МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Федораев Иван Игоревич

Легированные рением, марганцем и хромом кобальт-ниобиевые и кобальт-танталовые сплавы: получение, состав и свойства

1.4.1. Неорганическая химия1.4.15. Химия твердого тела

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата химических наук

Научный руководитель: к.х.н., доцент Керимов Эльшат Юсифович

Оглавление

Введение
Глава 1. Обзор литературы 11
1.1. Дисперсионно-упрочненные жаропрочные кобальтовые сплавы 11
1.2. Диаграммы состояния двухкомпонентных систем кобальта, ниобия,
тантала, рения, марганца и хрома14
1.2.1. Двухкомпонентная система Co-Nb14
1.2.2. Двухкомпонентная система Со-Та17
1.2.3. Двухкомпонентная система Co-Re19
1.2.4. Двухкомпонентная система Re-Nb
1.2.5. Двухкомпонентная система Re-Ta21
1.2.6. Двухкомпонентная система Co-Mn22
1.2.7. Двухкомпонентная система Mn-Nb23
1.2.8. Двухкомпонентная система Mn-Ta24
1.2.9. Двухкомпонентная система Co-Cr26
1.3. Диаграммы фазовых равновесий трехкомпонентных систем кобальта и
рения с ниобием и танталом, кобальта и марганца с ниобием и танталом,
кобальта и хрома с рением, ниобием и танталом
1.3.1. Трехкомпонентная система Co-Nb-Re
1.3.2. Трехкомпонентная система Co-Re-Ta
1.3.3. Трехкомпонентная система Co-Mn-Nb
1.3.4. Трехкомпонентная система Co-Mn-Ta
1.3.5. Трехкомпонентная система Co-Cr-Re
1.3.6. Трехкомпонентная система Co-Cr-Nb
1.3.7. Трехкомпонентная система Co-Cr-Ta30
1.4. Фазы Со ₃ Ме и фазы Лавеса в двухкомпонентных системах кобальта с
ниобием и танталом
1.5. Высокотемпературное окисление кобальтовых сплавов
1.5.1. Окисление чистых металлов: кобальта, ниобия, тантала, рения,
марганца и хрома
1.5.2. Окисление двухкомпонентных сплавов Co-Nb и Co-Ta37
1.5.3. Окисление двухкомпонентных сплавов Со–Re

1.5.4. Окисление двухкомпонентных сплавов Co-Mn	38
1.5.5. Окисление двухкомпонентных сплавов Co-Cr	38
1.5.6. Окисление трехкомпонентных сплавов Co-Cr-Nb и Co-Cr-Ta	39
1.5.7. Окисление трехкомпонентных сплавов Co-Cr-Re	40
1.5.8. Окисление трехкомпонентных сплавов Co-Cr-Mn	41
Глава 2. Экспериментальная часть	
2.1. Методика приготовления образцов	45
2.2. Методы исследования	46
2.2.1. Сканирующая электронная микроскопия (СЭМ)	46
2.2.2. Локальный рентгеноспектральный анализ (ЛРСА)	47
2.2.3. Рентгенофазовый анализ (РФА)	47
2.2.4. Просвечивающая электронная микроскопия (ПЭМ)	48
2.2.5. Дифференциальная сканирующая калориметрия (ДСК)	48
2.2.6. Измерение твердости	48
Глава 3. Результаты и их обсуждение	50
3.1. Диаграммы фазовых равновесий трехкомпонентных систем Co-Nb-Re,	
Со-Re-Ta, Co-Mn-Nb и Co-Mn-Ta	50
3.1.1. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Nb-Re при 1375 К	50
3.1.2. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Nb-Re при 1200 К	56
3.1.3. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Re-Ta при 1375 К	67
3.1.4. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Re-Ta при 1200 К	73
3.1.5. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Mn-Nb при 1200 К	82
3.1.6. Изотермическое сечение диаграммы фазовых равновесий	
системы Co-Mn-Ta при 1200 К	92
3.1.7. Фазовые равновесия с участием ГЦК-кобальтового раствора	
в трехкомпонентных системах Co-Nb-Re, Co-Ta-Re при 1375 и 1200 К,	
Со-Мп-Nb и Со-Мп-Та при 1200 К	102

3.2. Влияние легирования рением, марганцем и хромом, а также условий
термической обработки на твердость однофазных и двухфазных кобальт-
ниобиевых и кобальт-танталовых сплавов109
3.2.1. Влияние легирования рением и условий термической обработки
на твердость однофазных (γ_{Co}) и дисперсионно-упрочненных
выделениями фаз Co ₃ Nb, Co ₃ Ta, Co ₂ Nb и Co ₂ Ta двухфазных
кобальт-ниобиевых и кобальт-танталовых сплавов109
3.2.2. Влияние легирования рением и марганцем, а также условий
термической обработки на твердость однофазных и двухфазных
кобальт-ниобиевых и кобальт-танталовых сплавов135
3.2.3. Влияние легирования рением и хромом, а также условий
термической обработки на твердость однофазных и двухфазных
кобальт-ниобиевых и кобальт-танталовых сплавов140
3.3. Влияние легирования рением, марганцем и хромом на устойчивость
к высокотемпературному окислению на воздухе при 1200 К
кобальт-ниобиевых и кобальт-танталовых сплавов148
3.3.1. Устойчивость к высокотемпературному окислению на воздухе
при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов,
легированных рением148
3.3.2. Устойчивость к высокотемпературному окислению на воздухе
при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов,
легированных рением и марганцем158
3.3.3. Устойчивость к высокотемпературному окислению на воздухе
при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов,
легированных рением и хромом162
3.4. Заключение 168
Основные результаты и выводы 170
Библиографический список 171
Список работ, опубликованных автором по теме диссертации 190
Благодарности

Введение

Актуальность темы исследования и степень ее разработанности. Разработка новых жаропрочных и жаростойких сплавов на основе кобальта является актуальной задачей для авиакосмической промышленности ввиду необходимости расширения диапазона рабочих температур материалов за пределы температурных возможностей никелевых сплавов последнего поколения [1-3]. Легирование кобальта, как и никеля, ниобием и танталом, улучшает прочностные характеристики сплавов. По причине того, что кобальт может находиться в двух модификациях – гранецентрированной кубической (усо, ГЦК) и гексагональной (є_{со}, ГПУ) – в систему легирования вводят дополнительные компоненты для стабилизации той или иной структуры. В частности, для стабилизации усо-твердого раствора в кобальтовые сплавы предлагается вводить марганец [4]. Рений, который имеет самую низкую диффузионную подвижность среди всех компонентов системы легирования кобальтовых суперсплавов, способен замедлять рост дисперсных частиц упрочняющих фаз, не позволяя им достигнуть размеров, при которых они перестают вносить ощутимый вклад в повышение прочности сплава [5–7]. Ренийсодержащие кобальтовые сплавы рассматриваются как возможные претенденты на роль нового класса жаропрочных материалов [8]. Помимо повышения прочностных характеристик сплавов важно обеспечить их устойчивость к высокотемпературному окислению. С этой целью в кобальтовые сплавы добавляют хром, который призван замедлить окисление поверхности [9, 10].

Важнейшими проблемами, связанными с созданием новых материалов на основе кобальта, являются поиск фаз, которые могут быть использованы в качестве упрочняющих, а также подбор оптимальных концентраций легирующих компонентов. Для этой цели широко применяются карбидные фазы, однако они при высоких температурах эксплуатации провоцируют внутреннее окисление. Так, например, широко применяемый в кобальтовых сплавах карбид вольфрама полностью окисляется выше 800°С с образованием газообразных оксидов [11]. Кроме того, при уменьшении скорости кристаллизации сплава карбиды могут выделяться в виде крупных вытянутых частиц (в так называемой шрифтовой морфологии), которые приводят к разрушению материала [12]. Поэтому в настоящее время для упрочнения сплавов совместно используются карбидные и интерметаллические фазы.

Проблема использования кобальта в качестве основы жаропрочных сплавов заключается в отсутствии в двойных системах кобальта с переходными металлами фазы, которая была бы когерентна матричному γ_{Co} -твердому раствору и выделялась бы при старении

сплава в достаточном количестве, как, например, фаза Ni₃Al, применяемая в качестве упрочняющей в никелевых суперсплавах [13–16]. Хотя подобная фаза присутствует в двухкомпонентной системе Со-Ті и является стабильной до 1190°С, однако из-за малой объемной доли данной фазы, выделяющейся в процессе старения, она не находит применения в качестве упрочняющей [6, 17].

В последнее время уделяется повышенное внимание к исследованию фаз Co₃Me, присутствующих в двух- и трехкомпонентных системах кобальта с переходными металлами [10, 18 – 26]. Ранее в качестве упрочняющей фазы была предложена фаза Co₃(Al,W), однако более поздние исследования показали, что она имеет узкую область стабильности и разлагается при добавлении хрома уже при температуре дисперсионного твердения [27 – 30]. Несмотря на наличие ряда работ, в которых предпринимались попытки стабилизации фазы Co₃(Al, W) [31 – 40], поиск фаз, способных к упрочнению кобальтовых сплавов, по-прежнему, остается актуальной задачей [41, 42].

При выборе концентраций легирующих компонентов необходимо учитывать их растворимость в γ_{Co} -матрице. Избыточное содержание легирующих компонентов может приводить к образованию топологически плотноупакованных структур (фазы Лавеса, µ- и σ- фазы), ухудшающих прочностные свойства сплавов из-за своей высокой хрупкости [43]. Поэтому для поиска оптимальных составов сплавов, которые могут быть использованы для создания новых жаропрочных и жаростойких кобальтовых материалов, важно иметь информацию о строении диаграмм фазовых равновесий трехкомпонентных систем кобальта с легирующими компонентами.

Несмотря на перспективность сплавов на основе кобальта, тройные системы кобальта и рения, кобальта и марганца с тугоплавкими переходными металлами 5 группы Периодической системы элементов Д.И. Менделеева изучены недостаточно. Помимо этого, в литературе отсутствовали сведения о зависимости свойств кобальтовых сплавов, совместно легированных рением, ниобием и танталом, от их состава и условий термической обработки.

<u>Цель и задачи.</u> Цель настоящей работы – установление фазовых равновесий в трехкомпонентных системах кобальта и ниобия, кобальта и тантала с рением и марганцем, а также оценка влияния рения, марганца и хрома на процессы дисперсионного твердения и высокотемпературного окисления на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов.

Для достижения поставленной цели были сформулированы следующие задачи:

- Построение изотермических сечений диаграмм фазовых равновесий трехкомпонентных систем Co-Nb-Re и Co-Ta-Re при 1375 и 1200 К.
- 2. Построение изотермических сечений диаграмм фазовых равновесий трехкомпонентных систем Co-Nb-Mn и Co-Ta-Mn при 1200 К.
- Уточнение кристаллических структур фаз Co₃Nb, Co₃Ta, Co₂Nb и Co₂Ta, легированных рением и марганцем, а также определение температурного интервала их существования при различном содержании рения и марганца в тройных системах.
- Оценка влияния легирования рением, марганцем и хромом, а также условий термической обработки на твердость однофазных (γ_{Co}) и двухфазных дисперсионно-упрочненных кобальт-ниобиевых и кобальт-танталовых сплавов.
- Оценка влияния легирования рением, марганцем и хромом на устойчивость к высокотемпературному окислению на воздухе при 1200 К однофазных (усо) и двухфазных дисперсионно-упрочненных кобальт-ниобиевых и кобальт-танталовых сплавов.

<u>Объект и предмет исследования.</u> В качестве объекта исследования использовались сплавы, содержащие кобальт, ниобий, тантал, рений, марганец и хром, перспективные для разработки новых жаропрочных и жаростойких кобальтовых материалов. Предметом исследования являлись фазовые равновесия и растворимости компонентов в фазах трехкомпонентных систем кобальта и ниобия, кобальта и тантала, с рением и марганцем, твердость и устойчивость к высокотемпературному окислению на воздухе кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением, марганцем и хромом.

Научная новизна. В настоящей работе впервые:

- установлены фазовые равновесия и построены изотермические сечения диаграмм фазовых равновесий трехкомпонентных систем Co-Nb-Re и Co-Ta-Re при 1375 K, а также Co-Nb-Re, Co-Ta-Re, Co-Nb-Mn и Co-Ta-Mn при 1200 K;
- обнаружены тройные фазы Лавеса в системах Co-Nb-Re, Co-Ta-Re, Co-Nb-Mn и Co-Ta-Mn при 1200 К, для которых были определены кристаллографические параметры и области термической устойчивости;
- предложена схема процесса дисперсионного твердения γ_{Co}-твердого раствора наноразмерными выделениями фаз Co₃Nb и Co₃Ta в кобальт-ниобиевых и кобальттанталовых сплавах, легированных рением, марганцем и хромом;

- произведена оценка взаимного влияния легирующих компонентов на твердость однофазных (γ_{Co}) и двухфазных (γ_{Co} + Co₃Nb, γ_{Co} + Co₃Ta) кобальт-ниобиевых и кобальттанталовых сплавов, легированных рением, марганцем и хромом;
- произведена оценка взаимного влияния легирующих компонентов на устойчивость к высокотемпературному окислению на воздухе при 1200 К однофазных (усо) и двухфазных (усо + Co₃Nb, усо + Co₃Ta) кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением, марганцем и хромом.

<u>Теоретическая и практическая значимость работы.</u> Полученные в настоящей работе экспериментальные данные об изотермических сечениях диаграмм фазовых равновесий трехкомпонентных систем кобальта и ниобия, кобальта и тантала с рением и марганцем, а также о твердофазных процессах в кобальт-ниобиевых и кобальт-танталовых сплавах, легированных рением, марганцем и хромом, являются фундаментальной основой для научного поиска оптимальных составов перспективных жаропрочных и жаростойких сплавов и композиционных материалов на их основе.

Представленные в работе результаты являются частью исследований, проведенных при финансовой поддержке Российского фонда фундаментальных исследований (грант № 13-03-00977 «Фундаментальные основы комплексного легирования никелевых и кобальтовых суперсплавов»), а также Министерства образования и науки Российской Федерации (грант № RFMEFI61616X0069 «Структурная характеризация новых перспективных материалов на синхротронной станции высокого разрешения ID22»).

<u>Методология и методы исследования.</u> Сплавы для исследования получали методом высокотемпературного жидкофазного синтеза в инертной атмосфере в электродуговой печи. С целью получения равновесных образцов приготовленные сплавы отжигали в электрических печах сопротивления. В зависимости от состава сплава и температуры исследования время отжига варьировали. Приготовленные образцы исследовали комплексом современных методов физико-химического анализа: сканирующей электронной микроскопией (СЭМ), локального рентгеноспектрального анализа (ЛРСА), рентгенофазового анализа (РФА), просвечивающей электронной микроскопии (ПЭМ), дифференциальной сканирующей калориметрии (ДСК), измерения твердости по Виккерсу. Данные по твердости и ширине окисленной зоны обрабатывались с использованием *t*-критерия Стьюдента.

Положения, выносимые на защиту:

- Концентрационные области на границе γ_{Co}-твердого раствора с двухфазными областями (γ_{Co} + Co₂Nb), (γ_{Co} + Co₃Nb), (γ_{Co} + Co₂Ta) и (γ_{Co} + Co₃Ta) в трехкомпонентных системах Co-Nb-Re и Co-Ta-Re определяют перспективные составы для получения дисперсно-упрочненных кобальтовых сплавов.
- Тройные фазы Лавеса λ', обнаруженные в системах Co-Nb-Re, Co-Ta-Re, Co-Mn-Nb и Co-Mn-Ta при 1200 K, относятся к структурному типу MgNi₂, в котором кобальт занимает все кристаллографические позиции, ниобий и тантал занимает только позиции Mg1 и Mg2, а рений и марганец располагаются во всех позициях, кроме Ni1.
- 3. Дисперсионное твердение при 1200 К в легированных рением кобальт-ниобиевых и кобальт-танталовых сплавах в процессе распада усо-твердого раствора происходит через образование и рост зон Гинье-Престона, с последующим возникновением атмосфер Сузуки и формированием дисперсных частиц метастабильных фаз Co₃Nb и Co₃Ta с кристаллической структурой Mg₃Cd.
- Легирование рением кобальт-ниобиевых и кобальт-танталовых сплавов на основе γ_{Co}твердого раствора приводит к высоким показателям твердости данных сплавов, так как рений способствует зарождению дисперсных выделений упрочняющих фаз Co₃Nb и Co₃Ta и препятствует их росту по причинам его низкой растворимости в данных фазах и стабилизации им гексагональной модификации кобальтового твердого раствора.
- 5. Введение от ~5 ат. % рения в кобальт-ниобиевые и кобальт-танталовые сплавы, а также их совместное легирование рением и марганцем приводит к более интенсивному высокотемпературному окислению поверхности этих сплавов на воздухе; повышение устойчивости этих сплавов к высокотемпературному окислению на воздухе возможно при их совместном легировании рением (около 6 ат. %) и хромом (около 25 ат. %).

<u>Степень достоверности и апробация результатов.</u> Достоверность результатов работы обеспечивается исследованием большого числа образцов сплавов с использованием комплекса современных физико-химических методов анализа и применением методов статистической обработки результатов измерений.

Результаты диссертационной работы опубликованы в 4 статьях в рецензируемых научных изданиях (журналах), в том числе индексируемых в базах данных Web of Science и Scopus, и в тезисах 9 докладов на международных и всероссийских конференциях. По материалам настоящей работы были представлены доклады на Международной конференции

«Наноматериалы: новые методы синтеза» (16 – 18 мая 2017 г., Москва, Россия); Международном симпозиуме «Дифракционные методы в характеризации новых материалов» (31 мая – 2 июня 2017 г., Москва, Россия); Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2016» (11 – 15 апреля 2016 г., Москва, Россия); Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2017» (10 – 14 апреля 2017 г., Москва, Россия); Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2018» (09 – 13 апреля 2018 г., Москва, Россия); Международной научной конференции «XXI Менделеевский съезд по общей и прикладной химии» (09 – 13 сентября 2019 г., Санкт-Петербург, Россия); Всероссийской конференции «Химия твердого тела и функциональные материалы-2022» и XIV симпозиума «Термодинамика и материаловедение» (10 – 13 октября 2022 г., Екатеринбург, Россия).

Личный вклад автора. Автором самостоятельно выполнены сбор и систематический анализ литературных данных по теме диссертационной работы; синтез и термообработка сплавов; подготовка образцов сплавов для исследования; исследование образцов сплавов методами СЭМ и ЛРСА; измерение твердости сплавов по Виккерсу; обработка, анализ и интерпретация экспериментальных данных, полученных вышеуказанными методами и методами РФА, ДСК и ПЭМ. Съемка образцов сплавов на дифрактометре ДРОН-4 проводилась старшим научным сотрудником, канд. хим. наук А.В. Леоновым, получение рентгеновских дифрактограмм методом порошка с использованием синхротронного излучения осуществлялась на станции «Белок» в Национальном исследовательском центре «Курчатовский институт» ведущим научным сотрудником, канд. физ.-мат. наук С.Н. Сульяновым. Измерения методом ДСК проведены старшим научным сотрудником, канд. хим. наук С.Е. Филипповой. Исследование образцов сплавов методом ПЭМ осуществлялось ведущим специалистом, канд. хим. наук С.В. Максимовым. Формулировка темы и цели исследования, поставленных исследовательских задач, а также выводов проводилась совместно с научным руководителем.

<u>Структура и объем диссертационной работы.</u> Диссертационная работа состоит из введения, трех глав (литературный обзор, экспериментальная часть, результаты и их обсуждение), заключения (основных результатов и выводов) и библиографического списка. Диссертационная работа изложена на 192 страницах, включает 45 таблиц и 86 рисунков. Список литературы содержит 231 цитируемый источник.

Глава 1. Обзор литературы

1.1. Дисперсионно-упрочненные жаропрочные кобальтовые сплавы

Несмотря на то, что в настоящее время дисперсионно-упрочненные никелевые сплавы являются доминирующим классом материалов, применяемых в авиакосмической промышленности, в долгосрочной перспективе развития существует необходимость выхода за пределы их температурных возможностей. По этой причине продолжается поиск альтернативных решений, например, разработка жаропрочных и жаростойких сплавов на основе кобальта [1 – 3, 6, 8, 28, 29], в том числе и с добавлением рения [5 – 8].

Теоретическая основа упрочнения как никелевых, так и кобальтовых сплавов состоит в поиске подходящих препятствий для движения дислокаций в зернах сплавов. В качестве таких препятствий могут выступать: атомы другого тугоплавкого химического элемента с большим атомным радиусом (твердорасторное упрочнение за счет искажения исходной кристаллической решетки атомами легирующего компонента), другие дислокации, границы зерен, а также наличие второй фазы, частицы которой распределены в объеме зерна (дисперсионное упрочнение) или выделяются агрегатно на границах зерен (зернограничное упрочнение) [1 – 3, 6, 17, 24, 27 – 38, 44, 45].

При дисперсионном упрочнении перемещение дислокаций ограничивается выделениями фаз, устойчивых при температуре эксплуатации. Наибольшее упрочнение сплава достигается в тех случаях, когда дисперсная фаза равномерно распределена в объеме сплава, а расстояние между ее частицами мало. Дисперсионное упрочнение может достигаться, например, в результате распада образовавшегося в ходе закалки перенасыщенного твердого раствора (метастабильной фазы) с выделением в матрице твердого раствора интерметаллидов [44 – 50].

Образование упрочняющих фаз и равномерное распределение их выделений в матрице твердого кобальтового раствора достигается путём термических обработок. После выплавки сплавы подвергаются гомогенизации при высокой температуре, находящейся в диапазоне 1084 – 1230°С. Далее сплавы подвергают отжигу дисперсионного твердения (старению) в интервале температур 925 – 760 °С, во время которого происходит выделение упрочняющей фазы [1 – 3, 49, 50].

Помимо упрочнения интерметаллидами применяют также дисперсное упрочнение карбидами. Тщательный подбор последних позволяет предотвратить движения зерен в сплаве относительно их границ [1 – 3, 12]. Кобальтовые сплавы, упрочненные

карбидами, в частности, карбидом вольфрама, при температурах эксплуатации (до 650°С) характеризуются высокой твердостью, высокой стойкостью к окислению на воздухе, устойчивостью к износу и коррозии (в том числе в загрязненных газовых средах) [12, 13]. Однако, несмотря на то, что жаропрочные сплавы на основе твердого раствора кобальта, упрочненные карбидом вольфрама, имеют температуру плавления на 50-100 °C выше, чем жаропрочные сплавы на основе никеля, они уступают им по своим прочностным характеристикам при более высоких температурах [51]. Это связано с тем, что карбидные фазы подвержены распаду при высоких температурах и способствуют внутреннему окислению сплавов. Так, уже упоминавшийся ранее карбид вольфрама полностью окисляется выше 800°С с образованием газообразных оксидов [11]. При уменьшении скорости кристаллизации сплава карбиды могут выделяться в грубой или шрифтовой форме, что не только не способствует упрочнению, но и приводит к разрушению материала [12, 13]. Вероятно, именно по этой причине разработка жаропрочных кобальтовых сплавов практически прекратилась на некоторое время, и кобальт чаще используют как легирующий компонент никелевых сплавов (где его содержание колеблется обычно в пределах от 10 до 15 ат.%), нежели как основной компонент матрицы [1 – 3, 52, 53].

Причина недостаточной жаропрочности кобальтовых сплавов по сравнению с никелевыми заключается в том, что в двойных системах кобальта с алюминием и переходными металлами 5–6 групп Периодической системы элементов Д.И. Менделеева отсутствуют упрочняющие фазы, аналогичные-фазам Ni₃Al и Ni₃Nb (структурный тип Cu₃Au), когерентные матричному ГЦК-твердому раствору [13 – 16]. Подобная фаза хотя и присутствует в системе Co-Ti, и является стабильной до 1190°С, однако из-за малой объемной доли этой фазы, образующейся в процессе старения, она не находит применения в качестве упрочняющей [6, 17]. О существовании упрочняющей фазы со структурой Cu₃Au сообщалось в работах [54 – 56], посвященных старению сплавов на основе систем Co-V-Nb и Co-V-Ta, однако в данных работах отсутствуют структурные исследования выделений, полученных в ходе распада γ_{Co} -твердого раствора. Более того, введение ванадия в систему легирования кобальтовых жаропрочных сплавов нежелательно, ввиду того, что он способствует внутреннему окислению сплавов [57].

В качестве упрочняющей для кобальтовых сплавов предлагалось использовать фазу Co₃(Al, W), однако она имеет узкую область стабильности и разлагается при

добавлении хрома уже при температуре дисперсионного твердения [21 – 30]. Несмотря на сообщения в ряде работ [31 – 40] об успехах стабилизации фазы Co₃(Al,W) в многокомпонентных системах, по-прежнему, сохраняется необходимость продолжения поиска как оптимальных составов кобальтовых суперсплавов, так и фаз, пригодных к использованию в качестве упрочняющих. В частности, предпринимаются попытки получения и использования фазы, аналогичной Co₃(Al,W), в сплавах на основе системы Co-Al-Mo [26, 41].

Современные жаропрочные и жаростойкие материалы на основе кобальтовых сплавов – многокомпонентные и многофазные системы, в связи с чем необходимо рассмотреть взаимное влияние легирующих компонентов на заданные свойства таких материалов.

Легирование кобальтовых сплавов ниобием и танталом, повышает их жаропрочность за счет твердорастворного упрочнения [1 – 3].

В работах [5 – 8] предполагается, что добавление рения в систему легирования кобальтовых сплавов поможет повысить их прочность при высоких температурах. Растворимость рения в ГЦК-кобальте (γ_{Co}) выше, чем в никелевой матрице, а с ГПУ-модификацией кобальта рений образует непрерывный ряд твердых растворов ($\varepsilon_{Co,Re}$) [58, 59]. Более того, растворимость рения в γ_{Co} -кобальте выше, чем в никеле при совместном легировании их рением и алюминием [60, 61], рением и тугоплавкими металлами 5 группы Периодической системы Д.И. Менделеева [62, 63]. Таким образом в случае замены никеля на кобальт, добавление рения предоставляет больше возможностей для получения жаропрочных материалов. Тем не менее сведения о зависимости свойств кобальтовых сплавов от содержания рения в литературе отсутствуют.

Открытым остается вопрос о роли марганца в кобальтовых сплавах, незначительное количество которого обычно содержится в их составе. Согласно некоторым данным [4] включение марганца в систему легирования сплавов на основе кобальта способствует стабилизации ГЦК-модификации твердого раствора.

Легирование хромом необходимого для защиты поверхности сплава от высокотемпературного окисления, однако в случае сплавов на основе кобальта введение хрома ограничено его растворимостью γ_{Co}-фазе, по причине того, что избыток хрома приводит к выпадению хрупкой σ-фазы, которая приводит к разрушению материала [9, 10, 17].

Таким образом, перспективными для разработки ренийсодержащих кобальтовых жаропрочных материалов могут являться сплавы на основе γ_{Co} -твердого раствора, содержащие в своем составе дисперсные выделения интерметаллических фаз, в частности, образующихся в двухкомпонентных системах Co-Nb и Co-Ta.

Наиболее важной для прогнозирования составов кобальтовых сплавов является информация о строении диаграмм фазовых равновесий кобальта с выбранными легирующими компонентами при температурах термической обработки кобальтовых сплавов [1 – 3]. В настоящей работе гомогенизирующий отжиг проводился при 1375 К (1102°С), а отжиг дисперсионного твердения – при 1200 К (923°С), поэтому основное внимание при рассмотрении строения двух- и трехкомпонентных систем кобальта с легирующими элементами уделено фазовым равновесиям и растворимости компонентов в фазах при указанных температурах.

1.2. Диаграммы состояния двухкомпонентных систем кобальта, ниобия, тантала, рения, марганца и хрома

Для построения изотермических сечений трехкомпонентных систем Co–Re–Nb и Co–Re–Ta при 1375 и 1200 K, а также систем Co–Mn–Nb и Co–Mn–Ta при 1200 K необходимо иметь информацию о строении диаграмм состояния двухкомпонентных систем Co-Nb, Co-Ta, Co-Re, Re-Nb, Re-Ta, Co-Mn, Mn-Nb, Mn-Ta и кристаллических структурах фаз, существующих в этих системах при температурах исследования. Поскольку в данной работе предполагается рассмотреть также влияние хрома на свойства легированных ниобием, танталом и рением кобальтовых сплавов, важно также учитывать строение двойной диаграммы Co–Cr.

1.2.1. Двухкомпонентная система Co-Nb

В двойной системе Co-Nb при содержании ниобия более 50 ат. % при 1200 и 1375 К в равновесии находятся фаза μ и твердый раствор на основе ниобия β_{Nb} [18, 64 – 75].

В области, богатой кобальтом (до 50 ат. % Nb), по данным большинства работ при 1200 К существует фаза λ_1 со структурой MgCu₂, а фаза λ_2 со структурой MgZn₂ рассматривается как высокотемпературная [64, 66, 67, 69 – 73, 75], однако в работе [65] указывается, что фаза λ_2 существует, а в работе [66] вместо λ_1 и λ_2 приводится общая область гомогенности фазы λ (Co₂Nb).

Фаза λ' (или λ_3), имеющая структурный тип MgNi₂, в работах [64, 66] существует в интервале температур 1200 – 1375 К, в работе [65] она вообще отсутствует, а в работах [67, 68, 70 – 73, 75] данная фаза существует только при 1375 К, а при 1200 К отсутствует.

По данным работы D. Grüner et al (2006) [72] температурная область существования фазы λ' (структурный тип MgNi₂) находится в интервале 1323 – 1537 К (1050 – 1151°C), а фаза Co₇Nb₂ существует ниже 1359±2 К. Авторы работы F. Stein et al (2008) [73] уточняют температурную область существования фазы λ' (структурный тип MgNi₂) 1313 – 1537 К (1040 – 1300°C), указывают, что фаза Лавеса λ_1 существует ниже 1757 К (1151°C), а фаза Лавеса λ_2 имеет температурную область существования 1523 – 1697 К (1250 – 1424°C), сообщают, что фаза Co₇Nb₂ стабильна в узком диапазоне концентраций около 0,2 ат.%, образуется очень медленно в перитектоидной реакции при 1359 К (1086°C).

В литературе имеются противоречивые данные о существовании фаз Co₄Nb и Co₇Nb₂. В работе [64, 65, 67] фаза Co₄Nb существует при 1200 K, а в работе [66, 68] она отсутствует на диаграмме состояния. В работах [64, 65, 67], в которых упоминается о существовании фазы Co₄Nb, ее структурные характеристики не приводятся. В работах [69 – 73, 75] приводятся данные о существовании фазы состава Co₇Nb₂, которая существует ниже 1375 K [69 – 73, 75] и имеет по данным [73, 74] структурный тип Zr₂Ni₇. В работе [18] по результатам исследования двухкомпонентной системы Co-Nb методом диффузионных пар и равновесных сплавов было установлено существование фазы состава Co₃Nb, принадлежащей к структурному типу Mg₃Cd. Данные о кристаллической структуре фаз двухкомпонентной системы Co-Nb представлены в Таблице 1. Диаграмма состояния двухкомпонентной системы Co-Nb представлена на Рисунке 1.

Таблица	1. Данные	о кристаллической	структуре ф	аз двух	компонентной	системы	Co-
Nb, суще	ствующих	в интервале темпера	атур 1200 – 1	375 К			

Темпе-	Обозна-	Фаза	Символ	Простран-	Структурный	Ссылки
ратура,	чение		Пирсона	ственная группа	тип	
K	фазы					
1200 -	$\gamma_{\rm Co}$	γ_{Co}	cF4	<i>Fm</i> -3 <i>m</i> , № 225	Cu	[64-73, 75]
1375	Co ₄ Nb	Co ₄ Nb	-	-	-	[64, 65, 67]
1200	Co ₇ Nb ₂	Co7Nb2	<i>mS</i> 18ª	<i>C</i> 2/ <i>m</i> , № 12 ^a	Zr ₂ Ni ₇ ^a	[18, 64 – 68]
	Co ₃ Nb	Co ₃ Nb	hP8	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	Mg ₃ Cd	[18]

Темпе-	Обозна-	Фаза	Символ	Простран-	Структурный	Ссылки
ратура,	чение		Пирсона	ственная группа	ТИП	
K	фазы					
1200 ^a -	2.2.	CosNb	cF24	Ed 3m No 227	MaCua	[64 73 75]
1375	Λ, ΛΙ	CO2IND	<i>CI</i> 24	<i>I'u-3m</i> , J <u>№</u> 227	WigCu ₂	[04 - 73, 73]
1200 ⁶ –) -	Co.Nh	hD12	D6 /mma No 104	Ma7na	[65 67 68]
1375	N2	C021N0	11 12	<i>I</i> 03/ <i>mmc</i> , N 194	IvigZII2	[05, 07, 08]
1375 –	λ'	Co _{2,25} Nb _{0,75}	h D A	P6 /mma No 104	MaNia	[64, 66–68,
1200в		Co ₃ Nb	nr 24	<i>F</i> 03/ <i>mmc</i> , № 194	WIGINI2	70 – 73, 75]
1200 -	μ	Co ₆ Nb ₇	hR13	D 2mh No 166	Eq-W.	[64 – 73, 75]
1375			hR39	<i>K-Smn, J</i> № 100	ГС7 VV 6	
	β_{Nb}	β_{Nb}	cI2	<i>Im-3m</i> , № 229	W	[64-73, 75]

^а Как определено в работах [73, 74].

⁶ В работах [67, 69 – 73, 75] эта фаза отсутствует при 1200 – 1375 К.

^в В работах [67, 69 – 73, 75] эта фаза отсутствует при 1200 К.

Рисунок 1. Диаграмма состояния системы Co-Nb [69].

1.2.2. Двухкомпонентная система Со-Та

В системе Со-Та при 1375 К существуют следующие фазы: γ_{Co}, λ', λ, μ, Ta₂Co и β_{та}, что согласуется с данными большинства работ [64, 76, 78 – 81, 83 – 85]. При 1200 К по данным работ [64, 76, 78 – 85] в данной системе существуют следующие фазы: γ_{Co} , λ , μ, Та₂Со и β_{та.} В работах [81, 83] дополнительно к вышеприведенным фазам указывается еще на существование фазы ε_{Co} , однако, в большинстве работ существование фазы ε_{Co} не подтверждается. Сведения о существовании фаз λ' [64, 76, 79, 81 – 84] и α'' [64, 76, 78, 81 – 85] в системе Со-Та при 1200 К в литературе противоречивы. Кроме того, в литературе имеются различающиеся данные о кристаллической структуре α" фазы. В большинстве работ [64, 76, 78, 81 – 83] для фазы α" приводится состав Со₃Та, эта фаза по разным данным имеет структурный тип Cu₃Au [76] или BaPb₃ [64, 81] или представляет собой политипы Cu₃Au и BaPb₃ [78, 82, 83]. В работах [84, 85] для фазы а" вместо состава Co₃Ta приводится состав Co₇Ta₂, структурные данные для этой фазы не указываются. В работе R.K. Shaipov et al (2017) [19] определено, что при 1200 К фазы α" имеет состав Co₃Ta и принадлежит к структурному типу BaPb₃, а λ' -фаза не существует в двойной системе. Данные о кристаллической структуре фаз двухкомпонентной системы Со-Та приведены в Таблице 2. Диаграмма состояния двухкомпонентной системы Со-Та представлена на Рисунке 2.

Таблица 2. Данные о кристаллической структуре фаз двухкомпонентной системы Со-Та, существующих в интервале температур 1200 – 1375 К

Темпера-	Обозна-	Фаза	Символ	Пространствен-	Структурный	Ссылки
тура, К	чение		Пирсона	ная группа	тип	
	фазы					
1200 -	γco	$\gamma_{\rm Co}$	cF4	<i>Fm</i> -3 <i>m</i> , № 225	Cu	[64, 76–84]
1375						
1200	ε _{Co}	εCo	hP2	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	Mg	[80, 81]
	α"	Co ₇ Ta ₂	-	-	-	[83, 84]
	α"	Co ₃ Ta	cP4	<i>Pm-3m</i> , № 221	Cu ₃ Au	[77, 81, 82]
	α"	Co ₃ Ta	hR36	R 3m No 166	BaPha	[19, 64, 77,
			nn 30	<i>x-3m</i> , <i>x</i> ≥ 100		80, 81]
1200 -	λ_1	Co ₂ Ta	hP12	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	MgZn ₂	[86]

Темпера-	Обозна-	Фаза	Символ	Пространствен-	Структурный	Ссылки
тура, К	чение		Пирсона	ная группа	ТИП	
	фазы					
1375	22	СолТа	cF24	Ed-3m No 227	MgCu ₂	[64, 76, 77,
	102	00210	0124	1 a 5m, 3 227	MigCu ₂	81 – 84, 86]
	21	Tao Coso	hPJA	$P6_2/mmc$ No 10/	MaNia	[64, 76, 78,
	<i>n</i>	1 a0,8C02,2	111 24	<i>I</i> 03/ <i>mm</i> c, <i>M</i> 194		81 – 83]
1375	λ'	Ta _{0,8} Co _{2,2}	hP24	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	MgNi ₂	[81 - 84]
1200 -	μ	Co ₆ Ta ₇	hR13			[76-85, 87-
1375			hR39	<i>R-3mh,</i> № 166	Fe ₇ W ₆	89]
	CoTa ₂	CoTa ₂	+112	14/m am No 140	A1.Cu	[80-84, 88,
				<i>14/mcm</i> , № 140	Al2Cu	89]
	β	β_{Ta}	cI2	<i>Im-3m</i> , № 229	W	[80 - 84]

Рисунок 2. Диаграмма состояния системы Со-Та [84].

1.2.3. Двухкомпонентная система Со-Re

В интервале температур 1200 – 1375 К в системе Со-Re в равновесии находятся твердый раствор на основе кобальта (γ_{Co} , структурный тип Cu) и твердый раствор на основе рения ((Re), структурный тип Mg) [7, 8, 89, 90]. Растворимость рения в γ_{Co} -твердом растворе при 1375 К составляет согласно данным [90] 12,9 ат. %, а при 1200 К – 10,0 ат.%. Данные о кристаллической структуре фаз двухкомпонентной системы Со-Re представлены в Таблице 3. Диаграмма состояния двухкомпонентной системы Со-Re показана на Рисунке 3.

Таблица 3. Данные о кристаллической структуре фаз двухкомпонентной системы Co-Re, существующих в интервале температур 1200 – 1375 К

Обозначение	مع	Символ	Пространственная	Структурный	Ссылки
фазы	Фаза	Пирсона	группа	ТИП	
γco	γco	cF4	<i>Fm-3m,</i> № 225	Cu	[7, 8, 89, 90]
(Re)	(Re)	hP2	<i>P63/mmc,</i> № 194	Mg	[7, 8, 89, 90]

Рисунок 3. Диаграмма состояния системы Co-Re [7].

1.2.4. Двухкомпонентная система Re-Nb

В двухкомпонентной системе Nb-Re в интервале температур 1200 – 1375 К по данным большинства исследований [91, 93 – 97] установлено существование следующих фаз: твердый раствор на основе ниобия β_{Nb} (структурный тип W), фаза χ (структурный тип α -Mn) и твердый раствор на основе рения (структурный тип Mg). В работе [92] указано на существование фазы σ (структурный тип Fe_{0.49}Cr_{0.51}) ниже 1348 К (1075°C), однако в большинстве работ эта фаза приводится как высокотемпературная, существующая при 2603 К (2330°C) [91], 2433 К (2160°C) [92], 2435 К (2162°C) [96], 2441 К (2168°C) [97], или вообще отсутствует [94, 95]. Данные о кристаллической структуре фаз двухкомпонентной системы Nb-Re представлены в Таблице 4. Диаграмма состояния двухкомпонентной системы Nb-Re показана на Рисунке 4.

Таблица 4. Данные о кристаллической структуре фаз двухкомпонентной системы Nb-Re, существующих в интервале температур 1200 – 1375 К

Обозначе-	Фаза	Символ	Пространственная	Структурный	Ссылки
ние фазы		Пирсона	группа	тип	
β_{Nb}	β_{Nb}	cI2	<i>Im-3m,</i> № 229	W	[91 – 97]
χ	χ	cI58	<i>I</i> -43 <i>m</i> , № 217	α-Mn	[91, 93 – 97]
(Re)	(Re)	hP2	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	Mg	[91 – 97]

Рисунок 4. Диаграмма состояния двухкомпонентной системы Nb-Re [96].

1.2.5. Двухкомпонентная система Re-Ta

Изучению системы Re-Ta посвящено довольно немалое количество работ [98 – 110]. В двухкомпонентной системе Re-Ta в интервале температур 1200 – 1375 K по данным [98 – 110] установлено существование следующих фаз: твердый раствор на основе ниобия β_{Ta} (структурный тип W), фаза χ (структурный тип α -Mn) и твердый раствор на основе рения (структурный тип Mg). В работах [102, 1103] указано на существование σ -фазы (структурный тип Fe_{0.49}Cr_{0.51}) ниже 1348 K, однако в большинстве работ [101, 104, 105, 107] эта фаза приводится как высокотемпературная, существующая выше 2743 K [101], 2733 K [108], 2735 K [98, 109, 110], 2730 [110]. Данные о кристаллической структуре фаз двухкомпонентной системы Re-Ta представлены в Таблице 5. Диаграмма состояния двухкомпонентной системы Re-Ta показана на Рисунке 5.

Таблица 5. Данные о кристаллической структуре фаз двухкомпонентной системы Re-Ta, существующих в интервале температур 1200 – 1375 К

Обозна-	Фаза	Символ	Пространствен-	Структурный	Ссылки
чение		Пирсона	ная группа	ТИП	
фазы					
(Re)	(Re)	hP2	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	Mg	[98, 101 – 103, 108 – 110]
χ	$Ta_{0.3}Re_{0.7}$	<i>cI</i> 58	<i>I</i> -43 <i>m</i> , № 217	α-Mn	[98, 101 – 103, 108 – 110]
σ	$Ta_{0.4}Re_{0.6}$	<i>tP</i> 30	<i>P</i> 4 ₂ / <i>mnm</i> , № 136	Fe _{0.49} Cr _{0.51}	[102, 103]
β_{Ta}	β_{Ta}	cI2	<i>Im-3m</i> , № 229	W	[98, 101 – 103, 108 – 110]

Рисунок 5. Диаграмма состояния двухкомпонентной системы Re-Ta [108]

1.2.6. Двухкомпонентная система Со-Мп

Исследование системы Co-Mn посвящены работы Huang W. (1989) [111], Ishida K., Nishizawa T. (1990) [112] и Karlsen O.B. и др (2009) [113]. В системе Co-Mn при температурах 1200–1375 К в равновесии находятся два твердых раствора на основе кобальта (γ_{Co}) и марганца (β_{Mn}). Предполагаемая авторами работы [112] σ -фаза образуется при температуре ниже 545°C. Способность марганца снижать температуру фазового перехода $\gamma_{Co} \rightarrow \varepsilon_{Co}$ позволяет использовать его в качестве легирующего компонента, стабилизирующего кубическую модификацию кобальта [4]. Данные о кристаллической структуре фаз двухкомпонентной системы Co-Mn представлены в Таблице 6. Диаграмма состояния двухкомпонентной системы Co-Mn представлена на Рисунке 6.

