F \in \xi = \eta_X$, то $F \cap A \in \eta \subset \xi$, причём $F \cap A \not= F$, и тогда F — не минимальный по включению элемент ξ . Противоречие, а поэтому значит $F \subset A$ для любого замкнутого A такого, что $\xi \in \lambda A$, а следовательно $F \subset \text{supp}\,\xi$, то есть все минимальные по включению элементы максимальной сцепленной системы ξ содержаться в её носителе.

Пусть теперь $\{F_{\gamma}: \gamma \in G\}$ — семейство всех минимальных по включе-

нию элементов максимальной сцепленной системы ξ , а замкнутое подмножество $K\in X$ таково, что $\bigcup_{r} F_{\gamma}\subset K$. Рассмотрим следующую систему замкнутых подмножеств K: $\mu = \{E \cap K : E \in \xi\}$. Легко заметить, что она сцепленная: если $E_1,E_2\in \xi$, то найдутся $F_{\gamma_1}\subset E_1$ и $F_{\gamma_2}\subset E_2$ и $\varnothing\neq F_{\gamma_1}\cap F_{\gamma_2}\subset E_1\cap K\cap E_2$. Также, пользуясь предложением 2.1.4, легко показать, что μ является максимальной в K: если замкнутое $H \subset K$ пересекает каждое из $E \cap K$, то оно пересекает каждый элемент E максимальной сцепленной системы ξ , а следовательно принадлежит последней и $H = H \cap K \in \mu$. Таким образом $\mu \in \lambda K$. С другой стороны, в силу того, что пересечения вида $E_1 \cap K \cap E_2$ непусты, из предложения 2.1.4 вытекает включение $E \cap K \in \xi$ для всех $E \in \xi$, то есть $\mu \subset \xi$. Так как, по предложению 2.1.5, $\mu \in \lambda K$ содержится только в единственной максимальной сцепленной системе из λX , получаем $\xi = \mu_X$ и $\xi \in \lambda K$. Значит $\mathrm{supp}(\xi) \subset K$ для подобных K, в частности выполнено включение $\mathrm{supp}\,\xi\subset\overline{\bigcup_{\gamma\in G}F_{\gamma}}.$ Но замкнутое множество $\operatorname{supp} \xi$ должно содержать все F_{γ} . Следовательно, $\operatorname{supp} \xi = \overline{\bigcup_{\gamma \in C} F_{\gamma}}$, то есть носитель максимальной сцепленной системы есть замыкание объединения всех её минимальных по включению элементов.

Для построения максимальной сцепленной системы с заданным носителем можно использовать разные конструкции. Одной из простейших является конструкция $\xi(x,F)$ для компакта X, собственного замкнутого подмножества $F \subset X$, не являющегося одноточечным, и точки $x \in X \setminus F(\text{см}, \text{ например, } [24])$. Рассматривается сцепленная система $\xi = \{\{x,y\}: y \in F\} \cup \{F\}$. Через $\xi(x,F)$ обозначается система всевозможных замкнутых надмножеств элементов системы ξ . Очевидно, она будет сцепленной: если $D_1, D_2 \in \xi(x,F)$, то найдутся $E_1, E_2 \in \xi : E_1 \subset D_1, E_2 \subset D_2$ и $\varnothing \neq E_1 \cap E_2 \subset D_1 \cap D_2$. Несложно показать, что $\xi(x,F)$ будет максимальной. Пусть замкнутое подмножество $C \subset X$ таково, что $C \cap D \neq \varnothing$ для всех $D \in \xi(x,F)$. Предположим, что $C \notin \xi(x,F)$, то есть оно не является надмножеством ни одного из элементов ξ . Тогда либо $F \not\subset C$ и $x \notin C$, либо $x \in C$ и $C \cap F = \varnothing$. В первом случае существует $a \in F \setminus C$ и

 $C \cap \{x,a\} = \varnothing$. В обоих случаях приходим к противоречию, ведь $F \in \xi(x,F)$ и $\{x,a\} \in \xi(x,F)$, а значит $C \cap F \neq \varnothing$ и $C \cap \{x,a\} \neq \varnothing$. Следовательно, по предложению 2.1.4, $\xi(x,F)$ — максимальная сцепленная система. Из построения $\xi(x,F)$ видно, что её минимальные по включению элементы это в точности элементы системы ξ . Значит, $\sup \xi(x,F) = F \cup \{x\}$.

Теперь легко видеть, что полунормальный, сохраняющий вес и эпиморфизмы функтор суперрасширения $\lambda(\cdot)$ обладает бесконечной степенью. В самом деле, если X — бесконечный компакт, то в нём есть неизолированная точка $x_0 \in X$. Если зафиксировать произвольно $x_1 \neq x_0$, то можно построить окрестность $O(x_0)$ такую, что $x_1 \notin \overline{O(x_0)}$, и тогда максимальная сцепленная система $\xi(x_1, \overline{O(x_0)})$ обладает бесконечным носителем $\{x_1\} \cup \overline{O(x_0)}$. Как упоминалось в предыдущем параграфе, функтор суперрасширения $\lambda(\cdot)$ метризуем при помощи метрики $\rho_{\lambda}(\xi, \eta) = \inf\{\varepsilon : \forall F \in \xi \ B(F, \varepsilon) \in \eta\}$. Значит для него можно определить величину $N(\xi, \varepsilon, \lambda X)$, а также верхнюю и нижнюю размерности квантования $\overline{\dim}_{\lambda}$ и $\underline{\dim}_{\lambda}$. Их свойствам, а также их связям с ёмкостной размерностью и будет посвящена вся оставшаяся часть настоящей главы.