Таблица 6. Данные о кристаллической структуре фаз двухкомпонентной системы Со-Мп, существующих при 1200 К

Обозначе-	Фаза	Символ	Пространственная	Структурный тип	Ссылки
ние фазы		Пирсона	группа		
γсο	γco	cF4	<i>Fm</i> -3 <i>m</i> , № 225	Cu	[111 – 113]
β_{Mn}	β_{Mn}	<i>cP</i> 20	<i>P</i> 4 ₁ 32, № 213	Mn	[111 - 113]

Рисунок 6. Диаграмма состояния системы Co-Mn [112].

1.2.7. Двухкомпонентная система Mn-Nb

Исследованию двойной диаграммы состояния системы Mn-Nb посвящены ряд работ [114 – 119].

В работе Hellawell A. (1959) [114] приведены результаты исследования системы Mn-Nb выше 1343 K до 5 ат. % Nb, согласно которым при 1343 K твердый раствор на основе марганца – (β -Mn) (полиморфная модификация: структурный тип Mn, символ Пирсона *cP*20, пространственная группа *P*4₁32, № 213) находится в равновесии с фазой NbMn₂ (структурный тип MgZn₂, символ Пирсона *hP*12, пространственная группа *P*6₃/*mmc*, 194).

В работе Savitskii E.M. и Kopetskii C.V. (1960) [115] диаграмма состояния системы Mn-Nb была исследована до 33,3 ат. % ниобия; в указанной области составов при 1200 К существуют твердый раствор на основе (β-Mn) и фаза Лавеса NbMn₂, которая приведена как стехиометрическое соединение.

Svechnikov V.N. and Pet'kov V.V. (1976) [116] представили результаты исследования системы Mn-Nb в интервале концентраций от 20 до 50 ат. % ниобия и показали, что в отличие от работ [118, 119] при 1200 К фаза NbMn₂ имеет область гомогенности от 30,2 до 37,7 ат. % ниобия.

В работе Massalski Т.В. et al (1990) [57] представлен фрагмент диаграммы состояния системы Mn-Nb от 0 до 50 ат. % Nb), составленный на основе работ [115, 118 – 119].

В работе Liu S. Et al (2012) [118] методом термодинамического моделирования была построена полная диаграмма состояния системы Mn-Nb, согласно которой при 1200 К существуют следующие фазы: твердый раствор на основе марганца (β-Mn), фаза Лавеса NbMn₂ (λ), фаза µ и твердый раствор на основе ниобия (β_{Nb}, CT W, символ Пирсона *cI*2, пространственная группа *Im-3m*, № 229). Существование фазы µ в работе [118] экспериментально не подтверждено.

В работе Okamoto H. (2014) [119] проведен анализ литературных данных [57, 114 – 118], на основании которого предложена диаграмма состояния системы Mn-Nb, представленная на Рисунке 7. Обобщенные данные о кристаллической структуре фаз двухкомпонентной системы Mn-Nb представлены в Таблице 7.

Рисунок 7. Диаграмма состояния системы Mn-Nb [119]

Таблица 7. Данные о кристаллической структуре фаз двухкомпонентной системы Mn-Nb, существующих при 1200 К

Обозначе-	Фаза	Символ	Пространственная	Структурный	Ссылки
ние фазы		Пирсона	группа	тип	
β_{Mn}	β_{Mn}	<i>cP</i> 20	<i>P</i> 4 ₁ 32, № 213	Mn	[57, 114 – 119]
λ	NbMn ₂	hP12	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	MgZn ₂	[57, 114 – 119]
μ	μ	hR13	<i>R</i> -3 <i>mh</i> , № 166	Fe ₇ W ₆	[118, 119]
β_{Nb}	β_{Nb}	cI2	<i>Im-3m</i> , № 229	W	[118, 119]

1.2.8. Двухкомпонентная система Мп-Та

В работе Savitskii Е.М. и Кореtskii С.V. (1960) [120] на диаграмме состояния системы Мп-Та, исследованной до 33,3 ат. % Та, показано существование при 1200 К твердого раствора на основе марганца β_{Mn} (структурный тип Мп, символ Пирсона *сP*20, пространственная группа *P*4₁32, № 213) и фазы Лавеса ТаМn₂ (λ , структурный тип MgZn₂, символ Пирсона *hP*12, пространственная группа *P*6₃/*mmc*, № 194), которая приведена как стехиометрическое соединение. С результатами работы [78] полностью согласуются с данными работы [121].

На диаграмме состояния системы Mn-Ta [121] (см. Рисунок 6), построенной методом термодинамического моделирования, Kaufman L. (1991) приводит данные о существовании при 1200 К твердого раствора на основе марганца (β -Mn), фазы Лавеса TaMn₂ (λ), фазы TaMn и твердого раствора на основе тантала (β _{Ta}). Структурные данные для фазы TaMn в работе [121] не приводятся (в таблице отмечены знаком «?»). Обобщенные данные о кристаллической структуре фаз двухкомпонентной системы Mn-Ta представлены в Таблице 8. Диаграмма состояния двухкомпонентной системы Mn-Ta согласно работе [121] представлена на Рисунке 8.

Таблица 8. Данные о кристаллической структуре фаз двухкомпонентной системы Мп-Та, существующих при 1200 К

Обозначе-	Фаза	Символ	Пространственная	Структурный	Ссылки
ние фазы		Пирсона	группа	тип	
β_{Mn}	β_{Mn}	<i>cP</i> 20	<i>P</i> 4 ₁ 32, № 213	Mn	[62, 78, 120-121]
λ	TaMn ₂	hP12	<i>P</i> 6 ₃ / <i>mmc</i> , № 194	MgZn ₂	[62, 78, 120-121]
?TaMn	TaMn	?	?	?	[78]
β _{Ta}	β_{Ta}	cI2	<i>Im-3m</i> , № 229	W	[78]

Рисунок 8. Диаграмма состояния двухкомпонентной системы Mn-Ta [78]

1.2.9. Двухкомпонентная система Со-Сг

Взаимодействие кобальта с хромом в интервале температур 1200–1375 К приводит к образованию одного интерметаллического соединения – σ -фазы (структурный тип Cr_{0.49}Fe_{0.51}, пространственная группа *P*4₂/*mnm* (136)) [8]. Растворимость хрома в γ_{Co} -твердом растворе при 1375 К достигает 36,6 ат.% и незначительно понижается с уменьшением температуры. В диапазоне температур ниже 1240 К (967°С) насыщенный хромом твердый раствор на основе кобальта приобретает гексагональную структуру (ε_{Co} , пространственная группа *P*6₃/*mmc*, № 194, структурный тип Mg). Данные о кристаллической структуре фаз системы Со-Сг представлены в Таблице 9. Диаграмма состояния двухкомпонентной системы Со-Сг представлена на Рисунке 9.

Таблица 9. Данные о кристаллической структуре фаз двухкомпонентной системы Co-Mn, существующих при 1200 К

Обозначе-	Фаза	Символ	Пространственная	Структурный	Ссылки
ние фазы		Пирсона	группа	ТИП	
γсο	γсο	cF4	<i>Fm</i> -3 <i>m</i> , № 225	Cu	[9]
ε _{Co}	ε _{Co}	hP2	<i>P6₃/mmc,</i> № 194	Mg	[9]
σ	Cr _{0.49} Co _{0.51}	<i>tP</i> 30	P4₂/mnm, №136	Cr _{0.49} Fe _{0.51}	[9]
β _{Cr}	β _{Cr}	cI2	<i>Im-3m</i> , № 229	W	[9]

Рисунок 9. Диаграмма состояния системы Co-Cr [9].

1.3. Диаграммы фазовых равновесий трехкомпонентных систем кобальта и рения с ниобием и танталом, кобальта и марганца с ниобием и танталом, кобальта и

хрома с рением, ниобием и танталом

1.3.1. Трехкомпонентная система Co-Nb-Re

Данных по строению трехкомпонентной системы Co-Nb-Re в литературе недостаточно. Исходя из строения двухкомпонентных систем Co-Re, Co-Nb и Nb-Re в трехкомпонентной системе Co-Nb-Re в интервале температур 1200 – 1375 К в образовании равновесий будут участвовать следующие фазы: три твердых раствора на основе кобальта (γ_{Co}), на основе рения (Re) и на основе ниобия (β_{Nb}), фазы λ , μ и χ . Кроме того, в образовании равновесий при 1375 К примет участие λ' -фаза, имеющая структурный тип MgNi₂, а при 1200 К – фаза Co₃Nb, принадлежащая к структурному типу Mg₃Cd. X. Liu и соавторами были построены изотермические сечения диаграммы фазовых равновесий системы Co–Nb–Re при 1473 К (Рисунок 10) и 1573 К [122].

1.3.2. Трехкомпонентная система Со-Re-Ta

Данных по строению трехкомпонентной системы Co-Re-Ta в литературе недостаточно. Исходя из строения двухкомпонентных систем Co-Re, Co-Ta и Ta-Re в трехкомпонентной системе Co-Re-Ta в интервале температур 1200 – 1375 К в образовании равновесий будут участвовать следующие фазы: три твердых раствора на основе кобальта (γ_{Co}), на основе рения (Re) и на основе тантала (β_{Ta}), фазы λ , μ , χ и CoTa₂. Кроме того, в образовании равновесий при 1375 К примет участие λ' -фаза, имеющая структурный тип MgNi₂, а при 1200 К – фаза Co₃Nb, принадлежащая к структурному типу BaPb₃. Х. Liu и соавторами были построены сечения диаграммы Co–Ta–Re при 1373 К (Рисунок 11) и 1473К [123].

1.3.3. Трехкомпонентная система Co-Mn-Nb

Данных по строению трехкомпонентной системы Co-Mn-Nb в литературе крайне мало. Исходя из строения двухкомпонентных систем Co-Mn, Co-Nb и Mn-Nb в трехкомпонентной системе Co-Mn-Nb при 1200 К в образовании равновесий будут участвовать следующие фазы: три твердых раствора на основе кобальта (γ_{Co}), на основе

марганца (β_{Mn}) и на основе ниобия (β_{Nb}), фазы λ , μ , а также возможно фаза Co₃Nb, принадлежащая к структурному типу Mg₃Cd.

Рисунок10.ИзотермическоесечениеРисунок11.ИзотермическоесечениедиаграммыСо-Nb-Re при 1373 K [122]диаграммыСо-Re-Ta при 1373 K [123]

1.3.4. Трехкомпонентная система Со-Мп-Та

Трехкомпонентная система Co-Mn-Ta исследовалась в работе Wang C. и соавторов (2014) [126] при 1073, 1173, 1273, 1373, 1473 и 1573 К. Экспериментально был исследован кобальтовый угол системы, информация о фазовых равновесиях системы в целом была получена термодинамическим расчетом с использованием метода CALPHAD. Результаты исследования данной системы при 1173 К приведены на Рисунке 12. В системе Co-Mn-Ta при 1173 К установлено образование следующих шести трёхфазных равновесий: $(\beta_{Ta}+CoTa_2+Mn_2Ta), (\mu+CoTa_2+Mn_2Ta), (\lambda_2(Co_2Ta)+\mu+Mn_2Ta), (\beta_{Mn}+\lambda_2(Co_2Ta)+Mn_2Ta), (\gamma_{Co}+\lambda_2(Co_2Ta)+Co_7Ta_2), (\lambda_2(Co_2Ta)+\lambda_3(Co_2Ta)+Co_7Ta_2). Тройных фаз в системе Co-Mn-Ta при 1173 К не обнаружено. Предполагаемая µ фаза двойной системы Mn-Ta на изученных изотермах системы Co-Mn-Ta не установлена. Результаты структурных исследований фаз системы Co-Mn-Ta в работе [126] отсутствуют.$

1.3.5. Трехкомпонентная система Co-Cr-Re

Введение хрома в легированные рением кобальтовые сплавы приводит к необходимости обратиться к тройной диаграмме Co–Cr–Re, изотермические сечения которой при температурах в интервале 1200–1527 К построены экспериментально и

уточнены с использованием термодинамических моделей в ряде работ [26, 124, 125]. В указанном интервале температур фазы σ двухкомпонентных систем Co-Cr и Cr-Re образуют в трехкомпонентной системе Co-Cr-Re непрерывный ряд твердых растворов; с участием фазы σ реализуется единственное трехфазное равновесие ($\gamma_{Co} + \sigma + (Re)$). Изотермическое сечение Co-Cr-Re при 1273 К [125] приведено на Рисунке 13. По данным работы [125] в системе Co-Cr-Re при 1273 К растворимость рения в γ_{Co} -твердом растворе составляет около 9 ат.% при добавлении 12 ат.% хрома (минимальное содержание хрома в жаростойких кобальтовых сплавах) и около 5 ат.% при содержании хрома 25 ат.%. Данные показатели растворимости позволяют осуществлять совместное легирование хромом и рением кобальтовых сплавов на основе γ_{Co} -фазы.

Рисунок 12. Изотермическое сечение Рисунок 13. Изотермическое сечение Содиаграммы фазовых равновесий системы Сг–Re при 1273 К [125] Со-Mn-Ta при 1173 К [126]

1.3.6. Трехкомпонентная система Co-Cr-Nb

По данным Zhang X. и соавторов [10], в системе Co-Cr-Nb при 1273 К (Рисунок 14) установлено существование семи трехфазных равновесий: ($\gamma_{Co} + \lambda_1 + Co_7Nb_2$), ($\gamma_{Co} + \lambda_1 + \lambda_3$), ($\gamma_{Co} + \lambda_3 + \sigma$), ($\lambda_1 + \lambda_3 + \mu$), ($\beta_{Nb} + \lambda_3 + \mu$), ($\beta_{Nb} + \lambda_2 + \lambda_3$), ($\beta_{Cr} + \lambda_2 + \lambda_3$), а также предположено существование трехфазного равновесия ($\beta_{Cr} + \lambda_3 + \sigma$). Согласно данным [10] γ_{Co} -твердый раствор находится в равновесии с фазами Co₇Nb₂ (структурный тип Zr₂Ni₇), λ_1 (структурный тип MgCu₂) и λ_3 (структурный тип MgZn₂). Введение хрома незначительно снижает растворимость ниобия в кобальтовом твердом растворе.

1.3.7. Трехкомпонентная система Co-Cr-Ta

Исследованию трехкомпонентной системы Co-Cr-Ta посвящена работа [127]. При данной температуре в равновесии с γ_{Co} -фазой находятся только фаза Co_{2.28}Cr_{1.72} (структурный тип Cr₃Si) и λ -фаза. Фазы λ двойных систем Co-Ta и Cr-Ta при 1500 K образуют непрерывные ряды твердых растворов. В системе Co-Cr-Ta при 1500 K установлены пять трехфазных равновесий: ($\gamma_{Co} + \lambda + \text{Co}_{2.28}\text{Cr}_{1.72}$), ($\lambda + \sigma + \text{Co}_{2.28}\text{Cr}_{1.72}$), ($\beta_{Cr} + \lambda + \sigma$), ($\lambda + \mu + \text{Ta}_2\text{Co}$), ($\beta_{Ta} + \lambda + \text{Ta}_2\text{Co}$). Изотермическое сечение трехкомпонентной системы Co-Cr-Ta при 1500 K [127] представлено на рисунке 15. Согласно изотермическому сечению трехкомпонентной системы Co-Cr-Ta при 1500 K [127], представленному на Рисунке 14, при введении хрома в γ_{Co} -твердый раствор растворимость тантала в нем снижается.

Данные о фазовых равновесиях при температурах ниже 1500 К в литературе отсутствуют. Исходя из анализа двойных диаграмм γ_{Co} -фаза должна находиться в равновесии также с соединением Co₃Ta.

Рисунок 14. Изотермическое сечение Рисунок 15. Изотермическое сечение Со-Cr-Nb при 1273 К [10]. трехкомпонентной системы Со-Cr-Ta при 1500 К [127].

* * *

Таким образом, поиск оптимальной системы легирования кобальт-ниобиевых и кобальт-танталовых сплавов рением определяет задачу построения изотермических сечений диаграмм фазовых равновесий трехкомпонентных систем Co-Nb-Re и Co-Re-Ta

при 1375 и 1200 К – ключевых температур термообработки суперсплавов – и установлении фазовых равновесий γ_{Co} -твердого раствора с потенциальными упрочняющими фазами Co₃Nb и Co₃Ta, а также с фазами Лавеса, которые могут образовываться в сплавах в процессе их получении.

Легирование кобальт-ниобиевых и кобальт-танталовых сплавов марганцем, стабилизирующем ГЦК структуру матрицы сплавов, также делает необходимым определение фазовых равновесий с участием γ_{Co} -твердого раствора в трехкомпонентных системах Co-Mn-Nb и Co-Mn-Ta.

Из анализа фазовых равновесий и растворимостей компонентов в γ_{Co}-твердом растворе в трехкомпонентных системах Co–Cr–Re, Co–Cr–Nb и Co–Cr–Ta следует, что при легировании рений-содержащих кобальт-ниобиевых и кобальт-танталовых хромом для придания устойчивости к высокотемпературному окислению на воздухе, концентрация последнего не может превышать 25 ат. % в виду риска образования σ фазы.

1.4. Фазы Со₃Ме и фазы Лавеса в двухкомпонентных системах кобальта с ниобием и танталом

В качестве фаз, которые могли бы быть использованы в качестве упрочняющих, в работах [18] и [19] были предложены интерметаллиды Co₃Nb (структурный тип Mg₃Cd) и Co₃Ta (структурный тип BaPb₃). По данным ДСК сплава состава Co66,0Ni11,0Nb23,0 (ат.%), приведенным в работе [18], фаза Co₃Nb в двухкомпонентной системе Co-Nb является стабильной до 1341±1 К. В работе [128] описан процесс дисперсионного твердения (до значений порядка 400 HV) при 1200 и 1030 К сплавов трехкомпонентной системы Co-Ni-Ta на основе $\gamma_{Co,Ni}$ -твердого раствора с использованием фазы Co₃Ta в качестве упрочняющей. Информация о влиянии рения на процесс дисперсионного твердения таких сплавов в настоящее время в литературе отсутствует. При этом важно обратить внимание на возможность образования фаз Лавеса и других топологически плотноупакованных фаз в процессе распада γ_{Co} -твердого раствора.

Топологически плотноупакованные фазы (σ-фазы, μ-фазы, фазы Лавеса), образующиеся в пластинчатой и игольчатой форме, снижают прочностные свойства сплавов из-за своей хрупкости. Ухудшение механических свойств сплава при этом связано с возникновением микротрещин, провоцирующих разлом. В данных фазах атомы находятся в плотноупакованных слоях, пространство между которыми занимают

слои с относительно большими атомами [129]. Выделение подобных фаз в суперсплавах нежелательно, однако в литературе описаны попытки использовать и их в качестве упрочняющих [8, 130 – 133].

Наиболее вероятным при получении и эксплуатации кобальтовых сплавов, легированных ниобием и танталом, является образование фаз Лавеса, так как они существуют сразу в двух двойных системах Co-Nb и Co-Ta и находятся в равновесии с γ_{Co} твердым раствором. Идеальный состав фаз Лавеса – AB₂, где позиции A и B в кристаллической структуре могут быть заняты различными атомами [133 – 135]. Отклонение от идеального соотношения AB₂ в двойных системах переходных металлов обуславливает существование области гомогенности фаз Лавеса. Оптимальное соотношение диаметров для атомов A и B в фазах Лавеса составляет 1,225, охватывая диапазон от 1.05 до 1.68 [136, 137]. Фазы Лавеса кристаллизуются в нескольких структурных типах, имеющих схожее расположение атомов, которое проявляется в идентичных координационных полиэдрах: во всех фазах Лавеса координационный полиэдр вокруг атома сорта A представляет собой так называемый полиэдр Лавеса, имеющий форму усечённого тетраэдра (Рисунок 16а). Сами же атомы сорта A располагаются в алмазоподобной подрешётке [138]. Все фазы Лавеса являются политипами [139], то есть имеют разный порядок чередования слоев (Рисунок 16б).

Рисунок 16. Полиэдр Лавеса [139] (a), расположение атомов в слоях A, B и C в политипах фаз Лавеса [140 – 142] (б).

Строение фаз Лавеса допускает теоретически бесконечное число политипов, основными из которых являются гексагональные MgZn₂ и MgNi₂, принадлежащие к пространственной группе 194, и кубический MgCu₂, относящийся к пространственной группе 227 (Таблица 10) [13, 139]. Структуры фаз Лавеса различаются только упорядоченной плотной упаковкой дефектных слоев атомов меньшего размера

(чередующиеся сетки Кагоме и треугольные сетки): ABC для MgCu₂ (Cu-тип кристаллической структуры); ABAB для MgZn₂ и ABAC для MgNi₂. Структуру фазы MgNi₂ можно рассматривать как чередование фрагментов структуры MgCu₂ и MgZn₂, и она редко встречается в системах переходных металлов. Более крупные атомы располагаются в пустотах образовавшейся пространственной структуры. По сути, все три структуры являются упорядоченными политипами гипотетической фазы Лавеса с произвольной плотной упаковкой меньших атомных слоев вдоль оси c, а параметр элементарной ячейки «c» может быть очень большим. Эта фаза образуется при кристаллизации расплава в неравновесных условиях, и наиболее стабильную структуру фазы Лавеса не всегда удается получить даже после длительного отжига сплавов.

Таблица 10. Характеристика наиболее распространенных политипов фаз Лавеса.

Пространствен-	Strukturbericht	Структурный	Атомов в	Порядок укладки
ная группа, №		ТИП	ячейке	слоев
227	C15	MgCu ₂	24	ABCABC
194	C14	MgZn ₂	12	ABAB
	C36	MgNi ₂	24	ABACABAC

Для бинарных систем решающим фактором для образования определенной структуры (MgCu₂ или MgZn₂) является способность более мелких атомов образовывать плотноупакованную структуру во время кристаллизации. Для магнийсодержащих бинарных фаз Лавеса схематические области гомогенности фаз структурных типов MgNi₂, MgCu₂, MgZn₂ приведены на псевдотройной диаграмме (Рисунок 17) [140].

Рисунок 17. Псевдотройная диаграмма равновесия структурных типов фаз Лавеса, зависимость их устойчивости от числа валентных электронов [140]

В литературе описана также проблема одновременной кристаллизации политипов $MgCu_2$ и $MgZn_2$, которая может быть экспериментально подтверждена методом РФА путем сравнения параметров элементарной ячейки «а» обеих структур. В случае образования политипа выполняется равенство: $a_{\text{куб}} = a_{\text{гекс}} \cdot \sqrt{2}$ [138]. Поскольку кобальт существует в двух модификациях: ГЦК (> 695 К) и ГПУ (<695 К) [16], образование фаз Лавеса с фрагментами гексагональной упаковки в некоторых двухкомпонентных системах с кобальтом (Со-Та), по-видимому, является естественным явлением. Кроме того, при введении третьего компонента с другим размером атомов кубическая структура искажается, и ее устойчивость снижается. В случае гексагональной структуры возможен обратный эффект из-за упорядоченного расположения атомов третьего компонента в слоях упаковки меньших атомов. В результате в микрокристаллах кубической фазы Лавеса образуются устойчивые фрагменты гексагональной упаковки слоев. Такая ситуация имеет место в некоторых других трехкомпонентных и четырехкомпонентных системах [18, 19, 141 – 145] переходных металлов, которые были ранее изучены. В работе К.С. Кумара [145] были рассмотрены имеющиеся в литературе экспериментальные данные по взаимной трансформации структурных типов С14 – С36 – С15, и была представлена геометрическая модель сдвигового преобразования с использованием понятия синхронного сдвига для сплавов состава Cr-X, где X=Ti, Zr, Hf, Nb.

При анализе экспериментальных данных важно различать результаты, полученные на однофазных сплавах по сравнению с двухфазными. В двухфазных сплавах вследствие изменения равновесной растворимости компонентов в фазе Лавеса при данной температуре, диффузия становится необходимым условием метастабильного равновесия С14 – С15, тогда как для однофазного сплава в этом нет необходимости, поскольку и в условиях трансформации он остается однофазным. В работе [145] данное предположение касалось сплавов состава Cr-X (где X=Ti, Zr, Hf, Nb), однако очевидно, что такая закономерность справедлива и для фаз Лавеса, включающих в себя другие элементы. Также добавление легирующих элементов локально изменяет электронную структуру, которая влияет на физические и механические свойства фаз Лавеса [140].

Известно, что некоторые геометрические и электронные факторы, такие как соотношение размеров атомов А и В и их валентных электронов влияют на возникновение

участка гомогенности фаз Лавеса, однако до сих пор есть еще нерешенные проблемы относительно стабильности соответствующих кристаллических структур. По-прежнему невозможно предсказать, какой структурный тип является устойчивым для фазы Лавеса AB₂. Современные модели и расчеты плохо подходят для описания стабильности фаз Лавеса. Кроме того, сообщалось, что отклонения от стехиометрического состава приводят к изменению стабильного политипа в различных системах [141].

В работе [120] опровергается гипотеза, что одновременное существование двух политипов MgZn₂ и MgCu₂ в трехкомпонентных однофазных сплавах систем Cr-Nb-Me связаны с образованием карбидов из-за примесей в исходных навесках металлов и загрязнения газами в процессе синтеза. При этом согласно с данными работ [146, 147] последующий отжиг при повышенных температурах (около 1700°C) однофазных сплавов систем Cr-Nb-Me (где Me = Fe, Co, Ni) в течение длительного времени может привести к постепенному превращению метастабильной фазы C14 в структуру C36 или C15. Эти преобразования, возможно, вызываются изменением подвижности дислокаций в зависимости от температуры.

Наличие фаз Лавеса в материалах отрицательно сказывается на их прочности и пределе пластичности, особенно, когда фазы Лавеса образуют крупные зерна. Однако в работе [133] указана возможность использования наноразмерных выделений фаз Лавеса в качестве дисперсной упрочняющей фазы. Также может допускаться незначительное количество дисперсных частиц фаз Лавеса в составе суперсплавов [133].

1.5. Высокотемпературное окисление кобальтовых сплавов

Для разработки системы легирования кобальтовых сплавов, направленной на повышение высокотемпературной устойчивости, необходимо охарактеризовать окисление на воздухе при температурах эксплуатации чистых металлов, составляющих систему легирования, а также двух- и многокомпонентных кобальтовых сплавов, включающие элементы легирования современных суперсплавов. Чтобы понять механизм окисления таких систем, важно не только знать состав и структуру устойчивых соединений, образующихся при сочетании металлов и кислорода, но и предугадывать окислительные характеристики окисных слоев для всевозможных сочетаний металл–газ. Энергетическое состояние на поверхности раздела, равно как и на всякой поверхности вообще, отлично от энергетического состояния в толще

материала. На поверхности могут образовываться соединения, в обычных условиях неустойчивые в толще материала. Поэтому помимо рассмотрения состава и толщины оксидных пленок, необходимо учитывать возможные варианты их кристаллической структуры, которая может быть псевдоморфна структуре поверхности, на которой они образуются [148]. Такое явление позволяет влиять на высокотемпературную окислительную устойчивость на воздухе сплавов с помощью корректировки количественных соотношений металлов, входящих в систему легирования.

1.5.1. Окисление чистых металлов: кобальта, ниобия, тантала, рения, марганца и хрома

Исследование окисления кобальта описаны в работах [149 – 152]. При окислении кобальта преимущественно образуется оксид СоО. Двойной оксид СоСо₂О₄ образуется в основном при повышении давления кислорода и при температурах выше 900°С.

Ниобий и тантал окисляются на воздухе до высших оксидов Nb₂O₅ и Ta₂O₅, для которых описано несколько полиморфных модификаций [153]. При давлении воздуха около 1 атм. стабильными являются модификации: β-Nb₂O₅ (пространственная группа *P*12/*m*1, №10, структурный тип Nb₂O₅) [154 – 156] и β-Ta₂O₅ (пространственная группа *Pmm2*, №25, структурный тип Ta₂O₅) [157].

Продуктом окисления рения на воздухе являются оксид рения (VII) и оксид рения (IV), разлагающийся при температуре выше 850°С на оксид рения (VII) и металлический рений [158, 159].

Марганец при температурах эксплуатации кобальтовых сплавов окисляется на воздухе в отсутствие избытка кислорода до оксида MnO (пространственная группа *Fm*-*3m*, № 225, структурный тип NaCl) [4, 160].

До температуры 2000°С окисления чистого хрома не происходит из-за образования тонкой защитной пленки Cr₂O₃, препятствующей доступу кислорода к поверхности металла [158]. При температурах свыше 2000°С металлический хром сгорает с образованием оксида Cr₂O₃ (пространственная группа *R*-3*ch*, №167, структурный тип Al₂O₃) [161].

При окислении многокомпонентных сплавов может происходить избирательное окисление одного из легирующих компонентов, образование двойных оксидов и многокомпонентных оксидных фаз, а также внутреннее окисление [162 – 164]. При этом
количественные соотношения между металлическими компонентами в оксидах определяются не только соотношением этих компонентов в сплаве, но и различной способностью их к взаимодействию с кислородом (различным сродством к кислороду) [160, 163].

1.5.2. Окисление двухкомпонентных сплавов Co-Nb и Co-Ta

В трехкомпонентной системе Co-Nb-O при 1473 К (Рисунок 18а) существуют следующие кислородсодержащие соединения: CoO, Nb₂O₅, Nb₂CoO₆, Nb₂Co₄O₉, Nb₅Co₂O₁₄ [165]. При более низких температурах 873 - 973 К преобладает внутреннее окисление с образованием NbO₂, Nb₂O₅ и металлического кобальта, при 973 К начинает образовываться Nb₂CoO₆. При окислении кобальт-ниобиевых сплавов при 1073 К наблюдается переход между внутренним и внешним окислением ниобия, особенно при концентрации 30 ат. % ниобия [166].

В трехкомпонентной системе Co-Ta-O при 1473 К (Рисунок 18б) образуются следующие кислородсодержащие соединения: CoO, Ta₂O₅, Ta₂CoO₆ и Ta₂Co₄O₉ [165].

Идентичность состава и структуры двойных и тройных кислородсодержащих соединений систем Co–Nb–O и Co–Ta–O при 1473 К [165] позволяет предположить, что высокотемпературное окисление на воздухе кобальта, легированного как ниобием, так и танталом, будет приводить к образованию одинаковых слоев фаз. Так при окислении на воздухе кобальтовых сплавов, содержащих менее 10 ат.% ниобия или тантала, в окисленной зоне должны образовываться слои состава CoO, Nb₂Co₄O₉ или Ta₂Co₄O₉.

Рисунок 18. Изотермические сечения Co-Nb-O (а) и Co-Ta-O (б) при 1473 К [167].

1.5.3. Окисление двухкомпонентных сплавов Со-Re

Добавление к кобальту рения, как одного из важнейших легирующих компонентов жаропрочных кобальтовых сплавов, с точки зрения повышения жаростойкости представляет собой определенную проблему. Из анализа диаграмм состояния двухкомпонентных систем следует, что при окислении бинарных кобальтрениевых сплавов при температурах свыше 1200 К помимо оксида кобальта СоО должен также образовывать твердый оксид ReO₂ [169, 170]. В работе [171], посвященной системе Co-Re-O приводятся данные о существовании двух тройных фазах, полученных спеканием CoO (99.99 масс.%), ReO₃ (99.9 масс.%), Re (99.99 масс.%) при 1473 К и 5 ГПа в течение 2 часов и охлажденных до комнатной температуры: Re_{5.33}Co_{2.67}O₁₆ и Re_{0.67}Co_{0.33}O₂. Однако, как было показано выше, процессы окисления на поверхности сплава могут приводить к образованию других продуктов, нежели структуры, полученные реакцией спекания. Экспериментальные работы, посвященные окислению бинарных сплавов Co-Re, приводят к выводу об отрицательном влиянии рения на устойчивость к высокотемпературному окислению из-за образования газообразных оксидов, в частности Re₂O₇ [172]. Бинарный сплав Co17Re демонстрирует катастрофическое окисление на воздухе при 1000°С [173].

1.5.4. Окисление двухкомпонентных сплавов Со-Мп

В работе [4] рассмотрено окисление кобальтовых сплавов, содержащих 0–35 масс.% марганца, в присутствии кислорода при атмосферном давлении при 1073, 1173 и 1273 К. Отмечается, что добавление марганца до 17 % увеличивает скорость окисления по сравнению с чистым кобальтом. Окисленная зона содержит слой твердого раствора оксидов СоО и MnO, упоминается также образование дисперсных частиц (Co,Mn)₃O₄, упоминается также и о процессах внутреннего окисления [4].

1.5.5. Окисление двухкомпонентных сплавов Со–Сг

Хром наряду с алюминием добавляют в никелевые и кобальтовые сплавы с целью замедления процессов поверхностного окисления [174]. При содержании хрома свыше 15 ат.% под слоем CoO, представляющего собой столбчатые зерна, образуется слой Cr₂O₃ [175, 176] и шпинель CoCr₂O₄ [177 – 180]. Плотный слой шпинели CoCr₂O₄, который замедляет скорость окисления, может быть достигнут в кобальтовых сплавах с

содержанием от 15 до 30 % Сг. Для поддержания сплошности защитного слоя необходимо образование счет тонкого слоя Cr_2O_3 , который имеет тенденцию образовываться при концентрации хрома от 20 до 30% [178]. Со временем слой Cr_2O_3 утолщается, в нем возникают трещины, способствующие проникновению кислорода, а сама поверхность сплава под окалиной оказывается обедненной хромом настолько (свыше 50 % по массе от изначального содержания), что дальнейшее образование оксида хрома (III) становится невозможным [174].

1.5.6. Окисление трехкомпонентных сплавов систем Co-Cr-Nb и Co-Cr-Ta

работе [181] В исследовалось окисление кобальт-хромовых сплавов, легированных ниобием или танталом (Co20.56Cr3.40Nb; Co20.26Cr7.08Nb; Со20.16Сг9.69Nb; Со20.44Сг3.80Ta; Со20.07Сг6.95Ta; Со20.48Сг9.56Ta масс.%) при 900 ^оС в течение 336 часов, и при 1000, 1100 ^оС в течение 72 часов. При окислении кобальт-хромовых сплавов, содержащих ниобий, при всех исследованных температурах окислении внешним слоем был оксид кобальта CoO. В таблице 11 приводятся данные работы [181] порошкового рентгенофазового анализа окалины кобальт-хромовых сплавов, легированных ниобием и танталом.

Таблица 11. Порошковый рентгеноструктурный анализ окалины сплавов Co-20Cr-Ta и Co-20Cr-Nb методом Дебая-Шеррера [181].

Состав	сплава,	масс. %	Тем	ипература окисления	, ⁰ C
Co	Cr	Nb	900	1000	1100
76.04	20.56	3.40	CoO, Nb ₂ Co ₄ O ₉ ,	CoO, Nb ₂ O ₅ ,	CoO,
			CoCr ₂ O ₄ ,	CoCr ₂ O ₄ ,	CoCr ₂ O ₄ ,
			Nb ₂ O ₅	Cr_2O_3	Nb ₂ O ₅
72.66	20.26	7.08	CoO,	CoO, Nb ₂ O ₅ ,	CoO, Nb ₂ O ₅ ,
			CoCr ₂ O ₄ ,	CoCr ₂ O ₄ , NbO ₂ ,	CoCr ₂ O ₄ ,
			Nb ₂ O ₅	Cr_2O_3	Cr_2O_3
70.15	20.16	9.69	CoO, NbO _{2,}	CoO, NbO ₂	$CoO, Cr_2O_{3,}$
			$CoCr_2O_4$, Nb_2O_5 ,	$CoCr_2O_4$, Cr_2O_3 ,	$CoCr_2O_4$,
			Cr_2O_3	Nb ₂ O ₅	Nb ₂ O ₅
Co	Cr	Та	900	1000	1100

Состав	сплава,	масс. %	Температура окисления, ⁰ С						
Co	Cr	Nb	900	1000	1100				
75.76	20.44	3.80			CoO				
					CoCr ₂ O ₄				
					Cr_2O_3				
72.98	20.07	6.95	CoCr ₂ O ₄ , CoTa ₂ O ₆ ,	CoCr ₂ O ₄ , Ta ₂ O ₅ ,	$CoO, Cr_2O_{3,}$				
			Cr ₂ O ₃ , Ta ₂ O,	Cr_2O_3	CoCr ₂ O ₄ , Ta ₂ O ₅ ,				
			CrTaO ₄ , Ta ₂ O ₅	CrTaO ₄	CrTaO ₄				
69.96	20.48	9.56	-	-	CoO, CrTaO _{4,}				
					CoCr ₂ O ₄ , Ta ₂ O ₅ ,				
					Cr_2O_3				

Из данных работы [181] не полностью ясна последовательность окисленных слоев в окисленной зоне, тем не менее отмечается, что легирование ниобием кобальтхромовых сплавов отрицательно сказывается на устойчивости к окислению, легирование их танталом, наоборот, повышает устойчивость к окислению за счет образования защитных соединений таких как CoTaO₄, способствующих формированию сплошного слоя Cr₂O₃. По данным работы [181] увеличение содержания ниобия и тантала приводит к образованию интерметаллических фаз, которые способствуют внутреннему окислению сплавов. В работе [181] делается предположение о том, что отрицательное влияние ниобия на окислительную устойчивость может быть преодолено легированием сплавов танталов и повышением концентрации хрома.

1.5.7. Окисление трехкомпонентных сплавов Co-Cr-Re

В работах [172, 173, 182 – 183] исследованы процессы высокотемпературного окисления на воздухе сплавов системы Co–Cr–Re.

В работе [172] при окислении сплавов Co23Cr17Re и Co30Cr17Re при 1000 0 C в течение 1, 8, 24, 100 и 300 часов в независимости от времени образовывались одинаковые слои: внешний слой, представляющей собой CoO (твердость 328 – 426 HV), двухфазный слой, состоящий из смеси CoO (твердость 394 HV) и Co_{3-x}Cr_xO₄ (2387 HV), внутренний окисленный слой, включающий оксид хрома Cr₂O₃, между которым

и металлическим сплавов присутствовали частицы, обогащенные рением. Также было показано, что б-фаза окисляется быстрее твердого раствора на основе рения.

Авторы работы [173] подтверждают данные работы [172] и сообщают, что при окислении массы рений-содержащих кобальтовых сплавов одновременно происходят образование оксидной окалины и испарение оксида рения Re₂O₇ в виде белого дыма. Выделение оксида рения Re₂O₇ возможно в отсутствии сплошного оксида хрома Cr₂O₃, поскольку оксид кобальта CoO не образует защитный слой из-за дефектной структуры (микротрещины, поры, микроканалы) и слабой адгезии [173].

В работе [182] указывается, кобальт-рениевые сплавы претерпевают катастрофическое окисление из-за отсутствия защитных свойств оксида кобальта CoO и высокой летучести оксида рения Re₂O₇. Также, как и в работах [172, 173], в работе [182] сообщается, что повышение устойчивости к окислению кобальт-рениевых сплавов, возможно при их легировании хромом до концентраций, позволяющих сформировать сплошной защитный слой оксида хрома Cr₂O₃. Кроме того, в работе [182] указывается на образование пористого внутреннего слоя CoCr₂O₄ под самым внешним слоем CoO.

Таким образом, в опубликованных исследованиях [172, 173, 182] рассматривалось окисление сплавов, относящиеся к твердому раствору на основе рения, растворимость хрома в котором значительно ниже, чем в твердом растворе γ_{Co} . Следствием этого явилось ограничение возможности обогащения кобальтовых сплавов хромом без образования топологически плотноупакованной σ -фазы, образующей в системе Co–Cr– Re непрерывный ряд твердых растворов от стороны Co–Cr до стороны Cr–Re и известной своей хрупкостью и низкой стойкостью к окислению.

1.5.8. Окисление трехкомпонентных сплавов Co-Cr-Mn

В работе [185] предполагалось, что марганец полезен в кобальтовых сплавах, легированных хромом, так как он способствует образованию слоя MnCr₂O₄, обладающего хорошей адгезией. В то же время марганец может оказывать неблагоприятное влияние на скалывание окалины, по-видимому, из-за увеличения хрупкости оксида, особенно CoO [186].

41

* * *

Системный подход к оптимизации составов жаропрочных и жаростойких кобальтовых сплавов может быть осуществлен на основе информации об устойчивости к высокотемпературному окислению на воздухе кобальта и всех компонентов, входящих в систему легирования кобальтовых сплавов.

К настоящему времени накоплен довольно значительный объем сведений о высокотемпературном окислении на воздухе чистых металлов (Co, Nb, Ta, Re, Mn и Cr) и сплавов бинарных систем кобальта с ниобием, танталом, рением, марганцем и хромом. В литературе также имеются сведения об высокотемпературном окислении на воздухе трехкомпонентных сплавов систем Co-Cr-Nb, Co-Cr-Ta, Co-Cr-Re, Co-Cr-Mn, составы которых лежат в области богатой кобальтом.

Согласно литературным данным в результате окисления кобальтовых сплавов, легированных ниобием, танталом, рением, марганцем и хромом, в окисленной зоне могут образовываться двойные и тройные кислородсодержащие соединения, кристаллографические данные которых представлены в Таблице 12.

Таблица 12. Кристаллографические данные кислородсодержащих соединений, образующихся в системах кобальта с ниобием, танталом, рением, марганцем и хромом.

Обозначение	Пространственная	Символ	Структурный тип	Литература
фазы	группа	Пирсона		
СоО	<i>Fm</i> -3 <i>m</i> , № 225	cF8	NaCl	[151, 187–190]
CoCo ₂ O ₄	<i>Fd-3m O2</i> , № 227	<i>cF</i> 56	Fe ₃ O ₄	[191 – 193]
NbO ₂	<i>I</i> 4 ₁ / <i>a O</i> 2, № 88	<i>tI</i> 96	NbO ₂	[194, 195]
стабильна ниже				
1073 K				
β-NbO ₂	<i>I</i> 4 ₁ , № 80	<i>tI</i> 48	β-NbO ₂	[196]
синтезирована				
при 1373-1273 К				
H-Nb ₂ O ₅	<i>P</i> 12/ <i>m</i> 1, №10	mP99	Nb ₂ O ₅	[156 – 158]
устойчива до				
1783 K				

Обозначение	Пространственная	Символ	Структурный тип	Литература
фазы	группа	Пирсона		
M-Nb ₂ O ₅ ,	<i>I</i> ₄/ <i>mmm</i> , №139	<i>tI</i> 112	$(V_{0.65}W_{0.35})_2O_5$	[197]
синтезирована				
при 1173-1223 К				
Nb ₂ CoO ₆	Pbcn, № 60	oP36	Nb ₂ FeO ₆	[198 – 201]
Nb _{0.67} Co _{0.33} O ₂	<i>P</i> 4 ₂ / <i>mnm</i> , № 136	tP6	TiO ₂	[201]
или Nb ₂ CoO ₆				
Nb5Co2O14	<i>P</i> 4 ₂ / <i>mnm</i> , № 136	tP6	TiO ₂	[202]
Nb ₂ Co ₄ O ₉	<i>P</i> -3 <i>c</i> 1, № 165	hP30	Nb ₂ Mn ₄ O ₉	[167, 168]
Ta ₂ O ₅ *	<i>Pmm2</i> , №25	oP84	Ta ₂ O ₅	[159]
T-Ta ₂ O ₅ *	<i>Pmm2</i> , №25	oP86	Ta ₂ O ₅	[203]
TT-Ta ₂ O ₅	<i>P6/mmm</i> , №191	hP86	Ta ₂ O ₅	[204]
Ta ₂ O ₅ hp**	<i>C</i> 12/ <i>c</i> 1, № 15	<i>mS</i> 28	Nb ₂ O ₅	[205]
Ta ₂ CoO ₆	<i>P</i> 4 ₂ / <i>mnm</i> , №136	<i>tP</i> 18	Ta ₂ FeO ₆	[206–208]
Ta ₂ Co ₄ O ₉	<i>P</i> -3 <i>c</i> 1, № 165	hP30	Nb ₂ Mn ₄ O ₉	[167, 168]
ReO ₂	<i>Pbcn</i> , № 60	oP12	ReO ₂	[162, 172, 209]
Re _{0.67} Co _{0.33} O ₂	F222, № 222	oF96	Re ₃ (Re _{0.47} Co _{0.53}) ₅ O ₁₆	[173]
Re _{0.67} Co _{0.33} O ₂	<i>P</i> 4 ₂ / <i>mnm</i> , № 136	tP6	TiO ₂	[173]
MnO	<i>Fm-3m</i> , № 225	cF8	NaCl	[162]
(Co,Mn) ₃ O ₄	<i>Fd-3m O2</i> , № 227	<i>cF</i> 56	MgAl ₂ O ₄	[210]
Cr ₂ MnO ₄	<i>Fd-3m O2</i> , № 227	<i>cF</i> 56	MgAl ₂ O ₄	[211]
Cr ₂ O ₃	<i>R</i> -3 <i>ch</i> , №167	hR30	Al ₂ O ₃	[163]
Cr ₂ CoO ₄	<i>Fd-3m O2</i> , № 227	<i>cF</i> 56	MgAl ₂ O ₄	[212]
CrNbO ₄	136	tP6	TiO ₂	[213]
CrTaO ₄	<i>P</i> 4 ₂ / <i>mnm</i> , №136	tP6	TiO ₂	[213, 214]
CrTa ₂ O ₄	$P2_1/n, \mathbb{N}_2$ 14	mP18	CuSb ₂ O ₆	[215 – 217]

* Модификация устойчива на воздухе при температуре выше 1160 К [159].

**Модификация устойчива на воздухе при температуре ниже 1160 К [205].

Анализ литературных данных показал, что информация о высокотемпературном окислении на воздухе кобальтовых сплавов отсутствует для ряда трехкомпонентных

(Co-Re-Nb, Co-Re-Ta) и четырехкомпонентных систем (Co-Mn-Nb-Re, Co-Mn-Ta-Re, Co-Cr-Nb-Re, Co-Cr-Ta-Re), включающих важнейшие (Nb, Ta, Re, Cr) или потенциально возможные (Mn) легирующие элементы. Кроме того, для более полного понимания процесса высокотемпературного окисления кобальтовых сплавов немаловажными являются сведения об интенсивности роста окисленной зоны и влиянии на ее химический состав не только элементного, но и фазового состава.

Глава 2. Экспериментальная часть

2.1. Методика приготовления образцов

Для приготовления сплавов использовали кобальт электролитический (чистота не менее 99,99 мас. %), электронно-лучевой плавки ниобий и тантал (чистота не менее 99,8 мас. %), рений (чистота не менее 99,95 мас. %), марганец (чистота не менее 99,8 мас. %), хром электролитический (чистота не менее 99,99 мас. %). Сплавы готовили в дуговой печи с нерасходуемым вольфрамовым электродом в атмосфере аргона с многократным переплавом.

С целью установления фазовых равновесий образцы сплавов отжигались в трубчатых печах электросопротивления в двойных вакуумированных кварцевых ампулах, между которыми помещалась циркониевая стружка: в случае трехкомпонентных систем Co-Nb-Re и Co-Ta-Re при 1375±5 K в течение 1500 часов и при 1200±5 K в течение 2500 часов; в случае трехкомпонентных систем Co-Nb-Mn и Co-Mn-Ta при 1200±5 K в течение 500 часов. Давление в ампулах при запайке составляло не более 5*10⁻² Па. После термической обработки образцы сплавов закаливались в воде.

Для исследования возможности существования µ-фазы в бинарной системе Mn–Ta была исследована диффузионная пара Ta/Mn. Пара Ta/Mn была получена осаждением марганца из газовой фазы на танталовую пластину, осуществляемым совместным отжигом танталовой пластины и кусочков марганца при 1200±5 К в течение 100 ч в двойных вакуумированных кварцевых ампулах, между которыми помещалась циркониевая стружка. После отжига ампулу охлаждали в воде.

Для исследования дисперсионного твердения составы сплавов систем Co-Nb-Re, Co-Ta-Re, Co-Mn-Nb-Re и Co-Mn-Ta-Re, а также Co-Cr-Nb-Re и Co-Cr-Ta-Re выбирались на основании экспериментально полученных значений растворимостей легирующих компонентов в γ_{Co} -твердом растворе при 1375 и 1200 К. Термическая обработка проводилась в трубчатых печах электросопротивления в вакуумированных кварцевых ампулах, а в случае сплавов, содержащих марганец и хром, – в двойных вакуумированных кварцевых ампулах, между которыми помещали циркониевую стружку.

Термическая обработка сплавов, выбранных для исследования дисперсионного твердения, проводилась с учетом используемой технологии получения современных никелевых и никель-кобальтовых суперсплавов и включала три последовательные

45

стадии: 1) первая стадия – гомогенизирующий отжиг при 1375 \pm 5 К в течение 48 часов (далее – отжиг) с последующим охлаждением в воде в герметичной кварцевой ампуле (средняя скорость охлаждения до исчезновения красного каления \approx 1000 К/мин); 2) вторая стадия – дисперсионное твердение при 1200 \pm 5 К в течение 24 часов (далее – старение) с последующим охлаждением герметичной кварцевой ампулы с образцами до комнатной температуры на воздухе (средняя скорость охлаждения до исчезновения до исчезновения красного каления \approx 100 К/мин); 3) третья стадия – дисперсионное твердение при 1033 \pm 5 К в течение 24 часов (далее – отпуск) с последующим охлаждением герметичной кварцевой ампулы с образцами до комнатной температуры на воздухе (средняя скорость охлаждения герметичной кварцевой ампулы с образцами до комнатной температуры на воздухе (средняя скорость охлаждения до исчезновения красного каления \approx 100 К/мин). В ряде случаев для уточнения вклада твердорастворного упрочнения в показатели твердости сплава после гомогенизирующего отжига при 1375 \pm 5 К в течение 48 часов применялась закалка с непосредственным контактом образцов с водой вследствие быстрого разрушения ампулы (средняя скорость охлаждения до исчезновения красного каления \approx 10000 К/мин).

Для определения устойчивости к высокотемпературному окислению на воздухе использовались образцы с высоким содержанием кобальта систем Co-Nb-Re и Co-Ta-Re, Co-Mn-Nb-Re и Co-Mn-Ta-Re, а также Co-Cr-Nb-Re и Co-Cr-Ta-Re: однофазные – после гомогенизирующего отжига при 1375±5 К и двухфазные дисперсно-упрочненные – после трех стадий термообработки. Рений-содержащие кобальт-ниобиевые и кобальт-танталовые сплавы, помещенные в алундовые лодочки, окисляли на воздухе при 1200±5 К в трубчатых печах электросопротивления в течение 1, 4, 9, 25 и 49 часов. Кобальт-ниобиевые и кобальт-танталовые лодочках на воздухе при 1200±5 К в трубчатых печах электросопротивления в течение 25 часов. После окисления все сплавы охлаждались на воздухе.

2.2. Методы исследования

2.2.1. Сканирующая электронная микроскопия (СЭМ)

Для исследования методом СЭМ микроструктуры образцов и измерения ширины окисленной зоны полученные сплавы помещались в обойму из сплава Вуда и подвергались шлифованию и полировке. Исследование проводили на приборе «LEO EVO 50 XVP» при ускоряющем напряжении 20 кВ. Изображение получали, используя детектор обратно рассеянных электронов (*QBSD*).

2.2.2. Локальный рентгеноспектральный анализ (ЛРСА)

Концентрацию элементов в сплавах, количественное содержание элементов в фазах сплавов и окисленных зонах сплавов исследовали методом ЛРСА на приборе «LEO EVO 50 XVP», снабженным энергодисперсионным анализатором «Inca Energy 350 (Oxford instruments)».

2.2.3. Рентгенофазовый анализ (РФА)

Подготовку образцов для проведения РФА осуществляли путем измельчения хрупких сплавов до состояния мелкодисперсного порошка в агатовой ступке, либо путем натирания алмазным напильником частиц пластичных сплавов, которые затем измельчали в агатовой ступке до состояния порошка. Далее, порошок, запаянный в вакуумированную кварцевую ампулу, выдерживался в трубчатых печах электросопротивления при 773 К в течение 1 часа.

РФА проводили методом порошка на дифрактометре «ДРОН-4» с использованием СиК_α-излучения (графитовый монохроматор, интервал углов 20 10° – 90°, шаг 0,1, время экспозиции 10 секунд на точку). Для идентификации фаз и расчета параметров элементарной ячейки использовали программное обеспечение Stoe Winxpow [218].

Съемку порошков некоторых однофазных сплавов, относящихся к области составов тройных фаз Лавеса (λ ') изучаемых трехкомпонентных систем, осуществляли в Научно-исследовательском центре «Курчатовский институт» на станции синхротронного излучения «Белок», оборудованной детектором CCD Rayonix SX165 (2048 × 2048 пикселей), при длине волны 0,09525 нм. Интенсивность излучения, зависящая от дифракционного угла (20), была рассчитана по плоскости детектора «спекания». методом Уточнение кристаллографических параметров (шкального фона; параметров элементарной ячейки; фактора; параметров параметров, описывающих форму и полуширину пиков; координат атомов; параметров асимметрии пиков; параметров преимущественной ориентации; изотропных параметров атомного смещения (изотропная тепловая поправка) *B*_{iso} и заселенности позиций атомов) проводили по методу Ритвельда с использованием программного обеспечения FullProf [219, 220].

47

2.2.4. Просвечивающая электронная микроскопия (ПЭМ)

Исследование образцов порошков сплавов методом ПЭМ осуществляли на приборе JEOL JEM 2100 F-Cs (Япония), снабженном анализатором спектров энергетических электронных потерь и корректором сферических аберраций в просвечивающем режиме. Методика приготовления образца для анализа включала в себя диспергирование навески порошкообразных образцов (1 мг) в воде при воздействии ультразвука в течение 15 минут. После чего каплю полученной суспензии наносили на медную сетку, предварительно покрытую слоем поливинилформаля.

2.2.5. Дифференциальная сканирующая калориметрия (ДСК)

ДСК проводили на установке синхронного термического анализа «Jupiter STA 449 F1» фирмы Netzsch GmbH (Германия), оснащенной термопарой Pt/Pt,Rh. Эксперимент проводился в алундовых тиглях с крышкой, тип измерения – образец с коррекций. Нагрев образцов осуществлялся в атмосфере гелия высокой чистоты (99,9999 %) в температурном интервале от 298 до 1718 К (±1,0 К) при постоянной скорости 20±1 К/мин. Калибровка прибора по температуре и чувствительности проводилась с помощью металлических стандартов (In, Sn, Bi, Zn, Al, Au) из калибровочного набора DTA/DSC Netzsch GmbH (Германия).

2.2.6. Измерение твердости

Измерение твердости сплавов проводили на приборе «Buehler micromet 5103» по Виккерсу при номинальном значении нагрузки 0,9807 Н. Время выдержки под нагрузкой составляло 10 с. Твердость каждого образца измерялась в 10 точках. Результаты измерений статистически обрабатывались с использованием *t*-критерия Стьюдента, *P*=0,95.

В работе [221] для косвенного определения прочностных характеристик материалов были предложены следующие соотношения:

$$HV = 3,16 \sigma_{B}, HV = 3,62 \sigma_{0,2},$$

где σ_в, МПа – предел прочности, напряжение разрушения образца при одноосном растяжении, определяемое как отношение нагрузки, при которой происходит разрушение к начальной площади поперечного сечения рабочей части образца;

σ_{0,2}, МПа – предел текучести – напряжение, при котором остаточная деформация в

48

образце (остаточное удлинение) достигает 0,2%. Определяется как отношение нагрузки на образец при одноосном растяжении, вызывающей деформацию 0,2% к начальной площади поперечного сечения в рабочей части образца.

Несмотря на то, что предложенный метод определения твердости не может использоваться для описания длительной прочности и прочности на разрыв исследуемых сплавов как основных прочностных характеристик, он применяется в качестве экспресс-метода. Благодаря нему возможно выбрать область составов для дальнейших исследований для создания материала с заданными свойствами, а также выявить динамику изменения прочностных характеристик при добавлении того или иного легирующего компонента.

Глава 3. Результаты и их обсуждение

3.1. Диаграмма фазовых равновесий трехкомпонентных систем Co-Nb-Re, Co-Re-Ta, Co-Mn-Nb и Co-Mn-Ta

3.1.1. Изотермическое сечение диаграммы фазовых равновесий системы Co-Nb-Re при 1375 К

Для определения равновесий в системе Co-Nb-Re при 1375 К было исследовано 34 сплава. Концентрация элементов в сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов представлены в Таблице 13. Микроструктура сплавов приведена на Рисунке 19.

Таблица 13. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз трехкомпонентной системы Co-Nb-Re при 1375 К.

Мо	Коні	центр	ания	тав	Концентран		ания		Парам	етры
JN <u>©</u>	эле	менто)B B	coc	элементов в)B B	Структурный	элементарн	ой ячейки,
спла-	спла	аве, а	г, %	овый	фаз	вах, ат	, %	тип	НМ	1
Du	Co	Nb	Re	Фаз(Co	Nb	Re		а	С
1	85 /	1/1.6	0	γ _{Co}	94,1	5,9	0	Cu, <i>cF</i> 4, 225	0,35313(7)	-
1	05,4	14,0	0	λ'	75,5	24,5	0	MgNi ₂ , <i>hP</i> 24, 194	0,4732(2)	1,5441(6)
2	71,0	29,0	0	λ'	71,0	29,0	0	MgNi ₂ , <i>hP</i> 24, 194	0,4750(2)	1,5504(5)
3	72,1	25,7	2,2	λ'	72,1	25,7	2,2	MgNi ₂ , <i>hP</i> 24, 194	0,4741(1)	1,5483(8)
4	61.8	22.8	154	у	61.8	22.8	154	MgCu ₂ , <i>cF</i> 24, 227	0,6721(1)	-
	01,0	22,0	15,1		01,0	22,0	10,1	MgZn ₂ , <i>hP</i> 12, 194	0,4753(3)	0,7748(8)
				γ_{Co}	92,1	6,1	1,8	Cu, <i>cF</i> 4, 225	0,35312(1)	-
5	78 3	18.2	35	у	67.1	26.2	67	MgCu ₂ , <i>cF</i> 24, 227	0,6684(5)	-
5	70,5	10,2	5,5	70	07,1	20,2	0,7	MgZn ₂ , <i>hP</i> 12, 194	0,4762(1)	0,7735(9)
				λ'	73,2	23,8	3,0	MgNi ₂ , <i>hP</i> 24, 194	0,4742(5)	1,5483(9)
				γ_{Co}	86,9	5,7	7,4	Cu, <i>cF</i> 4, 225	0,3533(5)	-
6	78,1	14,0	7,9	λ	66.8	24.6	8.6	MgCu ₂ , <i>cF</i> 24, 227	0,6704(4)	-
0 10,2				λ	00,8	24,0	-,-	MgZn ₂ , <i>hP</i> 12, 194	0,4738(4)	0,7738(7)

No	Коні	центр	ания	тав	В Концентрания		Парам	етры		
JNO	эле	менто)B B	coc	эле	менто)B B	Структурный	элементарн	ой ячейки,
ва	спла	аве, а	г, %	овый	фазах, ат, %		, %	тип	НМ	Л
Bu	Co	Nb	Re	Фаз	Со	Nb	Re		а	С
				γco	85,1	5,8	9,1	Cu, <i>cF</i> 4, 225	-	-
7	78,9	11,5	9,6	λ	664	22.6	11.0	MgCu ₂ , <i>cF</i> 24, 227	-	-
				70	00,1	22,0	11,0	MgZn ₂ , <i>hP</i> 12, 194	-	-
8	86,6	2,1	11,3	γco	86,6	2,1	11,3	Cu, <i>cF</i> 4, 225	0,3556(1)	-
				γco	83,8	3,4	12,8	Cu, <i>cF</i> 4, 225	0,358(1)	-
9	76.9	6.4	16.7	λ	64.7	20.8	14.5	MgCu ₂ , <i>cF</i> 24, 227	0,6702(2)	-
	, 0,,	0,1	10,7	70	01,7	20,0	1 1,0	MgZn ₂ , <i>hP</i> 12, 194	0,4726(4)	0,7748(4)
				(Re)	77,8	3,2	19,0	Mg, <i>hP</i> 2, 194	0,2553(2)	0,4141(5)
10	83 5	0	165	γ_{Co}	86,1	0	13,9	Cu, <i>cF</i> 4, 225	-	-
10	05,5	U	10,5	(Re)	78,9	0	21,1	Mg, <i>hP</i> 2, 194	-	-
				λ	63.4	20.2	164	MgCu ₂ , <i>cF</i> 24, 227	0,6691(5)	-
11	69,7	11,7	18,6		03,1	20,2	10,1	MgZn ₂ , <i>hP</i> 12, 194	0,4732(1)	0,7761(3)
				(Re)	75,7	3,4	20,9	Mg, <i>hP</i> 2, 194	0,2571(4)	0,4136(6)
				у	62.2	20.0	17.8	MgCu ₂ , <i>cF</i> 24, 227	0,6688(3)	-
12	6/ 1	12.6	23.3		02,2	20,0	17,0	MgZn ₂ , <i>hP</i> 12, 194	0,4727(3)	0,7734(2)
12	04,1	12,0	23,3	μ	54,9	14,8	30,3	Fe ₇ W ₆ , <i>hR</i> 39,166	0,47275(1)	2,5475(1)
				(Re)	74,3	3,2	22,5	Mg, <i>hP</i> 2, 194	0,2551(4)	0,4137(6)
13	55.8	10 /	33.8	μ	52,1	13,2	34,7	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4772(6)	2,569(3)
15	55,0	10,7	55,0	(Re)	64,8	3,6	31,6	Mg, <i>hP</i> 2, 194	0,2619(5)	0,4152(8)
14	54.0	57	30 /	μ	51,1	12,2	36,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
14	54,9	5,7	39,4	(Re)	55,7	4,1	40,2	Mg, <i>hP</i> 2, 194	-	-
15	127	61	50.0	μ	49,1	11,5	39,4	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
15	42,7	0,4	50,9	(Re)	40,5	3,8	55,7	Mg, <i>hP</i> 2, 194	-	-
				μ	45,2	12,3	42,5	Fe ₇ W ₆ , <i>hR</i> 39,166	0,477(1)	2,665(1)
16	38,0	12,0	50,0	χ	12,8	16,9	70,3	Mn, c158, 217	0,9484(1)	-
				(Re)	33,7	4,2	62,1	Mg, <i>hP</i> 2, 194	0,2745(2)	0,4463(8)

Ma	Коні	центр	ания	тав	Концентрания		ания		Парам	етры
JN <u>©</u>	эле	менто	OB B	coc	элементов в		OB B	Структурный	элементарн	ой ячейки,
спла-	спла	аве, а	т, %	овый	фазах, ат, %		, %	ТИП	HN	Л
Du	Co	Nb	Re	Фаз(Со	Nb	Re		а	С
17	32.4	18.2	49.4	μ	44,8	16,7	38,5	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
- /	<i>c</i> _, .	10,2	.,,.	χ	12,4	20,7	66,9	Mn, cI58, 217	-	-
18	34.2	22.7	43.1	μ	44,9	22,3	32,8	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4740(4)	2,628(2)
10	.,_	,	,1	χ	11,3	22,7	66,0	Mn, cI58, 217	0,9555(7)	-
19	0	43.8	56.2	β_{Nb}	0	50,9	49,1	W, Im-3m, 229	-	-
	Ū	,0	00,2	χ	0	32,3	67,7	Mn, cI58, 217	-	-
				β_{Nb}	4,2	48,9	46,9	W, Im-3m, 229	0,31801(1)	-
20	16,5	36,6	46,9	μ	44,7	29,6	25,7	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4933(3)	2,642(1)
				χ	3,6	31,6	64,8	Mn, cI58, 217	0,9723(2)	-
21	61	61 7	32.2	β_{Nb}	4,1	62,7	33,2	W, Im-3m, 229	0,3192(1)	-
21	0,1	01,7	52,2	μ	45,0	42,2	12,8	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4954(3)	2,6588(5)
22	21.5	63.7	14.8	β_{Nb}	4,1	73,5	22,4	W, Im-3m, 229	-	-
22	21,5	03,7	11,0	μ	44,9	49,4	5,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
23	28.5	71 5	0	β_{Nb}	7,1	92,9	0	W, Im-3m, 229	-	-
	20,0	, 1,0	Ŭ	μ	45,1	54,9	0	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				λ	62.1	37.9	0	MgCu ₂ , <i>cF</i> 24, 227	-	-
24	56,9	43,1	0		0_,1	0,92	Ū	MgZn ₂ , $hP12$, 194	-	-
				μ	52,0	48,0	0	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				у	61 3	31.5	72	MgCu ₂ , <i>cF</i> 24, 227	-	-
25	58,1	34,2	7,7		01,5	51,5	7,2	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	53,4	37,9	8,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				λ	60.9	27.5	11.6	MgCu ₂ , <i>cF</i> 24, 227	-	-
26	57,1	27,9	15,0	70	00,5	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,0	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	53,7	28,7	17,6	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				у	61.0	22.1	169	$MgCu_2, cF24, 227$	0,6773(8)	-
27	7 58,8 20,5	5 20,7		λ 61,0	22,1	16,9	MgZn ₂ , <i>hP</i> 12, 194	0,4742(3)	0,7761(4)	
				μ	54,6	17,5	27,9	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4735(1)	2,5595(9)

Ma	Кон	центр	ания	тав	Кон	Концентрания			Парам	етры
JNO	эле	менто	OB B	000	элементов в		OB B	Структурный	элементарн	ой ячейки,
спла-	спла	аве, а	т, %	ЭВЫЙ	фаз	вах, ат	c, %	тип	НМ	N
Ба	Co	Nb	Re	Фазс	Co	Nb	Re		а	С
28	46,1	53,9	0,0	μ	46,1	53,9	0,0	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4924(3)	2,6473(9)
29	49,5	40,8	9,7	μ	49,5	40,8	9,7	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4923(3)	2,6461(9)
30	52,9	34,2	12,9	μ	52,9	34,2	12,9	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
31	46,0	38,1	15,9	μ	46,0	38,1	15,9	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
32	47,1	31,1	21,8	μ	47,1	31,1	21,8	Fe ₇ W ₆ , <i>hR</i> 39,166	0,49066(1)	2,6379(6)
33	48,7	16,0	35,3	μ	48,7	16,0	35,3	Fe ₇ W ₆ , <i>hR</i> 39,166	0,47431(7)	2,6506(3)
34	47,4	12,5	40,1	μ	47,4	12,5	40,1	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-

B)

г)

Рисунок 19. Микроструктуры некоторых сплавов системы Co-Nb-Re после отжига при 1375 К: а) № 4, б) № 5, в) № 6, г) № 9, д) № 11, е) № 12, ж) № 13, з) № 16, и) № 18, к) № 20, л) № 22 и м) № 27 (Таблица 13).

По данным ЛРСА, СЭМ и РФА сплав № 4 (Таблица 13) принадлежат единой области гомогенности фазы Лавеса λ , в которой наблюдается неупорядоченная последовательность слоев А, В и С, характерная для политипов MgCu₂ и MgZn₂.

Из данных Таблицы 13 и Рисунка 19 следует, что в системе Co-Nb-Re при 1375 К экспериментально установлены пять трехфазных равновесий ($\gamma_{Co}+\lambda+\lambda'$) (Сплав № 5), ($\gamma_{Co}+\lambda+(Re)$) (Сплав № 9), ($\lambda+\mu+(Re)$) (Сплав № 12), ($\mu+\chi+(Re)$) (Сплав № 16) и ($\beta_{Nb}+\mu+\chi$) (Сплав № 20) [173]. Растворимость рения при 1375 К в фазе μ составляет 42,5 ат. %, в фазе $\lambda - 17,8$ ат. %; а в λ' фазе – 3,0 ат. %. В фазе χ при 1375 К растворяется 12,8 ат. % кобальта. В данной системе при 1375 К тройные соединения не обнаружены.

На основе полученных экспериментальных данных было построено изотермическое сечение диаграммы фазовых равновесий трехкомпонентной системы Co-Nb-Re при 1375 K, приведенное на Рисунке 20.

Рисунок 20. Изотермическое сечение диаграммы фазовых равновесий системы Co-Nb-Re при 1375 К. Номера сплавов приведены в соответствии с Таблицей 13.

3.1.2. Изотермическое сечение диаграммы фазовых равновесий системы Со-Nb-Re при 1200 К

Для построения изотермического сечения диаграммы фазовых равновесий системы Co-Nb-Ni при 1200 К было исследовано 29 сплавов. Концентрация элементов в этих сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов представлены в Таблице 14. Микроструктуры сплавов приведены на Рисунке 21.

Таблица 14. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав и параметры элементарной ячейки фаз системы Co-Nb-Re при 1200 К.

No	Коні	центр	ания	тав	Концентрания		ания		Парам	етры
	эле	менто	OB B	i coc	эле	ментс	OB B	Структурный	элементарн	ой ячейки,
ва	спла	аве, а	т. %	ЭВЫЙ	фазах, ат. %		. %	тип	HN	Л
Ба	Co	Nb	Re	Фазс	Co	Nb	Re		а	С
1	91,2	1,7	7,1	γ_{Co}	91,2	1,7	7,1	Cu, <i>cF</i> 4, 225	-	-
2	87.3	12.7	0	Co ₃ Nb	74,9	25,1	0	Mg ₃ Cd, <i>hP</i> 8, 194	0,5172(6)	0,4208(7)
-	07,5	12,7	Ŭ	γ_{Co}	98,1	1,9	0	Cu, <i>cF</i> 4, 225	0,3529(1)	
3	73,9	26,1	0	Co ₃ Nb	73,4	26,6	0	Mg ₃ Cd, <i>hP</i> 8, 194	0,5164(4)	0,4211(3)
				Co ₃ Nb	73,5	26,3	0,2	Mg ₃ Cd, <i>hP</i> 8, 194	-	-
4	71,9	27,7	0,4	2	68.9	30.5	0.6	MgCu ₂ , <i>cF</i> 24, 227	0,6709(1)	-
				λ	00,7	08,9 50,5		MgZn ₂ , <i>hP</i> 12, 194	0,4743(4)	0,7763(7)
5	62 1	32.9	5.0	λ	62 1	32.9	5.0	MgCu ₂ , <i>cF</i> 24, 227	0,67638(1)	-
5	02,1	52,7	5,0		02,1	52,7	5,0	MgZn ₂ , <i>hP</i> 12, 194	-	-
6	63.2	26.5	10.3	λ	63.2	26.5	10.3	MgCu ₂ , <i>cF</i> 24, 227	0,67106(2)	-
0	05,2	20,5	10,5		03,2	20,5	10,5	MgZn ₂ , <i>hP</i> 12, 194	0,47454(9)	0,77410(3)
7	63.0	23.1	13.9	2	63.0	23.1	13.9	MgCu ₂ , <i>cF</i> 24, 227	0,67087(8)	-
,	05,0	23,1	15,7		05,0	23,1	15,7	MgZn ₂ , <i>hP</i> 12, 194	0,47435(7)	0,7743(1)
8*	70.2	25.6	42	21	70.2	25.6	42	MgNi2 hP24 194	0.477326(2)	1,556871(
0	70,2	23,0	7,2	λ	70,2	25,0	7,2	wigivi2, <i>m</i> 2+, 17+	0,477520(2)	1)
Q *	67.3	24.6	8 1	21	67.3	24.6	81	MgNi2 hP24 101	0.475468(2)	1,550798(
	07,5	24,0	0,1		07,5	24,0	0,1	17151 112, 101 24, 174	0,775700(2)	1)
10	65,1	29,0	5,9	λ'	65,1	29,0	5,9	MgNi ₂ , <i>hP</i> 24, 194	0,4758(1)	1,5515(3)

Ma	Коні	центр	ания	тав	Концентрания		ания		Парам	етры
JNO	эле	менто	OB B	coc	элементов в)B B	Структурный	элементарно	ой ячейки,
ва	спла	аве, а	т. %	овый	фазах, ат. %		. %	ТИП	HM	1
	Co	Nb	Re	Фаз	Co	Nb	Re		а	С
11*	66,0	25,8	8,2	λ'	66,0	25,8	8,2	MgNi ₂ , <i>hP</i> 24, 194	0,475354(2)	1,550406(2)
				γco	95,8	2,1	2,1	Cu, <i>cF</i> 4, 225	0,354(1)	-
12	9 77	10.2	2.0	2	68.2	30.4	1 /	MgCu ₂ , <i>cF</i> 24, 227	0,6702(8)	-
12	77,8	19,5	2,9	λ	00,2	50,4	1,7	MgZn ₂ , <i>hP</i> 12, 194	0,4739(3)	0,7722(6)
				λ'	70,7	25,7	3,6	MgNi ₂ , <i>hP</i> 24, 194	0,4736(1)	1,5462(7)
13	77 2	17 5	53	γco	93,3	2,2	4,5	Cu, <i>cF</i> 4, 225	0,355(3)	-
15	11,2	17,5	5,5	λ'	70,0	24,2	5,8	MgNi ₂ , <i>hP</i> 24, 194	0,4736(3)	1,5416(6)
14	70.6	20.0	85	γco	92,0	2,3	5,7	Cu, <i>cF</i> 4, 225	0,3547(3)	-
14	70,0	20,9	0,5	λ'	67,3	23,6	9,1	MgNi ₂ , <i>hP</i> 24, 194	0,4736(1)	1,5416(1)
				γco	90,1	2,5	7,4	Cu, <i>cF</i> 4, 225	0,3547(2)	-
15	75,8	14,4	9,8	2	65.2	22.3	11 5	MgCu ₂ , <i>cF</i> 24, 227	0,6700(3)	-
				λ	03,2	23,3	11,5	MgZn ₂ , <i>hP</i> 12, 194	0,4729(3)	0,7756(4)
				γ_{Co}	87,1	2,0	10,9	Cu, <i>cF</i> 4, 225	0,3533(5)	-
16	73.4	11.8	14.8	λ	64.3	22.1	13.6	MgCu ₂ , <i>cF</i> 24, 227	0,6704(1)	-
10	73,1	11,0	1 1,0	70	01,5	<i></i> ,1	15,0	MgZn ₂ , <i>hP</i> 12, 194	0,4738(4)	0,7738(7)
				(Re)	80,6	0,4	19,0	Mg, <i>hP</i> 2, 194	0,2428(5)	0,4091(6)
17	84 9	0	15.1	γ_{Co}	90,4	0	9,6	Cu, <i>cF</i> 4, 225	-	-
1,	0.,,	Ŭ	10,1	(Re)	82,3	0	17,7	Mg, <i>hP</i> 2, 194	-	-
				λ	62.7	22.2	15.1	MgCu ₂ , <i>cF</i> 24, 227	0,6691(2)	-
18	68 1	11 5	20.4	70	02,7	,_	10,1	MgZn ₂ , <i>hP</i> 12, 194	0,4738(3)	0,7726(6)
10	00,1	11,5	20,1	μ	51,4	13,8	34,8	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4740(3)	2,5458(1)
				(Re)	76,2	0,3	23,5	Mg, <i>hP</i> 2, 194	0,2557(7)	0,4135(8)
				у	63 1	36.9	0	MgCu ₂ , <i>cF</i> 24, 227	-	-
19	60,7	39,3	0		0.5,1	,		MgZn ₂ , <i>hP</i> 12, 194	-	-
		Ŷ		μ	53,4	46,6	0	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-

Мо	Коні	центр	ания	тав	Кон	центр	ания		Парам	етры
	эле	менто	OB B	coc	элементов в		OB B	Структурный	элементарн	ой ячейки,
спла-	спла	аве, а	т. %	вый	фаз	вах, ат	. %	ТИП	HM	1
ва	Co	Nb	Re	Þa30	Co Nb Re		Re		а	С
				^	(2.1	267	11.0	MgCu ₂ , <i>cF</i> 24, 227	-	-
20	57,1	30,9	12,0	λ	02,1	20,7	11,2	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	53,4	33,9	12,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				0	62.2	23.7	14.0	MgCu ₂ , <i>cF</i> 24, 227	-	-
21	57,8	20,1	22,1	λ	02,2	23,7	14,0	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	51,6	15,5	32,9	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
22	56.2	99	33.9	μ	50,5	13,6	35,9	Fe ₇ W ₆ , <i>hR</i> 39,166	0,47209(8)	2,6125(5)
	50,2	,,,	55,7	(Re)	70,1	0,2	29,7	Mg, <i>hP</i> 2, 194	0,2629(2)	0,4197(2)
23	16.6	5.6	17.8	μ	47,3	12,8	39,9	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
23	40,0	0,0 3,0 47,8		(Re)	44,1	0,3	55,6	Mg, <i>hP</i> 2, 194	-	-
				μ	46,2	13,2	40,6	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4746(2)	2,654(1)
24	30,2	7,7	62,1	χ	13,6	9,0	77,4	Mn, <i>cI</i> 58, 217	0,9434(2)	-
				(Re)	30,1	0,4	69,5	Mg, <i>hP</i> 2, 194	0,2638(4)	0,4290(4)
25	32.1	147	53.2	μ	44,5	16,0	39,5	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
25	52,1	17,7	55,2	χ	14,9	12,1	73,0	Mn, <i>cI</i> 58, 217	0,9631(4)	-
				β_{Nb}	4,5	46,5	49,0	W, Im-3m, 229	0,31786(7)	-
26	17,0	35,3	47,7	μ	46,1	22,0	31,9	Fe ₇ W ₆ , <i>hR</i> 39,166	0,482(1)	2,660(5)
				χ	11,4	21,4	67,2	Mn, <i>cI</i> 58, 217	0,9720(1)	-
27	41 9	417	16.4	β_{Nb}	4,9	58,0	37,1	W, Im-3m, 229	-	-
27	71,7	-1,7	10,4	μ	45,1	40,2	14,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
28	84	67 4	29.2	β_{Nb}	5,5	63,7	30,8	W, Im-3m, 229	0,31771(7)	-
20	0,4	02,4	27,2	μ	43,7	49,7	6,6	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4941(2)	2,629(1)
29	35 5	64.6	0	β_{Nb}	2,9	97,1	0	W, Im-3m, 229	-	-
	55,5	0 ,0		μ	43,9	56,1	0	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-

*Параметры элементарной ячейки λ'-фазы были рассчитаны их данных, полученных с использованием синхротронного излучения с длинной волны 0.09525 нм.

a)

в)

д)

60 µm

ж)

60 µm

б)

e)

г)

60 µm

Рисунок 21. Микроструктуры двух- и трехфазных сплавов системы Co-Nb-Re после отжига при 1200 К: а) № 2, б) № 4, в) № 12, г) № 13, д) № 15, е) № 16, ж) № 18, з) № 21, и) № 22, к) № 24, л) № 25 и м) № 26 (Таблица 21).

Для определения кристаллографических параметров тройной фазы Лавеса λ' были исследованы порошки сплавов № 8, 9 и 11 с использованием синхротронного излучения с длинной волны 0,09525 нм. Результаты уточнения методом Ритвельда экспериментальных дифрактограмм тройной фазы Лавеса λ' сплавов № 8, 9, 11 представлены на Рисунке 22, а также в Таблице 15. Координаты атомов и заселенности их позиций в кристаллической решетке тройной фазы Лавеса λ' сплавов № 8, 9, 11 представлены в таблицах 16–18. Из данных таблиц 16–18 следует, что атомы рения тройной фазы λ' располагаются в основном в позициях Со2 (Ni2), Со3(Ni3), М1(Mg2) и М2(Mg2).

Для определения области термической стабильности тройной фазы Лавеса λ' была проведена дифференцирующая сканирующая калориметрия сплавов № 8 и № 11, результаты которой представлены на Рисунках 23 и 24.

Анализ кривой нагревания сплава № 8 (Рисунок 23а) показал, что тройная фаза Лавеса λ', стабильная при температуре 1200 К, распадается при 1419,3±1 К. На кривой

охлаждения сплава № 8 (Рисунок 23б) наблюдался экзотермический эффект при 1554,1±1 К. Из анализа кривой нагревания сплава № 11 (Рисунок 24а) видно, что тройная фаза Лавеса λ' (Собб.0Nb25.8Re8.2) существует до 1341,1±1 К. На кривой охлаждения сплава № 11 (Рисунок 24б) наблюдался экзотермический эффект при 1543.1±1 К. Таким образом, сигнал, соответствующий образованию тройной фазы Лавеса λ' , отсутствует на обеих кривых охлаждения сплавов № 8, № 11 (Рисунки 23б, 24б), следовательно, обратная реакция не протекает ввиду ее высокой энергии активации.

22. Экспериментальные Рисунок порошковые рентгенограммы сплавов № 8 (а), № 9 (б) и № 11 (в) (Таблица 14). Экспериментальная порошковая рентгенограмма показана красным цветом; теоретическая дифрактограмма (структурный тип MgNi₂) – черным цветом; разностная кривая синим цветом. Зелеными вертикальными ЛИНИЯМИ отмечены положения брэгговских пиков.

Кроме того, анализ кривой нагревания сплава № 8 указывает на то, что тройная фаза λ' вероятно образует непрерывный ряд твердых растворов с изоструктурной двойной фазой Лавеса, существующей при более высоких температурах. Из этого следует, что увеличение концентрации рения приводит к снижению температуры распада двойной фазы λ' и её стабилизации при более низких температурах как тройной фазы.

Номер сплава	8	9	11
Состав сплава, ат. %	Co70,9Nb25,6Re4,2	Co67,3Nb24,6Re8,1	Co66,0Nb25,8Re8,2
Структурный тип	MgNi ₂	MgNi ₂	MgNi ₂
Пространственная группа	P63/mmc, 194	P63/mmc, 194	P63/mmc, 194
Символ Пирсона	<i>hP</i> 24	<i>hP</i> 24	<i>hP</i> 24
Кристаллическая система	hexagonal	hexagonal	hexagonal
Длина волны, нм	0,09525	0,09525	0,09525
Номер сплава	8	9	11
Параметры элементарной			
ячейки, нм			
a	0,477326(2)	0,475468(2)	0,475354(2)
b	0,477326(2)	0,475468(2)	0,475354(2)
С	1,556871(1)	1,5507978(1)	1,5504057(2)
Объем элементарной ячейки, нм ³	0,3072(8)	0,3036(8)	0,3034(9)
Число формульных единиц в	8	8	8
элементарной ячейке, Z			
Рассчитанная плотность, г/см ³	5,72	5,79	5,79
Угол 20, ⁰	10,018≤20≤55,518	10,018≤20≤55,518	10,018≤20≤55,518
Шаг	0,008	0,008	0,008
Число рефлексов на	79	79	79
дифрактограмме			
Число уточняемых параметров	32	32	32
$R_F = \sum F_{oi} - F_{ci} / \sum F_{oi}$	0,080	0,07	0,07
$R_B = \sum I_{o,h} - I_{c,h} / \sum I_{o,h} $	0,054	0,06	0,06
$R_P = \sum y_{oi} - y_{ci} / \sum y_{oi} $	0,151	0,16	0,16
$R_{wP} =$	0,088	0,10	0,10
$\left \sum w_i y_{oi} - y_{ci} ^2 / \sum w_i y_{oi} ^2 \right ^{1/2}$			
$\chi^2 = (R_{wP}/R_e)^2$	0,039	0,04	0,04

Таблица 15. Кристаллографические данные и уточненные параметры сплавов № 8, 9 и 11.

Π	р	IC			11 ~	2
Позиция	Вид	Коор	одинаты ат	омов	Изотропныи	Заселенность
атомов	атомов	X	Y	Z	параметр атомного	позиций атомов
					смещения (B_{iso})	
Co1	Co	0,163(7)	0,326(1)	0,25	0,41(6)	1,000
Co2	Co	1/2	0	0	0,48(6)	0,982(8)
Co2	Re	1/2	0	0	0,48(6)	0,018(8)
Co3	Co	1/3	2/3	0,126(2)	0,50(6)	0,991(8)
Co3	Re	1/3	2/3	0,126(2)	0,50(6)	0,003(8)
M1	Nb	1/3	2/3	0,654(1)	0,57(6)	0,813(1)
M1	Co	1/3	2/3	0,654(1)	0,57(6)	0,067(1)
M1	Re	1/3	2/3	0,654(1)	0,57(6)	0,087(1)
M2	Nb	0	0	0,091(1)	0,41(6)	0,814(6)
M2	Co	0	0	0,091(1)	0,41(6)	0,090(6)
M2	Re	0	0	0,091(1)	0,41(6)	0,126(6)

Таблица 16. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Nb-Re при 1200 K (Сплав № 8).

Таблица 17. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Nb-Re при 1200 К (Сплав № 9).

Позиция	Вид	Коор	динаты ат	омов	Изотропный	Заселенность
атомов	атомов	X	Y	Ζ	параметр атомного	позиций атомов
					смещения (Biso)	
Co1	Co	0,162(1)	0,323(1)	0,25	2,72(8)	1,000
Co2	Co	1/2	0	0	0,74(8)	0,902(6)
Co2	Re	1/2	0	0	0,74(8)	0,098(6)
Co3	Co	1/3	2/3	0,137(1)	0,99(8)	0,932(8)
Co3	Re	1/3	2/3	0,137(1)	0,99(8)	0,068(8)
M1	Nb	1/3	2/3	0,652(1)	0,797(8)	0,915(8)
M1	Co	1/3	2/3	0,652(1)	0,79(8)	0,112(8)
M1	Re	1/3	2/3	0,652(1)	0,79(8)	0,013(8)
M2	Nb	0	0	0,090(1)	1,28(8)	0,610(6)
M2	Со	0	0	0,090(1)	1,28(8)	0,164(6)
M2	Re	0	0	0,090(1)	1,28(8)	0,270(6)

Таблица 18. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Nb-Re при 1200 К (Сплав № 11).

Позиция	Вид	Коор	одинаты ат	омов	Изотропный	Заселенность
атомов	атомов	X	Y	Z	параметр атомного	позиций атомов
					смещения (B _{iso})	
Co1	Со	0.164(1)	0.328(1)	0,25	0,41(6)	1,000
Co2	Co	1/2	0	0	0,48(6)	0,916(7)
Co2	Re	1/2	0	0	0,48(6)	0,084(7)
Co3	Co	1/3	2/3	0,135(1)	0,50(6)	0,901(9)
Co3	Re	1/3	2/3	0,135(1)	0,50(6)	0,099(9)
M1	Nb	1/3	2/3	0,652(1)	0,57(6)	0,947(8)
M1	Co	1/3	2/3	0,652(1)	0,57(6)	0,020(8)
M1	Re	1/3	2/3	0,652(1)	0,57(6)	0,041(8)
M2	Nb	0	0	0,091(1)	0,41(6)	0,681(6)
M2	Co	0	0	0,091(1)	0,41(6)	0,094(6)
M2	Re	0	0	0,091(1)	0,41(6)	0,259(6)

Рисунок 23. Результаты ДСК сплава № 8 (Таблица 14): а) кривая нагревания; б) кривая охлаждения.