2.3. Некоторые свойства размерности квантования максимальных сцепленных систем

В дальнейшем, под размерностью квантования будем подразумевать исключительно нижнюю и верхнюю размерности квантования максимальной сцепленной системы для функтора суперрасширения $\lambda(\cdot)$. Пусть (X,ρ) — метрический компакт. У всякой максимальной сцепленной системы $\xi \in \lambda X$ есть носитель $\sup \xi$ — замкнутое подмножество X, а для него в свою очередь определена ёмкостная размерность. В связи с тем что определение размерности квантования и ёмкостной размерности схожи, возникает вопрос: существует ли взаимосвязь между размерностями квантования максимальной сцепленной системы и

ёмкостными размерностями её носителя? На это вопрос даёт ответ следующая теорема(см. [8]):

Теорема 2.3.1. [8] Для любой максимальной сцепленной системы $\xi \in \lambda X$ выполняются неравенства:

$$\overline{\dim_{\lambda}(\xi)} \leqslant \overline{\dim}_{B}(\operatorname{supp} \xi),$$

$$\underline{\dim_{\lambda}(\xi)} \leqslant \underline{\dim}_{B}(\operatorname{supp} \xi).$$

Также интересны вопросы о наличии у размерности квантования и ёмкостной размерности свойств, характерных для других видов размерностей. Известно (см. [14]), что ёмкостные размерности монотонны, то есть для любого замкнутого подмножества A в метрическом компакте (X, ρ) выполнены неравенства:

$$\overline{\dim}_B A \leqslant \overline{\dim}_B X, \underline{\dim}_B A \leqslant \underline{\dim}_B X.$$

На другой из подобных вопросов отвечает теорема, доказанная в работе [8]:

Теорема 2.3.2. [8] Пусть (X, ρ) — метрический компакт и $\overline{\dim}_B(X) = a$. Тогда для любого числа b такого, что $0 \leqslant b < a$ существует замкнутое $F_b \subset X$, для которого $\overline{\dim}_B F_b = b$.

То есть можно сказать, что для метрического компакта существуют подмножества со всеми возможными промежуточными значениями верхней ёмкостной размерности.

Как оказалось(см. [10]), для нижней ёмкостной размерности подобное утверждение неверно:

Теорема 2.3.3. [10] Существует метрический компакт (Z, ρ) такой, что $\dim_B Z = 1$, и $\dim_B F = 0$ для любого непустого собственного подмножества $F \subset Z$.

Пусть теперь $\xi \in \lambda X$ — максимальная сцепленная система для метрического компакта (X, ρ) . Тогда из сказанного выше очевидным образом вытекают следующие неравенства, описывающие возможные значения размерности квантования ξ :

$$0 \leqslant \overline{\dim}_{\lambda} \xi \leqslant \overline{\dim}_{B} X,$$

$$0 \leqslant \underline{\dim}_{\lambda} \xi \leqslant \underline{\dim}_{B} X.$$

Для верхних размерностей оказывается верным значительно более сильное утверждение, доказанное в работе [8]:

Теорема 2.3.4. [8] Для любого бесконечного метрического компакта X и любого числа а такого, что $0 \leqslant a \leqslant \overline{\dim}_B X$, существует максимальная сцепленная система $\xi_a \in \lambda X$, для которой $\overline{\dim}_{\lambda}(\xi_a) = a$ и $\operatorname{supp}(\xi_a) = X$.

То есть верхняя размерность квантования не просто ограничена верхней ёмкостной размерностью пространства, но и принимает все неотрицательные значения, не превосходящие её на каких-то максимальных сцепленных системах. Однако, остаётся аналогичный вопрос для нижней размерности квантования. Существует ли, по аналогии с теоремой 2.3.3, компакт с лакунами в множестве значений нижней размерности квантования максимальных сцепленных систем, или же аналог теоремы 2.3.4 для нижних размерностей будет верен? Решению данного вопроса посвящена работа автора [35], но прежде чем приступать к разбору этой проблемы, рассмотрим ещё одну конструкцию.

Пусть $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности, состоящие из попарно различных точек X, причём $\overline{A} \cap \overline{B} \neq \emptyset$. Для каждого $i \in \mathbb{N}$ обозначим

$$A_i = \{x_1, ..., x_i, y_i\}, B_i = \{y_1, ..., y_i, x_{i+1}\}$$

и, следуя Е.В. Кашубе(см. [3]), рассмотрим сцепленную систему

$$\xi' = \{A_i : i \in \mathbb{N}\} \cup \{B_i : i \in \mathbb{N}\}.$$

Через $\xi(A,B)$ обозначается максимальная сцепленная система, состоящая из всех замкнутых надмножеств элементов семейства $\xi' \cup \{\overline{A}, \overline{B}\}$. Её носителем будет множество $\sup \xi(A,B) = \overline{A \cup B}$.

Определение 2.3.5. Пусть $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, а (X, ρ) — метрическое пространство. Множество $A \subset X$ называется ε -разделённым, если для любых различных точек $x, y \in A$ выполняется неравенство $\rho(x, y) > \varepsilon$.

Очевидно, что любое ε -разделённое подмножество компакта конечно. Общеизвестно следующее определение:

Определение 2.3.6. Подмножество $A \subset X$ называется ε -сетью в X, если $B(A,\varepsilon)=X$.

Наиболее важными для нас являются свойства конструкции $\xi(A,B)$, описанные в двух следующих предложениях(см. работу автора [35]):

Предложение 2.3.7. [35] Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ множество $D = \{x_1, ..., x_{k+1}\} \cup \{y_1, ..., y_k\}$ является ε -разделённым, то $N(\xi(A, B), \varepsilon/2) \geqslant 2k$.