Рисунок 24. Результаты ДСК сплава № 11 (Таблица 14): а) кривая нагревания; б) кривая охлаждения.

Анализ дифрактограмм сплава № 9 до (Рисунок 22 б) и после (Рисунок 25) проведения ДСК показывает, что распад тройной фазы Лавеса λ' при 1341,1±1 К происходит с образованием γ_{Co} -твердого раствора и политипов MgCu₂ (a = 0,6714(2) нм) и MgZn₂ (a = 0,4749(1) нм, c = 0,7743(3) нм). Рефлексы, наблюдаемые при углах 44° и 52°, соответствуют γ_{Co} . Однако наличие только этих двух пиков не позволило рассчитать параметры элементарной ячейки γ_{Co} . Полученные данные согласуются с построенным в ходе данной работы изотермическим сечением системы Co-Nb-Re при 1375 К (Рисунок 20).

Рисунок 25. Экспериментальная порошковая рентгенограмма сплава № 9 (Таблица 14) после проведения ДСК.

Таким образом, основываясь на данных приведенных в Таблице 14 и Рисунке 2, а также данных об устойчивости тройной фазы λ' при 1200 К, в системе Co-Nb-Re при 1200 К экспериментально установлено существование пяти трехфазных равновесий: ($\gamma_{Co}+\lambda+\lambda'$) (сплав № 12), $\gamma_{Co}+\lambda+(Re)$ (сплав № 16), $\lambda+\mu+(Re)$ (сплав № 18), ($\mu+\chi+(Re)$) (сплав № 24) и ($\beta_{Nb}+\mu+\chi$) (сплав № 26), а также предположено существование ещё одного трехфазного равновесия $\gamma_{Co}+\lambda+Co_3Nb$, основываясь на экспериментально определенных двухфазных равновесиях $\gamma_{Co}+\lambda$ (сплав № 12), $\gamma_{Co}+Co_3Nb$ (сплав № 2) и $\lambda+Co_3Nb$ (сплав № 4). Тройная фаза λ' является фазой Лавеса и относится к структурному типу MgNi₂ (символ Пирсона *hP*24, пространственная группа *P*6₃/*mmc*). Фаза λ' содержит примерно от 3,6 до 9,4 ат. % Re и примерно от 24,6 до 29,0 ат. % Nb.

Рисунок 26. Изотермическое сечение диаграммы фазовых равновесий системы Co-Nb-Re при 1200 К. Номера сплавов приведены в соответствии с Таблицей 14.

На основе полученных экспериментальных данных изотермическое сечение диаграммы фазовых равновесий трехкомпонентной системы Co-Nb-Re было построено при 1200 К, приведенное на Рисунке 26. Концентрационная область существования χ- фазы и растворимость рения в фазе β_{Nb} приведены на изотерме системы Co-Nb-Re при

1200 К по данным работы [92]. Область диаграммы состояний Co-Nb-Re при 1200 К с высоким содержанием кобальта приведена на Рисунке 27.

Рисунок 27. Область с высоким содержанием кобальта изотермического сечения диаграммы фазовых равновесий системы Co-Nb-Re при 1200 К.

3.1.3. Изотермическое сечение диаграммы фазовых равновесий системы Co-Re-Ta при 1375 К

Для определения равновесий в системе Co-Re-Ta при 1375 К было исследовано 33 сплава. Концентрация элементов в сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов представлены в Таблице 19. Микроструктура сплавов системы Co-Re-Ta после отжига при 1375 К приведена на Рисунке 28.

Из данных Таблицы 19 и Рисунка 28 следует, что в системе Со-Re-Та при 1375 К экспериментально установлены пять трехфазных равновесий ($\gamma_{Co}+\lambda+\mu$) (сплав № 9), ($\gamma_{Co}+\mu+(Re)$) (сплав № 11), ($\mu+\chi+(Re)$) (сплав № 15), ($\beta_{Ta}+\mu+\chi$) (сплав № 18) и ($\beta_{Ta}+\mu+Ta_2Co$) (сплав № 21); предположено существование трехфазного равновесия ($\gamma_{Co}+\lambda+\lambda'$), основываясь на экспериментально установленных двухфазных равновесиях (γ_{Co}+λ) (сплав № 7, 8, 9), (γ_{Co}+λ') (сплав № 3, 4), а также двухфазного равновесия (λ+λ'), вытекающего из правила фаз Гиббса.

№ спла-	Кони эле спла	центр менто аве, а	ания ов в т. %	овый состав	Концентрания элементов в фазах, ат. %			Структурный тип	Параметры элементарной ячейки, нм					
Du	Co	Та	Re	Фаз	Co	Та	Re		а	С				
1	72,9	27,1	0	λ'	72,9	27,1	0	MgNi ₂ , <i>hP</i> 24, 194	0,4735(1)	1,5425(5)				
2	72,1	25,7	2,2	λ'	72,1	25,7	2,2	MgNi ₂ , <i>hP</i> 24, 194	0,47353(3)	1,5431(2)				
3	89.6	10.4	0	γco	96,1	3,9	0	Cu, <i>cF</i> 4, 225	0,3580(3)	-				
5	0,0	10,1	Ŭ	λ'	73,7	26,3	0	MgNi ₂ , <i>hP</i> 24, 194	0,4723(1)	1,5442(3)				
4	79.8	16.2	4.0	γ_{Co}	92,4	4,3	3,3	Cu, <i>cF</i> 4, 225	-	-				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,2	.,0	λ'	71,6	23,9	4,5	MgNi ₂ , <i>hP</i> 24, 194	-	-				
5	64.2	25.9	9.9	λ	64.2	25.9	99	MgCu ₂ , <i>cF</i> 24, 227	0,6761(2)	-				
Ũ	5 04,2 25,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.,2	-0,9	,,,	MgZn ₂ , <i>hP</i> 12, 194	0,4777(1)	0,7823(2)				
6	6 65 2 19 3	19.3	15.5	λ	65,2	19,3	15.5	MgCu ₂ , <i>cF</i> 24, 227	0,67004(1)	-				
0	00,2	- ,-	- ,-				7 -	MgZn ₂ , <i>hP</i> 12, 194	0,4738(1)	0,7737(2)				
				γco	87,3	4,0	7,7	Cu, <i>cF</i> 4, 225	-	-				
7	79,3	12,1	8,6	λ	68.3	21.3	9.8	MgCu ₂ , <i>cF</i> 24, 227	-	-				
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	9 -	- ,-	MgZn ₂ , <i>hP</i> 12, 194	-	-				
								γ_{Co}	85,6	3,3	11,	Cu, <i>cF</i> 4, 225	0,3545(4)	-
8	76,4	11,1	12,5	λ	66.2	19.7	14.1	MgCu ₂ , <i>cF</i> 24, 227	0,6691(2)	-				
					,_		,-	MgZn ₂ , <i>hP</i> 12, 194	0,4731(2)	0,7726(3)				
				γco	84,3	2,6	13,1	Cu, <i>cF</i> 4, 225	0,3540(3)	-				
9	73.9	9,6	16,5	λ	63.8	18.7	17.5	MgCu ₂ , <i>cF</i> 24, 227	0,6684(1)	-				
	10,9				00,0	10,7	1,0	MgZn ₂ , <i>hP</i> 12, 194	0,4727(5)	0,7734(4)				
				μ	54,8	13,9	31,3	Fe_7W_6 , <i>hR</i> 39, 166	0,4727(1)	2,5476(3)				
10	83 5	0	16.2	γ_{Co}	86,1	0	13,9	Cu, <i>cF</i> 4, 225	-	-				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,2	(Re)	78,9	0	21,1	Mg, <i>hP</i> 2, 194	-	-					

Таблица 19. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз системы Co-Re-Ta при 1375 К.

№ спла-	Концентрания элементов в сплаве, ат. %			В Концентрания Элементов в фазах, ат. %			ания ов в с. %	Структурный тип	Параметры элементарной ячейки, нм		
ва	Со	Та	Re	Þa30	Со	Та	Re	-	а	С	
				γ _{C0}	83,2	1,8	15,0	Cu, <i>cF</i> 4, 225	0,3542(4)	-	
11	68,2	6,6	25,2	μ	54,7	12,9	32,4	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4724(2)	2,546(1)	
				(Re)	77,4	1,1	21,5	Mg, <i>hP</i> 2, 194	0,2563(1)	0,4132(4)	
12	64 1	59	30.0	μ	52,7	12,8	34,5	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
12	04,1	5,7	50,0	(Re)	72,0	1,2	26,8	Mg, <i>hP</i> 2, 194	-	-	
13	53.4	42	42.4	μ	50,7	13,1	36,2	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4732(3)	2,538(2)	
10	55,1	1,2	12,1	(Re)	54,5	1,3	44,2	Mg, <i>hP</i> 2, 194	0,25635(2)	0,41316(4)	
14	41.7	5.3	53.0	μ	47,7	14,1	38,2	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
	,,	0,0	22,0	(Re)	38,8	1,2	60,0	Mg, <i>hP</i> 2, 194	-	-	
		9,9	61,4	μ	45,5	14,7	39,8	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4751(3)	2,659(1)	
15	15 28,7			χ	12,5	11,7	75,8	Mn, <i>cI</i> 58, 217	0,9501(6)	-	
				(Re)	31,9	1,3	66,8	Mg, <i>hP</i> 2, 194	0,2677(5)	0,431(2)	
16	33.6	18.1	48.3	μ	45,4	18,3	36,3	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4796(2)	2,6037(8)	
	,-		- , - ,-	χ	12,2	17,2	70,6	Mn, <i>cI</i> 58, 217	0,9539(1)	-	
17	27.5	22.4	50.1	μ	45,6	21,3	33,1	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
		,	, ,	χ	11,0	23,8	65,2	Mn, <i>cI</i> 58, 217	_	-	
				β_{Ta}	3,9	45,3	50,8	W, Im-3m, 229	0,31751(4)	-	
18	9,4	37,2	53,4	μ	45,5	26,3	28,2	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4802(4)	2,669(2)	
				χ	7,4	34,1	58,5	Mn, <i>cI</i> 58, 217	0,96984(5)	-	
19	27.1	40.4	32.5	β_{Ta}	3,8	50,4	45,8	W, <i>Im</i> -3 <i>m</i> , 229	0,3165(1)	-	
17	_,,1	,		μ	45,7	32,2	22,1	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4786(9)	2,633(8)	
20	24.6	52.1	1 23,3	β_{Ta}	3,8	61,1	35,1	W, Im-3m, 229	-	-	
	,0	52,1		μ	45,9	42,2	11,9	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
			5,4 4,4	β_{Ta}	3,7	77,4	18,9	W, Im-3m, 229	0,32412(6)	-	
21	30,2	65,4		μ	45,8	52,1	2,1	Fe_7W_6 , <i>hR</i> 39, 166	0,4959(3)	2,6423(9)	
					Ta ₂ Co	33,0	64,8	2,2	CuAl ₂ , <i>tI</i> 12, 140	0,6095(5)	0,4950(2)

№ спла-	Концентрания В элементов в З			ій состав	Концентрания элементов в			Структурный	Параметры элементарной ячейки, нм		
ва	спла Со	аве, а ^л Та	т. % Re	a30Bb	фазах, ат. %		. %	ТИП			
				O Br	37	80.7	15.6	W Im 3m 220			
22	28,3	68,6	3,1		3,7	60,7	13,0	W, Im-5m, 229	-	-	
				Ta ₂ Co	32,0	66,8	1,2	$CuAl_2, tI12, 140$	-	-	
23	26.5	73 5	0	β_{Ta}	3,6	96,4	0	W, <i>Im-3m</i> , 229	-	-	
23	20,5	13,5	U	Ta ₂ Co	32,1	67,9	0	CuAl ₂ , <i>tI</i> 12, 140	-	-	
24	40.6	59.4	0	μ	46,8	55,2	0	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
	,.	<i>c</i> , .	Ū	Ta ₂ Co	33,5	66,5	0	CuAl ₂ , <i>tI</i> 12, 140	-	-	
				2	63,6	36,4	0	MgCu ₂ , <i>cF</i> 24, 227	-	-	
25	60,1	39,9	0	70			U	MgZn ₂ , <i>hP</i> 12, 194	-	-	
				μ	55,3	44,7	0	Fe_7W_6 , <i>hR</i> 39, 166	-	-	
				λ	63.4	27.5	91	MgCu ₂ , <i>cF</i> 24, 227	0,6747(1)	-	
26	60,0	29,6	10,4		05,4	27,5	7,1	MgZn ₂ , <i>hP</i> 12, 194	0,4765(1)	0,7790(2)	
				μ	55,4	32,3	12,3	Fe_7W_6 , <i>hR</i> 39, 166	0,4769(2)	2,579(1)	
				2	63 /	21.8	140	MgCu ₂ , <i>cF</i> 24, 227	-	-	
27	57,2	19,7	23,1	λ	05,4	21,0	14,0	MgZn ₂ , <i>hP</i> 12, 194	-	-	
				μ	55,3	19,1	25,6	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
28	48,7	51,3	0	μ	48,7	51,3	0	Fe_7W_6 , <i>hR</i> 39, 166	0,49017(9)	2,6305(5)	
29	50,7	44,4	4,9	μ	50,7	44,4	4,9	Fe_7W_6 , <i>hR</i> 39, 166	-	-	
30	51,4	33,5	15,1	μ	51,4	33,5	15,1	Fe_7W_6 , <i>hR</i> 39, 166	-	-	
31	48,5	23,8	27,7	μ	48,5	23,8	27,7	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4823(1)	2,605(2)	
32	52,0	20,2	27,8	μ	52,0	20,2	27,8	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-	
33	49,1	14,4	36,5	μ	49,1	14,4	36,5	Fe_7W_6 , <i>hR</i> 39, 166	0,4734(3)	2,573(1)	

В данной системе при 1375 К тройные соединения не обнаружены. На основе полученных экспериментальных данных было построено изотермическое сечение диаграммы фазовых равновесий трехкомпонентной системы Co-Re-Ta при 1375 К, приведенное на Рисунке 29.

60 µm

3)

Рисунок 28. Микроструктуры некоторых сплавов системы Со-Re-Та после отжига при 1375 К: а) № 3 или 4, б) № 5 или 6, в) № 7 или 8, г) № 9, д) № 11, е) № 15, ж) № 16 или 17, з) № 18, и) № 19 или 20, к) № 21, л) № 22 или 23 и м) № 25 – 27 (Таблица 19).

Рисунок 29. Изотермическое сечение диаграммы фазовых равновесий системы Co-Re-Та при 1375 К. Номера сплавов приведены в соответствии с Таблицей 19.
3.1.4. Изотермическое сечение диаграммы фазовых равновесий системы Co-Re-Ta

при 1200 К

Для построения изотермического сечения диаграммы фазовых равновесий системы Co-Re-Ta при 1200 К было исследовано 30 сплавов. Концентрация элементов в этих сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов представлены в Таблице 20. Микроструктуры сплавов системы Co-Re-Ta после отжига при 1200 К приведены на Рисунке 30.

Таблица 20. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз системы Co-Re-Ta при 1200 К.

N⁰	Коні	центр	ания	X	Кон	центра	ания		Парам	етры
оппо	эле	менто	OB B	BblÌ TaB	эле	ментс	OB B	Структурный	элементарн	ой ячейки,
CIIJIa-	спла	аве, а	т. %	a30 :0C1	фаз	ах, ат	. %	ТИП	HN	И
ва	Co	Та	Re	Φ°	Co	Та	Re		а	С
1	73,1	26,9	0	Co ₃ Ta	73,7	26,3	0	BaPb ₃ , <i>hR</i> 36, 166	0,515(1)	1,897(5)
2	84.0	16.0	0	γco	98,9	1,1	0	Cu, <i>cF</i> 4, 225	-	-
_	0 1,0	10,0	Ŭ	Co ₃ Ta	73,4	26,6	0	BaPb ₃ , <i>hR</i> 36, 166	-	-
3*	68,4	24,6	7,0	λ'	68,4	24,6	7,0	MgNi ₂ , <i>hP</i> 24, 194	0,474200(1)	1,546400(5)
4*	66,7	23,6	9,7	λ'	66,7	23,6	9,7	MgNi ₂ , <i>hP</i> 24, 194	0,477329(3)	1,55721(2)
				γco	96,3	2,0	1,7	Cu, <i>cF</i> 4, 225	0,354(2)	-
5	72,7	22,4	4,9	λ'	70,3	23,9	5,8	MgNi ₂ , <i>hP</i> 24, 194	0,4728(4)	1,5419(9)
				Co ₃ Ta	73,3	25,1	1,6	BaPb ₃ , <i>hR</i> 36, 166	0,5118(3)	1,9035(9)
6	74 3	19.2	65	γco	95,8	1,8	3,4	Cu, <i>cF</i> 4, 225	0,351(5)	-
0	77,5	17,2	0,5	λ'	69,3	23,5	7,2	MgNi ₂ , <i>hP</i> 24, 194	0,4735(1)	1,5444(3)
7	71 5	20.2	83	γco	92,0	1,9	6,1	Cu, <i>cF</i> 4, 225	-	-
/	71,5	20,2	0,5	λ'	68,6	22,6	8,7	MgNi ₂ , <i>hP</i> 24, 194	-	-
8	62.9	25.2	11 9	λ	62.9	25.2	11 9	MgCu ₂ , <i>cF</i> 24, 227	0,6689(1)	-
0	02,7	20,2	11,7	70	02,7	23,2	11,7	MgZn ₂ , <i>hP</i> 12, 194	0,47362(6)	0,7733(1)
9	64.8	20.5	14 7	λ	64 8	20.5	14 7	MgCu ₂ , <i>cF</i> 24, 227	0,6701(1)	-
	04,0	20,5	17,7		04,0	20,5	17,7	MgZn ₂ , <i>hP</i> 12, 194	0,4737(1)	0,7735(2)
				γco	90,3	1,9	7,8	Cu, <i>cF</i> 4, 225	0,3494(3)	-
10	72,5	15,5	12,0	λ	66.0	20.5	13.5	MgCu ₂ , <i>cF</i> 24, 227	0,6699(6)	-
						,_	10,0	MgZn ₂ , <i>hP</i> 12, 194	0,4736(2)	0,7732(3)

N⁰	Коні	центр	ания	X	Кон	центра	ания		Парам	етры
сппа-	элементов в сплаве, ат. %		OB B	Bbli TaB	эле	ментс)B B	Структурный	элементарн	ой ячейки,
CIIJIa-	спла	аве, а	$\frac{1}{2}$, at. % $\stackrel{\text{Org}}{\underset{\text{Cal}}{\text{Re}}} \stackrel{\text{Org}}{\underset{\text{Cal}}{\text{P}}} \stackrel{\text{Org}}{\underset{\text{Cal}}{\text{Re}}} \stackrel{\text{Org}}{\underset{\text{Cal}}{\text{P}}}$		фаз	вах, ат	. %	ТИП	HM	И
ва	Co	Та	Re	Ф	Co	Та	Re		а	С
				2	64.1	35.9	0	MgCu ₂ , <i>cF</i> 24, 227	-	-
11	63,2	36,8	0		04,1	55,7	0	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	52,9	47,1	0	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
				λ	63.3	34.2	2.6	MgCu ₂ , <i>cF</i> 24, 227	-	-
12	59,6	34,9	3,1			- ,	y -	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	53,4	41,7	4,9	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
				λ	62,3	27,5	10,2	MgCu ₂ , <i>cF</i> 24, 227	-	-
13	59,0	30,1	10,9		,	,	,	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	53,9	34,1	12,0	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
				λ	62.7	22.1	15.2	MgCu ₂ , <i>cF</i> 24, 227	-	-
14	57,8	20,8 21,4			,.	,_	,-	MgZn ₂ , <i>hP</i> 12, 194	-	-
				μ	54,2	19,9	25,9	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
				γсо	88,1	1,8	10,1	Cu, <i>cF</i> 4, 225	0,3563(2)	-
15	72.2	12.8	15.0	λ	64.2	19.6	16.2	MgCu ₂ , <i>cF</i> 24, 227	0,6696(4)	-
10	,_	12,0	10,0			,-	,-	MgZn ₂ , <i>hP</i> 12, 194	0,4736(5)	0,7727(6)
				μ	54,3	14,6	31,1	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4716(5)	2,574(3)
16	84.9	0	15.1	γco	90,4	0	9,6	Cu, <i>cF</i> 4, 225	-	-
10	01,9	Ŭ	10,1	(Re)	82,3	0	17,7	Mg, <i>hP</i> 2, 194	-	-
				γco	87,0	1,4	11,6	Cu, <i>cF</i> 4, 225	0,3568(3)	-
17	79,2	2,7	18,1	μ	52,9	13,4	33,7	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4720(3)	2,573(2)
				(Re)	77,2	1,7	21,1	Mg, <i>hP</i> 2, 194	0,2564(2)	0,4130(6)
18	72.0	3.3	24.7	μ	52,3	13,0	34,7	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
10	,.	0,0	,,	(Re)	74,8	1,9	23,3	Mg, <i>hP</i> 2, 194	-	-
19	59.5	7.0	33.5	μ	52,4	12,6	37,0	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
		,,0		(Re)	65,7	2,1	30,2	Mg, <i>hP</i> 2, 194	-	-
20	39.2	47	56 1	μ	46,8	12,7	40,5	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
20		•,/	50,1	(Re)	36,2	1,9	61,8	Mg, <i>hP</i> 2, 194	-	-

N⁰	Коні	центр	ания	í	Кон	центр	ания		Парам	етры
оппо	эле	менто	OB B	BblÌ TaB	эле	ментс	OB B	Структурный	элементарн	ой ячейки,
CIIJIa-	спла	аве, а	т. %	a30 2007	фаз	ах, ат	. %	ТИП	HM	
ва	Co	Та	Re	Φ	Co	Та	Re		а	С
				μ	44,6	12,9	42,5	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4754(1)	2,662(2)
21	33,5	6,8	59,7	χ	11,9	11,8	76,3	Mn, <i>cI</i> 58, 217	0,9498(8)	-
				(Re)	31,3	1,9	66,8	Mg, <i>hP</i> 2, 194	0,2686(6)	0,432(1)
22	35.0	174	47 9	μ	44,9	17,9	37,2	Fe ₇ W ₆ , <i>hR</i> 39,166	0,4750(2)	2,616(1)
22	55,0	17,1	17,2	χ	11,4	16,2	73,4	Mn, <i>cI</i> 58, 217	0,9492(2)	-
23	30.0	22.8	47.2	μ	45,1	21,2	33,7	Fe ₇ W ₆ , <i>hR</i> 39,166	-	-
	, -	,0	,_	χ	9,5	24,1	66,4	Mn, <i>cI</i> 58, 217	-	-
				β_{Ta}	3,6	43,3	53,1	W, Im-3m, 229	0,31749(9)	-
24	15,2	33,1	51,7	μ	45,1	25,9	29,0	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4783(4)	2,634(8)
				χ	6,4	31,9	61,7	Mn, <i>cI</i> 58, 217	0,9690(3)	-
25	17.0	44 5	37 5	β_{Ta}	3,7	5,3	44,0	W, Im-3m, 229	-	-
25	17,0	11,5	57,5	μ	45,2	25,2	29,6	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
26	29.9	48.5	21.6	β_{Ta}	3,5	62,6	33,9	W, <i>Im-3m</i> , 229	-	-
20	_>,>	10,0	21,0	μ	45,6	40,2	14,2	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
				β_{Ta}	3,6	69,4	27,0	W, Im-3m, 229	0,3239(2)	-
27	35,7	59,2	5,1	μ	47,2	52,1	1,7	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4957(2)	2,642(1)
				Ta ₂ Co	33,4	64,7	1,9	CuAl ₂ , <i>tI</i> 12, 140	0,6099(4)	0,4951(3)
28	30.8	66.4	2.8	β_{Ta}	3,4	78,8	17,8	W, <i>Im-3m</i> , 229	-	-
20	00,0		_,0	Ta ₂ Co	32,5	65,7	1,8	CuAl ₂ , <i>tI</i> 12, 140	-	-
29	13.2	76.8	0	β_{Ta}	2,5	77,5	0	W, <i>Im-3m</i> , 229	-	-
				Ta ₂ Co	32,8	67,2	0	$CuAl_2, tI12, 140$	-	-
30	39.7	60.3	0	μ	46,7	53,3	0	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
	30 39,7	60,3		Ta ₂ Co	34,4	65,6	0	CuAl ₂ , <i>tI</i> 12, 140	-	-

*Параметры кристаллической ячейки λ'-фазы были получены с использованием

a)

B)

б)

г)

60 µm

Рисунок 30. Микроструктуры некоторых сплавов системы Со-Re-Та после отжига при 1200 К: а) № 2, б) № 5, в) № 6-7, г) № 10, д) № 15, е) № 17, ж) № 21, з) № 24, и) № 25-26, к) № 27 (Таблица 20).

Для определения кристаллографических параметров тройной фазы Лавеса λ' были исследованы порошки сплавов № 3 и 4, дифрактограммы которых были получены с использованием синхротронного излучения с длинной волны 0,09525 нм. Результаты уточнения методом Ритвельда экспериментальных дифрактограмм тройной фазы Лавеса λ' сплавов № 3 и 4 представлены на Рисунках 31 и 32 а также в Таблице 21. Из данных Таблиц 22 и 23 следует, что в тройной фазе λ' атомы рения располагаются в основном в позициях Co2 (Ni2) и Co3(Ni3).

Рисунок 31. Порошковая рентгенограмма сплава № 3 (Таблица 20).

Рисунок 32. Порошковая рентгенограмма сплава № 4 (Таблица 20).

Номер сплава	3	4
Состав сплава, ат. %	Co68,4Ta24,6Re7,0	Co66,7Ta23,6Re9,7
Структурный тип	MgNi ₂	MgNi ₂
Пространственная группа	<i>P</i> 6 ₃ / <i>mmc</i> , 194	<i>P</i> 6 ₃ / <i>mmc</i> , 194
Символ Пирсона	<i>hP</i> 24	<i>hP</i> 24
Кристаллическая система	hexagonal	Hexagonal
Длина волны синхротронного	0,09525	0,09525
излучения, нм		
Параметры элементарной ячейки, нм		
a	0,474200(1)	0,477329(3)
b	0,474200(1)	0,477329(3)
С	1,546400(5)	1,55721(2)
Объем элементарной ячейки, нм ³	0,3011 (3)	0,3073 (6)
Число формульных единиц в	8	8
элементарной ячейке, Z		
Рассчитанная плотность, г/см ³	7,68	7,34
Угол 20, ⁰	10,018≤2 0 ≤55,518	10,018≤2 0 ≤55,518
Шаг	0,008	0,008
Число рефлексов на дифрактограмме	78	79
Число уточняемых параметров	32	32
$R_F = \sum F_{oi} - F_{ci} / \sum F_{oi}$	0,08	0,07
$R_B = \sum I_{o,h} - I_{c,h} / \sum I_{o,h} $	0,09	0,07
$R_P = \sum y_{oi} - y_{ci} / \sum y_{oi} $	0,18	0,17
$R_{wP} = [\sum w_i y_{oi} - y_{ci} ^2 / \sum w_i y_{oi} ^2]^{1/2}$	0,12	0,11
$\chi^2 = (R_{wP}/R_e)^2$	0,03	0,03

Таблица 21. Кристаллографические данные и уточненные параметры сплавов № 3 и 4.

Таблица 22. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Re-Ta при 1200 К (Сплав № 3).

Позиция	Вид	Коор	одинаты ат	омов	Изотропный	Заселенность
атомов	атомов	X	Y	Z	параметр атомного	позиций атомов
					смещения (B _{iso})	
Co1	Со	0,166(6)	0,333(6)	0,25	0,74(6)	1,000
Co2	Со	1/2	0	0	2,44(2)	0,85(2)
Co2	Re	1/2	0	0	2,44(2)	0,15(2)
Co3	Co	1/3	2/3	0,135(2)	1,26(3)	0,88(1)
Co3	Re	1/3	2/3	0,135(2)	1,26(3)	0,12(1)
M1	Ta/Re	1/3	2/3	0,654(1)	0,55(2)	0,84(2)
M1	Со	1/3	2/3	0,654(1)	0,55(2)	0,16(2)
M2	Ta/Re	0	0	0,091(1)	0,50(1)	0,64(2)
M2	Со	0	0	0,091(1)	0,50(1)	0,36(2)

Таблица 23. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Re-Ta при 1200 К (Сплав № 4).

Позиция	Вид	Коор	одинаты ат	омов	Изотропный	Заселенность
атомов	атомов	X	Y	Ζ	параметр атомного	позиций атомов
					смещения (B _{iso})	
Co1	Co	0,163(7)	0,325(7)	0,25	1,38(8)	1,000
Co2	Со	1/2	0	0	1,45(9)	0,97(9)
Co2	Re	1/2	0	0	1,45(9)	0,13(9)
Co3	Co	1/3	2/3	0,136(2)	0,46(3)	0,89(8)
Co3	Re	1/3	2/3	0,136(2)	0,46(3)	0,11(8)
M1	Ta/Re	1/3	2/3	0,654(1)	0,40(6)	0,80(5)
M1	Co	1/3	2/3	0,654(1)	0,40(6)	0,20(5)
M2	Ta/Re	0	0	0,091(1)	0,41(6)	0,92(3)
M2	Со	0	0	0,091(1)	0,41(6)	0,08(3)

Для определения области термической стабильности тройной фазы Лавеса λ' была проведена дифференциальная сканирующая калориметрия сплавов № 3 и 4, результаты которой представлены на Рисунках 33 и 34 соответственно.

Рисунок 33. Результаты ДСК сплава № 3 (Таблица 27): а) кривая нагревания; б) кривая охлаждения.

Рисунок 34. Результаты ДСК сплава № 4 (Таблица 27): а) кривая нагревания; б) кривая охлаждения.

На кривых нагрева обоих сплавов сигналы фазовых переходов отсутствуют вплоть до 1575,5±1 К (Рисунок 33а, Сплав № 3) и до 1609,5±1 К (Рисунок 34а, Сплав № 4). На кривых охлаждения также не удалось зафиксировать тепловых эффектов в интервале температур 1200 – 1375 К. Тем не менее на изотермических сечениях четко фиксируется наличие тройной фазы Лавеса λ' при 1200 К.

Из данных Таблицы 20 и Рисунка 30 следует, что в системе Со-Re-Ta при 1200 К экспериментально установлено существование шести трехфазных равновесий ($\gamma_{C_0}+\lambda'+C_0_3Ta$) (сплав № 5), ($\gamma_{C_0}+\lambda+\mu$) (сплав № 15), ($\gamma_{C_0}+\mu+(Re)$) (сплав № 17), ($\mu+\chi+(Re)$) (сплав № 21), ($\beta_{Ta}+\mu+\chi$) (сплав № 24) и ($\beta_{Ta}+\mu+Ta_2Co$) (сплав № 27), а также предположено существование ещё двух трехфазных равновесий: ($\gamma_{C_0}+\lambda+\lambda'$) и ($\lambda+\lambda'+Co_3Ta$), подтверждаемых наличием экспериментальных двухфазных равновесий ($\gamma_{C_0}+\lambda'$) (сплавы № 6 и 7), ($\gamma_{C_0}+\lambda$) (сплав № 10), ($\lambda'+Co_3Ta$) (сплав № 5) и являющихся следствием правила фаз Гиббса равновесия ($\lambda+\lambda'$) и ($\lambda+Co_3Ta$). В данной системе при 1200 К существует тройное соединение λ' , которое является фазой Лавеса и относится к структурному типу MgNi₂ (символ Пирсона hP24, пространственная группа $P6_3/mmc$). Фаза λ' содержит примерно немного более 9,7 ат. % Re.

На основе полученных экспериментальных данных было построено изотермическое сечение диаграммы фазовых равновесий трехкомпонентной системы Co-Re-Ta при 1200 К, приведенное на Рисунке 35. Область изотермического сечения системы Co-Re-Ta при 1200 К я высоким содержанием кобальта отдельно представлена на Рисунок 36.

Рисунок 35. Изотермическое сечение диаграммы Co-Re-Ta при 1200 К.

Рисунок 36. Кобальтовый угол изотермического сечения Co-Re-Ta при 1200 К.

3.1.5. Изотермическое сечение диаграммы фазовых равновесий системы Co-Mn-Nb при 1200 К

Для определения равновесий в системе Co-Mn-Nb при 1375 К было исследовано 38 сплавов. Концентрация элементов в сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов системы Co-Mn-Nb при 1200 К представлены в Таблице 24. Микроструктура сплавов системы Co-Mn-Nb при 1200 К приведена на Рисунке 37.

Таблица 24. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз системы Co-Mn-Nb при 1200 K.

№ спла-	Кон эле спл	центра сментс аве, ат	ация ов в г. %	азовый состав	Кон эле фаз	центра сментс зах, ат	ация ов в . %	Структурный тип	Парам элементарн нм	етры ой ячейки, и
ва	Co	Mn	Nb	Ф	Co	Mn	Nb		а	С
1	87.3	0	12.7	γco	98,1	0	1,9	Cu, <i>cF</i> 4, 225	0,3529(1)	
	9-	-	y -	Co ₃ Nb	74,9	0	25,1	Mg ₃ Cd, <i>hP</i> 8, 194	0,5048(6)	0,4080(7)
2	72,8	3,7	23,5	λ'	72,8	3,7	23,5	MgNi ₂ , <i>hP</i> 24, 194	0,47435(7)	1,5449(1)
3*	68,3	3,9	27,8	λ'	68,3	3,9	27,8	MgNi ₂ , <i>hP</i> 24, 194	0,47406(8)	1,5456(3)
4*	65,3	5,1	29,6	λ'	65,3	5,1	29,6	MgNi ₂ , <i>hP</i> 24, 194	0,47935(7)	1,5634(2)
5*	68,7	8,7	22,6	λ'	68,7	8,7	22,6	MgNi ₂ , <i>hP</i> 24, 194	0,477046(6)	1,55569(1)
6	80.8	1 1	1/1 8	γco	95,0	3,7	1,3	Cu, <i>cF</i> 4, 225	0,3548(9)	
0	00,0	4,4	14,0	λ'	73,0	4,7	22,3	MgNi ₂ , <i>hP</i> 24, 194	0,4755(5)	1,5484(9)
7	75 1	12.5	12.4	γco	85,1	13,7	1,2	Cu, <i>cF</i> 4, 225	0,3557(4)	
/	73,1	12,3	12,4	λ'	68,4	11,9	19,7	MgNi ₂ , <i>hP</i> 24, 194	0,47435(4)	1,5449(7)
8	61.3	18.6	20.1	2	61.3	18.6	20.1	MgCu ₂ , <i>cF</i> 24, 227	0,67044(1)	
0	01,5	10,0	20,1	λ	01,5	10,0	20,1	MgZn ₂ , <i>hP</i> 12, 194	0,47477(9)	0,7733(1)
9	54 5	21.8	23.7	λ	54 5	21.8	237	MgCu ₂ , <i>cF</i> 24, 227	0,6748(4)	
,	54,5	21,0	23,7		54,5	21,0	23,1	MgZn ₂ , <i>hP</i> 12, 194	0,47745(9)	0,7762(1)
				λ	617	71	31.2	MgCu ₂ , <i>cF</i> 24, 227	0,6758(1)	
10**	62,1	9,5	28,4	,,,	01,7	,, 1	51,2	MgZn ₂ , <i>hP</i> 12, 194	0,47798(6)	0,7789(1)
				λ'	62,4	11,7	25,9	MgNi ₂ , <i>hP</i> 24, 194	0,47797(6)	1,5578(2)
				γ _{Co}	75,7	22,9	1,4	Cu, <i>cF</i> 4, 225	0,3571(9)	
11	67,7	18,1	14,2	λ	64 9	16.6	18 5	MgCu ₂ , <i>cF</i> 24, 227	0,6714(3)	
					04,9	10,0	10,5	MgZn ₂ , <i>hP</i> 12, 194	0,4749(4)	0,7726(4)
				γco	63,1	35,7	1,2	Cu, <i>cF</i> 4, 225		
12	60,7	27,3	12,0	λ	592	22.3	18 5	MgCu ₂ , <i>cF</i> 24, 227		
					.,2	,5	10,5	MgZn ₂ , <i>hP</i> 12, 194		

	Кон	центра	ация		Кон	центр	ация	Concernation	Парам	етры			
N⁰	эле	ементс	B B	ый ав	эле	менто	OB B	Структурныи	элементарн	ой ячейки,			
спла-	спл	аве, ат	г. %	a30B cocT8	фaз	вах, ат	. %	ТИП	HN	M			
ва	Co	Mn	Nb	Ф	Co	Mn	Nb		а	С			
				γco	52,3	46,4	1,3	Cu, <i>cF</i> 4, 225	0,3610(1)				
13	53,8	33,3	12,9		540	26.1	10.1	MgCu ₂ , <i>cF</i> 24, 227	0,6735(3)				
				λ	54,8	26,1	19,1	MgZn ₂ , <i>hP</i> 12, 194	0,4764(2)	0,7737(4)			
14	15 6	511	0	β_{Mn}	42,4	57,6	0	β-Mn, <i>cP</i> 20, 213					
14	45,0	54,4	0	γco	47,7	52,3	0	Cu, <i>cF</i> 4, 225					
				β_{Mn}	41,4	57,5	1,1	β-Mn, <i>cP</i> 20, 213	0,62828(8)				
15	16.3	17.6	61	γco	47,8	50,9	1,3	Cu, <i>cF</i> 4, 225	0,3633(1)				
15	40,5	47,0	6,1	6,1	6,1	0,1	2	51.8	28.4	10.8	MgCu ₂ , <i>cF</i> 24, 227	0,6757(2)	
				λ	51,0	20,4	19,0	MgZn ₂ , <i>hP</i> 12, 194	0,4778(5)	0,7742(9)			
				β_{Mn}	36,9	62,0	1,1	β-Mn, <i>cP</i> 20, 213					
16	43,9	38,0	18,1	λ	45.8	31.4	22.8	MgCu ₂ , <i>cF</i> 24, 227					
					ч,,,0	51,4	22,0	MgZn ₂ , <i>hP</i> 12, 194					
				β_{Mn}	29,2	69,7	1,1	β-Mn, <i>cP</i> 20, 213	0,63062(6)				
17	33,5	44,8	21,7	λ	34 9	37.2	27.9	MgCu ₂ , <i>cF</i> 24, 227	0,6803(2)				
				70	51,5	57,2	27,9	MgZn ₂ , <i>hP</i> 12, 194	0,4811(2)	0,7838(4)			
				β_{Mn}	21,9	77,0	1,1	β-Mn, <i>cP</i> 20, 213					
18	23,0	67,9	9,1	λ	25.8	43.9	30.3	MgCu ₂ , <i>cF</i> 24, 227					
				70	23,0	13,5	50,5	MgZn ₂ , <i>hP</i> 12, 194					
				β_{Mn}	16,4	82,5	1,1	β-Mn, <i>cP</i> 20, 213					
19	16,6	60,0	23,4	λ	16.6	51.5	31.9	MgCu ₂ , cF24, 227					
					10,0	01,0	01,9	MgZn ₂ , hP12, 194					
				β_{Mn}	8,1	90,8	1,1	β-Mn, <i>cP</i> 20, 213					
20	9,8	65,3	24,9	λ	10.1	57.0	32.9	MgCu ₂ , cF24, 227					
					10,1	01,0	0_,>	MgZn ₂ , hP12, 194					
				β_{Mn}	0	98,9	1,1	β-Mn, <i>cP</i> 20, 213					
21	0	74,7	4,7 25,3	λ	0	66.5	33.5	MgCu ₂ , cF24, 227					
			20,0		0 6	00,0	33,5	MgZn ₂ , hP12, 194					

	Кон	центра	ация		Кон	центр	ация	Concernation and a set	Парам	етры
N⁰	эле	элементов в йна и жила и жила и как			эле	менто	OB B	Структурныи	элементарн	ой ячейки,
спла-	спл	аве, ат	r. %	a30B cocT8	фазах, ат. %		ТИП	HM	M	
ва	Co	Mn	Nb	Ф	Co	Mn	Nb		а	С
22	39,7	4,7	55,6	μ	39,7	4,7	55,6	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4959(1)	2,6482(6)
23	17,8	28,8	53,4	μ	17,8	28,8	53,4	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,49121(1)	2,6412(1)
				3	0	50.0	40.1	MgCu ₂ , cF24, 227		
24	0	52,9	47,1	λ	0	59,9	40,1	MgZn ₂ , hP12, 194		
				μ	0	46,1	53,9	Fe ₇ W ₆ , <i>hR</i> 39, 166		
				у	5 1	55.2	39.7	MgCu ₂ , cF24, 227		
25	5,9	44,9	49,2	λ	5,1	55,2	59,1	MgZn ₂ , hP12, 194		
				μ	6,3	39,8	53,9	Fe ₇ W ₆ , <i>hR</i> 39, 166		
				2	10.7	40.0	20.4	MgCu ₂ , <i>cF</i> 24, 227		
26	10,9	41,4	47,7	λ	10,7	49,9	39,4	MgZn ₂ , <i>hP</i> 12, 194		
				μ	11,2	35,2	53,6	Fe ₇ W ₆ , <i>hR</i> 39, 166		
				2	10.0	41 7	28 /	MgCu ₂ , <i>cF</i> 24, 227		
27	19,0	39,6	41,4	λ	19,9	41,7	30,4	MgZn ₂ , <i>hP</i> 12, 194		
				μ	16,2	30,7	53,1	Fe ₇ W ₆ , <i>hR</i> 39, 166		
				2	25.7	36.6	377	MgCu ₂ , <i>cF</i> 24, 227		
28	25,0	33,3	41,7		25,7 36,6	57,7	MgZn ₂ , <i>hP</i> 12, 194			
				μ	22,8	24,3	52,9	Fe ₇ W ₆ , <i>hR</i> 39, 166		
				2	31.0	31.0	37.1	MgCu ₂ , <i>cF</i> 24, 227	0,6867(7)	
29	30,6	23,2	46,2	λ	51,9	51,0	57,1	MgZn ₂ , <i>hP</i> 12, 194	0,48532(1)	0,7888(4)
				μ	29,8	18,4	51,8	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,46987(2)	2,6112(1)
				2	30.7	23.8	36.5	MgCu ₂ , <i>cF</i> 24, 227	0,6820(1)	
30	38,9	21,2	39,9	λ	59,1	23,0	50,5	MgZn ₂ , <i>hP</i> 12, 194	0,4824(1)	0,7843(2)
				μ	36,3	12,7	51,0	Fe ₇ W ₆ , <i>hR</i> 39, 166	-	-
				З	186	1/ 0	365	MgCu ₂ , <i>cF</i> 24, 227		
31	45,9 11,3		42,8	λ	48,6	14,9	36,5	MgZn ₂ , <i>hP</i> 12, 194		
				μ	43,2	7,3	49,5	Fe ₇ W ₆ , <i>hR</i> 39, 166		

	Кон	центра	ация		Кон	центр	ация		Парам	іетры
N⁰	эле	ементс	B B	ый aв	эле	менто	OB B	Структурныи	элементарной ячейки,	
спла-	спл	аве, ат	г. %)a30B	фаз	зах, ат. %		ТИП	HM	
ва	Co	Mn	Nb	Đ.	Co	Mn	Nb		а	С
				2	560	7 1	267	MgCu ₂ , <i>cF</i> 24, 227	0,6831(3)	
32	51,3	3,9	44,8	λ	30,2	/,1	30,7	MgZn ₂ , <i>hP</i> 12, 194	0,48302(8)	0,7854(1)
				μ	49,5	2,8	47,7	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4920(3)	2,6635(9)
				2	62.1	0	26.0	MgCu ₂ , <i>cF</i> 24, 227		
33	60,7	0	39,3	λ	05,1	0	30,9	MgZn ₂ , <i>hP</i> 12, 194		
				μ	53,4	0	46,6	Fe ₇ W ₆ , <i>hR</i> 39, 166		
24	25 5	0	61 5	β_{Nb}	2,9	0	97,1	W, <i>cF</i> 24, 229		
54	55,5	0	04,5	μ	43,9	0	56,1	Fe ₇ W ₆ , <i>hR</i> 39, 166		
25	20.0	80	62.1	β_{Nb}	2,8	1,8	95,4	W, <i>cF</i> 24, 229		
55	29,0	0,9	02,1	μ	32,7	10,0	57,3	Fe ₇ W ₆ , <i>hR</i> 39, 166		
36	12.1	12.0	75.0	β_{Nb}	2,9	5,7	91,4	W, <i>cF</i> 24, 229		
50	12,1	12,9	75,0	μ	22,0	20,3	57,7	Fe ₇ W ₆ , <i>hR</i> 39, 166		
37	3.0	15.0	80.2	β_{Nb}	1,9	8,5	89,6	W, <i>cF</i> 24, 229	0,3181(1)	
57	5,9	15,9	80,2	μ	8,9	33,7	57,4	Fe ₇ W ₆ , <i>hR</i> 39, 166	0,4842(2)	2,6536(4)
38	0	14.6	85 /	β_{Nb}	0	44,6	55,4	W, <i>cF</i> 24, 229		
50	0	14,0	05,4	μ	0	12,4	87,6	Fe ₇ W ₆ , <i>hR</i> 39, 166		

* Параметры элементарной ячейки λ'-фазы рассчитаны на основе данных, полученных с помощью синхротронного излучения с длиной волны 0,09525 нм.

** Параметры элементарных ячеек λ- и λ'-фаз рассчитаны с испольнованием данных, полученных на дифрактометра Bruker D8 Advance.

Согласно данным СЭМ и ЛРСА сплав № 10 (Таблица 24, Рисунок 37в) является двухфазным ($\lambda+\lambda'$). Результаты РФА (Рисунок 38) этого сплава указывают на наличие рефлексов, соответствующих всем трем структурам – MgCu₂ и MgZn₂, MgNi₂. Обработка дифрактограммы порошка сплава 10 (Таблица 24, Рисунок 37в) с использованием программного обеспечения «Stoe Winxpow» (Рисунок 38а) показала незначительное содержание политипа MgZn₂ в порошке.

Рисунок 37. Микроструктуры некоторых сплавов системы Со-Мп-Nb после отжига при 1200 К: а) № 7, б) № 8, в) № 10, г) № 13, д) № 15, е) № 17, ж) 27, з) № 38 (Таблица 14).

Полученные методом рентгеновской дифракции результаты позволили обработать дифрактограмму порошка сплава \mathbb{N} 10 (Таблица 24) с помощью программного обеспечения «FullProf» (Рис. 38,6) используя модель, основанную только на двух политипах – MgCu₂ и MgNi₂, поскольку метод Ритвельда не позволяет одновременно обсчитать структуры, относящиеся к одной пространственной группе с одинаковым параметром «*a*».

Рисунок 38. Экспериментальная порошковая дифрактограмма сплава № 10 (Таблица 24), выполненная на дифрактометрах ДРОН-4(а) и Bruker D8 Advance (б).

Для определения кристаллографических параметров тройной фазы Лавеса λ' был исследован порошок сплава № 5 (Таблица 24) с использованием синхротронного излучения с длинной волны 0,09525 нм. Результаты уточнения методом Ритвельда экспериментальной дифрактограммы тройной фазы Лавеса λ' представлены на Рисунке 39, а также в Таблице 25.

Рисунок 39. Порошковая рентгенограмма сплава № 5 (Таблица 24).

Номер сплава	5
Состав сплава, ат. %	Co68,7Mn8,7Nb22,6
Структурный тип	MgNi ₂
Пространственная группа	P63/mmc, 194
Символ Пирсона	<i>hP</i> 24
Кристаллическая система	Гексагональная
Длина волны синхротронного излучения, нм	0,09525
Параметры элементарной ячейки, нм	
a	0,477046(6)
b	0,477046(6)
С	1,55569(1)
Объем элементарной ячейки, нм ³	0,3066(3)
Число формульных единиц в элементарной ячейке, Z	8
Рассчитанная плотность, г/см ³	8,46(3)
Угол 2θ, ⁰	10,018≤2θ≤55,518
Шаг	0,008
Число рефлексов на дифрактограмме	79
Число уточняемых параметров	31
$R_F = \sum F_{oi} - F_{ci} / \sum F_{oi}$	0,07
$R_B = \sum I_{o,h} - I_{c,h} / \sum I_{o,h} $	0,06
$R_P = \sum y_{oi} - y_{ci} / \sum y_{oi} $	0,14
$R_{wP} = \left[\sum w_i y_{oi} - y_{ci} ^2 / \sum w_i y_{oi} ^2\right]^{1/2}$	0,10
$\chi^2 = (R_{wP}/R_e)^2$	0,07

Таблица 25. Кристаллографические данные и уточненные параметры сплава № 5.

Экспериментальная дифрактограмма сплава № 5, полученная с помощью синхротронного излучения с длиной волны 0,09525 нм показана красным цветом, теоретическая дифрактограмма λ' -фазы (структурный тип MgNi₂) – черным цветом. Разностная кривая показана внизу рисунка синим цветом. Зелеными вертикальными линиями отмечены положения брэгговских пиков. Координаты атомов и заселенности их позиций в кристаллической решетке тройной фазы Лавеса λ' сплава № 5

представлены в Таблице 26. Из полученных результатов следует, что атомы марганца тройной фазы λ' располагаются в основном в позициях М1 и М2.

Таблица 26. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Mn-Nb при 1200 К (Сплав № 5)

Позиция	Вид	Коор	динаты ат	омов	Изотропный параметр	Заселенность
атомов	атомов	X	Y	Z	атомного смещения (Biso)	позиций атомов
Co1	Co	0,164(2)	0,329(4)	0,25	0,17(8)	1,000
Co2	Co/Mn	1/2	0	0	0,69(7)	1,000
Co3	Co/Mn	1/3	2/3	0,125(1)	0,30(9)	1,000
M1	Nb	1/3	2/3	0,654(1)	1,69(8)	0,39(1)
M1	Co/Mn	1/3	2/3	0,654(1)	1,69(8)	0,61(1)
M2	Nb	0	0	0,093(1)	0,30(9)	0,75(2)
M2	Co/Mn	0	0	0,093(1)	0,30(9)	0,25(2)

Для определения области термической стабильности тройной фазы Лавеса λ' был проведена дифференциальная сканирующая калориметрия сплава № 5 (Таблица 24), результаты которой представлены на Рисунке 40.

Рисунок 40. Результаты ДСК сплава № 5 (Таблица 15): а) кривая нагревания; б) кривая охлаждения.

Анализ кривой нагревания сплава № 5 (Рисунок 40а) показал, что тройная фаза Лавеса λ' является устойчивой при 1200 К и претерпевает распад при 1510,3±1 К. На кривой охлаждения сплава № 5 (Рисунок 40б) наблюдался экзотермический эффект при 1524,7±1 К. На обеих кривых ДСК во всем интервале температур, начиная с комнатной и до указанных температур, другие тепловые эффекты отсутствуют.

Таким образом, в системе Co-Mn-Nb при 1200 К экспериментально установлено трехфазное равновесие ($\gamma_{Co}+\lambda+\beta_{Mn}$) (сплав № 15), а также предположено существование еще трех трехфазных равновесий ($\gamma_{C_0}+\lambda+\lambda'$), ($\gamma_{C_0}+\lambda'+C_{O_3}Nb$), ($\lambda+\lambda'+C_{O_3}Nb$) на основании правила фаз Гиббса и экспериментально установленных двухфазных равновесиях (ус₀+λ) (сплавы № 11, 12, 13, 15), (ус₀+λ') (сплавы № 6, 7), (λ+λ') (сплав № 10) и (γ_{Co}+ Co₃Nb) (сплав № 1). Фазы λ двойных систем Co-Nb и Mn-Nb, а также µ фазы этих непрерывные образуют собой систем между ряды твердых растворов В трехкомпонентной системе Co-Mn-Nb при 1200 К. В данной системе при 1200 К существует тройное соединение λ' , которое принадлежит к структурному типу MgNi₂ (символ Пирсона *hP24*, пространственная группа *P6₃/mmc*).

На основе полученных экспериментальных данных было построено изотермическое сечение диаграммы состояний Co-Mn-Nb при 1200 К, приведенное на Рисунке 41.

Рисунок 41. Изотермическое сечение диаграммы фазовых равновесий системы Co-Mn-Nb при 1200 К. Номера сплавов приведены в соответствии с Таблицей 24.

3.1.6. Изотермическое сечение диаграммы фазовых равновесий системы Co-Mn-Ta при 1200 К

Для определения равновесий в системе Co-Mn-Ta при 1200 К было исследовано 38 сплавов. Концентрация элементов в сплавах, количественное содержание элементов в фазах сплавов и фазовый состав сплавов системы Co-Mn-Ta при 1200 К представлены в Таблице 27. Микроструктура сплавов системы Co-Mn-Ta при 1200 К приведена на Рисунок 42.

Таблица 27. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз системы Co-Mn-Ta при 1200 К.

N⁰	Концентрал элементон сплаве, ат.		ация ов в г. %)азовый состав	Кон элс фа	Концентрация элементов в фазах, ат. %		Структурный тип	Параметры элементарной ячейки, нм		
	Co	Mn	Та	Þ	Co	Mn	Та		а	С	
1	78 7	0 21,3	0 2	21.3	γco	98,9	0	1,1	Cu, <i>cF</i> 4, 225	-	-
1	70,7		21,5	Co ₃ Ta	73,7	0	26,3	BaPb ₃ , <i>hR</i> 36, 166	0,515 (1)	1,897 (5)	
2	78.4	1.2	20.4	γco	96,5	2,4	1,1	Cu, <i>cF</i> 4, 225	-	-	
2	, 0, 1	-,-	20,4	Co ₃ Ta	73,1	0,9	26,0	BaPb ₃ , <i>hR</i> 36, 166	-	-	
		0	28,6		<u>^</u>	69.9	0	30.1	MgCu ₂ , <i>cF</i> 24, 227	-	-
3 7	71,4			٨	0,,		50,1	MgZn ₂ , <i>hP</i> 12, 194	-	-	
						Co ₃ Ta	72,4	0	27,6	BaPb ₃ , <i>hR</i> 36, 166	-
4*	70,7	5,4	23,9	λ'	70,7	5,4	23,9	MgNi ₂ , <i>hP</i> 24, 194	0,474137(7)	1,54568(3)	
5*	69,8	8,3	21,9	λ'	69,8	8,3	21,9	MgNi ₂ , <i>hP</i> 24, 194	0,47372(3)	1,5444(2)	
(73.6	45	21,9	γco	91,8	7,1	1,1	Cu, <i>cF</i> 4, 225	3,556(3)	-	
6	73,0	ч,Ј		λ'	71,8	4,3	23,9	MgNi ₂ , <i>hP</i> 24, 194	0,4733(2)	1,5437(5)	
7	81.0	10.8	82	γ _{Co}	86,8	12,1	1,1	Cu, <i>cF</i> 4, 225	0,3564(6)	-	
/	01,0	10,0	0,2	λ'	70,1	9,0	20,9	MgNi ₂ , <i>hP</i> 24, 194	0,4752(1)	1,5448(2)	
0	61 7	16.2	22.1	_	61 7	16.2	22.1	MgCu ₂ , <i>cF</i> 24, 227	0,6724(2)		
8	01,7	10,2	<i>22</i> ,1	λ	01,7	10,2	22,1	MgZn ₂ , <i>hP</i> 12, 194	0,4755(1)	0,7716(2)	
0	33 7	35.2	31.1	_	33.7	35.2	31.1	MgCu ₂ , <i>cF</i> 24, 227	0,6704(1)		
9	55,1	55,2	5,2 51,1	λ	55,7	55,2	51,1	MgZn ₂ , <i>hP</i> 12, 194	0,4748(1)	0,7733(1)	

Nº	Кон элс спл	щентра ементо 1аве, ат	ация ов в г. %	азовый состав	Концентрация элементов в фазах, ат. %		ация в в . %	Параметрн Элементарн структурный тип ячейки, ны		етры гарной и, нм			
	Со	Mn	Та	ΦŬ	Со	Mn	Та		а	С			
			_	567	10.1	33.7	MgCu ₂ , <i>cF</i> 24, 227	0,6777(1)					
10 **	57,5	10,4	32,1	λ	50,7	10,1	55,2	MgZn ₂ , <i>hP</i> 12, 194	0,47923(9)	0,7810(1)			
				λ'	59,8	11,5	28,7	MgNi ₂ , <i>hP</i> 24, 194	0,4791(1)	1,5622(3)			
				γco	81,5	17,4	1,1	Cu, <i>cF</i> 4, 225	0,3571(8)	-			
11	71,7	13,8	14,5	_	66.3	117	22.0	MgCu ₂ , <i>cF</i> 24, 227	0,6710(2)	-			
				λ	00,5	11,7	22,0	MgZn ₂ , <i>hP</i> 12, 194	0,4750(2)	0,7727(4)			
				γco	75,1	23,8	1,1	Cu, <i>cF</i> 4, 225	-	-			
12	68,4	19,8	11,8	ſ	63.6	16.7	19.7	MgCu ₂ , <i>cF</i> 24, 227	-	-			
						λ	05,0	10,7	17,7	MgZn ₂ , <i>hP</i> 12, 194	-	-	
			3 7,3				γco	70,5	28,4	1,1	Cu, <i>cF</i> 4, 225	-	-
13	67,4	,4 25,3		λ	62.0	20.3	177	MgCu ₂ , <i>cF</i> 24, 227	-	-			
					02,0	20,5	17,7	MgZn ₂ , <i>hP</i> 12, 194	-	-			
		1 35,3	4,6	γco	60,6	38,3	1,1	Cu, <i>cF</i> 4, 225	-	-			
14	60,1			х	58.2	24.6	17.2	MgCu ₂ , <i>cF</i> 24, 227	-	-			
					λ	50,2	24,0	17,2	MgZn ₂ , <i>hP</i> 12, 194	-	-		
15	45.6	54 4	0	β_{Mn}	42,4	57,6	0	β-Mn, <i>cP</i> 20, 213	-	-			
15	15,0	51,1		γco	47,7	52,3	0	Cu, <i>cF</i> 4, 225	-	-			
				β_{Mn}	43,3	55,7	1,0	β-Mn, <i>cP</i> 20, 213	0,6289(6)	-			
10	50.3	39.2	2 10.5	γ _{Co}	49,1	49,8	1,1	Cu, <i>cF</i> 4, 225	0,3582(6)	-			
16	50,5	57,2	10,5	<u>م</u>	53.9	27.9	18.2	MgCu ₂ , <i>cF</i> 24, 227	0,6711(2)				
				λ	55,7	21,9	10,2	MgZn ₂ , <i>hP</i> 12, 194	0,4749(1)	0,7712(3)			
				β_{Mn}	37,5	61,5	1,0	β-Mn, <i>cP</i> 20, 213	-	-			
17	43,7	42,8	13,5	2	47.8	30.3	21.9	MgCu ₂ , <i>cF</i> 24, 227	-	-			
				λ	17,0	50,5	21,9	MgZn ₂ , <i>hP</i> 12, 194	-	-			
				β_{Mn}	32,3	66,7	1,0	β-Mn, <i>cP</i> 20, 213	-	-			
18	35,3	50,4	14,3	2				MgCu ₂ , <i>cF</i> 24, 227	-	-			
				٨	38,5	34,4	27,2	MgZn ₂ , <i>hP</i> 12, 194	-	-			

	Кон	центра	ация	лй З	Кон	центра	ция		Параметры			
№	спл	аве, ат	г. %	a30Bb Soctal	эле фа	ементо зах, ат	вв . %	Структурный тип	ячейки, нм			
	Co	Mn	Та	ΦŬ	Со	Mn	Та		а	С		
				β _{Mn}	26,8	71,0	2,2	β-Mn, <i>cP</i> 20, 213	-	-		
19	28,9	57,3	13,8		31.4	38.2	30.4	MgCu ₂ , <i>cF</i> 24, 227	-	-		
				λ	51,4	50,2	50,4	MgZn ₂ , <i>hP</i> 12, 194	-	-		
				β_{Mn}	19,9	79,1	1,0	β-Mn, <i>cP</i> 20, 213	-	-		
20	21,4	55,1	23,5	<u>,</u>	22.0	13.8	31 2	MgCu ₂ , <i>cF</i> 24, 227	-	-		
				λ	22,0	45,0	54,2	MgZn ₂ , <i>hP</i> 12, 194	-	-		
				β_{Mn}	11,3	87,7	1,0	β-Mn, <i>cP</i> 20, 213	-	-		
21	10,8	58,2	,2 31,0		10.7	52.2	27.0	MgCu ₂ , <i>cF</i> 24, 227	-	-		
							λ	10,7	52,5	57,0	MgZn ₂ , <i>hP</i> 12, 194	-
			34,8	β_{Mn}	0,	99,0	1,0	β-Mn, <i>cP</i> 20, 213	-	-		
22 0	0	65,2		<u>,</u>	0	0 61 7 38 3 MgCu ₂ , <i>cF</i> 24, 227	-	-				
				λ	0	01,7	56,5	MgZn ₂ , <i>hP</i> 12, 194	-	-		
		45,0	42,7	<u>,</u>	12.4	18.1	30.2	MgCu ₂ , <i>cF</i> 24, 227	-	-		
23	12,3			۸	12,1	10,1	39,2	MgZn ₂ , <i>hP</i> 12, 194	-	-		
				μ	12,1	38,1	49,8	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-		
				λ	29,1	33,9	37.0	MgCu ₂ , <i>cF</i> 24, 227	-	-		
24	28,7	30,3	41,0	λ		,	,	MgZn ₂ , <i>hP</i> 12, 194	-	-		
				μ	28,0	24,3	47,7	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-		
				<u>^</u>	<i>A</i> 1 5	22.8	357	MgCu ₂ , <i>cF</i> 24, 227	0,6764(2)			
25	38,8	18,5	42,7	λ	71,5	22,0	55,7	MgZn ₂ , <i>hP</i> 12, 194	0,4781(2)	0,7784(5)		
				μ	39,3	16,4	44,3	W ₆ Fe ₇ , <i>hR</i> 39, 166	0,4694(3)	2,596(1)		
				_	52 /	11.6	36.0	MgCu ₂ , <i>cF</i> 24, 227	0,6827(1)	-		
26	47,3	7,8	44,9	λ	52,7	11,0	50,0	MgZn ₂ , <i>hP</i> 12, 194	0,4828(2)	0,7890(8)		
				μ	45,9	6,8	47,3	W ₆ Fe ₇ , <i>hR</i> 39, 166	0,4916(1)	2,6528(6)		
				2	64 1	0	35.9	MgCu ₂ , <i>cF</i> 24, 227	-	-		
27	61,2	0	38,8	λ	04,1		55,5	MgZn ₂ , <i>hP</i> 12, 194	-	-		
				μ	52,9	0	47,1	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-		
28	33,5	17,0	49,5	μ	33,5	17,0	49,5	W ₆ Fe ₇ , <i>hR</i> 39, 166	0,4933(1)	2,687(1)		

Nº	Концентрация элементов в сплаве, ат. %)азовый состав	Концентрация элементов в фазах, ат. %		ация в в . %	Структурный тип	Параметры элементарной ячейки, нм		
	Co	Mn	Та	Þ	Co	Mn	Та		а	С
20	39.7	0 60 3	60.3	μ	46,7	0	53,3	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-
29	55,1	0	00,5	Ta ₂ Co	34,4	0	65,6	CuAl ₂ , <i>tI</i> 12, 140	-	-
20	36.0	0 60	58.0	μ	39,3	7,1	53,6	W ₆ Fe ₇ , <i>hR</i> 39, 166	0,4969(2)	2,6362(1)
30	50,0	0,0	50,0	Ta ₂ Co	30,2	4,2	65,6	CuAl ₂ , <i>tI</i> 12, 140	0,6137(4)	0,4998(6)
21	29.4	A 14 A	56,2	μ	30,2	15,9	53,9	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-
31	27,7	17,7		Ta ₂ Co	26,0	8,3	65,7	CuAl ₂ , <i>tI</i> 12, 140	-	-
22	174	17 4 20 5	20,5 62,1	μ	16,1	18,0	65,9	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-
32	17,7	20,5		Ta ₂ Co	19,9	25,6	54,5	CuAl ₂ , <i>tI</i> 12, 140	-	-
22	8/ 300	30.0	,0 61,6	μ	10,1	36,5	53,4	W ₆ Fe ₇ , <i>hR</i> 39, 166	-	-
33	0,7	50,0		Ta ₂ Co	7,5	26,5	66,0	CuAl ₂ , <i>tI</i> 12, 140	-	-
				β_{Ta}	0	7,4	92,6	W, <i>cI</i> 2, 229	-	-
34	0	55,1	44,9	λ	0	58 5	41.5	MgCu ₂ , <i>cF</i> 24, 227	-	-
					U	50,5	71,5	MgZn ₂ , <i>hP</i> 12, 194	-	-
25	14	10.1	88 5	Ta ₂ Co	3,6	28,7	67,7	CuAl ₂ , <i>tI</i> 12, 140	-	-
35	1,1	10,1	00,5	β_{Ta}	0,9	4,9	94,1	W, <i>cI</i> 2, 229	-	-
26	11.0	14.2	74.8	Ta ₂ Co	14,4	18,0	67,6	CuAl ₂ , <i>tI</i> 12, 140	-	-
30	11,0	11,2	7 1,0	β_{Ta}	1,4	3,7	94,9	W, <i>cI</i> 2, 229	-	-
27	17.8	42	78.0	Ta ₂ Co	27,3	5,2	67,5	CuAl ₂ , <i>tI</i> 12, 140	0,5952(1)	0,4974(1)
31	17,0	7,2	70,0	β_{Ta}	1,9	2,5	95,6	W, <i>cI</i> 2, 229	0,3219(2)	-
20	18 2	0	81.8	Ta ₂ Co	32,1	0	67,9	CuAl ₂ , <i>tI</i> 12, 140	-	-
38 1	10,2	U	81,8	β_{Ta}	5,1	0	94,9	W, <i>cI</i> 2, 229	-	-

 * Параметры элементарной ячейки λ'-фазы рассчитаны на основе данных, полученных с помощью синхротронного излучения с длиной волны 0,09525 нм.

** Параметры элементарных ячеек λ- и λ'-фаз рассчитаны с использованием данных, полученных на дифрактометра Bruker D8 Advance.

Как и в системе Co-Mn-Nb в двухфазном сплаве № 10 (Таблица 27, Рисунок 42) обнаружено двухфазное равновесие (λ+λ').

Рисунок 42. Микроструктуры некоторых сплавов системы Со-Мп-Та после отжига при 1200 К: а) № 2, б) № 6, в) № 11, г) № 16, д) № 18, е) № 37 (Таблица 18).

С целью установления возможности существования µ-фазы в бинарной системе Mn–Ta при 1200 К была исследована диффузионная пара Ta/Mn. Результаты исследования диффузионной пары Ta/Mn представлены на рисунке 44. В диффузионной паре Ta/Mn, отожженной при 1200 К в течение 100 часов наблюдалась следующая последовательность слоев фаз:

$(Ta) \mid \beta_{Ta} \mid \lambda \mid \beta_{Mn} \mid (Mn).$

В диффузионной зоне отсутствует слой µ-фазы, что согласуется с данными исследования сплава № 34 (Таблица 27).

Рисунок 43. Экспериментальные данные исследования сплава № 10 (Таблица 27) после отжига при 1200 К: а) микроструктура, б) порошковая рентгенограмма, выполненная на дифрактометре Bruker D8 Advance и обработанная с использованием программного обеспечения «Stoe Winxpow».

Рисунок 44. Диффузионная пара Та/Мп после отжига при 1200 в течение 100 ч: микроструктура диффузионной зоны (а), концентрация элементов (б).

Для определения кристаллографических параметров тройной фазы Лавеса λ' был исследован порошок сплава № 5 с использованием синхротронного излучения с длинной волны 0,09525 нм. Результаты уточнения методом Ритвельда экспериментальных

дифрактограмм тройной фазы Лавеса λ' сплава № 5 представлены на Рисунке 45, а также в Таблице 28.

Рисунок 45. Экспериментальные порошковые рентгенограммы сплава № 5 (Таблица 27). Экспериментальная дифрактограмма показана красным цветом, теоретическая дифрактограмма λ'-фазы (структурный тип MgNi₂) – черным цветом. Разностная кривая показана внизу рисунка синим цветом. Зелеными вертикальными линиями отмечены положения брэгговских пиков.

Координаты атомов и заселенности их позиций в кристаллической решетке тройной фазы Лавеса λ' сплава № 5 представлены в Таблице 29. Из полученных результатов следует, что атомы марганца тройной фазы λ' располагаются в основном в позициях М1 и М2.

Для определения области термической стабильности тройной фазы Лавеса λ ' была проведена дифференциальная сканирующая калориметрия сплава № 3, результаты которой представлены на Рисунке 46.

Состав сплава, ат. %	Co70,7Mn5,4Ta23,9
Структурный тип	MgNi ₂
Пространственная группа	P63/mmc, 194
Символ Пирсона	<i>hP</i> 24
Кристаллическая система	Гексагональная
Длина волны синхротронного излучения, нм	0,09525
Параметры элементарной ячейки, нм	
a	0,47414(1)
b	0,47414(1)
С	1,54568(3)
Объем элементарной ячейки, нм ³	0,301(1)
Число формульных единиц в элементарной ячейке, Z	8
Рассчитанная плотность, г/см ³	10,78(1)
Угол 2θ, ⁰	10,018≤2θ≤55,518
Шаг	0,008
Число рефлексов на дифрактограмме	79
Число уточняемых параметров	31
$R_F = \sum F_{oi} - F_{ci} / \sum F_{oi}$	0,06
$R_B = \sum I_{o,h} - I_{c,h} / \sum I_{o,h} $	0,06
$R_P = \sum y_{oi} - y_{ci} / \sum y_{oi} $	0,17
$R_{wP} = \left[\sum w_i y_{oi} - y_{ci} ^2 / \sum w_i y_{oi} ^2\right]^{1/2}$	0,10
$\chi^2 = (R_{wP}/R_e)^2$	0,02

Таблица 28. Кристаллографические данные и уточненные параметры сплава № 5.

Анализ кривой нагревания сплава № 3 (Рисунок 46, а) показал, что тройная фаза Лавеса λ' является стабильной при 1200 К и распадается при 1575,8±1 К. На кривой охлаждения сплава № 3 (Рисунок 46, б) наблюдался экзотермический эффект при 1571,1±1 К. На обеих кривых ДСК во всем интервале температур, начиная с комнатной и до указанных температур, другие тепловые эффекты отсутствуют.

Таблица 29. Атомные координаты, изотропный параметр атомного смещения и заселенность позиций атомов кристаллической решетки тройной фазы Лавеса (λ') системы Co-Mn-Ta при 1200 K (Сплав № 5)

Позиция	Вид	Коор	динаты ат	омов	Изотропный параметр	Заселенность
атомов	атомов	X	Y	Ζ	атомного смещения (B _{iso})	позиций атомов
Co1	Со	0,165(1)	0,330(1)	0,25	0,500(5)	1,000
Co2	Co/Mn	1/2	0	0	0,455(5)	1,000
Co3	Co/Mn	1/3	2/3	0,127(3)	0,643(5)	1,000
M1	Та	1/3	2/3	0,655(1)	0,462(3)	0,63(1)
M1	Co/Mn	1/3	2/3	0,655(1)	0,462(3)	0,37(1)
M2	Та	0	0	0,090(1)	0,387(1)	0,60(1)
M2	Co/Mn	0	0	0,090(1)	0,387(1)	0,40(1)

Рисунок 46. Результаты ДСК сплава № 3 (Таблица 1): а) кривая нагревания; б) кривая охлаждения.

Таким образом, в системе Co-Mn-Ta при 1200 К экспериментально установлено существование трехфазного равновесия ($\gamma_{Co}+\lambda+\beta_{Mn}$) (сплав № 16) и предположено существование трех трехфазных равновесий: ($\gamma_{Co}+\lambda+\lambda'$), ($\gamma_{Co}+\lambda+Co_3Ta$), ($\lambda+\lambda'+Co_3Ta$), основываясь на правиле фаз Гиббса и экспериментально установленных двухфазных равновесиях ($\gamma_{Co}+\lambda$) (сплавы № 11, 12, 13, 14, 16), ($\gamma_{Co}+\lambda'$) (сплавы № 6, 7), ($\lambda+\lambda'$) (сплав № 10), и ($\gamma_{Co}+Co_3Ta$) (сплавы № 1, 2) и ($\gamma_{Co}+Co_3Ta$) (сплав № 3).

В области богатой танталом вблизи стороны Mn-Ta с использованием выбранного метода синтеза сплавов (электродуговая печь) не удалось получить некоторые образцы. Исходя из правила фаз Гиббса, в этой области возможны два варианта трехфазных равновесий. Однако учитывая значительную (почти до стороны Mn-Ta) протяженность фазы Ta₂Co и меньшую протяженность фазы μ , более вероятно существование еще двух трёхфазных равновесий ($\beta_{Ta}+\lambda+Ta_2Co$) и ($\lambda+\mu+Ta_2Co$).

Фазы λ двойных систем Co-Ta и Mn-Ta образуют между собой непрерывный ряд твердых растворов в трехкомпонентной системе Co-Mn-Ta при 1200 К.

В данной системе при 1200 К существует тройное соединение λ' , которое является фазой Лавеса и относится к структурному типу MgNi₂ (символ Пирсона *hP*24, пространственная группа *P*6₃/*mmc*).

На основе полученных экспериментальных данных было построено изотермическое сечение диаграммы фазовых равновесий трехкомпонентной системы Co-Mn-Ta при 1200 К, приведенное на Рисунке 47.

Рисунок 47. Изотермическое сечение диаграммы фазовых равновесий системы Co-Mn-Ta при 1200 К. Номера сплавов приведены в соответствии с Таблицей 27.

3.1.7. Фазовые равновесия с участием ГЦК-кобальтового раствора в трехкомпонентных системах Co-Nb-Re, Co-Re-Ta при 1375 и 1200 К, а также Co-Mn-Nb и Co-Mn-Ta при 1200 К

В кобальтовых углах изотермических сечений диаграмм фазовых равновесий систем Co-Nb-Re и Co-Ta-Re при температурах исследования устанавливаются различные трехфазные равновесия. Так, при 1375 К и 1200 К фазы γ_{Co} , λ , λ' , μ и (Re) образуют в системе Co-Nb-Re одни трехфазные равновесия (($\gamma_{Co}+\lambda+(Re)$)) и ($\lambda+\mu+(Re)$), а в системе Co-Ta-Re другие фазовые равновесия (($\gamma_{Co}+\lambda+\mu$) и (γ Co+ $\mu+(Re)$)). При этом, для обеих трехкомпонентных систем характерно наличие при 1375 К трехфазного равновесия (($\gamma_{Co}+\lambda+\lambda'$), экспериментально установленного в случае системы Co-Nb-Re и предполагаемого на основе имеющихся конод в системе Co-Ta-Re.

В системе Co-Nb-Re при 1200 К тройная фаза Лавеса λ' образует тройное равновесие с твердым раствором на основе кобальта и λ -фазой ($\gamma_{Co}+\lambda+\lambda'$), в случае же системы Co-Re-Ta при 1200 К данная тройная фаза образует тройное равновесие с γ_{Co} -твердым раствором и двойным соединением Co₃Ta.

Согласно полученным данным, в тройных фазах λ' систем Co-Nb-Re и Co-Ta-Re атомы рения располагаются в основном в позициях Co2 и Co3 (Рисунок 48). Данная модель соответствует лучшему описанию и уточнению профиля, чем при использовании моделей, в которых атомы рения заменяют другие позиции. В качестве примера приведены параметры заселения атомами позиций в сплаве Co_{67.3}Nb_{24.6}Re_{8.1} (Таблица 14).

Рисунок 48. Фрагмент кристаллической структуры фазы Лавеса (структурный тип MgNi₂).

Фазы, образующиеся в системах Co-Nb-Re и Co-Ta-Re как при 1375 К, так и при 1200 К, за исключением соединения Ta₂Co, в указанных системах также идентичны. Растворимость третьего компонента в твердых растворах одинаковых по структуре фаз λ , λ' , μ и χ отличаются незначительно. Существование одинаковых фаз в обеих системах, вероятнее всего, связано с тем, что ниобий и тантал имеют одинаковое количество валентных электронов (что крайне важно в случае образования фаз Лавеса), а также близкие радиусы атомов (следствие лантанидного сжатия). Рений, благодаря близости радиуса его атомов радиусам атомов ниобия и тантала, замещает ИХ В интерметаллических фазах, о чем можно судить по расположению областей гомогенности указанных фаз на изотермических сечениях диаграмм фазовых равновесий трехкомпонентных систем Co-Nb-Re и Co-Ta-Re как при 1375 K, так и при 1200 К.

Структуры интерметаллических фаз, образующихся в трехкомпонентных системах Co-Mn-Nb и Co-Mn-Ta практически идентичны. Различие этих двух систем при 1200 К состоит в том, что μ-фаза в системе Co-Mn-Nb представляет собой непрерывный ряд твердых растворов, а также в наличии в системе Co-Mn-Ta твердого раствора фазы Ta₂Co. Из расположения областей гомогенности интерметаллических фаз можно сделать заключение, что атомы кобальта в фазах λ, μ, Ta₂Co замещаются атомами марганца.

В системах Co-Mn-Nb и Co-Mn-Ta атомы марганца по аналогии с Co-Nb-Re и Co-Ta-Re также преимущественно занимают позиции Co2 и Co3 в исходной кристаллической решетке (Рисунок 48). Из анализа данных Таблиц 15, 21, 25 и 28 видно, что параметры элементарной ячейки в рассматриваемых тройных фазах Лавеса λ' при замещении кобальта на рений были больше по сравнению с таковыми при замещении кобальта на марганец. При этом существенной зависимости изменения соотношения параметров *с/а* от добавления третьего компонента не наблюдается.

Установлено, что тройные фазы Лавеса λ', обнаруженные в системах Co-Mn-Nb, Co-Mn-Ta, Co-Nb-Re и Co-Ta-Re при 1200 К не подвергаются фазовым превращениям при длительном гомогенизационном отжиге при данной температуре, что может свидетельствовать в пользу стабильности данных структур. Характер кривых ДСК нагревания и охлаждения сплавов, относящихся к области гомогенности фазы λ' при 1200 К тройных систем Co-Nb-Re, Co-Ta-Re, Co-Mn-Nb и Co-Mn-Ta (Рисунки 23, 24, 33, 34, 40, 46)

103

показывает, что фазовый переход $\lambda \rightarrow \lambda'$, который согласно строению диаграмм фазовых равновесий данных систем (Рисунки 20, 26, 27, 29, 35, 36, 41, 47) должен происходить при повышении температуры, может или не происходить при быстрых нагревании и охлаждении, или происходит, но не сопровождается выделением или поглощением заметного количества теплоты. И то, и другое, вероятно, связано с тем, что структура MgNi₂, к которой относятся тройные фазы λ' и структуры MgCu₂ и MgZn₂ в которых кристаллизуется λ-фаза являются политипами, и перестройка слоев А, В и С действительно может не сопровождаться тепловыми эффектами, которые регистрируются методом ДСК, то есть в данном случае отсутствует фазовый переход первого рода. Данное предположение подтверждается анализом кривых ДСК образцов, при нагревании которых происходит распад фазы λ' и образование двухфазной области ($\gamma_{Co} + \lambda$). На кривой нагревания ДСК сплава тройной фазы λ' системы Co-Nb-Re (Рисунки 23, 24) при 1341 К наблюдается эндотермический эффект, но при этом отсутствует соответствующий экзотермический эффект на кривой охлаждения. По всей видимости, обратный фазовый переход не происходит по причине быстрого охлаждения образца. Согласно дифрактограмме сплава № 11 системы Co-Nb-Re (Таблица 14), полученной после проведения ДСК (Рисунок 25), при 1341 К тройная фаза λ' действительно претерпевает распад на фазы γ_{Co} и λ , представленной политипами MgCu₂ и MgZn₂. При этом, предложенный в работе [115] способ определения стабильности политипов Лавеса при помощи расчета электронной плотности оказался не применим для исследуемого температурного интервала.

Для уточнения области существования разных структур, относящихся к фазам Лавеса в системе Co-Nb-Re при 1200 К были выплавлены 5 сплавов (Таблица 30), результаты исследования которых методами СЭМ, ЛРСА и РФА (Таблица 30, Рисунок 49) показали, что все сплавы при 1200 К однофазные и относятся к области существования фазы Лавеса λ на основе политипов MgCu₂ и MgZn₂. В сплавах № 1 и № 2 был обнаружен только один политип фазы λ , относящийся к структурному типу MgCu₂. В элементарной ячейке политипа параметры кубической и гексагональной структур связаны соотношением $a_{hex}^{cal} = a_{cub}^{exp} / \sqrt{2}$. Сравнение параметров *a* структур MgCu₂ и MgZn₂ для сплавов № 3 – 5 системы Co-Nb-Re при 1200 К (Таблица 30) указывает на выполнение вышеприведенного соотношения. Отсюда можно заключить, что сплавы № 3, 4 и 5 не являются смесью двух фаз, а представляют собой единую фазовую область с неупорядоченным расположением слоев *A*, *B* и *C*, которое соответствует политипам фаз Лавеса λ со структурами MgCu₂ и MgZn₂.

Таблица 30. Концентрация элементов в сплавах, фазовый состав и параметры элементарной ячейки фаз сплавов системы Co-Nb-Re при 1200 K, а также расчетные значения параметра решетки «*a*» фазы Лавеса λ.

No	Ко	нцентра	ция	Экспериментал	Рассчитанное		
	элеме	ентов в λ	-фазе,	параметр	а « <i>а</i> », нм	значение	
ciijia-		ат. %		политип MgCu ₂	политип $MgZn_2$	параметра	
ва	Со	Nb	Re	a_{cub}^{exp}	a_{hex}^{exp}	$\ll a_{hex}^{cal} \gg$, HM	
1.	62,3	35,3	2,4	0,6800(2)	-	-	
2.	62,1	32,9	5,0	0,67638(1)	-	-	
3.	63,2	26,5	10,3	0,67106(2)	0,47454(9)	0,47451	
4.	63,0	23,1	13,0	0,67087(8)	0,47435(7)	0,47438	
5.	61,8	22,8	15,4	0,6721(1)	0,4753(3)	0,47525	

Рисунок 49. Дифрактограммы сплавов системы Co-Nb-Re при 1200 К: а) сплав № 1; б) сплав № 2; в) сплав № 3; г) сплав № 4 (Таблица 30).

Для уточнения области существования разных структур, относящихся к фазам Лавеса λ в системе Co-Ta-Re при 1200 K, было выплавлено 4 сплава (Таблица 31, Рисунок 50).

Таблица 31. Концентрация элементов в сплавах, фазовый состав и параметры элементарной ячейки фаз сплавов системы Co-Ta-Re при 1200 K, а также расчетные значения параметра решетки «*a*» фазы Лавеса λ.

Ma	Ко	нцентра	ция	Экспериментал	Рассчитанное			
JNO	элеме	нтов в λ	-фазе,	параметр	параметра «а», нм			
спла-		ат. %		политип MgCu ₂	политип MgZn ₂	параметра		
ва	Со	Та	Re	a_{cub}^{exp}	a_{hex}^{exp}	« a_{hex}^{cal} », нм		
1.	62,8	33,9	3,3	0,6850(2)	0,4843(2)	0,48437		
2.	63,8	30,6	5,6	0,6755(3)	0,4778(2)	0,47765		
3.	62,9	25,2	11,9	0,6689(6)	0,4736(5)	0,47298		
4.	64,8	20,2	15,0	0,6797(3)	0,4807(1)	0,48062		

Рисунок 50. Дифрактограммы сплавов системы Co-Ta-Re при 1200 К: а) сплав № 1; б) сплав № 2; в) сплав № 3; г) сплав № 4 (Таблица 31).

Из дифрактограмм этих сплавов, приведенных на Рисунке 50, видно, что при содержании рения 2,4 ат. % фаза λ представлена единственной структурой – MgCu₂, как и в двойной системе Co–Nb при данной температуре. При дальнейшем повышении содержания рения (сплавы № 2–3, Таблица 31, Рисунок 50) появляются рефлексы политипа MgZn₂. В сплаве №4 (Таблица 31), содержащих более 11,9 ат.% рения, исходя из профиля дифрактограммы (Рисунок 50 г) преобладает гексагональная укладка слоев *АВАВ*..., характерная для структуры MgZn₂.

В исследованных трехкомпонентных системах Co-Mn-Nb и Co-Mn-Ta при 1200 К фаза λ образует непрерывный ряд твердых растворов от стороны Co-(Nb,Ta) до стороны Mn-(Nb,Ta), причем сплавы, полученные в этой области, представляют собой политипы фазы Лавеса с чередованием слоев в элементарной ячейке, соответствующим как кубическому структурному типу MgCu₂, так и гексагональному структурному типу MgZn₂. В результате, фазы Co₂Nb и Co₂Ta, относящиеся к структурному типу MgCu₂, с фазами Лавеса Mn₂Nb и Mn₂Ta, относящимся к структурному типу MgZn₂, не образуют двухфазной области ($\lambda_1 + \lambda_2$).

В Таблицах 32 и 33 приведено сопоставление параметров двух структур этому соотношению для сплавов области фазы Лавеса в системах Co-Mn-Nb и Co-Mn-Ta при 1200 К соответственно. Различие рассчитанных и экспериментально определенных параметров гексагональной структуры находится в пределах ошибки используемого метода. Как и в случае с политипами Лавеса в системах Co-Nb-Re и Co-Ta-Re на существование политипов фаз Лавеса указывает соотношение параметров *a* кубической и гексагональной структур. В случае образования политипа выполняется равенство: $a_{\text{куб}} = a_{\text{гекс}}^* \sqrt{2}$.

Таблица 32. Концентрация элементов в сплавах и параметры элементарной ячейки фаз сплавов системы Co-Mn-Nb при 1200 K, а также расчетные значения параметра решетки «*a*» политипов фазы Лавеса λ.