Доказательство. Пусть η — максимальная сцепленная система с конечным носителем, для которой выполняется неравенство $\rho_{\lambda}(\xi(A,B),\eta) \leqslant \varepsilon/2$.

Для каждой точки $z\in D\setminus\{x_{k+1}\}$ существуют $F_1,F_2\in\xi(A,B)$ такие, что $F_1\cap F_2=\{z\}$ и $F_1,F_2\subset D$. В частности, если $z=x_i$ при $i=\overline{2,k}$, то $F_1=A_i,F_2=B_{i-1}$, если $z=x_1$, то $F_1=A_1,F_2=A_2$, и если $z=y_i$ при $i=\overline{1,k}$, то $F_1=A_i,F_2=B_i$. Множество D является ε -разделённым, следовательно

$$B(F_1, \varepsilon/2) \cap B(F_2, \varepsilon/2) = B(z, \varepsilon/2).$$

При этом $\rho_{\lambda}(\xi(A,B),\eta) = \inf\{\delta : \forall F \in \xi(A,B) \ B(F,\delta) \in \eta\} \leqslant \varepsilon/2$, поэтому $B(F_1,\varepsilon/2), B(F_2,\varepsilon/2) \in \eta$.

Заметим, что для любой максимальной сцепленной системы ξ и $C,D\in \xi$ верно $C\cap D\cap \mathrm{supp}\,\xi\neq\varnothing$. Действительно, существуют минимальные по включению $\widehat{C},\widehat{D}\in \xi$ такие, что $\widehat{C}\subset C$ и $\widehat{D}\subset C$. Система ξ — сцепленная, поэтому $\varnothing\neq\widehat{C}\cap\widehat{D}\subset C\cap D$ и в то же время $\widehat{C}\cap\widehat{D}\subset \mathrm{supp}\,\xi$.

Следовательно,

$$B(F_1, \varepsilon/2) \cap B(F_2, \varepsilon/2) \cap \operatorname{supp}(\eta) \neq \varnothing.$$

Итак, для любой точки $z \in D \setminus \{x_{k+1}\}$ пересечение $\operatorname{supp}(\eta) \cap B(z, \varepsilon/2)$ непусто. Следовательно, в силу ε -разделённости множества D, $|\operatorname{supp}(\eta)| \geqslant 2k$.

Предложение 2.3.8. [35] Если $A = \{x_n : n \in \mathbb{N}\}$ и $B = \{y_n : n \in \mathbb{N}\}$ — две непересекающихся последовательности точек X такие, что $\overline{A} \cap \overline{B} \neq \emptyset$, и для некоторых $k \in \mathbb{N}$, $\varepsilon > 0$ выполнено неравенство $\rho(x_{k+1}, y_{k+1}) \leqslant \varepsilon$, то $N(\xi(A, B), \varepsilon) \leqslant 2k + 1$.

Доказательство. Рассмотрим $D = \{x_1, x_2, ..., x_{k+1}\} \cup \{y_1, y_2, ..., y_k\}$ и систему $\eta' = \{A_i : i \leqslant k\} \cup \{B_i : i \leqslant k\} \cup \{x_1, x_2, ..., x_{k+1}\}$. Очевидно, она сцепленная. Рассмотрим сцепленную систему, состоящую из всех замкнутых надмножеств элементов η' и обозначим её за η . Покажем, что η — максимальная. Пусть $F \subset X$ — замкнутое и для любого $S \in \eta$ $S \cap F \neq \varnothing$. Предположим, что $F \notin \eta$. Тогда для любого $K \in \eta'$ $K \not\subset F$. В частности, $A_1 \cap F \neq \varnothing$ и $A_1 \not\subset F$. Напомним, что $A_1 = \{x_1, y_1\}$ — двухточечное множество и возможно всего два варианта. Если $x_1 \in F$, то $y_1 \notin F$. Но тогда $x_2 \in F$, ведь $B_1 = \{y_1, x_2\} \cap F \neq \varnothing$. Тогда $y_2 \notin F$ из-за того, что $A_2 = \{x_1.x_2, y_2\} \not\subset F$ и так далее, используя все A_i и B_i , получаем: $x_1, x_2, ..., x_k, x_{k+1} \in F$, $y_1, y_2, ..., y_k \notin F$. Но при этом F — замкнутое надмножество $\{x_1, x_2, ..., x_{k+1}\} \in \eta'$. Противоречие. Если же $y_1 \in F$, то $x_1 \notin F$. В таком случае $x_2 \notin F$, в силу того, что $B_1 \not\subset F$. Тогда $y_2 \in F$, ведь $A_2 \cap F \neq \varnothing$. И так далее, применяя все A_i и B_i получим, что $x_1, x_2, ..., x_{k+1} \notin F$, $y_1, y_2, ..., y_k \in F$. Но при этом $F \cap \{x_1, x_2, ..., x_{k+1}\} = \varnothing$.

Противоречие. Значит $F \in \eta$ и, по предложению 2.1.4, $\eta \in \lambda X$. Из построения η очевидно, что $\operatorname{supp}(\eta) = D$. Следовательно, $|\operatorname{supp}(\eta)| = 2k + 1$.