	Ко	нцентра	ция	Экспериментал	Рассчитанное	
N⁰	элеме	нтов в λ	-фазе,	параметр	а « <i>а</i> », нм	значение
спла-		ат. %		политип MgCu ₂	политип MgZn ₂	параметра
ва	Со	Mn	Nb	a_{cub}^{exp}	a_{hex}^{exp}	$\langle\langle a_{hex}^{cal}\rangle\rangle$, HM
8	61,3	18,6	20,1	0,67044(1)	0,47477(9)	0,47407
9	54,5	21,8	23,7	0,6748(4)	0,47445(9)	0,47716
10	61,7	7,1	31,2	0,6758(1)	0,47798(6)	0,47786
11	64,9	16,6	18,5	0,6714(3)	0,4749(4)	0,4746
13	54,8	26,1	19,1	0,6735(3)	0,4764(2)	0,4762
15	51,8	28,4	19,8	0,6757(2)	0,4778(5)	0,4778
17	34,9	37,2	27,9	0,6803(2)	0,4811(2)	0,4810
29	31,9	31,0	37,1	0,6867(7)	0,48532(1)	0,48557
30	39,7	23,8	36,5	0,6820(1)	0,4824(1)	0,4822
32	56,2	7,1	36,7	0,6831(3)	0,48302(8)	0,48302

Таблица 33. Концентрация элементов в сплавах и параметры элементарной ячейки фаз сплавов системы Co-Mn-Ta при 1200 K, а также расчетные значения параметра решетки «*a*» политипов фазы Лавеса λ.

	Ко	нцентра	ция	Экспериментал	Рассчитанное			
N⁰	элеме	нтов в λ	-фазе,	параметр	параметра «а», нм			
спла-	ат. %			политип MgCu ₂	политип MgZn ₂	параметра		
ва	Co Mn Ta		a_{cub}^{exp} a_{hex}^{exp}		«a ^{cal} », нм			
8	61,7	16,2	22,1	0,6724(2)	0,4755 (1)	0,4755		
9	33,7	35,2	31,1	0,6704(1)	0,4748 (1)	0,4740		
10	56,7	10,1	33,2	0,6777(1)	0,47923(9)	0,4792		
11	66,3	11,7	22,0	0,6710(2)	0,4750(2)	0,4745		
16	53,9	27,9	18,2	0,6711(2)	0,4749(1)	0,4745		
25	41,5	22,8	35,7	0,6764(2)	0,4781(2)	0,4783		
26	52,4	11,6	36,0	0,6827(1)	0,4828(2)	0,4827		
3.2. Влияние легирования рением, марганцем и хромом, а также условий термической обработки на твердость однофазных и двухфазных кобальт-ниобиевых и кобальт-танталовых сплавов

3.2.1. Влияние легирования рением и условий термической обработки на твердость однофазных (ус₀) и дисперсионно-упрочненных выделениями фаз Со₃Nb, Co₃Ta, Co₂Nb и Co₂Ta двухфазных кобальт-ниобиевых и кобальт-танталовых сплавов

Для исследования прочностных свойств было синтезировано по 8 образцов сплавов систем Co-Nb-Re и Co-Ta-Re (Рисунок 51, Таблица 34), а также для сравнения были приготовлены образцы чистого кобальта и кобальт-рениевого сплава состава Co86.8Re13.2 ат. %. Зависимость твердости сплавов систем Co-Nb-Re и Co-Ta-Re от их элементного и фазового состава, а также условий их термической обработки представлена в Таблице 34, а также на Рисунке 52.

Рисунок 51. Кобальтовые углы изотермических сечений при 1200 К диаграмм фазовых равновесий трехкомпонентных систем: а) Co-Nb-Re и б) Co-Ta-Re.

Таблица 34. Концентрация элементов в сплавах, фазовый состав сплавов кобальтового угла трехкомпонентных систем Co-Nb-Re и Co-Ta-Re, а также значения твердости этих сплавов после трех стадий термической обработки.

N⁰	Коні	центра	ция	Фаз	овый состав	Твердость, HV 0.1				
спла-	эле	менто	BB	равнов	есных сплавов					
ва	спла	аве, ат	. %	при	і указанных					
				темі	пературах**					
	Со	Re	Nb	1375 К	1200 К, 1033 К	Расчет	1375 К	1200 К	1033 К	
RA_1^*	100,0	0	0	γco	$\gamma_{\rm Co}$	_***	233±8	-	-	
RA_2^*	86,8	13,2	0	γco	$(\text{Re}) + \varepsilon_{\text{Co}}$	_***	314±13	-	-	
N1	97,9	0	2,1	γсο	$\gamma_{\rm Co}$	_***	244±9	250±2	-	
N2	94,9	0	5,1	γco	$\gamma_{Co} + Co_3 Nb$	248	343±6	375±5	255±4	
N3	92,6	1,8	5,6	γсο	$\gamma_{Co}+\lambda'+Co_3Nb$	256	257±5	294±2	377±10	
N4	94,0	2,4	3,6	γco	$\gamma_{Co}+\lambda+\lambda'$	253	254±11	333± 8	361±11	
N5	89,9	6,0	4,1	γсο	$\gamma_{Co}+\lambda'$	268	303±12	408±16	536±14	
N6	88,8	7,3	3,9	γсο	$\gamma_{Co}+\lambda'$	272	378±9	417±8	533±12	
N7	85,0	8,9	6,1	γ _{Co}	$\gamma_{Co}+\lambda'$	284	389±11	429±10	534±7	
N8	66,7	29,3	4,0	(Re)	$(Re) + \mu$	_	506±15	503±14	_	
	Со	Re	Та	1375 К	1200 К, 1033 К	Расчет	1375 К	1200 К	1033 К	
T1	97,3	0	2,7	$\gamma_{\rm Co}$	$\gamma_{Co} + Co_3Ta$	_***	239±8	295±10	274±5	
T2	95,9	0	4,1	$\gamma_{\rm Co}$	$\gamma_{Co} + Co_3Ta$	245	354±2	325±7	317±8	
T3	93,7	2,1	4,2	γ _{Co}	$\gamma_{Co} + \lambda' + Co_3 Ta$	253	331±2	340±6	356±6	
T4	90,9	5,4	3,7	$\gamma_{\rm Co}$	$\gamma_{Co}+\lambda'$	261	378±11	391±9	577±18	
T5	89,7	7,2	3,1	$\gamma_{\rm Co}$	$\gamma_{Co} + \lambda'$	269	419±10	481±14	506±15	
T6	89,3	8,1	2,6	γ _{Co}	$\gamma_{Co} + \lambda$	271	419±9	391±14	386±11	
T7	86,7	9,6	3,7	$\gamma_{\rm Co}$	$\gamma_{Co}+\lambda$	280	422±10	520±9	536±17	
T8	79,7	18,9	1,4	(Re)	$\gamma_{Co} + (Re)$	_	415±17	416±7	-	

* Обозначением RA (от англ. Reference alloy) указаны сплавы сравнения.

** Согласно данным по изотермическим сечениям систем Co-Nb-Re (Рисунок 51а) и Co-Ta-Re (Рисунок 51б) при 1200 К.

*** Экспериментальные значения при 1375 К использовалось при расчете твердости других сплавов.

Рисунок 52. Зависимость твердости по Виккерсу сплавов систем Co-Nb-Re (а) и Co-Ta-Re (б) от их элементного и фазового состава, а также условий термической обработки.

Для оценки вклада твердорастворного упрочнения в повышение твердости сплавов были произведены расчеты твердости на основе экспериментально полученных данных о твердости чистого кобальта (предварительно отожженного при 1375 К в течение 48 часов), однофазных сплавов состава Co86,8Re13,2, Co97,9Nb2,1, Co97,3Ta2,7 (в ат.%), Co94,9Nb5,1 и Co95,9Ta4,1 (ат.%) после отжига при 1375 К в течение 48 часов и быстрого закаливания со средней скоростью охлаждения 10000 К/мин. Зависимость твердости γ_{Co} -кобальтовой матрицы ввиду незначительной растворимости легирующих компонентов формально рассматривалась как линейная [222 – 223]. Рассчитанные данные твердости представлены в Таблице 34.

После прохождения первой стадии термообработки (гомогенизирующий отжиг при 1375 К в течение 48 часов и закаливания при средней скорости охлаждения \approx 1000 К/мин) твердость двухкомпонентных сплавов N1 и T1, представляющих собой при 1375 К γ_{Co} -твердый раствор и содержащих 2,1 ат. % Nb и 2,7 ат. % Та соответственно, достоверно не отличается от твердости чистого кобальта (Таблица 34, Рисунок 52 а, б). Следовательно, в бинарных системах Co-Nb и Co-Ta при добавке небольших количеств ниобия и тантала эффект твердорастворного упрочнения практически не проявляется.

При повышении содержания ниобия и тантала в двухкомпонентных сплавах до 5,1 и 4,1 ат. % соответственно (образцы N2 и T2, представляющие собой насыщенный при 1375 К ниобием/танталом усо-твердый раствор) их твердость после первой стадии

термической обработки превышает твердость чистого кобальта более чем на 100 HV (Таблица 34, Рисунок 52 а, б). Такое возрастание твердости может быть объяснено не столько твердорастворным упрочнением (поскольку концентрация ниобия и тантала в сплавах N2 и T2 несущественно превышает их концентрацию в сплавах N1 и T1), сколько дисперсионным упрочнением в ходе распада пересыщенного γ_{Co} -твердого раствора при средней скорости охлаждения \approx 1000 К/мин. В этом случае скорость диффузионных процессов в сплаве во время закаливания оставалась достаточно высокой.

Для прояснения причин высокой твердости сплавов N2 и T2 и вклада в нее твердорастворного упрочнения в методику закаливания образцов были внесены следующие корректировки: они были подвергнуты повторному изотермическому отжигу при 1375 К в течение 48 часов и закалке со средней скоростью охлаждения ≈ 10000 К/мин. В этом случае твердость сплавов N2 и T2 составила соответственно 278 ± 15 и 242 ± 11 HV, что значительно ниже (на 65 и 112 HV соответственно) твердости этих образцов после закалки со средней скоростью охлаждения ≈ 1000 К/мин. Данные значения твердости сплавов N2 и T2 совпадают с рассчитанными значениями твердости (Таблица 34) и показывают вклад твердорастворного упрочнения. Высокие значения твердости данных образцов после прохождения первой стадии термообработки и закалкой со средней скоростью охлаждения ≈ 1000 К/мин таким образом обусловлены процессом распада усо-твердого раствора и, возможно, связаны с размером зерна.

С целью выяснения зависимости твердости сплавов N2 и T2 от размера зерна, данные составы были повторно выплавлены, отожжены при 1375 К в течение 48 и 96 часов и подвергнуты закалке со средней скоростью охлаждения ~ 10000 К/мин. Значения твердости в ходе отжига в течение 48 и 96 часов достоверно не отличались, следовательно, размер зерна не оказывает в ходе предложенного режима термообработки значительного влияния на показатели твердости.

Из этого следует, что эффект упрочнения в сплавах N2 и T2 после гомогенизирующего отжига при 1375 К в течение 48 ч и их закалкой со средней скоростью охлаждения ≈ 1000 К/мин может достигаться за счет возможного образования выделений при распаде твердого раствора в процессе закаливания образцов. Тем не менее методами электронной сканирующей микроскопии (СЭМ) и

просвечивающей электронной микроскопии (ПЭМ) частиц второй фазы обнаружить не удалось после термообработки при 1375 К и закалке как со средней скоростью ≈ 10000 К/мин, так и со средней скоростью ≈ 1000 К/мин.

Можно предположить, что в процессе закаливания образуются участки твердого раствора, представляющие собой скопления атомов легирующего компонента и имеющие ту же кристаллическую структуру, что и матричный твердый раствор – зоны Гринье-Престона (GP, кластеры или предвыделения). Они могут выглядеть как тонкие пластинчатые образования толщиной 0,5–1 нм, имеют свою линию (поверхность) сольвуса и растворяются при повышении температуры [44, 46, 48]. Образующиеся при распаде твердого раствора зоны Гинье-Престона выполняют функцию закрепления дислокаций [44]. В местах расположения зон Гринье–Престона в процессе старения образуются сначала выделения метастабильной фазы, когерентной матрице, а затем – более крупные выделения стабильной фазы, ограниченной площадью поверхности раздела [48].

Механизм образования зон Гинье-Престона до конца не выяснен, согласно одной из гипотез они образуются в ходе замещения вакансий атомами легирующего компонента. В работах [44 – 50] отмечается, что в алюминиевых и бериллиевых бронзах зоны Гинье-Престона образуются уже в период закалочного охлаждения. Так в сплавах систем Al-Cu и Al-Zn образование зон Гинье-Престона начинается в процессе их закаливания и продолжается с большой скоростью даже при более низких температурах (до -100° C) [44 – 50].

Жиляков А.Ю. и соавторы (2014) [224], исследовав образцы сплавов никеля с тугоплавкими металлами методами просвечивающей электронной микроскопии и рентгенофазового анализа (РФА), объясняют образованием предвыделений – зон Гинье-Престона – изменение электросопротивления пересыщенного никелевого твердого раствора, легированного хромом и молибденом, после нагрева сплавов до 350 – 800°C с последующим охлаждением. Из данных работы [224] следует, что в сплавах никеля с тугоплавкими металлами этот процесс начинается при температуре, не ниже 350 °C, при более низких температурах скорость данного процесса оказывается крайне мала.

Исходя из вышеизложенного зависимость твердости сплавов N2 и T2 от их состава после отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин можно объяснить образованием зон Гинье-Престона.

Для изучения процесса твердения порошки сплавов N2 и T2 (Рисунок 53) были просвечивающей исследованы методом электронной микроскопии (ПЭМ). В монокристалле (Рисунок 53, а), выделенном из сплава Т2 после гомогенизирующего отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин, в светлом поле были обнаружены темные участки – скопления атомов тантала (зоны Гинье-Престона) – и светлые участки кобальтовой матрицы, имеющие меньшие параметры ячейки (Рисунок 53, б). Как и в работе [224] на электронограмме монокристалла (Рисунок 53, в), выделенного из сплава Т2, в плоскости {112} обнаружены раздваивающиеся рефлексы и размытия, являющиеся подтверждением существования зон Гинье-Престона. Аналогичные результаты получены при исследовании сплава N2.

a)

B)

Рисунок 53. Монокристалл, выделенный из сплава Т2 после гомогенизирующего отжига при 1375 К в течение 48 часов и средней скорости охлаждения ≈ 1000 К/мин: а) микрофотография монокристалла светлом В поле; б) микрофотография участка монокристалла В светлом поле; в) электронограмма в плоскости {112} (красными прямоугольными рамками показаны раздваивающиеся рефлексы).

Образование зон Гинье-Престона в сплавах N2 и T2 можно проиллюстрировать схемой, представленной на Рисунке 54 и согласующейся с литературными данными [44 – 50]. На начальном этапе образования зоны Гинье-Престона представляют собой пластинки (Рисунок 54, а), толщиной в один атом (зоны Гинье-Престона-1). С течением времени они растут, как и интерметаллические фазы (Рисунок 54, б), сохраняя при этом кристаллическую структуру матричного твердого раствора (зоны Гинье-Престона-2).

Рисунок 54. Схема движения дислокаций в присутствии зон Гинье-Престона: а) свободное движение в случае зоны Гинье-Престона-1; б) затрудненное движение в случае зоны Гинье-Престона-2.

После гомогенизирующего отжига при 1375 К в течение 48 часов сплавы N3 и N4 (закалка со средней скорости охлаждения \approx 1000 К/мин) имеют низкую твердость, незначительно превышающую твердость чистого кобальта. Согласно расчетам (Таблица 34), повышение твердости данных сплавов по сравнению с чистым кобальтом обусловлено исключительно твердорастворным упрочнением. Причина, по которой зоны Гинье-Престона не обеспечивают повышения твердости в случае сплавов N3 и N4 может заключаться в увеличении параметров элементарной ячейки γ_{Co} -твердого раствора, из-за чего зоны Гинье-Престона вносят меньшее искажение в матрицу и тем самым перестают являться препятствием для движения дислокаций.

Сплав N5 состава Co89,9Re6,0 Nb4,1 (в ат. %), отожженный при 1375 К в течение 48 часов и закаленный со средней скоростью охлаждения ≈ 1000 К/мин, имеет

твердость большую чем кобальт и достоверно не отличается по твердости от кобальтрениевого сплава с содержанием 13,2 ат. % Re.

Твердость сплава Т3 после отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин значительно превышает твердость кобальта, однако значение его твердости ниже по сравнению со сплавом Т2, не содержащего рения. Причиной такой ситуации может быть также начинающийся при охлаждении процесс рекристаллизации и распада γ_{Co} -твердого раствора, состав которого при 1200 К соответствует трехфазной области ($\gamma_{Co} + \lambda' + Co_3Ta$).

Сплав Т4 системы Co-Ta-Re с содержанием рения 5,4 ат. %, отожженный при 1375 К в течение 48 часов и закаленный со средней скоростью охлаждения ≈ 1000 К/мин, характеризуется большей твердостью по сравнению с кобальтом и кобальт-рениевым сплавом с содержанием 13,2 ат. % Re.

Достоверно не отличается твердость сплавов N6 и N7 системы Co-Nb-Re, содержащих от 7,3 до 8,9 ат. % рения, а также сплавов T5, T6 и T7 системы Co-Ta-Re с содержанием рения от 7,2 до 9,6 ат. % после гомогенизирующего отжига при 1375 K в течение 48 часов и закалки со средней скоростью охлаждения \approx 1000 K/мин. Твердость сплавов N6, N7, T5, T6 и T7 значительно выше твердости чистого кобальта и кобальтрениевого сплава с содержанием 13,2 ат. % Re (максимальное содержание при 1375 K). Из анализа данных следует, что, несмотря на более высокую твердость рения по сравнению с ниобием и танталом, в твердорастворное упрочнение больший вклад вносят именно ниобий и тантал, что согласуется со значениями металлических радиусов атомов Co (0,126 нм) [225], Re (0,137 нм) [226], Nb (0,143 нм) [227], Ta (0,143 нм) [228].

Как в случае не содержащих рения сплавов N2 и T2, в кобальт-ниобиевых (N7) и кобальт-танталовых (T7), легированных рением, при распаде пересыщенного γ_{Co}твердого раствора образуются зоны Гинье-Престона (Рисунки 55 и 56).

Сплавы N8 и T8 с значительным (18,9 и 29,3 ат. % соответственно) содержанием рения после отжига при 1375 К в течение 48 часов и закаливания со средней скоростью охлаждения ~ 1000 К/мин показывают высокие значения твердости. Однако, как видно из Рисунка 57, эти сплавы не успевают за указанное время отжига достигнуть равновесного состояния и сохраняют нераспавшуюся дендритную структуру.

Рисунок 55. Монокристалл, N7 выделенный ИЗ сплава после гомогенизирующего отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин: а) микрофотография монокристалла В светлом поле; б) микрофотография участка монокристалла в светлом поле; в) электронограмма в плоскости {111} (красными прямоугольными рамками показаны раздваивающиеся рефлексы).

б)

Микроструктуры сплавов системы Co-Nb-Re, составы и значения твердости которых приведены в Таблице 30, после прохождения первой (гомогенизирующий отжиг при 1375 К в течение 48 часов и закаливание со средней скорости охлаждения ≈ 1000 К/мин) и второй (старение при 1200 К в течение 24 часов и закалка со средней скоростью охлаждения ≈ 100 К/мин) стадий термообработки представлены на Рисунке 58, а после прохождения первой, второй и третьей (отпуск при 1033 К в течение 24 часов и закалка со средней скоростью охлаждения ≈ 100 К/мин) стадий термообработки представлены на Рисунке 59.

Рисунок 56. Монокристалл, выделенный из T7 сплава после гомогенизирующего отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин: микрофотография a) монокристалла светлом поле; б) В микрофотография участка монокристалла в электронограмма в светлом поле; в) {111} плоскости (красными прямоугольными рамками показаны раздваивающиеся рефлексы).

б)

После первой и второй стадий термической обработки твердость сплава N1 (Co97.9Nb2.1, aт.%) достоверно не изменяется, поскольку данный образец является однофазным как при 1375 К, так и при 1200 К (Таблица 34, Рисунок 51, а).

В свою очередь сплав N2 (Co94,9Nb5,1, ат. %), твердость которого после гомогенизирующего отжига при 1375 К была выше, чем у сплава N1, после термообработки при 1200 К продемонстрировал увеличение твердости до 375±5 HV (Таблица 34, Рисунок 52, а). Данный эффект связан с выделением продолговатых выделений второй фазы (ламелей) (Рисунок 58, а, б), представляющих собой фазу Co₃Nb со структурным типом

Mg₃Cd. На микроструктуре сплава N2 (Рисунок 58, а, б) присутствуют также небольшие светлые образования – зарождающиеся зерна фазы Co₃Nb. Это дает основания предполагать, что в процессе дисперсионного твердения сплава фаза Co₃Nb зарождается из разрастающихся зон Гинье-Престона и в дальнейшем растет, образуя ламели внутри зерна γ_{Co}-матрицы и округлые выделения на границах зерен γ_{Co}-матрицы.

Рисунок 57. Микроструктура сплавов после отжига при 1375 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 1000 К/мин: а) сплав N8 и б) сплав Т8.

После трех стадий термообработки твердость сплава N2 уменьшается до значений, близких к твердости чистого кобальта вследствие укрупнения ламелей и растворения более мелких дисперсных выделений (Рисунок 59, а, б), за счет которых и происходило увеличение твердости после второй стадии термической обработки (Рисунок 58, а, б).

Сплавы N3 (Co92,6Re1,8Nb5,6, ат.%) и N4 (Co94,0Re2,4Nb3,6, ат.%) после второй стадии термической обработки показали увеличение твердости за счет выделений наноразмерных дисперсных частиц. Так, на микроструктуре сплава N4 (Рисунок 58, в, г) заметны выделения двух типов: короткие дисперсные выделения фазы Co₃Nb с нечеткими фазовыми границами и более светлые частицы фазы Лавеса, имеющие четкие фазовые границы. После третьей стадии термообработки на микроструктурах сплавов N3 и N4 появляется дисперсная структура из игольчатых и пластинчатых выделений (Рисунок 59, в, г). Твердость образцов этих сплавов при этом возрастает (Таблица 34).

Рисунок 58. Микроструктуры сплавов системы Co–Nb–Re после второй стадии термообработки (увеличение в 10000 и 50000 раз): N2 (а, б), N4 (в, г), N5 (д, е), N7 (ж, з).

Рисунок 59. Микроструктуры сплавов системы Co–Nb–Re после третьей стадии термообработки (увеличение в 10000 и 50000 раз): N2 (а, б), N4 (в, г), N5 (д, е), N7 (ж, з).

Сплавы N5 (Co89,9Re6,0Nb4,1, aт.%), N6 (Co88,8Re7,3Nb3,9, aт.%) и N7 (Co85,0Re8,9Nb6,1, aт.%), имеющие разную твердость после первой стадии термообработки, демонстрируют увеличение твердости как после второй, так и после третьей стадий термообработки; при этом значения твердости этих сплавов после второй и третьей стадий термообработки достоверно не отличаются. Микроструктуры данных сплавов (Рисунок 58, д – 3, Рисунок 59, д – 3) схожи между собой: на микрофотографиях заметны участки плотно расположенных друг к другу наноразмерных дисперсных выделений, не имеющих четких границ.

Согласно дифрактограммам порошков сплава N7 (Рисунок 60), полученных после каждой стадии термической обработки, нановыделения представляют собой частицы метастабильной фазы Co₃Nb со структурой Mg₃Cd. Следует отметить, что на дифрактограммах сплава N7 (Рисунок 60) структурный тип Cu (γ_{Co} -матрица) представлен только самым интенсивным рефлексом на 45° {111}, средний по интенсивности рефлекс на 52° {002} отсутствует, наименее интенсивный рефлекс 83° {022} хоть и присутствует, но он, скорей всего, характеризует фазы со структурой Mg и Mg₃Cd. Это указывает на образование тонких слоев γ_{Co} -матрицы после каждой из стадий термообработки. Наличие рефлексов, принадлежащих структурному типу Mg, указывает на присутствие гексагонального $\varepsilon_{Re,Co}$ -твердого раствора, содержащего до 20 ат. % Re, с параметрами элементарной ячейки a = 0,2553 нм и c = 0,4141 нм. Участки сплава с гексагональной модификацией кобальта, содержащие избыточное по сравнению с равновесным количество рения, представляют собой атмосферы Сузуки [229, 230]. Наличие гексагональной модификацией кобальта способствует образованию когерентной ей метастабильной фазы Co₃Nb со структурным типом Mg₃Cd.

Твердость сплава N8 (Co66,7Re29,3Nb4,0, ат.%) после первой и второй стадий термообработки достоверно не отличается, поскольку при малых временах отжига выпадение µ фазы при 1200 К не происходит.

Микроструктуры сплавов системы Co-Ta-Re, составы и значения твердости которых приведены в Таблице 34, после первой и второй стадий термообработки представлены на Рисунке 61, а после первой, второй и третьей стадий термообработки показаны на Рисунке 62.

Рисунок 60. Дифрактограммы сплава N7: а) после первой; б) второй и в) третьей стадий термической обработки; г) сводная дифрактограмма.

После первой и второй стадий термической обработки твердость сплава T1 (Co97,3Ta2,7, aт.%) достоверно увеличивается из-за выделения фазы Co₃Ta (структурный тип Mg₃Cd), а затем после третьей стадии термообработки немного снижается (Рисунок 516, Таблица 34) из-за преобладания процесса роста фазы Co₃Ta над процессом зародышеобразования.

Рисунок 61. Микроструктуры сплавов системы Co–Re–Ta после второй стадии термообработки (увеличение в 10000 и 50000 раз): T2 (а, б), T4 (в, г), T5 (д, е), T7 (ж, з).

Рисунок 62. Микроструктуры сплавов системы Co–Re–Ta после после третьей стадии термообработки при увеличении в 10000 и 50000 раз: T2 (a, б), T4 (в, г), T5 (д, е), T7 (ж, з).

Твердость сплава T2 (Co95,9Ta4,1, aт.%), представляющего собой насыщенный при 1375 К раствор тантала в кобальте, после второй стадии термической обработки понижается в отличие от аналогичного сплава N2, содержащего ниобий, в котором твердость повышалась. Такое снижение твердости может быть объяснено ростом зон Гинье-Престона, переходящих в метастабильные выделения фазы Co₃Ta со структурой Mg₃Cd (a = 0,5048(6) нм, c = 0,4081(6) нм) с последующим их укрупнением. Это согласуется с микроструктурой сплава T2, полученной после первой и второй стадий термообработки (Рисунок 61, a, б), на которой видны зерна матрицы с перлитной структурой и более крупные выделения фазы Co₃Ta на границах зерен.

На микроструктуре сплава Т2 после первой, второй и третьей стадий термообработки (Рисунок 62, а, б) появляются четкие фазовые границы и исчезают размытые области, которые могут соответствовать зонам Гинье-Престона-2 и ламелям метастабильной фазы Со₃Ta со структурой Mg₃Cd.

В двойной системе Со-Та, как и во включающих её тройных системах, при 1200 К стабильная фаза Co₃Ta относится к структурному типу BaPb₃ [19]. Исследование сплава T2 методом сканирующей калориметрии показало отсутствие теплового эффекта на кривой нагревания и наличие экзотермического эффекта при 1131 ± 1 К на кривой охлаждения (Рисунок 63). Рентгенофазовый анализ порошка сплава T2 после его исследования методом ДСК позволил определить фазу Co₃Ta, принадлежащую к структурному типу BaPb₃ (a = 0,5151(1) нм, c = 1,8970(5) нм).

Можно предположить, что причиной появления выделений метастабильной фазы Co₃Ta (структурный тип Mg₃Cd), когерентной гексагональной модификации кобальта, является энергетически выгодный процесс образования этой фазы из атмосфер Сузуки – областей твердого раствора на основе ГПУ-кобальта (структурный тип Mg), обогащенных рением и обедненных танталом.

Для подтверждения данного предположения был проведен дополнительный эксперимент, в ходе которого сплав Т2 был подвергнут гомогенизирующему отжигу при 1375 К в течение 48 часов и последующему закаливанию со средней скоростью охлаждения \approx 10000 К/мин, после этого сплав Т2 был выдержан в вакуумированной кварцевой ампуле при 1033 К в течение 15 минут и вновь подвергнут закаливанию со средней скоростью охлаждения \approx 10000 К/мин. Короткий отжиг при 1033 К был предпринят с целью вызвать распад γ_{Co} -твердого раствора с низкой скоростью, т.е.

зафиксировать самое начало процесса распада. На дифрактограмме порошка, полученного из сплава T2 после указанной термообработки (Рисунок 64), помимо рефлексов в плоскостях {111} (\approx 45°), {002} (\approx 52°) и {022} (\approx 84°), относящихся к твердому раствору на основе ГЦК-кобальта (γ _{Co}), идентифицируются рефлексы по интенсивности и положению соответствующие структурам Mg и Mg₃Cd, что свидетельствует о распаде пересыщенного γ _{Co}-твердого раствора через образование атмосфер Сузуки [229, 230].

Рисунок 63. Результаты ДСК сплава Т2 (Таблица 34): а) кривая нагревания; б) кривая охлаждения.

В случае сплавов ТЗ (Со93,7Re2,1Ta4,2, ат.%) и Т4 (Со90,9Re5,4Ta3,7, ат.%), состав которых при 1375 К находится на границе γ_{Co} -твердого раствора, достоверного увеличения твердости после второй стадии термообработки не происходит. На микроструктуре сплава ТЗ и Т4 (Рисунок 61 в, г) можно увидеть сетку дисперсных выделений и относительно крупные частицы фаз Co₃Ta и λ ' на границах зерен исходного твердого раствора. После третьей стадии термообработки микроструктуры сплавов ТЗ и Т4 остаются сетчатыми, а сами дисперсные выделения приобретают вид пластинок с размытыми границами (Рисунок 62 в, г). Такие выделения могут быть как зонами Гинье-Престона-2, так и когерентной метастабильной фазой Co₃Ta со структурой Mg₃Cd. Их образование обеспечивает возрастание твердости сплава T4 до 577±18 HV (Таблица 34, Рисунок 52 б). На дифрактограмме порошка сплава T4 (Рисунок 65), полученном после

первой и второй стадий термообработки, присутствуют рефлексы, соответствующие Mg₃Cd (a = 0.5042(1) HM,c = 0.4073(1) HM) структурным типам И MgNi₂ (a = 0,4782(1)) нм, c = 1,5556(1) нм), что подтверждает процесс распада γ_{Co} -твердого образование атмосфер Сузуки объясняет раствора через И существование наноразмерных выделений метастабильной фазы Со₃Та.

Рисунок 64. Дифрактограмма сплава T2 после гомогенизирующего отжига при 1375 К в течение 48 часов и последующей термической обработки при 1033 К в течение 15 минут.

По сравнению с микроструктурами сплавов ТЗ и Т4, на микрофотографии сплава Т5 (Co89,7Re7,2Ta3,1, at.%) после первой и второй стадий термообработки наблюдаются более редкие дисперсные выделения преимущественно с параллельным, в не сетчатым, расположением (Рисунок 61, д). Изображение этих выделений при 50 000-кратном увеличении с использованием *QBSD*-детектора (Рисунок 61, е), показывает, что они имеют пластинчатую форму. Микроструктура сплава Т5 после первой, второй и третьей стадий термообработки меняется незначительно, однако на микрофотографии при 50 000-кратном увеличении (Рисунок 62, е) можно заметить множество более мелких дисперсных выделений, которые отсутствовали после второй стадии термической обработки.

Сплав Т6 (Co89,7Re7,2Ta3,1, ат.%) с небольшим содержанием тантала (на ≈1 ат. % выше равновесной концентрации при 1200 К) показывает высокое значение твердости (419±9 HV) после первой стадии термообработки. Однако после второй (старение) и

третьей (отпуск) стадий термообработки его твердость понижается по причине недостаточного содержания тантала для образования необходимого количества нановыделений упрочняющей метастабильной фазы.

Твердость сплава Т7 (Co86,7Re9,6Ta3,7, ат. %) достоверно не отличается после второй и третьей стадий термообработки, однако она выше, чем у сплава данного состава после первой стадии термообработки. Согласно дифрактограмме порошка сплава Т7 (Рисунок 66), последовательно подвергнутого первой (Рисунок 66, а), второй (Рисунок 66, б) и третьей (Рисунок 66, в) стадиям термической обработки, нановыделения представляют собой частицы метастабильной фазы Co₃Ta со структурой Mg₃Cd.

При анализе дифрактограмм порошков сплавов N7 (Рисунок 60) и T7 (Рисунок 66), полученных после каждой из трех стадий термообработки, можно обратить внимание, что после первой стадии термообработки в обоих случаях доля гексагональной структуры достаточно велика, что обусловлено участием рения в стабилизации гексагональной модификации кобальтового твердого раствора. Рассчитанные теоретические параметры элементарной ячейки структурного типа Mg для данных сплавов (a = 0,2523(1) нм, c = 0,4073(1) нм) соответствуют параметрам сплавов из области гексагонального єсо, Re-твердого раствора, содержащего около 20 ат. % Re, что подтверждает образование атмосфер Сузуки. Образование когерентной гексагональному кобальту метастабильных стехиометрических фаз Co₃Nb и Co₃Ta со структурным типом Mg₃Cd происходит, судя по положениям рефлексов на дифрактограммах, после второй стадии термической обработки и сохраняется после третьей стадии термической обработки, что согласуется с данными СЭМ. Исследование сплавов N7 и T7 методом ПЭМ позволило обнаружить тонкие (≤ 10 нм) пластинки ниобия и тантала с ГЦК-структурой (у_{Nb}, у_{Ta}) после термической обработки этих сплавов при 1200 К в течение 24 часов (Рисунок 67) и последующего охлдаждения со средней охлаждения порядка ~100 К/мин. Это свидетельствует об образования зон Гинье-Престона при распаде пересыщенного уСщ-твердого раствора в результате охлаждения образцов сплавов.

Рисунок 66. Дифрактограммы сплава Т7: а) после первой; б) второй и в) третьей стадий термической обработки; г) сводная дифрактограмма.

Твердость сплава Т8 (Co79,7Re18,9Nb1,4, ат.%) после первой и второй стадий термообработки достоверно не отличается, поскольку при малых временах отжига сохраняется дендритная структура $\varepsilon_{Co,Re}$ -твердого раствора.

Рисунок 67. Монокристаллы, выделенные из сплава Т7 после отжига при 1200 К в течение 48 часов и закалки со средней скоростью охлаждения ≈ 100 К/мин: а) монокристалл кобальта (1, серая область с более темной серой каймой) и монокристалл тантала с ГЦК-структурой (2, темно-серая область) в светлом поле; б) электронограмма в плоскости {111} (красными прямоугольными рамками показаны раздваивающиеся рефлексы).

Увеличение концентрации ниобия в кобальт-ниобиевых сплавах с 2,1 до 5,1 ат. % способствует повышению твердости после первой и второй стадий термообработки, однако после третьей стадии термообработки наблюдается существенное снижение твердости.

При легировании рением кобальт-ниобиевых сплавов их твердость возрастает после первой стадии термообработки до концентрации рения 7,3 ат. %, а после второй и третьей стадий термообработки – до концентрации рения 6,0 ат. % и далее не изменяется. При этом твердость кобальт-ниобиевых сплавов, с содержание рения 6,0 – 8,9 ат. %, после третьей стадии термообработки была выше, чем после второй.

При увеличении концентрации тантала в кобальт-танталовых сплавах с 2,7 до 4,1 ат. % происходит возрастание твердости после первой, второй и третьей стадий термообработки. При концентрации тантала ниже 2,6 ат. % твердость сплавов после каждой стадии термообработки падает даже на фоне увеличения концентрации рения. Легирование рением до его концентрации 7,2 ат. % кобальт-танталовых сплавов приводит к возрастанию твердости после первой стадии термообработки, и при дальнейшем увеличении концентрации рения твердость не изменяется. Твердость

сплавов повышалась при увеличении концентрации тантала от 3,1 до 3,7 ат. % на фоне увеличения концентрации рения от 7,2 до 9,6 ат. % после каждой из стадий термообработки. Самую высокую твердость (577±18 HV) показал сплав T4 состава Co90,9Ta3,7Re5,4 (ат. %) после трех последовательных стадий термообработки.

В кобальт-ниобиевых и кобальт-танталовых сплавах, не содержащих рений, первоначально высокая твердость после первой стадии термообработки уменьшается после последующих второй и третьей стадий температурной обработки из-за растворения мелких пластинчатых дисперсных выделений и роста более крупных частиц фаз Co₃Nb и Co₃Ta (поперечный размер более 40 нм), не способствующих упрочнению, в результате диффузии атомов ниобия и тантала.

Легированные рением кобальт-ниобиевые и кобальт-танталовые сплавы, составы которых близки к фазовым границам γ_{Co}-твердого раствора с двухфазными областями (γ_{Co}+Co₃Nb), (γ_{Co}+Co₃Ta), (γ_{Co}+λ) и (γ_{Co}+λ'), демонстрируют повышение твердости после каждой стадии термической обработки.

Твердость кобальт-ниобиевых и кобальт-танталовых сплавов в большей степени зависит от увеличения концентрации тантала, чем ниобия, что может быть объяснено меньшей растворимостью тантала в ГЦК-кобальте при 1375 К по сравнению с ниобием и более резким снижением растворимости тантала в γ_{Co} -твердом растворе при понижении температуры.

Bo всех рассмотренных сплавах в качестве упрочняющей выступают метастабильные фазы Co₃Nb и Co₃Ta, принадлежащие к когерентному гексагональному кобальту структурному типу Mg₃Cd И имеющие согласно полученным дифрактограммам (Рисунки 61, 66, 67) во всех сплавах практически одинаковые параметры элементарной ячейки (a = 0,505(1) нм, c = 0,408(1) нм).

Для исследования дальнейших процессов в кобальт-ниобиевых и кобальттанталовых сплавах, легированных рением и подвернутым всем трем стадиям термообработки, был проведен дополнительный эксперимент, в ходе которого указанные сплавы были отожжены при 1200 К в течение 24 часов и охлаждены в вакуумированной ампуле на воздухе со средней скоростью ≈ 100 К/мин. Результаты исследования этих сплавов методами СЭМ, ЛРСА и РФА показали, что разрушения метастабильных наноразмерных фаз Co₃Nb и Co₃Ta не происходит, однако на границах зерен γ_{Co} -матрицы начинается рост частиц фаз Лавеса λ и λ' . При этом твердость участков, содержащих

дисперсные выделения фаз Co₃Nb и Co₃Ta и не содержащих частиц фаз Лавеса, остается на уровне значений, которые сплавы имели после второй стадии термообработки.

В качестве иллюстрации к проведенному дополнительному эксперименту на Рисунке 68 приведены микроструктура и дифрактограмма сплава 4. На микроструктуре (Рисунок 68, а – в) помимо сетчатой структуры наночастиц фазы Co₃Ta (структурный тип Mg₃Cd) заметны также более крупные образования с четкими границами, которые по данным ЛРСА и РФА принадлежат к стабильной при 1200 К фазе Co₃Ta со структурным типом BaPb₃ и тройной фазе Лавеса λ' (структурный тип MgNi₂) (Рисунок 68, г).

Рисунок 68. Микроструктура (увеличение 3000 (а), увеличение 10000 (б), увеличение 50000 (в)) и дифрактограмма (г) сплава Т4 после трех последовательных стадий термической обработки и дополнительного отжига при 1200 К в течение 24 часов.

Из микроструктуры сплава Т4 (Рисунок 68, а – в) также видно, что зерна стабильных фаз располагаются не только по границам зерен, но и в самом зерне γ_{Co} матрицы. Интерметаллические фазы, образующиеся первоначально на границах зерен, оказываются, в результате слияния зерен γ_{Co} -матрицы в их объеме при увеличении времени отжига при 1200 К. Твердый раствор на основе ГЦК-кобальта, окружающий частицы стабильной модификации Со₃Та и фазы Лавеса λ', лишен характерной сетчатой структуры, что объясняется тем, что частицы данных фаз растут, поглощая ниобий и тантал из у_{Со}-твердого раствора, и это приводит к растворению метастабильной сетчатой структуры. При длительных (от 240 часов) временах отжигов при 1200 K обеспечивающие упрочнение метастабильные фазы Co₃Nb и Co₃Ta полностью растворяется вследствие миграции атомов ниобия и тантала к растущим зернам фаз Лавеса λ и λ' , что приводит к установлению двухфазных равновесий ($\gamma_{Co} + \lambda$) и ($\gamma_{Co} + \lambda'$). Тем не менее, добавление до 9 ат. % рения в кобальт-ниобиевые и кобальт-танталовые сплавы на основе усо-твердого раствора приводит к понижению скорости данного процесса.

Из вышеизложенного следует, что при легировании рением кобальт-ниобиевых и кобальт-танталовых сплавов вследствие образования зон Гинье-Престона происходит искажение кристаллической структуры γ_{Co} -твердого раствора, способствующее при понижении температуры термической обработки возникновению атмосфер Сузуки (областей с различной концентрацией атомов легирующих компонентов, образованных ГЦК-матрицей и дефектными участками с ГПУ-структурой). В дальнейшем диффузия атомов легирующего компонента из пересыщенного γ_{Co} -твердого раствора приводит к росту выделений Гинье-Престона и зарождению частиц когерентных ГПУ-кобальту метастабильных фаз состава Со₃Nb и Со₃Ta.

Таким образом, в ходе дисперсионного упрочнения кобальт-ниобиевых и кобальттанталовых сплавов, легированных рением, можно выделить следующие стадии, протекающие при распаде γ_{Co} -твердого раствора (Рисунок 69): образование зон Гинье-Престона, формирование атмосфер Сузуки и кристаллизация метастабильных фаз Co₃Nb и Co₃Ta со структурным типом Mg₃Cd. Выделения фаз Co₃Nb и Co₃Ta в матрице γ_{Co} -твердого раствора в процессе старения и отпуска не увеличиваются в размерах, поскольку они окружены атмосферами Сузуки с высоким содержанием рения, который практически не растворяется в данных фазах.

Рисунок 69. Схема процесса распада γ_{Co} -твердого раствора, сопровождающаяся формированием зон Гинье-Престона, возникновением атмосфер Сузуки и образованием метастабильной фазы Co₃Nb и Co₃Ta со структурой Mg₃Cd, когерентной атмосферам Сузуки.

3.2.2. Влияние легирования рением и марганцем, а также условий термической обработки на твердость однофазных и двухфазных кобальт-ниобиевых и кобальт-танталовых сплавов

Для установления границы γ_{Co} -твердого раствора в четырехкомпонентных системах Co-Mn-Re-Nb и Co-Mn-Re-Ta при 1375 К были выплавлены 6 сплавов с различным содержанием рения и марганца. Концентрации элементов в сплавах, фазовый состав при 1375 К и параметры элементарной ячейки фаз представлены в Таблице 35. Микроструктуры сплавов систем Co-Mn-Re-Nb и Co-Mn-Re-Ta после отжига при 1375 К в течение 48 часов представлены на Рисунке 70.

Исходя из данных, представленных в Таблице 35 и Рисунке 70, во всех исследуемых кобальт-ниобиевых и кобальт-танталовых сплавах, легированных рением и марганцем, γ_{Co}-твердый раствор находится в равновесии с фазой Лавеса λ' (структурный тип MgNi₂).

Таблица 35. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз сплавов систем Co-Mn-Re-Nb и Co-Mn-Re-Ta после отжига при 1375 К в течение 48 часов.

	К	онцен	птраци	ля	тав	К	онцен	нтраци	я		Пара	метры		
NC.	элем	ентов	в в спл	паве,	coc	о элементов в фа				Структур-	элементарной			
JNŌ		ат.	%		ЭВЫЙ		ат.	%		ный тип	ячей	ки, нм		
	Co	Mn	Re	Nb	Фаз	Со	Mn	Re	Nb		а	С		
1	82.8	4.0	8,0	52	γ_{Co}	84,7	4,8	6,7	3,8	Cu	0,352(1)			
1.	02,0	т,0		5,2	λ'	64,1	2,4	7,2	26,3	MgNi ₂	0,4774(1)	1,5486(2)		
2	86.8	58	18	5.6	γco	89,5	5,9	1,4	3,2	Cu	0,356(1)	-		
2.	00,0	5,0	1,0	5,0	λ'	67,6	5,7	1,6	25,1	MgNi ₂	0,4791(1)	1,5460(3)		
3	77 3	13.3	4.0	5,4	γco	79,3	13,5	4,2	3,0	Cu	0,356(1)	-		
5.	11,5	15,5	4,0		λ'	63,3	9,4	3,1	24,2	MgNi ₂	0,4751(3)	1,5499(6)		
	Co	Mn	Re	Ta		Co	Mn	Re	Ta					
Δ	8/1 5	2.0	5,8	3,7	$\gamma_{\rm Co}$	86,4	3,1	7,9	2,6	Cu	0,354(1)	-		
т.	04,5	2,0			λ'	64,6	1,9	12,9	20,6	MgNi ₂	0,4758(2)	1,546(1)		
5	89.5	17	22	3,6	$\gamma_{\rm Co}$	89,5	4,7	2,2	3,6	Cu	0,356(1)	-		
5.	07,5	+,/	∠,∠		λ'	72,9	2,2	4,1	20,8	MgNi ₂	0,4768 (3)	1,5441(5)		
6	837	7 8,0 4,	48	35	$\gamma_{\rm Co}$	83,7	8,5	4,8	3,0	Cu	0,355(1)	-		
0.	03,7		0 4,8	4,8	4,8	4,ð	5,5	λ'	70,3	3,3	5,2	21,2	MgNi ₂	0,4798(2)

Для рассмотрения особенностей дисперсионного твердения кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением и содержащих в своем составе различное количество марганца, были выплавлены сплавы, составы которых находятся на границе γ_{Co} -твердого раствора (Таблице 36). Полученные образцы сплавов были подвергнуты таким же стадиям термической обработки, что и сплавы N1 – N8 и T1 – T8, не содержащие марганец: гомогенизирующему отжигу при 1375 К в течение 48 часов с закалкой со средней скоростью охлаждения \approx 1000 К/мин, старению при 1200 К в течение 24 часов с закалкой со средней скоростью охлаждения \approx 100 К/мин и отпуску при 1033 К в течение 24 часов с закалкой со средней скоростью охлаждения \approx 100 К/мин. Зависимость твердости данных сплавов от их состава, а также условий их термической обработки представлена в Таблице 36, а также на Рисунке 71.

Рисунок 70. Микроструктуры сплавов систем Co-Mn-Re-Nb и Co-Mn-Re-Ta при 1375 К в течение 48 часов: а) сплав № 1; б) сплав № 2; в) сплав № 3; г) сплав № 4; д) сплав № 5; е) сплав № 6 (Таблица 35).

После первой стадии термообработки твердость всех кобальт-ниобиевых и кобальт-танталовых сплавов практически не зависит от концентрации марганца, а зависит от концентрации рения, ниобия или тантала.

Таблица 36. Концентрация элементов в сплавах, равновесный фазовый состав сплавов систем Co-Mn-Re-Nb и Co-Mn-Re-Ta, а также значения твердости этих сплавов после трех стадий термической обработки.

N⁰	К	онцен	итраци	1 Я	Фа	зовый состав	Твердость, HV 0.1			
спла-	элем	ентов	в в спл	аве,	равно	весных сплавов				
ва		ат.	%		при указа	нных температурах				
	Co	Mn	Re	Nb	1375 К	1200 К, 1033 К	1375 К	1200 K	1033 К	
NM1	79,3	13,5	4,2	3,0	γ_{Co}	$\gamma_{Co}+\lambda'$	286±12	315±3	352±6	
NM2	89,5	5,9	1,4	3,2	γco	$\gamma_{Co}+\lambda'$	268±13	307±2	369±3	
NM3	84,7	4,8	6,7	3,8	γco	$\gamma_{Co}+\lambda'$	361±10	435±4	399±8	
	Co	Mn	Re	Ta	1375 К 1200 К, 1033 К		1375 К	1200 K	1033 К	
TM1	85,4	3,3	7,9	3,4	γco	$\gamma_{Co}+\lambda'$	401±11	404±10	432±5	
TM2	89,5	4,7	2,2	3,6	$\gamma_{Co} \qquad \gamma_{Co} + \lambda'$		259±11	284±13	316±7	
TM3	84,4	8,5	4,1	3,0	$\gamma_{\rm Co}$	$\gamma_{Co}+\lambda'$	263±2	356±11	344±5	

Рисунок 71. Зависимость прочностных свойств сплавов систем Co-Mn-Re-Nb (a) и Co-Mn-Ta-Re (б) от их состава и условий термической обработки.

В сплавах после первой и второй стадий термообработки наблюдались выделения метастабильных фаз состава Co₃Nb и Co₃Ta со структурой Mg₃Cd (a = 0,505(1) нм, c = 0,408(1) нм) и, как следствие, повышалась твердость сплавов, значения которой

сопоставимы со значениями твердости сплавов, содержащих такое же количество ниобия или тантала, но не содержащих марганец.

После первой, второй и третьей стадий термообработки твердость сплавов либо не значительно повышалась (NM2, NM3, TM1, TM2), либо снижалась (NM1, TM3), в отличие от сплавов, не содержащих марганца в своем составе (Таблица 31). Невысокие значения твердости рений-содержащих кобальт-ниобиевых и кобальт-танталовых сплавов можно объяснить высокой подвижностью марганца, способствующей значительному росту выделений Co₃Nb и Co₃Ta и, как следствие, утрате этими фазами способности к упрочнению сплавов.

Рисунок 72. Микроструктуры сплавов NM3 (а, б), TM2 (в, г) (Таблица 36) после термообработки при 1200 К и 1033 К при увеличении в 10000 и 50000 раз.

Еще одной причиной снижения твердости кобальт-ниобиевых и кобальттанталовых сплавов, легированных рением и марганцем, является способность марганца стабилизировать ГЦК-модификацию твердого раствора на основе кобальта, тогда как образование необходимого количества упрочняющих дисперсных выделений метастабильных фаз Co₃Nb и Co₃Ta, когерентных ГПУ-модификации кобальта, происходит при участии атмосфер Сузуки. Следствием такого влияния марганца явилось сокращение числа дисперсных выделений фаз Co₃Nb и Co₃Ta после первой и второй стадий термообработки по сравнению с аналогичными сплавами без марганца. Как видно из Рисунка 72, большинство дисперсных выделений фаз Co₃Nb и Co₃Ta в кобальт-ниобиевых и кобальт-танталовых сплавах, легированных рением и марганцем, после первой и второй стадий термообработки имеют вид коротких и утолщенных пластинок; появления новых ламелей после третьей стадии термообработки не наблюдалось.

Кроме того, марганец существенно снижает растворимость ниобия и тантала в γ_{Co} -твердом растворе при 1375 К, что также приводит к уменьшению количества образующихся после второй и третьей стадий термообработки выделений метастабильных фаз Co₃Nb и Co₃Ta из-за дефицита атомов ниобия или тантала в матричном твердом растворе.

Таким образом, добавление марганца в систему легирования кобальт-ниобийрениевых и кобальт-тантал-рениевых сплавов не способствует заметному повышению твердости.

3.2.3. Влияние легирования рением и хромом, а также условий термической обработки на твердость однофазных и двухфазных кобальт-ниобиевых и кобальт-танталовых сплавов

Для установления фазовой границы γ_{Co} -твердого раствора в четырехкомпонентных системах Co-Cr-Re-Nb и Co-Cr-Re-Ta при 1375 К были выплавлены 12 сплавов с различным содержанием рения, концентрации элементов в которых, их фазовый состав при 1375 К и параметры элементарной ячейки фаз представлены в Таблицах 37 и 38. Микроструктуры сплавов четырехкомпонентных систем Co-Cr-Re-Nb и Co-Cr-Re-Ta после отжига при 1375 К в течение 48 часов и закалкой со средней скоростью 10000 К/мин представлены на Рисунке 73.

Содержание хрома в сплавах подбиралось исходя из задачи обеспечить образование сплошного слоя оксида хрома (III) в многокомпонентном кобальтовом сплаве при его последующем высокотемпературном окислении на воздухе на основании литературных данных [1 – 3, 178 – 182]. ГЦК-кобальтовый твердый раствор в пяти

образцах каждой системы содержал около 16 ат. % хрома, в двух образцах – по одному из каждой системы – содержание хрома составляло около 25 ат. %.

Таблица 37. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз сплавов четырехкомпонентной системы Co-Cr-Re-Nb после отжига при 1375 К в течение 48 часов.

	К	онцен	траці	Я	aB	Концентрация					Параметры		
	элем	ентов	в в сп.	лаве,	OCT	эле	менто	в в фа	зax,		элементарной		
№		ат.	%		лй с	ат. %				Структур-	ячейки, нм		
	Co	Cr	Re	Nb	Фазовь	Со	Cr	Re	Nb	пый гип	а	С	
					γ_{Co}	79,2	18,1	0	2,8	Cu	0,3533(2)	-	
1	77 3	15.8	0	69	2	65 1	76	0	27.3	MgCu ₂	0,6777(6)	-	
1.	11,5	15,0	U	0,9	λ	05,1	7,0	0	27,5	MgZn ₂	0,4761(2)	0,773(1)	
					μ	57,4	6,9	0	35,7	W ₆ Fe ₇	-	-	
					γ _{Co}	77,4	17,9	1,9	2,8	Cu	0,3525(3)	-	
2	74 1	15,5	18	86	2	65,9	6,3	1,3	26,5	MgCu ₂	0,6754(6)		
۷.	/4,1		1,0	0,0	λ					MgZn ₂	0,4755(5)	0,779(1)	
					μ	39,7	8,5	1,2	50,6	W ₆ Fe ₇	-	-	
			5,0	8,1	γ_{Co}	75,3	17,1	5,6	2,1	Cu	0,3520(2)	-	
3.	72,6	14,3			λ	50.4	7,8	6,7	26,2	MgCu ₂	0,6742(1)	-	
						39,4				MgZn ₂	0,4739(1)	0,7765(2)	
					γco	73,8	16,7	6,9	2,6	Cu	0,3523(1)		
4.	71,2	14,4	7,3	7,2	2	58.0	78	10.3	24.0	MgCu ₂	0,6734(1)	-	
					λ	56,0	7,0	10,5	24,0	MgZn ₂	0,4731(1)	0,7753(2)	
				6,8	γ _{Co}	69,7	18,1	9,8	2,4	Cu	0,3523(1)		
5.	68,5	14,8	9,9		λ	55.0	87	12.6	737	MgCu ₂	0,6733 (1)	-	
						55,0	0,7	12,0	23,1	MgZn ₂	0,4729(1)	0,7736(2)	
6.	66,5	25,7	5,9	1,9	γco	66,5	25,7	5,9	1,9	Cu	0,3546(1)	-	

Таблица 38. Концентрация элементов в сплавах, концентрация элементов в фазах сплавов, фазовый состав сплавов и параметры элементарной ячейки фаз сплавов четырехкомпонентной системы Co-Cr-Re-Ta после отжига при 1375 К в течение 48 часов.

	К	онцен	траці	RF	rab	K	Сонцен	траци	я		Парам	метры
	элем	ентов	в в сп.	паве,	COCI	элем	ентов	в фаза	х, ат.	Струк-	элементарной	
N⁰		ат.	%		вый		9	6		турный	ячейк	си, нм
	Co	Cr	Re	Та	Фазо	Co	Cr	Re	Та	ТИП	а	С
	80,6				$\gamma_{\rm Co}$	80,8	16,3	0	2,9	Cu	0,3533(2)	-
7.		16,1	0	3.3	λ	68,2	7.1	0	24,7	MgCu ₂	0,6779(9)	-
	, -	- 7		- ,-		9	- 7	-		MgZn ₂	0,4759(4)	$\begin{array}{c c} & - & \\ & 0,774(1) \\ & - & \\ & 0,778(1) \\ & - & \\ & 0 & - \\ & 0 & - \\ & 0 & - \\ & 0 & - \\ & 0 & 0,7732(1) \end{array}$
					μ	51,6	10,9	0	37,5	W ₆ Fe ₇	-	-
					γ_{Co}	78,5	17,2	1,8	2,5	Cu	0,3535(2)	
8	77 3	16.0	2.0	17	2	67.3	7 /	2.1	23.2	MgCu ₂	0,6725(8)	-
0.	11,5	10,0	2,0	ч, /	λ	07,5	7,4	2,1	23,2	MgZn ₂	0,4729(3)	0,778(1)
					μ	50,1	11,0	0,2	38,7	W ₆ Fe ₇	-	-
	78,4	14,5	4,2	2,9	$\gamma_{\rm Co}$	75,9	17,1	4,4	2,5	Cu	0,3535(1)	-
0					λ	62,7	86	7,2	21,5	MgCu ₂	0,6696(1)	
9.							0,0			MgZn ₂	0,4726(1)	0,7732(1)
					μ	46,6	10,3	7,0	36,0	W ₆ Fe ₇	-	-
					$\gamma_{\rm Co}$	74,2	16,3	6,6	2,8	Cu	0,3542(1)	
10.	71,6	16,0	7,9	4,5	2	50.7	87	113	20.2	MgCu ₂	0,6710(2)	-
					λ	57,7	0,7	11,5	20,2	MgZn ₂	0,4745(2)	0,7717(4)
					γco	72,3	15,2	9,7	2,9	Cu	0,355(1)	
11.	71,8	13,8	9,5	4,9	2	58 5	8.0	14.6	18,9	MgCu ₂	0,6721(5)	-
					λ	50,5	0,0	14,0		MgZn ₂	0,4753(2)	0,7737(2)
12.	66,9	25,3	5,9	1,9	$\gamma_{\rm Co}$	66,9	25,3	5,9	1,9	Cu	0,3546(1)	-

60 µm

60 µm

ж)

60 µm

60 µm

Рисунок 73. Микроструктуры сплавов систем Co-Cr-Re-Nb и Co-Cr-R-Ta после отжига при 1375 К в течение 48 часов: а) 1, б) 2, в) 3, г) 4, д) 5, е) 7, ж) 8, з) 9, и) 10, к) 11 (Таблицы 37 и 38).

В сплавах № 1, 2 (Таблицы 37) и № 7–9 (Таблица 38) при 1375 К в равновесии с кобальтовым твердым раствором находится фаза Лавеса λ (политипы MgCu₂, MgZn₂) и фаза μ , параметры решетки для которой рассчитать не удалось ввиду малого ее содержания в сплаве. Сплавы № 3–5 (Таблица 37) и № 10–11 (Таблица 38) при 1375 К являются двухфазными ($\gamma_{Co} + \lambda$). Сплавы № 6 (Таблица 37) и 12 (Таблица 38) являются однофазными и принадлежат к γ_{Co} -твердому раствору.

Для исследования влияния легирования хромом на твердость кобальт-ниобиевых и кобальт-танталовых сплавов, содержащих рений, было синтезировано 5 сплавов системы Co-Cr, по одному сплаву систем Co-Cr-Re, Co-Cr-Nb, Co-Cr-Ta, а также по 5 сплавов систем Co-Cr-Re-Nb и Co-Cr-Re-Ta, относящиеся к однофазной области (γ_{Co}) при 1375 К. Составы сплавов систем Co-Cr-Re-Nb и Co-Cr-Re-Ta подбирались исходя из данных эксперимента по установлению фазовой границы γ_{Co} -твердого раствора в четырехкомпонентных системах Co-Cr-Re-Nb и Co-Cr-Re-Ta при 1375 К (Таблицы 37 и 38).

Зависимость твердости сплавов систем Co-Cr, Co-Cr-Re, Co-Cr–Nb, Co-Cr-Ta, Co-Cr-Re-Nb и Co-Cr-Re-Ta от их элементного и фазового состава, а также условий их термической обработки представлена в Таблице 39, а также на Рисунке 74.

При увеличении содержания хрома в кобальтовом твердом растворе в двухкомпонентных сплавах С1 – С5 (Таблица 39) их твердость после первой стадии термической обработки незначительно возрастает, что свидетельствует о незначительном вкладе хрома в твердорастворное упрочнение.
Таблица 39. Концентрация элементов в сплавах, равновесный фазовый состав сплавов систем Co-Cr-Re-Nb и Co-Cr-Re-Ta, а также значения твердости этих сплавов после трех стадий термической обработки.

N⁰	I	Концен	птрация	я	Фаз	вовый состав	Твердость, HV 0,1			
спла-	эле	ментов	в в спла	аве,	равнов	зесных сплавов				
ва		ат.	%		при указа	нных температурах				
	Со	Cr	Re		1375 К	1200 К, 1033 К	1375 К	1200 K	1033 К	
RA_1 .	100	0	0		γ _{Co}	γco	233±8	-	-	
C1	93,8	6,2	0		γco	$\gamma_{\rm Co}$	224±8	-	-	
C2	88,9	11,1	0		γco	$\gamma_{\rm Co}$	240±9	-	-	
C3	82,9	17,1	0		γco	$\gamma_{\rm Co}$	239±6	-	-	
C4	73,1	26,9	0		$\gamma_{\rm Co}$	$\gamma_{\rm Co}$	261±13	-	-	
C5	72,4	27,6	0		γco	$\gamma_{\rm Co}$	254±13	-	-	
C6	78,3	15,6	6,1		$\gamma_{\rm Co}$	$\gamma_{\rm Co}$	287±14	-	-	
	Со	Cr	Re	Nb	1375 К	1200 К, 1033 К	1375 К	1200 К	1033 К	
NC1	79,2	18,0	0	2,8	γco	$\gamma_{Co} + \lambda$	361±8	403±9	390±12	
NC2	77,4	17,9	1,9	2,8	γco	$\gamma_{Co} + \lambda$	375±15	368±12	422±10	
NC3	75,3	17,1	5,6	2,1	$\gamma_{\rm Co}$	$\gamma_{Co} + \lambda$	411±10	465±12	453±12	
NC4	73,8	16,7	6,9	2,6	γ_{Co}	$\gamma_{Co} + \lambda$	450±6	449±10	492±13	
NC5	69,7	18,1	9,8	2,4	γ_{Co}	$\gamma_{Co} + \lambda$	427±6	455±9	483±15	
NC6	66,5	25,7	5,9	1,9	γ_{Co}	$\gamma_{Co} + \mu$	290±8	-	-	
	Со	Cr	Re	Та	1375 К	1200 К, 1033 К	1375 К	1200 К	1033 К	
TC1	80,8	16,3	0	2,9	γ_{Co}	$\gamma_{Co} + \lambda$	324±7	343±10	401±12	
TC2	78,5	17,2	1,8	2,5	γ_{Co}	$\gamma_{Co} + \lambda$	336±13	343±11	396±11	
TC3	75,9	17,1	4,4	2,5	$\gamma_{\rm Co}$	$\gamma_{Co} + \lambda$	327±8	339±6	373±7	
TC4	74,2	16,3	6,6	2,8	γ _{Co}	$\gamma_{Co} + \lambda$	357±8	379±11	502±12	
TC5	72,3	15,2	9,7	2,9	γco	$\gamma_{Co} + \lambda$	397±3	355±7	509±13	
TC6	67,1	25,6	5,8	1,4	γCo	γсο	337±6	-	-	

Рисунок 74. Зависимость прочностных свойств сплавов систем Co-Cr-Re-Nb (a) и Co-Cr-Re-Ta (б) от их состава и условий термической обработки.

Добавление 6,1 ат.% рения в кобальт-хромовый сплав С6 (Таблица 39) приводит к росту твердости после первой стадии термической обработки вследствие способности рения усиливать твердорастворное упрочнение.

Добавление в кобальт-хромовый сплав до 2,9 ат.% ниобия или тантала приводило к заметному увеличению твердости сплавов NC1 и TC1 после каждой из трех стадий термообработки. Твердость сплава NC1, содержащего ниобий, была выше после первой и второй стадий термообработки. Однако после третьей стадии термообработки твердость обоих сплавов (NC1 и TC1) достоверно не отличалась.

Включение в систему легирования кобальт-хром-ниобиевых и кобальт-хромтанталовых сплавов NC2 – NC5 и TC2 – TC5 четвертого компонента – рения – приводило к повышению твердости после первой стадии термообработки.

Твердость легированных рением кобальт-хром-ниобиевых сплавов NC3 и NC5 после первой и второй стадий термообработки увеличивалась по сравнению с твердостью этих сплавов после первой стадией термообработки. Твердость сплавов NC2 и NC4 при этом практически не изменялась. Твердость легированных рением кобальт-хром-ниобиевых сплавов после первой, второй и третьей стадий термообработки по сравнению с их твердостью после первой и второй стадий термообработки повышалась в случае сплавов NC2, NC4 и NC5, а в случае сплава NC3 не изменилась.

146

Твердость легированных рением кобальт-хром-танталовых сплавов после первой и второй стадий термообработки в случае сплавов TC4 незначительно увеличивалась, в случае сплава TC5 снижалась по сравнению с твердостью этих сплавов после первой стадией термообработки. Твердость сплавов TC2 и TC3 при этом практически не изменялась. Твердость легированных рением кобальт-хром-танталовых сплавов после первой, второй и третьей стадий термообработки по сравнению с их твердостью после первой и второй стадий термообработки по в случае сплавов TC2 – TC5.

Микроструктуры сплавов TC1 и TC2 после первой и второй стадий термообработки представлены на Рисунке 75.

Рисунок 75. Микроструктуры сплавов системы Co-Cr-Re-Ta после первой и второй стадий термообработки: a) TC1 (увеличение 10000), б) TC1 (увеличение 50000), в) TC2 (увеличение 10000), г) TC2 (увеличение 50000) (Таблица 39).

Из анализа микроструктур, представленных на Рисунке 75, видно, что при добавлении рения к кобальт-танталовым сплавам, содержащим около 16 ат.% хрома,

рост зерен фаз Лавеса замедляется и происходит образование не только крупных частиц метастабильных фаз Co₃Nb и Co₃Ta, но и более мелких их выделений (Рисунок 75, г). Именно эти наноразмерные выделения способствуют повышению твердости до показателей близких к 500 HV (сплавы NC4, NC5, TC4 и TC5) после всех трех стадий термообработки.

Сплавы NC6 и TC6 с высоким содержанием хрома (около 25 ат.%) и низким содержанием ниобия или тантала имели самые низкие значения твердости посте первой стадии термообработки и в дальнейшем не исследовались.

Таким образом, добавление рения в кобальт-ниобиевые и кобальт-танталовые сплавы, легированные ~16 ат. % хрома, дает тот же эффект твердения, как и в аналогичных сплавах, не содержащих хром.

3.3. Влияние легирования рением, марганцем и хромом на устойчивость к высокотемпературному окислению на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов

Для оценки устойчивости к высокотемпературному окислению на воздухе использовались как гомогенизированные при 1375 К, так и подвергнутые всем трем стадиям термической обработки сплавы, концентрационные и фазовые составы которых представлены в Таблицах 34, 35, 39.

3.3.1. Устойчивость к высокотемпературному окислению на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением

Результаты исследования окисленной зоны образцов кобальт-ниобиевых и кобальт-танталовых сплавов, полученные в процессе их окисления на воздухе при 1200 К, представлены в Таблице 40 и на Рисунках 76 и 77.

Для определения фазового состава окисленных зон кобальт-ниобиевых и кобальттанталовых сплавов осуществлено уточнение параметров кристаллической структуры кислородсодержащих фаз методом Ритвельда, результаты которого представлены в Таблице 41.

148

Таблица 40. Концентрации элементов в кобальт-ниобиевых и кобальт-танталовых сплавах и окисленных зонах, фазовый состав после окисления на воздухе при 1200 К

No	Коні	центр	ация	Фазовый Фазовый состав		Конце	нтраци	я элеме	нтов в	
	эле	менто	OB B	состав сплава	окислени	юй зоны	слоях	к /фазах	окисле	нной
	спла	аве, а	т. %	при 1375 К,				зоны,	ат. %	
	Co	Re	Nb	при 1200 К			Со	Nb	Re	0
N2				γс₀,	Co	00	51,1	0	0	48,9
112	94,9	0	5,1	$\gamma_{Co}+Co_3Nb$	CoO+N	b ₂ Co ₄ O ₉	48,6	1,3	0	50,1
				γс₀,	Co	0	52,9	0	0	47,1
N3	92,6	2,4	3,6	$\gamma_{Co} + \lambda + Co_3Nb$	CoO+N	$b_2Co_4O_9$	48,5	2,7	0	48,8
					(Re)+?	37,2	3,4	13,4	46,0
				γс₀,	Co	0	49,1	0	0	50,9
N5	89,9	6,0	4,1	$\gamma_{Co} + \lambda'$	CoO+N	$b_2Co_4O_9$	43,9	3,7	0	52,4
				$\gamma_{Co} + Co_3 Nb^*$	(Re)+?	26,4	4,5	25,3	43,8
				γс₀,	Co	0	52,5	0	0	47,5
N7	85,0	8,9	6,1	$\gamma_{Co} + \lambda'$	Nb ₂ C	C04O9	29,2	14,4	0	56,4
				$\gamma_{Co} + Co_3 Nb^*$	(Re)+?	11,5	1,9	64,5	22,1
				(Re)	Co	0	48,6	0	0	51,4
N8	66 7	293	40	$(Re) + \mu$	Nb ₂ C	C04O9	24,2	10,8	2,3	62,7
110	00,7	27,5	7,0		(Re) +	(Re)	18,5	1,6	70,5	9,4
					Nb ₂ Co ₄ O ₉	Nb ₂ Co ₄ O ₉	24,8	13,5	7,8	53,9
	Co	Re	Ta				Co	Та	Re	0
Т2	95 9	0	41	γс₀,	Co	0	50,0	0	0	50,0
	,,,,	Ŭ	.,1	$\gamma_{Co} + Co_3 Ta$	CoO+Ta	$a_2Co_4O_9$	45,4	2,6	0	52,0
				γςο,	Co	0	50,9	0	0	49,1
T4	90,9	5,4	3,7	$\gamma_{Co} + \lambda'$	CoO+Ta	a ₂ Co ₄ O ₉	46,5	3,3	0	50,2
					(Re)+?	38,6	2,3	11,5	47,6
				γсο,	Co	0	48,3	0	0	51,7
Т5	89.7	7.2	3.1	$\gamma_{\rm Co} + \lambda'$	CoO+Ta	$a_2 Co_4 O_9$	46,2	2,3	0	51,5
	,	.,-		$\gamma_{Co}+Co_3Ta^*$	(Re)+?	31,5	3,3	16,1	49,1

N⁰	Кон	центр	ация	Фазовый	Фазовый состав	Конце	нтраци	я элеме	нтов в	
	эле	менто	OB B	состав сплава	окисленной зоны	слоях /фазах окисленн			енной	
	спла	аве, а	т. %	при 1375 К,			зоны, ат. %			
	Co	Re	Nb	при 1200 К		Со	Nb	Re	0	
				γс₀,	CoO	49,4	0	0	50,6	
T7	86,7	9,6	3,7	$\gamma_{Co}+\lambda$	CoO+Ta ₂ Co ₄ O ₉	47,7	1,5	0	50,8	
				$\gamma_{Co}+Co_3Ta^*$	(Re)+?	15,3	3,0	48,4	33,3	
				γςο,	CoO	51,0	0	0	49,0	
T8	79,7	18,9	1,4	$\gamma_{Co} + (Re)$	CoO+Ta ₂ Co ₄ O ₉	47,4	1,3	0	51,3	
					(Re)+?	32,7	1,0	37,5	28,8	

* Метастабильное равновесие.

Окисленная зона однофазных кобальт-ниобиевого сплава N2, не содержащего рений, состоит из двух слоев: внешнего слоя оксида CoO и внутреннего двухфазного слоя фазы (CoO + Nb₂Co₄O₉) (Таблица 40, Рисунок 76, а, б).

Легирование кобальт-ниобиевых сплавов рением от 2.4 ат.% (сплав N4, Рисунок 76, в, г и сплав N5, Рисунок 76, д, е) приводит к образованию трех слоев: внешнего слоя оксида CoO, промежуточного двухфазного слоя (CoO + Nb₂Co₄O₉) и внутреннего двухфазного слоя ((Re)+?), обогащенного рением. Метод ЛРСА не позволяет измерить состав отдельных участков слоя ((Re)+?), кроме рения, поскольку размер этих участков не превышал 5 мкм. Область ((Re)+?), вероятно, помимо частиц чистого рения, образующихся при распаде оксида рения (IV), содержит фазы CoO, Nb₂Co₄O₉ (Таблица 40). Методом РФА также не удалось обнаружить еще какие-либо фазы: дифрактограмма порошка из снятой с поверхности части окисленной зоны содержала пики, соответствующие только фазам CoO и Nb₂Co₄O₉, а дифрактограмма порошка, полученного спиливанием напильником ренийсодержащего слоя, показала наличие пиков, соответствующих металлическому рению (структурный тип Mg), и некоторое количество не индицируемых пиков, едва отличимых от фона.

При содержании рения в кобальт-ниобиевых сплавах выше 8,9 ат.% (сплав N7, Рисунок 76, ж, з) окисленная зона также содержит три слоя: внешний слой оксида СоО, промежуточный слой Nb₂Co₄O₉ и внутренний слой, обогащенный рением и граничащего с исходным сплавом.

Рисунок 76. Микроструктуры и дифрактограммы окисленных сплавов N2 (а, б), N3 (в, г), N5 (д, е), N7 (ж, з) (Таблица 41) после окисления на воздухе при 1200 К в течение 1 часа.

Рисунок 77. Микроструктуры и дифрактограммы окисленных сплавов № Т2 (а, б), Т4 (в, г), Т5 (д, е) и Т7 (ж, з) (Таблица 41) после окисления на воздухе при 1200 К в течение 1 часа

Таблица 41. Кристаллографические данные и уточненные параметры кристаллической структуры окисленной зоны сплавов N5 и T5.

Номер сплава		N5]	[5
Состав исходного сплава, ат. %	Co89,6	Re6,0Nb4,1	Co89,7R	e7,2Ta3,1
Состав фазы	CoO	Nb ₂ Co ₄ O ₉	CoO	Ta ₂ Co ₄ O ₉
Структурный тип	NaCl	Nb ₂ Mn ₄ O ₉	NaCl	Nb ₂ Mn ₄ O ₉
Пространственная группа	<i>cF</i> 8 (225)	<i>P</i> -3 <i>c</i> 1 (165)	<i>cF</i> 8 (225)	<i>P</i> -3 <i>c</i> 1 (165)
Сингония	кубическая	гексагональная	кубическая	гексагона-
				льная
Параметры элементарной				
ячейки, нм				
a	0,42575(5)	0,51615(1)	0,42615(4)	0,51678(8)
b	0,42575(5)	0,51615(1)	0,42615(4)	0,51678(8)
С	0,42575(5)	1,4138(2)	0,42615(4)	1,4169(3)
Объем элементарной ячейки,	0,077177(1)	0,32623(8)	0,07739(1)	0,32771(1)
HM ³				
Число формульных единиц в	4	2	4	2
элементарной ячейке, Z				
20 ⁰	15	≤2θ≤90	15≤2	$2\theta \le 90$
Шаг		0,05	0,	05
Число уточняемых рефлексов	5	55	5	55
Число уточняемых параметров	33	33	32	32
$R_F = \sum F_{oi} - F_{ci} / \sum F_{oi}$	0,02	0,30	0,07	0,22
$R_B = \sum I_{o,h} - I_{c,h} / \sum I_{o,h} $	0,05	0,23	0,14	0,28
$R_P = \sum y_{oi} - y_{ci} / \sum y_{oi} $	0,22	0,41	0,19	0,42
$R_{wP} =$	0,16	0,39	0,24	0,38
$[\sum w_i y_{oi} - y_{ci} ^2 / \sum w_i y_{oi} ^2]^{1/2}$				
$\chi^2 = (R_{wP}/R_e)^2$	3	3	4	4

Окисленная зона кобальт-танталового сплава T2, не содержащего рений, состоит из двух слоев: внешнего слоя оксида CoO и внутреннего слоя фазы Ta₂Co₄O₉ (Таблица 40, Рисунок 77а, б).

Легирование кобальт-танталовых сплавов рением от концентрации 2,1 ат.% (Т4, Т5 и Т7) способствует образованию трехслойной окисленной зоны, состоящей из внешнего слоя оксида СоО, промежуточного двухфазного слоя (СоО+Та₂Со₄О₉) и внутреннего слоя, обогащенного рением и граничащего с исходным сплавом (Таблица 40, Рисунок 77 в-з). Как и в случае окисления кобальт-ниобиевых сплавов, при окислении на воздухе при 1200 К кобальт-танталовых сплавов во внутреннем окисленном слое обнаружить другие фазы кроме металлического рения не удалось.

Данные о ширине окисленной зоны кобальт-ниобиевых и кобальт-танталовых сплавов в зависимости от времени окисления при 1200 К на воздухе, приведены в Таблице 42 и на Рисунке 78.

Таблица 42. Концентрации элементов в сплавах, фазовый состав и толщина окисленной зоны легированных рением кобальт-ниобиевых и кобальт-танталовых сплавов после окисления на воздухе при 1200 К

N⁰	Кон	центра	ация		Врем	я окисл	ения, ч		Коэффициент	Коэффи-
	эле	ементо	B B	1	4	9	25	49	уравнения <i>k</i>	циент <i>R</i> ²
	спл	аве, ат	г. %							
	Со	Re	Nb	Ши	рина ок	исленно	ой зоны, 1	МКМ		
N2	94,9	0	5,1	67±2	116±1	184±9	286±7	391±5	57,5909±0,0001	0,9510
N3	92,6	2,4	3,6	63±2	97±4	187±8	281±6	402±3	57,2386±0,0001	0,9592
N5	89,9	6,0	4,1	65±2	118±9	181±4	305±9	409±2	59,4545±0,0001	0,9552
N7	85,0	8,9	6,1	89±1	121±3	203±3	343±10	518±5	71,3750±0,0001	0,9749
N8	66,7	29,3	4,0	148±2	—	—	—	-	-	_
	Co	Re	Та	Ши	рина ок	исленно	ой зоны, 1	МКМ		
T2	95,9	0	4,1	44±3	106±3	133±5	285±7	392±4	54,9886±0,0001	0,9706
T4	90,9	5,4	3,7	54±1	119±7	157±4	283±2	402±5	56,7272±0,0001	0,9663
T5	89,7	7,2	3,1	63±1	97±8	158±7	290±5	421±1	58,2727±0,0001	0,9754
T7	86,7	9,6	3,7	62±4	108±4	169±3	282±9	452±4	60,8977±0,0001	0,9800
T8	79,7	18,9	1,4	88±2	_	_	_	_	_	_

Как видно из Таблицы 42 и Рисунка 78, кобальт-ниобиевые сплавы, содержащие от 2,4 до 8,9 ат.% рения, и кобальт-танталовые сплавы, содержащие от 2,1 до 9,6 ат.% рения, имеют одинаковую зависимость толщины окисленной зоны от времени после их окисления на воздухе при 1200 К, которая вполне удовлетворительно описываются уравнением:

$l = k \sqrt{t}$,

где *l* – ширина окисленной зоны, мкм; *t* – время окисления, ч. Результаты описания, представленные в Таблице 42 и на Рисунке 78, согласуется с моделью образования окалины по Вагнеру [165, 231], в которой рост слоя окисленной зоны определяется диффузией компонентов.

Рисунок 78. Зависимость ширины окисленной зоны кобальт-ниобиевых и кобальттанталовых сплавов, легированных рением от времени (Таблица 42).

Таким образом, увеличение содержание рения в кобальт-ниобиевых сплавах от 2,4 до 8,9 ат. % и в кобальт-танталовых сплавах от 2,1 до 9,6 ат. % приводит к увеличению толщины окисленной зоны при окислении на воздухе при 1200 К (Таблица 40), однако количество слоев в окисленной зоне (Таблица 40, Рисунок 76) при этом остается неизменным.

При этом ширина окисленной зоны сплавов одного состава не зависела от предварительного проведения дисперсионного твердения. Как однофазные (после гомогенизационного отжига при 1375 К), так и двухфазные (после старения при 1200 К и отпуска при 1033 К) сплавы имели одинаковую ширину окисленной зоны. Отличие

окисленной зоны дисперсионно-упрочненных сплавов заключалось лишь в сохранении во втором слое характерной сетчатой структуры при малых часах отжига (Рисунок 79). Согласно данным ЛРСА и РФА упрочняющие фазы Co₃Nb и Co₃Ta (структурный тип Mg₃Cd), как и фазы Лавеса окисляются с образованием тройных оксидов Nb₂Co₄O₉ и Ta₂Co₄O₉ (структурный тип Nb₂Mn₄O₉). Таким образом, фазовый состав исходных кобальтниобиевых и кобальт-танталовых сплавов, содержащих рений, не влияет на количество окисленных слоев и их фазовый состав.

Рисунок 79. Микроструктура (а, б) и дифрактограмма (в) окисленной зоны сплава T5; микроструктрура (г) сплава N5 (окисление после проведения старения и отпуска).

Для исследования влияния более высоких концентраций рения на окислительную устойчивость кобальт-ниобиевых и кобальт-танталовых сплавов на воздухе при 1200 К были окислены сплавы N8 (69,7Co4,0Nb29,3Re) и T8 (79,7Co1,4Ta18,9Re). При окислении сплавов N8 и T8 на воздухе в течение часа ширина окисленной зоны составляла соответственно 88,2 мкм и 148 мкм (Рисунок 80 а, в) соответственно, что сопоставимо с данными, полученными для сплавов с содержанием рения менее 10 ат. % после окисления в течение 25 часов.

Рисунок 80. Микрофотографии и данные рентгенофазового анализа окисленных зон сплавов N8 (а, б) и T8 (в, г) после отжига при 1200 К в течение 1 часа.

Окисленная зона сплава N8 (Таблица 40, Рисунок 80 а,б) после окисления на воздухе при 1200 К в течение 1 часа состоит из трех слоев: внешнего слоя оксида СоО, промежуточного слоя Nb₂Co₄O₉ и внутреннего двухфазного слоя ((Re)+ Nb₂Co₄O₉), в котором содержание рения достигает 70,5 ат. %.

Окисленная зона сплава Т8 (Таблица 40, Рисунок 80 в,г) после окисления на воздухе при 1200 К в течение 1 часа состоит из трех слоев: 1) внешнего слоя СоО;

2) промежуточного двухфазного слоя, представляющего мелкодисперсную смесь CoO и Ta₂Co₄O₉ и 3) внутреннего слоя с высоким содержанием рения.

После окисления на воздухе сплавов N8 и T8 при 1200 К в течение 25 часов потеря массы сплавов составила более 50% и 30% соответственно, при этом внешний слой полностью отделился и имел пористую фактуру, что может быть объяснено миграцией газообразного оксида Re₂O₇ к поверхности.

Таким образом, устойчивость к высокотемпературному окислению на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов значительно снижается при содержании рения, превышающем его растворимостью в γ_{Co} -твердом растворе (около 9 ат. %).

3.3.2. Устойчивость к высокотемпературному окислению на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением и марганцем

Для исследования процесса окисления на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов, совместно легированных рением и марганцем, были использованы дисперсионно-упрочненные двухфазные сплавы, состав которых приведен в разделе 3.2.1 и Таблице 43. В Таблице 43 также приведены данные о концентрации элементов и фазовом составе окисленных зон кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением и марганцем, после их окисления на воздухе при 1200 К. Микрофотографии и дифрактограммы окисленной зоны сплавов NM2 и TM2 после окисления на воздухе при 1200 К в течение 25 часов показана на Рисунке 81. В Таблице 44 представлены данные по толщине окисленной зоны легированных марганцем и рением кобальт-ниобиевых и кобальт-танталовых сплавах после окисления на воздухе при 1200 К в течение 25 часов показана на

После окисления на воздухе при 1200 К кобальт-ниобиевых сплавов, легированных рением и марганцем, окисленная зона представлена четырьмя окисленными слоями: внешним слоем оксида CoO; первым промежуточным слоем (Co,Mn)O; вторым промежуточным слоем, состоящим из Nb₂Co₄O₉ в случае сплава NM1 или (CoO+Nb₂Co₄O₉) в случае сплавов NM2 и NM3; внутренним слоем ((Re)+?).

158

Таблица 43. Концентрации элементов в кобальт-ниобиевых и кобальт-танталовых сплавах и окисленных зонах, фазовый состав сплавов и окисленных зон сплавов после окисления на воздухе при 1200 К

N⁰	Кон	щентр	ация	эле-	Фазовый	Фазовый состав	Концен	нтрация	а элеме	HTOB B	слоях
	менто	ЭВ В СГ	ілаве,	ат. %	состав	окисленной зоны	(фаза	х окисл	енной	зоны, а	т. %
	Co	Mn	Nb	Re	сплава при 1200 К		Со	Mn	Nb	Re	0
						CoO	50,5	0	0	0	49,5
NIN/1	70.2	125	2.0	12	$\gamma_{Co}+\lambda'$	(Co,Mn)O	26,0	18,5	0	0	55,5
11111	19,5	15,5	3,0	4,2	$\gamma_{Co}\!+\!Co_3\!Nb^*$	Nb ₂ Co ₄ O ₉	25,2	2,4	15,0	0	57,4
						(Re)+?	44,4	1,5	0	20,4	33,7
						CoO	48,6	0	0	0	51,4
NM2	89 5	59	32	14	$\gamma_{Co}+\lambda'$	(Co,Mn)O	22,6	24,3	0	0	53,1
1 1 1 1 2	07,5	5,7	3,2	т,т	$\gamma_{Co}\!+\!Co_3\!N\!b^*$	CoO+Nb ₂ Co ₄ O ₉	47,1	0	3,4	0	49,5
						(Re)+?	32,0	0	2,5	10,2	55,3
						CoO	51,8	0	0	0	48,2
NM3	84 7	48	38	67	$\gamma_{Co}+\lambda'$	(Co,Mn)O	31,3	14,9	0	0	53,8
141413	07,7	т,0	5,0	0,7	$\gamma_{Co}\!+\!Co_3Nb^*$	CoO+Nb ₂ Co ₄ O ₉	20,5	0	10,1	2,5	66,9
						(Re)+?	17,7	0	4,4	58,1	19,8
	Co	Mn	Та	Re			Со	Mn	Та	Re	0
						CoO	50,4	0	0	0	49,6
TM1	854	33	34	79	$\gamma_{Co}+\lambda'$	(Co,Mn)O	46,6	2,0	0	0	51,4
11011	05,4	5,5	5,4	1,7	$\gamma_{Co} + Co_3 Ta^*$	CoO+Ta ₂ Co ₄ O ₉	41,1	0,5	4,9	0	53,5
						(Re)+?	31,2	0	4,0	13,6	51,2
						CoO	48,3	0	0	0	51,7
тм2	89 5	47	36	22	$\gamma_{Co}+\lambda'$	(Co,Mn)O	34,5	9,4	0	0	56,1
11012	07,5	1,7	5,0	2,2	$\gamma_{Co} + Co_3 Ta^*$	CoO+Ta ₂ Co ₄ O ₉	43,5	2,5	2,0	0	52,0
						(Re)+?	20,8	0,6	5,2	17,8	55,6
						CoO	50,6	0	0	0	49,4
тмз	84.4	8.5	3.0	4.1	$\gamma_{Co}+\lambda'$	(Co,Mn)O	21,5	20,8	0	0	53,7
	~ ., .	-,-	2,0	.,1	$\gamma_{Co} + Co_3Ta^*$	Ta ₂ Co ₄ O ₉	28,5	2,8	12,1	0	56,6
						(Re)	10,6	1,4	1,5	86,5	0

* – метастабильное равновесие.