Все элементы η' , за исключением множества $\{x_1, x_2, ..., x_{k+1}\}$, содержатся в $\xi(A, B)$. При этом точка $y_{k+1} \in B(\{x_1, x_2, ..., x_{k+1}\}, \varepsilon)$, а значит и множество $A_{k+1} \subset B(\{x_1, x_2, ..., x_{k+1}\}, \varepsilon)$. Итак, пусть $F \in \eta$. Если F — надмножество A_i или B_i для некоторого $i = \overline{1, k}$, то, очевидно, $F \subset \xi(A, B)$ и тем более $B(F, \varepsilon) \in \xi(A, B)$. Если F — надмножество $\{x_1, x_2, ..., x_{k+1}\}$, то $A_{k+1} \subset B(F, \varepsilon)$ и, следовательно, $B(F, \varepsilon) \in \xi(A, B)$. Получаем, что $\varepsilon \in \{\delta : \forall F \in \eta \ B(F, \delta) \in \xi(A, B)\}$. Поэтому $\rho_{\lambda}(\xi(A, B), \eta) \leqslant \varepsilon$ и $N(\xi(A, B), \varepsilon) \leqslant 2k + 1$.

Предложения 2.3.7 и 2.3.8 позволяют получить необходимые нам оценки сверху и снизу для максимальной сцепленной системы $\xi(A,B)$ при надлежащем выборе последовательностей A и B. В заключительном параграфе настоящей главы при помощи данной конструкции будут построены максимальные сцепленные системы со строго заданной нижней размерностью квантования.

2.4. О возможных значениях нижней размерности квантования максимальных сцепленных систем

Итак, возвращаемся к вопросу поставленному в предыдущем параграфе: справедливо ли утверждение теоремы 2.3.4 для нижней размерности квантования? На данный вопрос автором в работе [35] получен положительный ответ, в частности доказана следующая теорема:

Теорема 2.4.1. [35] Пусть (X, ρ) — метрический компакт. Для любого неотрицательного числа $b \leq \underline{\dim}_B X = a \leq \infty$ существует максимальная сцепленная система $\xi \in \lambda X$, для которой $\underline{\dim}_{\lambda}(\xi) = b$ и $\mathrm{supp}(\xi) = X$.

Отметим, что доказательство теоремы 2.3.4 в работе [8] проведено по следующей схеме: вначале для данного числа $b \in [0, \overline{\dim}_B X]$ строится замкну-

тое подмножество $F_b \subset X$ размерности $\overline{\dim}_B F_b = b$, а затем, с помощью F_b проводиться построение искомой максимальной сцепленной системы ξ_b , для которой $\overline{\dim}_\lambda(\xi_b) = b$. В силу теоремы 2.3.3 провести доказательство для случая нижней размерности квантования по аналогичной схеме невозможно. Ключевую роль тут сыграет использование конструкции $\xi(A,B)$, но прежде чем приступать непосредственно к доказательству теоремы 2.4.1, необходимо отдельно разобрать случай построения максимальной сцепленной системы ξ с $\underline{\dim}_\lambda(\xi) = \underline{\dim}_B X$.

Предложение 2.4.2. [35] Для любого метрического компакта (X, ρ) существует максимальная сцепленная система ξ , для которой

$$\underline{\dim}_{\lambda}\xi = \underline{\dim}_{B}X, \ \overline{\dim}_{\lambda}\xi = \overline{\dim}_{B}X, \operatorname{supp}(\xi) = X.$$

Доказательство. Положим $\varepsilon_k = 1/2^k$, $k \in \mathbb{N}$. Построим по индукции возрастающую (по включению) последовательность $G_k \subset X$, $k \in \mathbb{N}$, состоящую из ε_k -разделённых ε_k -сетей в X. В качестве G_1 возьмем максимальное (по включению, то есть не содержащееся в качестве собственного подмножества ни в каком другом ε_1 -разделённом множестве) ε_1 -разделённое подмножество X. Предположим, что G_{k-1} уже построено. В множестве $X \setminus B(G_{k-1}, \varepsilon_k)$ выберем максимальное ε_k -разделённое подмножество C_k и положим $G_k = G_{k-1} \cup C_k$.

Продолжая индукцию, получим искомую последовательность $\{G_k: k \in \mathbb{N}\}$. Положим

$$G = \bigcup_{k \in \mathbb{N}} G_k.$$

Легко проверить, что множество G всюду плотно в X. Выделим в G последовательность $Z=\{z_i:i\in\mathbb{N}\}$, сходящуюся к некоторой точке $s\in X$ и состоящую из попарно различных точек. Распределим теперь точки G по двум непересекающимся последовательностям $A=\{x_i:i\in\mathbb{N}\}$ и $B=\{y_i:i\in\mathbb{N}\}$ так, чтобы выполнялись следующие условия:

1)
$$G_k \cap A = \{x_1, x_2, ..., x_{n_k}\}, G_k \cap B = \{y_1, y_2, ..., y_{m_k}\};$$

- 2) $m_k \leqslant n_k \leqslant m_k + 1$;
- 3) пересечения $A \cap Z$ и $B \cap Z$ бесконечны.

Из условия 3) и сходимости Z к s следует, что $s \in \overline{A} \cap \overline{B} \neq \emptyset$, следовательно, определена максимальная сцепленная система $\xi(A,B)$, причем, в силу того, что G всюду плотно в X, верно равенство $\mathrm{supp}(\xi(A,B)) = \overline{A \cup B} = \overline{G} = X$. Множество $D = \{x_1, x_2, ..., x_{n_k}\} \cup$

 $\cup \{y_1, y_2, ..., y_{n_k-1}\}$ является ε_k -разделённым, так как в силу условия 2) оно есть подмножество G_k , и, согласно предложению 2.3.7,

$$N(\xi(A,B),\varepsilon_k/2) \geqslant 2(n_k-1) \geqslant |G_k|-2 \geqslant N(X,\varepsilon_k)-2.$$

Последнее неравенство выполнено в силу того, что G_k является ε_k -сетью в X.

Применяя теорему 2.2.4, получаем:

$$\underline{\dim}_{\lambda}\xi(A,B) = \underline{\lim}_{k\to\infty} \frac{\log N(\xi(A,B),\varepsilon_{k}/2)}{-\log \varepsilon_{k}/2} \geqslant$$

$$\geqslant \underline{\lim}_{k\to\infty} \frac{\log(N(X,\varepsilon_{k})-2)}{-\log \varepsilon_{k}/2} = \underline{\dim}_{B}X,$$

$$\overline{\dim}_{\lambda}\xi(A,B) = \overline{\lim}_{k\to\infty} \frac{\log N(\xi(A,B),\varepsilon_{k}/2)}{-\log \varepsilon_{k}/2} \geqslant$$

$$\geqslant \overline{\lim}_{k\to\infty} \frac{\log(N(X,\varepsilon_{k})-2)}{-\log \varepsilon_{k}/2} = \overline{\dim}_{B}X.$$

Из теоремы 2.3.1 следует, что

$$\underline{\dim}_{\lambda}\xi(A, B) \leq \underline{\dim}_{B}(\operatorname{supp}(\xi(A, B))) = \underline{\dim}_{B}X,$$

$$\overline{\dim}_{\lambda}\xi(A, B) \leqslant \overline{\dim}_{B}(\operatorname{supp}(\xi(A, B))) = \overline{\dim}_{B}X.$$

Значит $\xi(A,B)$ — искомая максимальная сцепленная система.

Перейдём теперь непосредственно к доказательству теоремы 2.4.1.

Доказательство. [35] Случай b=a рассмотрен в предложении 2.4.2.

Для b=0 утверждение настоящей теоремы следует из теоремы 2.3.4. Действительно, существует максимальная сцепленная система $\xi_0 \in \lambda X$ такая, что $\overline{\dim}_{\lambda}(\xi_0)=0$ и $\mathrm{supp}(\xi_0)=X$. Так как $0\leqslant \underline{\dim}_{\lambda}(\xi_0)\leqslant \overline{\dim}_{\lambda}(\xi_0)$, получаем что ξ_0 — искомая система для b=0.

Пусть теперь $b \in (0,a)$. Положим $\varepsilon_k = 1/2^k, \ k \in \mathbb{N}$. В силу Предложения 2.3.7 получаем

$$a = \underline{\lim}_{k \to \infty} \frac{\log N(X, \varepsilon_k)}{-\log \varepsilon_k} = \underline{\lim}_{k \to \infty} \frac{\log N(X, 2\varepsilon_k)}{-\log \varepsilon_k} > b,$$

откуда следует, что при достаточно больших k

$$N(X, 2\varepsilon_k) > 2^{kb}. (1)$$

Пусть натуральное число k_0 таково, что для всех $k \geqslant k_0$ выполняется неравенство (1), и числа

$$n_k = [2^{kb-1}] - 1 (2)$$

положительны и попарно различны.

Фиксируем предельную точку $p \in X$. Построим по индукции последовательности натуральных чисел $T = \{k_i : i \in \mathbb{N}\}$ и пар точек $x_{n_{k_i}}, y_{n_{k_i}} \in X, i \in \mathbb{N}$ следующим образом.

Шаг 1. Пусть k_1 — наименьшее натуральное число, удовлетворяющее условиям: $k_1 > k_0$ и $B(p, \varepsilon_{k_1}) \setminus B(p, \varepsilon_{k_1+1}) \neq \emptyset$. Выберем точки $x_{n_{k_1}} \in B(p, \varepsilon_{k_1}) \setminus B(p, \varepsilon_{k_1+1})$ и $y_{n_{k_1}} \in O(p, \varepsilon_{k_1+1})$ так, что $\rho(x_{n_{k_1}}, y_{n_{k_1}}) > \varepsilon_{k_1+1}$. Легко проверить, что $\rho(x_{n_{k_1}}, y_{n_{k_1}}) \leqslant 2\varepsilon_{k_1}$.

Шаг 2. Пусть k_2 — наименьшее натуральное число, удовлетворяющее условиям: $2\varepsilon_{k_2} < \rho(p,y_{n_{k_1}})$ и $B(p,\varepsilon_{k_2})\setminus B(p,\varepsilon_{k_2+1}) \neq \varnothing$. Дословно повторив проведенные выше рассуждения (с заменой индекса k_1 на k_2), выберем точки $x_{n_{k_2}} \in B(p,\varepsilon_{k_2})\setminus B(p,\varepsilon_{k_2+1})$ и $y_{n_{k_2}} \in O(p,\varepsilon_{k_2+1})$.

Продолжая индукцию, получим множество $T=\{k_i:i\in\mathbb{N}\}$ и последовательности $A'=\{x_{n_{k_i}}:i\in\mathbb{N}\},\ B'=\{y_{n_{k_i}}:i\in\mathbb{N}\}.$ Заметим, что для любых

различных $i,j\in\mathbb{N}\;|k_i-k_j|>1,$ а также, что для любого $k\geqslant k_0$ выполняется включение

$$(A' \cup B') \setminus B(p, 2\varepsilon_k) \subset (\bigcup_{k_i < k} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k} \{y_{n_{k_i}}\}).$$

Теперь будем строить по индукции возрастающую (по включению) последовательность конечных подмножеств $G_k \subset X, \ k \in \mathbb{N}, \ k \geqslant k_0$ так, чтобы выполнялись следующие условия:

- a) $G_k \cap (A' \cup B') = \emptyset$;
- b) $G_k \cup \{p\} 2\varepsilon_k$ -разделённое множество;

с) $G_k \cup (\bigcup_{k_i \leqslant k} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k} \{y_{n_{k_i}}\}) - \varepsilon_k$ -разделённое множество; d) $G_k \cup (\bigcup_{k_i < k} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k} \{y_{n_{k_i}}\}) \cup \{p\} - 2\varepsilon_k$ -сеть. Шаг $k = k_0$. В качестве G_{k_0} возьмем максимальное $2\varepsilon_{k_0}$ -разделённое подмножество $X \setminus B(p, 2\varepsilon_{k_0})$. Очевидно, что все перечисленные выше условия выполняются.

Шаг $k>k_0$. Пусть C_k — максимальное $2\varepsilon_k$ -разделённое подмножество $X \setminus B(G_{k-1} \cup (\bigcup_{k_i < k} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k} \{y_{n_{k_i}}\}) \cup \{p\}, 2\varepsilon_k)$. Тогда положим $G_k = G_{k-1} \cup C_k$. Условия а), b) и d) будут выполняться для G_k в силу свойств A', B', построения C_k и того факта, что условие a) выполнялось для G_{k-1} . Проверим выполнение условия с):

Если $k = k_j$ для некоторого $j \in \mathbb{N}$, то в силу выполнения условия с) для G_{k_j-1} , а также того, что $k_j-1 \notin T$, множество $G_{k_j-1} \cup (\bigcup_{k_i < k_j} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k_j} \{y_{n_{k_i}}\})$ будет $2\varepsilon_{k_j}$ -разделённым. В силу построения C_{k_j} множество $G_{k_j} \cup (\bigcup_{k_i < k_i} \{x_{n_{k_i}}\}) \cup$ $(\bigcup_{k_i < k_j} \{y_{n_{k_i}}\})$ также является $2\varepsilon_{k_j}$ -разделённым. Это множество не пересекает $B(p,2arepsilon_{k_j})$ в силу выполнения условия b) для G_{k_j} и построения точек $x_{n_{k_i}},y_{n_{k_i}}.$ Точка $x_{n_{k_j}}$ содержится в $B(p, \varepsilon_{k_j})$, а значит $G_{k_j} \cup (\bigcup_{k_i \leqslant k_i} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k_j} \{y_{n_{k_i}}\})$ будет ε_{k_i} -разделено.

Если $k=k_j+1$ для некоторого $j\in\mathbb{N},$ то в силу выполнения условия с) для G_{k_j} множество $G_{k_j} \cup (\bigcup_{k_i \leq k_i} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i \leq k_i} \{y_{n_{k_i}}\}) - 2\varepsilon_{k_j+1}$ -разделено. В силу построения C_{k_j+1} множество $G_{k_j+1}\cup (\bigcup_{k_i\leqslant k_j}\{x_{n_{k_i}}\})\cup (\bigcup_{k_i< k_j}\{y_{n_{k_i}}\})$ также $2\varepsilon_{k_j+1}$ -разделено. Это множество пересекает $B(p,2\varepsilon_{k_j+1})$ только по точке $x_{n_{k_j}}$ в силу выполнения условия b) для G_{k_j+1} и построения точек $x_{n_{k_i}},y_{n_{k_i}}$. Кроме того, $\rho(x_{n_{k_j}},y_{n_{k_j}})>\varepsilon_{k_j+1}$ и $y_{n_{k_j}}\in B(p,\varepsilon_{k_j+1})$. Значит $G_{k_j+1}\cup (\bigcup_{k_i\leqslant k_j}\{x_{n_{k_i}}\})\cup (\bigcup_{k_i\leqslant k_j}\{y_{n_{k_i}}\})$ ε_{k_j+1} -разделено. В силу того, что $k_j+1\notin T$, условие c) для G_{k_j+1} тем самым проверено.

Если $k_j + 1 < k < k_{j+1}$ для некоторого $j \in \mathbb{N}$, то выполнение условия с) будет следовать из выполнения этого условия для G_{k-1} и построения C_k .

Продолжая индукцию, получаем искомую последовательность G_k . Положим

$$G = \bigcup_{k \geqslant k_0} G_k.$$

Точка p является предельной точкой последовательностей A' и B'. Поэтому силу условия d) множество $G \cup A' \cup B'$ будет всюду плотным в X. Из условий d), (1) и (2) следует, что

$$|G_k \cup (\bigcup_{k_i < k} \{x_{n_{k_i}}\}) \cup (\bigcup_{k_i < k} \{y_{n_{k_i}}\})| \geqslant N(X, 2\varepsilon_k) - 1 \geqslant 2n_k.$$
(3)

Положим $S=\mathbb{N}\backslash T$. В силу неравенства (3) множество G можно представить в виде объединения двух непересекающихся последовательностей $A''=\{x_i:i\in S\}$ и $B''=\{y_i:i\in S\}$ так, чтобы для любого $k\geqslant k_0$ выполнялось включение $\{x_j:j\in S,j\leqslant n_k\}\cup\{y_j:j\in S,j\leqslant n_k\}\subset G_k$. Объединяя последовательности A' с A'' и B' с B'', мы получим (соответственно) последовательности $A=\{x_i:i\in\mathbb{N}\}$ и $B=\{y_i:i\in\mathbb{N}\}$. Для любого $k\in T$ $\rho(x_{n_k},y_{n_k})\leqslant 2\varepsilon_k$, следовательно, $\overline{A}\cap \overline{B}\neq\varnothing$. Из свойства с) следует, что $\{x_j:j\in\mathbb{N},j\leqslant n_k\}\cup\{y_j:j\in\mathbb{N},j< n_k\}-\varepsilon_k$ -разделённое множество для всех $k\geqslant k_0$. В силу предложения 2.3.7 выполняется $N(\xi(A,B),\varepsilon_k/2)\geqslant 2n_k-2$. Применяя к данному неравенству теорему 2.2.4 и (2), получаем, что

$$\underline{\dim}_{\lambda}\xi(A,B) = \underline{\lim}_{k \to \infty} \frac{\log N(\xi(A,B), \varepsilon_k/2)}{-\log \varepsilon_k/2} \geqslant \underline{\lim}_{k \to \infty} \frac{\log (2n_k - 2)}{-\log \varepsilon_k/2} = b.$$

Для любого $k_i \in T$ $\rho(x_{n_{k_i}},y_{n_{k_i}}) \leqslant 2\varepsilon_{k_i}$, поэтому, в силу предложения 2.3.8 выполняется неравенство $N(\xi(A,B),2\varepsilon_{k_i}) \leqslant 2n_{k_i}-1$. С учетом теоремы 2.2.4 и того факта, что T — бесконечно, получаем

$$\underline{\dim}_{\lambda}\xi(A,B) = \underline{\lim}_{k\to\infty} \frac{\log N(\xi(A,B), 2\varepsilon_k)}{-\log 2\varepsilon_k} \leqslant \underline{\lim}_{i\to\infty} \frac{\log N(\xi(A,B), 2\varepsilon_{k_i})}{-\log 2\varepsilon_{k_i}} \leqslant \underline{\lim}_{i\to\infty} \frac{\log (2n_{k_i} - 1)}{-\log 2\varepsilon_{k_i}} = b.$$

Так как $A \cup B$ — всюду плотно в X, носитель $\mathrm{supp}(\xi(A,B))$ равен X. Итак, $\xi(A,B)$ — искомая максимальная сцепленная система.

Таким образом, несмотря на схожесть определений ёмкостной размерности и размерности квантования для функтора суперрасширения $\lambda(\cdot)$, между ними установлено принципиальное различие: как следует из теорем 2.3.4 и 2.4.1, верхние и нижние размерности квантования максимальных сцепленных систем компакта X полностью покрывают интервалы своих возможных значений $[0, \overline{\dim}_B(X)]$ и $[0, \underline{\dim}_B(X)]$ соответственно. В то же время, как следует из теоремы 2.3.3, нижние ёмкостные размерности замкнутых подпространств X могут и не покрывать интервала возможных значений $[0, \dim_B(X)]$.

Заключение 73

Заключение

Отправной точкой для первой части работы были теоремы, развивавшие идею, представленную в теореме Федорчука, и при работе с этими теоремами автору удалось получить результаты, обобщающие многие из этих теорем. Центральной в этой главе является теорема для полунормальных функторов \mathcal{F} в категории \mathcal{P} паракомпактных p-пространств с наследственно паранормальным пространством $\mathcal{F}_n(X) \setminus X$. Однако, весьма вероятно, что эту теорему можно обобщать и далее, это касается как требований, накладываемых на сам функтор \mathcal{F} , так и на подпространства $\mathcal{F}(X)$.

Во второй главе диссертационной работы, посвящённой исследованию недавно введённого понятия размерности квантования, автором был получен следующий результат: верхние и нижние размерности квантования для полунормального функтора суперрасширения $\lambda(\cdot)$ обладают свойством принимать все возможные промежуточные значения на некоторых максимальных сцепленных системах, в то время как нижняя ёмкостная размерность лишена этого свойства, хотя эта размерность также является нижней размерностью квантования, но для другого функтора, а именно функтора гиперпространства $\exp(\cdot)$. Разумеется, понятие размерности квантования нуждается в дополнительном исследовании, в частности, в более подробном изучении размерности квантования для функтора суперрасширения $\lambda(\cdot)$ и других полунормальных функторов в категории Comp, используемых в топологии.

Результаты работы могут быть интересны специалистам, работающим в областях топологии и теории категорий.

Список литературы

[1] *Архангельский А. В.* Об одном классе пространств, содержащем все метрические и все локально бикомпактные пространства // Математический сборник. — 1965. — Т. 67. — С. 55–85.

- [2] *Басманов В. Н.* Ковариантные функторы, ретракты и размерность // Доклады Академии наук СССР. — 1983. — Т. 271, № 5. — С. 1033–1036.
- [3] Вакулова (Кашуба) Е. В. О носителях максимальных сцепленных систем // Труды Петрозаводского государственного университета. Серия «Математика». <math>2004. N 11. C. 3-8.
- [4] Добрынина M. A. K теореме Федорчука о нормальном функторе // Математические заметки. 2011. T. 90, \mathbb{N} 4. C. 630–633.
- [5] Жураев Т. Ф. Нормальные функторы и метризуемость бикомпактов // Вестник Московского университета. Серия 1: Математика. Механика. $2000. \mathbb{N} 4. \mathbb{C}. 8-11.$
- [6] Иванов А. В. О степенных спектрах и композициях финитно строго эпиморфных функторов // Труды Петрозаводского государственного университета. Серия «Математика». 2000. \mathbb{N} 7. С. 15–28.
- [7] Иванов А. В. Теорема Катетова о кубе и полунормальные функторы // Ученые записки Петрозаводского государственного Университета. 2012. \mathbb{N}^2 2. С. 104–108.
- [8] Иванов А. В., Фомкина О. В. О порядке метрической аппроксимации максимальных сцепленных систем и емкостных размерностях // Труды Карельского научного центра РАН. 2019. \mathbb{N} 7. С. 5–14.
- [9] Иванов А. В. О функторе вероятностных мер и размерностях квантования // Вестник Томского государственного университета. Математика и механика. 2020. № 63. С. 15–26.

[10] Иванов А. В. О промежуточных значениях емкостных размерностей // Сибирский математический журнал. — 2023. — Т. 64, \mathbb{N}_2 3. — С. 540–545.

- [11] Комбаров А. П. Счетная паракомпактность и нормальные функторы // Математические заметки. 2015. Т. 98, № 5. С. 794–796.
- [12] Комбаров А. П. Паранормальность в топологических произведениях // Математические заметки. 2017. Т. 102, № 3. С. 477–480.
- [13] Комбаров А. П. Об одной слабой форме нормальности // Вестник Московского университета. Серия 1: Математика. Механика. 2017. \mathbb{N} 5. С. 48–51.
- [14] Песин Я. Б. Теория размерности и динамические системы: современный взгляд и приложения. Москва-Ижевск: Институт компьютерных исследований, 2002. 404 с.
- [15] $\Phi e \partial o p v y \kappa B$. В., $\Phi u \Lambda u n n o \epsilon B$. В. Общая топология. Основные конструкции. Москва: $\Phi U 3 M A T \Lambda U T$, 2006. 336 с.
- [16] $\Phi e \partial o p u y \kappa B$. В. К теореме Катетова о кубе // Вестник Московского университета. Серия 1: Математика. Механика. 1989. № 4. С. 93—96.
- [17] $\Phi e \partial o p u y \kappa$ В. В. Тройки бесконечных итераций метризуемых функторов // Известия Академии наук СССР. Серия математическая. 1990. Т. 54, № 2. С. 396–417.
- [18] *Щепин Е. В.* Функторы и несчетные степени компактов // Успехи математических наук. 1981. Т. 36, N_2 3. С. 3–62.
- [19] Энгелькинг Р. Общая топология. Москва: Мир, 1986. 752 с.
- [20] Eilenberg S., Mac Lane S. General Theory of Natural Equivalences //
 Transactions of the American Mathematical Society. 1945. vol. 58. —
 pp. 231--294.

[21] Fedorchuk V., Todorčević S. Cellularity of covariant functors // Topology and its Applications. — 1997. — vol. 76. — pp. 125-150.

- [22] de Groot. J. Superextensions and supercompactness // Proceedings of the I International Symposium «Extension Theory of Topological Structures and its Applications», VEB Deutscher Verlag der Wissenschaften. — 1969. — pp. 89–90.
- [23] Gruenhage G., Nyikos. P. Normality in X^2 for compact X // Transactions of the American Mathematical Society. 1993. vol. 340. pp. 563–586.
- [24] Ivanov A. V. On metric order in spaces of the form $\mathcal{F}(X)$ // Topology and its Applications. 2017. vol. 221. pp. 107–113.
- [25] Katětov M. Complete normality of Cartesian products // Fundamenta Mathematicae. 1948. vol. 35. pp. 271–274.
- [26] Larson P., Todorčević S. Katětov's problem // Transactions of the American Mathematical Society. 2002. vol. 354. pp. 1783–1791.
- [27] Michael E. Topologies on spaces of subsets // Transactions of the American Mathematical Society. 1951. vol. 71. pp. 152-–182.
- [28] Nyikos P. A compact nonmetrizable space P such that P^2 is completely normal // Topology Proceedings. 1977. vol. 2. pp. 359–364.
- [29] Nyikos P. Problem section: Problem B // Topology Proceedings. 1984 vol. 9. pp. 367.
- [30] Vietoris L. Kontinua zweiter Ordnung // Monatshefte fur Mathematik und Physik. 1923. vol. 33. pp. 49–62.
- [31] Wazewski T. Sur un continu singulier // Fundamenta Mathematicae. 1923.
 vol. 4. pp. 214–245.
- [32] Zenor P. Countable paracompactness in product spaces // Proceedings of the American Mathematical Society. 1971. vol. 30, No. 1. pp. 199–201.

Публикации автора по теме диссертации

Статьи в рецензируемых научных изданиях, рекомендованных для защиты в диссертационном совете МГУ по специальности 1.1.3. Геометрия и топология, и входящие в базы цитирования Scopus, РИНЦ, RSCI, Web of Science

[33] Иванов А. А. Нормальные функторы и паранормальность // Вестник Моского университета. Серия 1: Математика. Механика. — 2021. — \mathbb{N} 6. — С. 51–53.

EDN: MUPRDT; Импакт-фактор 0,211(РИНЦ). 0,1875 п.л.

Перевод: Ivanov A. A. Normal Functors and Paranormality // Moscow University Mathematics Bulletin. — 2021. — vol. 76. — pp. 271—273.

EDN: GMJYRK; Импакт-фактор $0.2({\rm JIF}).~0.1875~{\rm п.л.}$

[34] Иванов А. А. Полунормальные функторы и паранормальность // Вестник Московского университета. Серия 1: Математика. Механика. — 2023. — № 2. — С. 67—71.

EDN: ADKFMP; Импакт-фактор 0,211(РИНЦ). 0,3125 п.л.

Перевод: Ivanov A. A. Seminormal Functors and Paranormality // Moscow University Mathematics Bulletin. — 2023. — vol. 78. — pp. 100—104.

EDN: DOJSVP; Импакт-фактор 0.2(JIF). 0.3125 п.л.

[35] Иванов А. А. О размерности квантования максимальных сцепленных систем // Сибирский математический журнал. — 2024. — Т. 65, \mathbb{N} 3. — С. 517—523.

EDN: QGQPFK; Импакт-фактор 0,571(РИНЦ). 0,4375 п.л.

Перевод: Ivanov A. A. On the Quantization Dimension of Maximal Linked Systems // Siberian Mathematical Journal. — 2024. — vol. 65. — pp. 575—581.

EDN: AHTYDK; Импакт-фактор 0,7(JIF). 0,4375 п.л.