Рисунок 81. Микрофотографии окисленной зоны сплавов NM2 (а,б) и TM2 (в,г) и дифрактограммы окисленной зоны сплавов NM2 (д) и TM2 (е).

После окисления на воздухе при 1200 К кобальт-танталовых сплавов, легированных рением и марганцем, окисленная зона представлена, как и в предыдущем случае, также четырьмя окисленными слоями: внешним слоем оксида CoO; первым промежуточным слоем (Co,Mn)O; вторым промежуточным слоем, состоящим из (CoO+Ta₂Co₄O₉) в случае сплавов TM1 и TM2 или Ta₂Co₄O₉ в случае сплава TM3; внутренним слоем ((Re)+?).

В отличие от окисленной зоны кобальт-ниобиевых и кобальт-танталовых сплавов, легированных только рением, в окисленной зоне сплавов, легированных дополнительно марганцем, образовался еще один промежуточный оксидный слой (Co,Mn)O, что вполне ожидаемо, учитывая изоструктурность оксидов CoO и MnO. Необходимо отметить, что марганец неравномерно распределен в оксидном слое (Co,Mn)O: в более темных участках содержание марганца достигает значений около 25 ат.% (Рисунок 80, а). В окисленной зоне легированных марганцем ренийсодержащих кобальт-ниобиевых и кобальт-танталовых сплавов после их окисления на воздухе при 1200 К увеличивается содержание оксидных фаз во внутреннем слое ((Re)+?), что препятствует образованию сплошного рениевого слоя и распространению окисленной зоны за пределы рениевого слоя внутрь сплава (Рисунок 81, б).

№ сплава	Концентр	рация элеме	ентов в спла	аве, ат. %	Толщина окисленной зоны,
Ji Chinaba	Со	Mn	Re	Nb	МКМ
NM1	79,3	13,5	4,2	3,0	сколота снаружи
NM2	89,5	5,9	1,4	3,2	476±8
NM3	84,7	4,8	6,7	3,8	527±3
	Со	Mn	Re	Та	
TM1	85,4	3,3	7,9	3,4	735±9
TM2	89,5	4,7	2,2	3,6	329±3
TM3	84,4	8,5	4,1	3,0	330±5

Таблица 44. Толщина окисленной зоны легированных марганцем и рением кобальт-ниобиевых и кобальт-танталовых сплавах после окисления на воздухе при 1200 К в течение 25 часов

Из анализа данных Таблицы 44 следует, что введение марганца в кобальтниобиевые и кобальт-танталовые сплавы, легированные рением, значительно повышает интенсивность окисления их поверхности. Кроме того, легирование данных сплавов марганцем ухудшает адгезию окисленной зоны и неокисленного сплава, что связано с тем, что слой, содержащий рений, оказывается внутри окисленной зоны и непосредственно не граничит с неокисленным сплавом.

3.3.3. Устойчивость к высокотемпературному окислению на воздухе при 1200 К кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением и хромом

Для исследования влияния легирования хромом на устойчивость кобальтовых сплавов к высокотемпературному окислению были синтезированы 5 сплавов системы Co-Cr и один сплав системы Co-Cr-Re, относящихся к γ_{Co} -твердому раствору при 1200 K, а также 5 сплавов четырехкомпонентной системы Co-Cr-Nb-Re и 5 сплавов системы Co-Cr-Ta-Re, которые при 1375 К являются однофазными и также принадлежат к области гомогенности γ_{Co} -твердого раствора, а при 1200 K относятся к двухфазным областям (γ_{Co} + Co₃Nb), (γ_{Co} + Co₃Ta) и (γ_{Co} + λ). Данные о составах указанных сплавов, фазовом составе и толщине их окисленных зон приведены в Таблице 45.

Таблица 45. Концентрации элементов в кобальт-хромовых сплавах, в кобальт-хромрениевом сплаве, а также в легированных рением и хромом кобальт-ниобиевых и кобальт-танталовых сплавах, фазовый состав и толщина окисленной зоны этих сплавов после окисления на воздухе при 1200 К в течение 25 часов

№ сплава	Концентрация элементов в сплаве, ат. %				Фазовый состав сплава	Фазовый состав окисленной зоны	Толш	цина о зоны	нной	Толщина окислен- ной зоны, мкм	
	Со	Cr	Re		Co Cr Re O						
C1	93,8	6,2	0		γсο	CoO	49,1	0	0	50,9	>600, сколота
C^{2}			0		Na	CoO	48,7	0	0	51,3	>600,
C2	88,9	11,1	0		γCo	$CoO + Cr_2CoO_4$	30,4	13,7	0	55,8	сколота
C3	00.0	17 1	0)/G	CoO	49,2	0	0	50,8	800+25
0.5	82,9	1/,1	0		700	$CoO + Cr_2CoO_4$	29,8	15,8	0	54,4	000±25
C4	72 1	26.0	0		γco	CoO	47,9	0	0	52,1	72+2
64	/3,1	26,9	0		100	Cr ₂ O ₃	0	39,5	0	60,5	,

20	Ко	онцен	траци	ля	Фазовый	Фазовый	T			U	Толщина
JNo	Э	лемен	ITOB I	3	состав	состав	1 олц	цина о	кисле	ннои	окислен-
сплава	ci	плаве	, ат. 9	6	сплава	окисленнои		зоны	, мкм		нои зоны,
				[зоны	40.0	0	0	C1 C	МКМ
C5	724	27.6	0		γco	CoO	48,3	0	0	51,7	71±14
	, 2, 1	27,0	Ū			Cr_2O_3	0,2	37,6	0	62,2	
						CoO	50,4	0	0	49,6	
CR1	78,3	15,6	6,1		$\gamma_{\rm Co}$	$CoO + Cr_2CoO_4$	29,5	16,2	0	54,3	331±14
						(Re) + ?	10,9	11,4	30,1	47,6	
	Co	Cr	Re	Nb			Со	Cr	Re	0	
NC1	70.2	10.0	0	2.0	$\gamma_{Co}+\lambda$	CoO	51,1	0	0	48,9	72+3
ner	79,2	18,0	0	2,8	$\gamma_{Co} + Co_3 Nb^*$	Cr ₂ O ₃	0	39,6	0	60,4	12-5
						CoO	49,5	0	0	50,5	
NC2	77,4	17,9	1,9	2,8	$\gamma C_0 + \chi$	$CoO + Cr_2CoO_4$	32,1	15,9	0	54,3	<171
					101 001 10	(Re) +?		разру	ушен		
					$\gamma c + \lambda$	CoO	49,0	0	0	51,0	
NC3	75,3	17,1	5,6	2,1	$\gamma_{\rm CO} + \mathcal{N}$	$CoO + Cr_2CoO_4$	28,2	16,5	0	55,3	сколота
					1COTCO31ND	(Re)+?		разру	ушен	I	
						CoO	48,8	0	0	51,2	
NC4	73,8	16,7	6,9	2,6	$\gamma_{C_0} + \lambda$	$CoO + Cr_2CoO_4$	30,7	15,7	0	53,6	сколота
					101 0051 10	(Re)+?		разру	ушен		
						CoO	50,8	0	0	49,2	
NC5	69,7	18,1	9,8	2,4	$\gamma_{C_0} + \lambda$	$CoO + Cr_2CoO_4$	31,4	16,9	0	51,7	сколота
					101005110	(Re)+?		разру	ушен		
NC6			- 0	1.0	$\gamma_{Co}+\lambda$	CoO	47,9		0	52,1	68±2
NCU	66,5	25,7	5,9	1,9	$\gamma_{Co} + Co_3 Nb^*$	Cr ₂ O ₃	0	41,4	0	58,6	00±2
	Co	Cr	Re	Та							
T C1					$\gamma_{Co}+\lambda$	CoO	51,7	0	0	48,3	
TCI	80,8	16,3	0	2,9	γ _{Co} +Co₃Ta*	Cr ₂ O ₃	0	39,9	0	60,1	69±2
					2	CoO	49,2	0	0	50,8	
TC2	78,5	17,2	1,8	2,5	$\gamma_{\rm Co} + \lambda$	$CoO + Cr_2CoO_4$	25,0	16,0	0,4	58,6	~118
					γ _{Co} +Co31a	(Re)+?		разру	ушен	<u> </u>	

	10				љ °	Фазовый					Толщина
N⁰	K	энцен	траці	RN	Фазовыи	состав	Толи	цина о	кисле	нной	окислен-
сплава	Э	леме		B	состав	окисленной		зоны	, мкм		ной зоны,
	C	плавс	, al. 7	/0	СПЛАВА	зоны					МКМ
						CoO	49,9	0	0	50,1	
TC3	75,9	17,1	4,4	2,5	$\gamma_{Co} + \lambda$ $\gamma_{Co} + Co_3 Ta^*$	$CoO + Cr_2CoO_4$	31,6	16,2	0	52,2	104±3
						(Re)+?		разру	ушен		
						CoO	51,4	0	0	48,6	
TC4	74,2	16,3	6,6	2,8	$\gamma C_0 + \Lambda$	$CoO + Cr_2CoO_4$					сколота
					<i>ү</i> сатС031а	(Re)+?					
					$\gamma_{C_1} + \lambda$	CoO	50,4	0	0	49,6	
TC5	72,3	15,2	9,7	2,9	$\gamma_{\rm C0} + \chi$	$CoO + Cr_2CoO_4$					сколота
					10100310	(Re)+?		разру	ушен		
ТСб	C7 1	25.6	5.0	1.4	$\gamma_{Co}+\lambda$	CoO	49,8	0	0	50,2	<14
100	6/,1	25,6	5,8	1,4	γ _{Co} +Co ₃ Ta [∗]	Cr ₂ O ₃	0	41,0	0	59,0	~14

* – метастабильное равновесие.

Из анализа данных Таблицы 45 следует, что содержание хрома от 5 до 16 ат. % в двухкомпонентных сплавах системы Co-Cr не приводит к образованию сплошного защитного слоя оксида хрома (III) (Рисунок 82). При этом, незначительное количество частиц состава, соответствующего оксиду Cr_2O_3 и тройным оксидам Nb₂Co₄O₉ и Ta₂Co₄O₉ было обнаружено в составе слоя шпинели и на сколах. На дифрактограммах порошка, полученного из окисленных зон данных сплавов C3 и C5 (Рисунок 82, б, г), наблюдаются рефлексы, соответствующие оксидам CoO и шпинели Cr₂CoO₄. Рефлексы, соответствующие оксидам CoO и шпинели Cr₂CoO₄. Рефлексы, соответствующие оксидам СоO и шпинели Cr₂CoO₄.

Окисление трехкомпонентного сплава CR1, состава Co78,3Cr15,6Re6,1 (Таблица 45) приводит к образованию трехслойной окисленной зоны, состоящей из внешнего слоя CoO, промежуточного слоя (CoO + Cr₂CoO₄) и внутреннего слоя рения и выделений оксидных фаз (Рисунок 83).

Не содержащие рений кобальт-ниобиевый (NC1) и кобальт-танталовый (TC1) сплавы, легированные хромом до концентрации 16 – 18 ат. %, при окислении образовывали окисленную зону, состоящую из двух слоев: внешнего слоя CoO и внутреннего слоя Cr₂O₃ (Таблица 45, Рисунок 84).

Рисунок 82. Микрофотографии и дифрактограммы порошка окисленной зоны сплавов C3 (а, б), C5 (в, г), содержащих соответственно 17,1 и 27,6 ат. % хрома, после окисления на воздухе при 1200 К в течение 25 часов.

Рисунок 83. Микрофотография (а) и дифрактограмма (б) порошка окисленной зоны сплава CR1 после окисления на воздухе при 1200 К в течение 25 часов.

Рисунок 84. Микрофотографии окисленных зон сплавов, не содержащих рений, после окисления на воздухе при 1200 К в течение 25 часов: а) сплав NC1; б) сплав TC1.

Рисунок 85. Микрофотографии и дифрактограммы окисленных зон сплавов NC2 (а, б), TC2(в, г) после окисления на воздухе при 1200 К в течение 25 часов.

В кобальт-ниобиевых (NC2 – NC5) и кобальт-танталовых (TC2 – TC5) сплавах, совместно легированных хромом (примерно от 15 до 18 ат.%) и рением, формируется трехслойная окисленная зона, состоящая из внешнего слоя CoO, промежуточного слоя оксида кобальта и шпинели (CoO + Cr₂CoO₄) и внутреннего слоя рения и выделений оксидных фаз (Таблица 45, Рисунок 85). В указанных сплавах при окислении сплошной слой Cr₂O₃ не образуется, вероятно, по причине того, что этому препятствуют газообразные продукты окисления рения. В случае сплавов данного состава наблюдается крайне плохая адгезия окисленной зоны и металлической поверхности сплава, что в случае ряда образцов не позволило произвести измерение ширины окисленной зоны.

Рисунок 86. Микрофотографии и дифрактограммы окисленных зон сплавов NC6(а, б) и TC6(в, г) после окисления на воздухе при 1200 К в течение 25 часов.

Кобальт-ниобиевый (NC6) и кобальт-танталовый (TC6) сплавы, содержащие около 25 ат. % Сг и около 6 ат.% Re, при окислении образовывали двухслойную окисленную зону, состоящую из внешнего слоя CoO и внутреннего слоя Cr₂O₃ (Таблица 45, Рисунок 86), как и сплавы NC1 и TC1, не содержащие рений. В сплавах NC6 и TC6 образующийся сплошной слой оксида хрома (III) препятствует дальнейшему окислению.

3.4. Заключение

Исходя из полученных в настоящей работе экспериментальных данных по диаграммах фазовых равновесий определена перспективная для разработки новых жаропрочных кобальтовых сплавов концентрационная область ГЦК-кобальтового твердого раствора с содержанием рения от 6,0 до 9,0 ат.% рения, в которой он находится в равновесии с упрочняющими фазами Co_3Nb и Co_3Ta . При таком содержании рения, с одной стороны, обеспечивается устойчивая дисперсная структура наноразмерных выделений упрочняющих фаз, с другой – замедляется образование и рост зародышей фаз Лавеса, вероятность образования которых высокая ввиду малой концентрационной протяженности двухфазных областей (γ_{Co} + Co_3Nb) и (γ_{Co} + Co_3Ta).

Исследования твердости славов из друхфазных областей (γ_{C0} + Co₃Nb) и (γ_{C0} + Co₃Ta), прошедших все три стадии термической обработки, показали значимый вклад фаз Co₃Nb и Co₃Ta в дисперсионное твердение сплавов.

Для решения проблемы стабилизации фаз Co₃Nb и Co₃Ta в настоящей работе был исследован процесс образования этих фаз при распаде пересыщенного γ_{Co} -твердого раствора. Исследование показало, что образование дисперсных выделений фаз Co₃Nb и Co₃Ta со структурой Mg₃Cd происходит благодаря предварительно образующимся атмосферам Сузуки, представляющим собой прослойки γ_{Co} -матрицы с ГПУ-структурой. Легирование рением облегчает образование атмосфер Сузуки, а также препятствует росту частиц Co₃Nb и Co₃Ta, следовательно, при использовании данных фаз в качестве упрочняющих легирование рением кобальт-ниобиевых и кобальт-танталовых сплавов вполне оправдано.

При легировании этих сплавов марганцем, стабилизирующим ГЦК-модификацию кобальтового твердого раствора, образование фаз Co₃Nb и Co₃Ta затрудняется, и в то же время ускоряется рост фаз Лавеса. По этой причине, а также в связи с тем, что марганец снижает устойчивость к высокотемпературному окислению данных сплавов на воздухе, использование марганца в качестве легирующей добавки в кобальт-ниобиевые и кобальт-танталовые сплавы является нежелательным.

При концентрации рения свыше 2 ат.% в исследованных концентрационных областях наблюдается образование и рост частиц фаз Лавеса на границах зерен кобальтовой матрицы, наноразмерные выделения которых приводят в повышению твердости сплава, однако дальнейшее увеличение их размеров существенно ухудщает прочностные свойста. В дальшейшем целесообразно исследовать влияние легирования цирконием и гафнием кобальтовых сплавов с целью предотвращения образования и/или предотвращения роста фаз Лавеса. Кроме того, актуальным является поиск легирующих компонентов, способных стабилизировать фазы Co₃Nb и Co₃Ta в присутствии рения.

Учитывая, что образование упрочняющей фазы Co₃Nb протекает легче, чем фазы Co₃Ta, по причине большей по сравнению с танталом растворимости ниобия в ГКЦ-кобальте при 1375 К, и что большей устойчивостью к высокотемпературному окислению на воздухе обладают танталсодержащие кобальтовые сплавы, можно ожидать лучшие результаты дисперсионного твердения и устойчивости к высокотемпературному окислению четырехкомпонентных сплавов системы Co-Re-Nb-Ta из двухфазной области (γ_{Co}+ Co₃(Nb,Ta)).

Поскольку легирование хромом до 16 ат. % кобальтовой матрицы не приводит к изменению твердости, и ухудшает устойчивость данных сплавов к высокотемпературному окислению на воздухе, а увеличение содержания хрома выше 25 ат.%, с одной стороны, повышает устойчивость к высокотемпературному окислению благодаря образованию на поверхности сплава сплошного слоя оксида хрома (III), а с другой стороны, препятствует процессу дисперсионного твердения, возможным решением может стать использование поверхностного легирования сплавов хромом из газовой фазы при 1375 К одновременно с процессом гомогенизирующего отжига.

169

Основные результаты и выводы

 Построены изотермические сечения диаграмм фазовых равновесий Co-Nb-Re и Co-Ta-Re при 1375 K, а также Co-Nb-Re, Co-Ta-Re, Co-Nb-Mn и Co-Ta-Mn при 1200 K.
 Определены фазовые равновесия с участием γ_{Co}-твердого раствора и получена информация о растворимости компонентов в фазах при 1375 и 1200 K.

2. Установлено существование тройных фаз Лавеса λ' (структурный тип MgNi₂) в системах Co-Nb-Re, Co-Ta-Re, Co-Nb-Mn и Co-Ta-Mn. Определены области концентрационной и термической стабильности данных фаз, а также их кристаллографические параметры.

3. Показано, что дисперсионное твердение при 1200 К легированных рением кобальтниобиевых и кобальт-танталовых сплавов в процессе распада γ_{Co}-твердого раствора сопровождается зарождением и ростом зон Гинье-Престона, формированием атмосфер Сузуки и образованием когерентных атмосферам Сузуки наноразмерных частиц метастабильных фаз Co₃Nb и Co₃Ta, принадлежащим к структурному типу Mg₃Cd.

4. Установлено, что легирование рением существенно повышает твердость кобальтниобиевых и кобальт-танталовых сплавов на основе γ_{Co} -твердого раствора вследствие того, что рений препятствует росту выделений фаз Co₃Nb и Co₃Ta по причине его незначительной растворимости в данных фазах и способности стабилизировать ГПУ-модификацию кобальтового твердого раствора.

5. Показано, что легирование марганцем снижает твердость кобальт-ниобиевых и кобальт-танталовых сплавов, содержащих рений, как из-за высокой скорости диффузии марганца, способствующей более быстрому росту зерен λ'-фазы, так и из-за стабилизации марганцем ГЦК-модификации кобальтового твердого раствора, препятствующей формированию достаточного количества дисперсных наноразмерных выделений фаз Co₃Nb и Co₃Ta.

6. Показано, что легирование хромом до ~16 ат. % кобальт-ниобий-рениевых и кобальттантал-рениевых сплавов не оказывает существенного влияния на их твердость; увеличение концентрации хрома до ~25 ат. % в данных сплавах приводит к снижению растворимости ниобия и тантала в γ_{Co}-матрице, что препятствует процессу дисперсионного твердения.

7. Установлено, что совместное легирование рением (~6 ат. %) и хромом (~25 ат. %) кобальт-ниобиевых и кобальт-танталовых сплавов повышает их устойчивость к высокотемпературному окислению на воздухе, в то время как легирование рением (от ~5 ат. %), а также совместное легирование рением и марганцем, приводят к ее снижению.

170

Библиографический список

- [1] Davis, J. R. et al. (ed.). Nickel, cobalt, and their alloys. ASM international, 2000.
- [2] Reed R. C. The superalloys: fundamentals and applications. Cambridge university press, 2008.

[3] Meetham G. W., Van de Voorde M. H. Materials for high temperature engineering applications.– Springer Science & Business Media, 2000.

[4] El-Dahshan, M. E. The oxidation of cobalt-manganese alloys at high temperatures / El-M. E. Dahshan //Transactions of the Japan Institute of Metals. – 1982. – V. 23. – № 4. – P. 177–185.

[5] Huang, M. An overview of rhenium effect in single-crystal sueralloys/ M. Huang, J. Zhu //Rare Metals. – 2016. – V. 35. – № 2. – P. 127–139.

[6] Li, L. Effect of Re on microstructure and mechanical properties of γ/γ' Co-Ti-based superalloys

/ L. Li, C. Wang, Y. Chen, S. Yang, M. Yang, J. Zhang, Y. Lu, J. Han, X. Liu //Intermetallics. – 2019. – V. 115. – P. 106612.

[7] Gorr, B. Thermodynamic calculations in the development of high-temperature Co–Re-based alloys / B. Gorr, H. J. Christ, D. Mukherji, J. Rösler //Journal of alloys and compounds. – 2014. – V. 582. – P. 50–58.

[8] Rösler, J. Co-Re-based Alloys: A New Class of High Temperature Materials? / J. Rösler, D. Mukherji, T. Baranski //Advanced Engineering Materials. – 2007. – V. 9. – № 10. – P. 876–881.
[9] Ishida, K. The Co-Cr (cobalt-chromium) system / K. Ishida, T. Nishizawa // Bulletin of Alloy Phase Diagrams. – 1990. – V. 11. – № 4. – P. 357–370.

[10] Zhang, X. Experimental Investigation of Phase Equilibria in the Co-Cr-Nb System at 1000, 1100, and 1200 C / X. Zhang, S. Yang, C. Zhao, Y. Lu, X. Liu, C. Wang //Journal of Phase Equilibria and Diffusion. $-2013. - V. 34. - N_{2} 4. - P. 313-321.$

[11] Самсонов Г. В., Винницкий И. М. Тугоплавкие соединения: Справочник. Изд. 2-е //Г.В. Самсонов, И.М. Винницкий. – 1976. – С.560.

[12] Fegan, S. C. Variation of MC carbide geometry with local solidification time in cast Inconel 713 C alloy / S. C. Fegan, T. Z. Kattamis, J. E. Morral, A. K. Bhambri, //Journal of Materials Science. $-1975. - V. 10. - N_{\odot}. 7. - P. 1266-1270.$

[13] Bremer, F. J. Experimental analysis of the Ni-Al phase diagram / F. J. Bremer, M. Beyss, E. Karthaus, A. Hellwig, T. Schober, J. M. Welter, H. Wenzl //Journal of crystal growth. – 1988. – V. 87. – №. 2–3. – P. 185–192.

[14] McAlister, A. J. The Al-Co (aluminum-cobalt) system / A. J. McAlister //Bulletin of Alloy Phase Diagrams. $-1989. - V. 10. - N_{\odot}. 6. - P. 646-650.$

[15] Okamoto, H. Al-Co (aluminum-cobalt) / H. Okamoto //Journal of phase equilibria. – 1996. –
 T. 17. – №. 4. – C. 367–367.

[16] Thaddeus, B. M. Binary Alloy Phase Diagrams Second Edition / B. M. Thaddeus //MaterialsPark Ohio. – 1990. – P. 136–138.

[17] Zenk, C. H. A novel type of Co–Ti–Cr-base γ/γ' superalloys with low mass density / C. H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, M. Göken //Acta Materialia. – 2017. – T. 135. – C. 244–251.

[18] Shaipov, R. K. Isothermal sections of the Co-Nb-Ni phase diagram at 1200 and 1375 K / R.
K. Shaipov, E. Y. Kerimov, E. M. Slyusarenko // Journal of Alloys and Compounds. – 2018. – T.
742. – C. 466–479.

[19] Shaipov, R. K. Isothermal sections of the Co-Ni-Ta phase diagram at 1200 and 1375 K / R.
K. Shaipov, E. Y. Kerimov, E. M. Slyusarenko //Journal of Alloys and Compounds. – 2017. – T.
701. – C. 262–278.

[20] Шаипов, Р. Х. Особенности выделения упрочняющей фазы в никель-кобальтовых сплавах, легированных танталом / Р. Х. Шаипов, Э. Ю. Керимов, Е. М. Слюсаренко //Журнал физической химии. – 2017. – Т. 91. – №. 2. – С. 276–279.

[21] Wei, D. Experimental investigation of isothermal sections at 1373 and 1473 K in the Co–Nb– Ti system / D. Wei, X. Bai, C. Guo, C. Li, Z. Du //Journal of Alloys and Compounds. – 2021. – V. 870. – P. 159406.

[22] Wei, D. Experimental investigation and thermodynamic description of the Co–Nb–Ti system
/ D. Wei, X. Bai, C. Guo, C. Li, Z. Du //Journal of Alloys and Compounds. – 2022. – V. 924. –
P. 166516.

[23] Wang, C. Phase Equilibria of the Co-Ti-Ta Ternary System / C. Wang, X. Zhang, L. Li,
Y. Pan, Y. Chen, S. Yang, Y. Lu, J. Han, X. Liu //Metals. – 2018. – V. 8. – № 11. – P. 958.

[24] Cao B. L12-Strengthened Co-Rich Alloys for High-Temperature Structural Applications: A Critical Review / B. Cao, Y. Zhao, T. Yang, C. T. Liu //Advanced Engineering Materials. – 2021.
– V. 23. – №. 10. – P. 2100453.

[25] Cao B. X. L12-strengthened multicomponent Co-Al-Nb-based alloys with high strength and matrix-confined stacking-fault-mediated plasticity / B. X. Cao, W. W. Xu, C. Y. Yu, S.W. Wu, H.J. Kong, Z.Y. Ding, T.L. Zhangab, J.H. Luana B.Xiaoe, Z.B.Jiaog, Y.Liuh, T.Yangab, C. T. Liu //Acta Materialia. - 2022. - V. 229. - P. 117763.

[26] Makineni S.K., Samanta A., Rojhirunsakool T., Alam T., Nithin B., Singh A.K., Banerjee R., Chattopadhyay K., A new class of high strength high temperature Cobalt based γ - γ ' Co-Mo-Al alloys stabilized with Ta addition, Acta Mater. – 2015 – V. 97 – P. 29–40.

[27] Li, W. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ' phase nano-hardness of multi-component Co–Ni-base superalloys / W. Li, L. Li, S. Antonov, F. Lu, Q. Feng //Journal of Alloys and Compounds. – 2020. – V. 826. – P. 154182.

[28] Sato, J. Cobalt-base high-temperature alloys / J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida //Science. – 2006. – V. 312. – № 5770. – P. 90–91.

[29] Suzuki, A. High-temperature strength and deformation of γ/γ' two-phase Co–Al–W-base alloys / A. Suzuki, T. M. Pollock //Acta Materialia. – 2008. – V. 56. – No. 6. – P. 1288–1297.

[30] Bauer, A. Creep properties of different γ' -strengthened Co-base superalloys / A. Bauer, S. Neumeier, F. Pyczak, R. F. Singer, M. Göken //Materials Science and Engineering: A. – 2012. – T. 550. – C. 333–341.

[31] Klein L. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ' -strengthened Co-base superalloys / L. Klein, N. Patel, R. Fernandes, A. Miotello //Corrosion Science. – 2011. – V. 53. – No. 9. – P. 2713–2720.

[32] Li, W. Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches / W. Li, L. Li, S. Antonov, Q. Feng //Materials & Design. – 2019. – T. 180. – C. 107912.

[33] Klein, L. The effect of grain boundaries on high temperature oxidation of new γ' -strengthened Co–Al–W–B superalloys / L. Klein, S. Virtanen, B. von Bartenwerffer, M.S. Killian, P. Schmuki, S. Virtanen //Corrosion science. – 2014. – T. 79. – C. 29–33.

[34] Xue, F. Improved high temperature γ' stability of Co–Al–W-base alloys containing Ti and Ta / F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, Q. Feng //Materials Letters. – 2013. – V. 112. – P. 215–218.

[35] Yan, H. Y. et al. Alloying and the micromechanics of Co–Al–W–X quaternary alloys / H.-Y.
Yan, J. Coakley, V.A. Vorontsov, N.G. Jones, H.J. Stone, D. Dye //Materials Science and Engineering: A. – 2014. – V. 613. – P. 201–208.

[36] Zenk, C. H. Mechanical properties and lattice misfit of γ/γ' strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system / C.H. Zenk, S. Neumeier, H.J. Stone, M. Göken //Intermetallics. – 2014. – V. 55. – P. 28–39.

[37] Shinagawa, K. Ductility enhancement by boron addition in Co–Al–W high-temperature alloys
/ K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida //Scripta Materialia. – 2009. – V.
61. – № 6. – P. 612–615.

[38] Bauer, A. Microstructure and creep strength of different γ/γ' -strengthened Co-base superalloy variants / A. Bauer, S. Neumeier, F. Pyczak, M. Göken //Scripta Materialia. – 2010. – V. 63. – No 12. – P. 1197–1200.

[39] Wang, L. Microstructure, phase stability and element partitioning of γ - γ' Co-9Al-9W-2X alloys in different annealing conditions / L. Wang, M. Oehring, Y. Li, L. Song, Y. Liu, A. Stark, F. Pyczak //Journal of Alloys and Compounds. – 2019. – V. 787. – P. 594–605.

[40] Kobayashi, S. The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ' -Co₃(Al,W) phase / S. Kobayashi, Y. Tsukamoto, T. Takasugi //Intermetallics. – 2012. – V. 31. – P. 94–98.

[41] Makineni, S. K. A new tungsten-free γ - γ 'Co-Al-Mo-Nb-based superalloy / S. K. Makineni, B. Nithin, K. Chattopadhyay //Scripta Materialia. – 2015. –V. 98. – P. 36–39.

[42] Makineni S. K. Synthesis of a new tungsten-free γ - γ' cobalt-based superalloy by tuning alloying additions / S. K. Makineni, B. Nithin, K. Chattopadhyay //Acta Materialia. – 2015. – V. 85. – P. 85–94.

[43] Уэллс А. Ф., Желиговская Н. Н. Структурная неорганическая химия: В 3-х томах: Пер. с англ. Т. 3. – М.: Мир, 1988.

[44] Ringer, S. P. Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies / S. P. Ringer, K. Hono //Materials characterization. $-2000. - V. 44. - N_{\rm P} 1-2. - P. 101-131.$

[45] Tawancy, H. M. On the precipitation of intermetallic compounds in selected solid-solutionstrengthened Ni-base alloys and their effects on mechanical properties / H.M. Tawancy //Metallography, Microstructure, and Analysis. $-2017. - T. 6. - N \ge 3. - C. 200-215.$

[46] Geddes B., Leon H., Huang X. Superalloys: alloying and performance. – Asm International, 2010.

[47] Guo, J. T. Materials science and engineering for superalloys / J. T. Guo //Beijing Sci. Press. –
 2008. – V. 109. – P. 292.

[48] Новиков И. И. Дефекты кристаллического строения металлов: учебное пособие для вузов. – М.: Металлургия, 1983.

[49] Новиков И. И. Теория термической обработки металлов – М.: Металлургия, 1974.

[50] Porter D. A., Easterling K. E. Phase transformations in metals and alloys (revised reprint). – CRC Press, – 2009. – P. 536.

[51] Qin, X. Z. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy / X. Z. Qin, J. T. Guo, C. Yuan, C. L. Chen, J. S. Hou, H. Q. Ye //Materials Science and Engineering: A. $-2008. - V.485. - N_{2} 1-2. - P.74-79.$

[52] Meher, S. Solute partitioning in multi-component γ/γ' Co–Ni-base superalloys with near-zero lattice misfit / S. Meher, L.J. Carroll, T.M. Pollock, M.C. Carroll //Scripta Materialia. – 2016. – V. 113. – P. 185–189.

[53] Shinagawa, K. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system/ K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida //Materials transactions. – 2008. – V. 49. – No 6. – P. 1474–1479.

[54] Tirado, F. L. R., Low-density, W-free Co–Nb–V–Al-based superalloys with γ/γ 'microstructure / F. L. R. Tirado, S. V. Taylor, D. C. Dunand //Materials Science and Engineering: A. – 2020. – V. 796. – P. 139977.

[55] Tirado, F. L. R. Increasing γ'volume fraction in Co–Nb–V-and Co–Ta–V-based superalloys
 / F. L. R. Tirado, D. C. Dunand //Journal of Materials Research and Technology. – 2021. – V. 11.
 – P. 2305–2313.

[56] Tirado, F. L. R. Effect of Al, Ti and Cr additions on the γ - γ 'microstructure of W-free Co-Ta-V-Based superalloys / F. L. R. Tirado, S. Taylor, D. C. Dunand //Acta Materialia. – 2019. – V. 172. – P. 44–54.

[57] Bornstein, N. Vanadium corrosion studies / N. Bornstein, H. Roth, R. Pike // United technologies research center East Hartford Ct. -1993. - P. 1 - 27.

[58] Okamoto, H. Ni-Re (nickel-rhenium) / H. Okamoto //Journal of phase equilibria and diffusion. $-2012. - V. 33. - N_{\odot}. 4. - P. 346-346.$

[59] Singleton, M.F. Al–Ni (Aluminum–Nickel). / M.F. Singleton, J.L. Murray, P. Nash // Binary Alloy Phase Diagrams, Second Edition, Ed. T.B. Massalski, ASM International, Materials Park, Ohio. – 1990. – V. 1. – P. 181–184.

[60] Raghavan, V. Al-Ni-Re (aluminum-nickel-rhenium) / V. Raghavan //Journal of Phase Equilibria and Diffusion. – 2006. – V. 27. – № 5. – P. 499.

[61] Li, L. Phase equilibria in Co–Al–Re ternary system at 1100 and 1300°C / L. L. Li, J. B. Zhang,
Y. C. Chen, S. Y. Yang, C. P. Wang, X. J. Liu //Transactions of Nonferrous Metals Society of China. – 2021. – T. 31. – № 6. – P. 1740–1747.

[62] Gupta, K. P. The Nb-Ni-Re (niobium-nickel-rhenium) system / K.P. Gupta //Journal of phase equilibria and diffusion. $-2010. - V. 31. - N_{\odot}. 6. - P. 569 - P. 572.$

[63] Kerimov, E. Y. Phase equilibria in the four-component Cr-Ni-Re-Ta system at 1375 K / E. Y.
Kerimov, S. V. Nikolaev, E. M. Slyusarenko //Russian Metallurgy (Metally). – 2015. – V. 2015.
– №. 5. – P. 412– P. 420.

[64] English, J. J. Binary and ternary phase diagrams of columbium, molybdenum, tantalum, and tungsten. – Defense Metals Information Center, Battelle Memorial Institute, 1963. – 152 p.

[65] Raman, A. X-ray investigation in the Niobium-Cobalt System / A. Raman // Transactions of the Metallurgical Society of AIME. – 1966. – V. 236. – P. 561–565.

[66] Pargeter, J. K. The constitution of niobium-cobalt alloys / J. K. Pargeter, W. Hume-Rothery //Journal of the Less Common Metals. $-1967. - V. 12. - N_{2} 5. - P. 366-374.$

[67] Баталева, С.К. Диаграмма состояния системы кобальт-ниобий/ С.К. Баталева, В.В. Куприна, В.Ю. Маркив, В.В. Бурнашова, Г.Н. Ронами, С.М. Кузнецова // Вестник Московского университета: Химия. Серия II – 1970. – Т. 25. – С. 432.

Bataleva, S. K. Cobalt-niobium phase diagram / S.K. Bataleva, V.V. Kuprina, V.Y. Markiv, V.V. Burnashova, G.N. Ronami, S.M. Kuznetsova //Moscow Univ. Chem. Bull. – 1970. – V. 25. – P. 37–40.

[68] Massalski, T.B. Co-Nb (Cobalt-Niobium) // Binary Alloy Phase Diagrams, Second Edition, Ed. T.B. Massalski, ASM International, Materials Park, Ohio. – 1990. – V. 2. – P. 1211–1212.

[69] Sprengel, W. Multiphase diffusion in the Co–Nb and Ni–Nb systems: Part I. Solid-solid phase equilibria and growth of intermetallic phases / W. Sprengel, M. Denkinger, H. Mehrer //Intermetallics. – 1994. – V. 2. – N_{2} 2. – P. 127–135.

[70] Kumar, K. C. H. Thermodynamic optimisation of the Co–Nb system / K. C. H. Kumar,
I. Ansara, P. Wollants, L. Delaey //Journal of alloys and compounds. – 1998. – V. 267. – № 1.–
P. 105–112.

[71] Okamoto, H. Co-Nb (cobalt-niobium) / H. Okamoto //Journal of phase equilibria. $-2000. - V. 21. - N_{2} 5. - P. 495.$

[72] Grüner, D. Preparation, phase stability and structure of the C36 Laves phase $Nb_{1-x}Co_{2+x}/D$. Grüner, F. Stein, M. Palm, J. Konrad, A. Ormeci, W. Schnelle, Y. Grin, G. Kreiner //Zeitschrift für Kristallographie-Crystalline Materials. – 2006. – V. 221. – No 5–7. – P. 319–333.

[73] Stein, F. Experimental reinvestigation of the Co–Nb phase diagram / F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, G. Kreiner //Intermetallics. – 2008. – V. 16. – № 6. – P. 785–792.

[74] Leineweber, A. Crystal structure, layer defects, and the origin of plastic deformability of Nb₂Co₇ / A. Leineweber, G. Kreiner, D. Grüner, R. Dinnebier, F. Stein //Intermetallics. – 2012. – V. 25. – P. 34–41.

[75] He, C. Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb / C. He, F. Stein, M. Palm //Journal of Alloys and Compounds. – 2015. – V. 637. – P. 361–375.

[76] Петьков, В.В. Исследование фазовой диаграммы системы Та – Со. / В.В. Петьков, Ю.А. Кочержинский, В.Я. Маркив / Металлофизика (Киев). – 1971. – С.107.

[77] Петьков, В.В. Фазовая диаграмма системы Та–Со. / В.В. Петьков, Ю.А. Кочержинский, В.Я. Маркив / Металлофизика, 41. – 1972. – С. 93-97.

[78] Бернард, В. Б. Взаимодействие кобальта с танталом в состоянии равновесия и аосле взрыва. / В.Б. Бернард, С.Ф. Дунаев, В.В. Куприна, В.В. Барнашева, Г.Н. Романи // Вест. Моск. Унив., Сер. II. Хим. – 1971. – №3. – С.365-366.

[79] Бернард, В.Б. Исследование фазовой диаграммы системы Та-Со / В.Б. Бернард // Вест. Моск. Унив., Сер. II. Хим. – 1976. – №2. – С.208-212.

[80] Kaufman, L. Coupled thermochemical and phase diagram data for tantalum based binary alloys / L. Kaufman //Calphad. – 1991. – V. 15. – № 3. – P. 243–259.

[81] Raman, A. Röntgenographische Untersuchungen im System Tantal-Kobalt / A. Raman //Metall. – 1967. – V. 21. – P. 900–903.

[82] Massalski, T. B. Co-Ta (cobalt-tantalum) / T.B. Massalski //Binary Alloy Phase Diagrams, Ohio. – 1990. – V. 2. – P. 1244–1245.

[83] Okamoto, H. Co-Ta (cobalt-tantalum) / H. Okamoto //Journal of Phase Equilibria and Diffusion. $-2004. - V. 25. - N_{2} 6. - P. 571-572.$

[84] Shinagawa, K. Phase equilibria and thermodynamic calculation of the Co-Ta binary system /

K. Shinagawa, H. Chinen, T. Omori, K. Oikawa, I. Ohnuma, K. Ishida, R. Kainuma //Intermetallics. – 2014. – V. 49. – P. 87–97.

[85] Ponsioen, J. C. M. A. The structure of β -TaCo₃ and the effect of the substitution of Ta and Co by related elements / J. C. M. A. Ponsioen, J. H. N. van Vucht //Philips Res. Rep. – 1967. – V. 22. – P. 161–169.

[86] Itoh, H. Crystal structures, homogeneity ranges and magnetic properties of tantalum-cobalt Laves phases / H. Itoh, Y. Aoki, T. Nakamichi //International Journal of Materials Research. – 1974. – V. 65. – №. 2. – P. 149–157.

[87] Hunt, C. R. Alloy chemistry of σ (β U)-related phases / C. R. Hunt, A. Raman //International Journal of Materials Research. – 1968. – T. 59. – No. 9. – C. 701–707.

[88] Ищенко, Т. В. Диаграмма состояния системы кобальт-молибден при 1000°С / Т. В. Ищенко, Л. Л. Мешков // Вест. Моск. Унив., Сер. II. Хим. – 1983. – №6. – С. 567-569.

[89] Крипякевич, П. И. Соединения типа W₆Fe₇ в системах Nb-Fe, Ta-Fe и Ta-Co / П. И.

Крипякевич, Е. И. Гладышевский, Р. В. Сколоздра // Сов. Физ. Кристаллогр. – 1968. – №4. – С. 525–527.

[90] Havinga, E. E. Compounds and pseudo-binary alloys with the CuAl₂ (C16)-type structure I. Preparation and X-ray results / E. E. Havinga, H. Damsma, P. Hokkeling //Journal of the Less

[91] Guo, C. Thermodynamic re-assessment of the Re–X (X = Al, Co, Cr, Ta) binary systems / C. Guo, T. Wu, C. Li, Z. Du // Calphad. – 2018. – V. 61. – P. 33–40.

[92] Köster, W. Zustandsbild und Gitterkonstanten der Legierungen des Kobalts mit Rhenium, Ruthenium, Osmium, Rhodium und Iridium / W. Köster, E. Horn //International Journal of Materials Research. – 1952. – V. 43. – № 12. – P. 444–449.

[93] Knapton, A. G. The niobium-rhenium system / A. G. Knapton //Journal of the Less Common Metals. $-1959. - V. 1. - N_{2} 6. - P. 480-486.$

[94] Levesque, P. The constitution of rhenium-columbium alloys / P. Levesque, W. R. Bekebrede,

H. A. Brown // Transactions of the American Society for Metals. – 1961. – V. 53. – P. 215 – 226.

[95] Giessen, B. C. The Constitution Diagram Niobium (Columbium)-Rhenium / B. C. Giessen,

R. Nordheim, N. J. Grant //Trans. Met. Soc. AIME. – 1961. – V. 221.

Common Metals. – 1972. – V. 27. – № 2. – P. 169–186.

[96] Savitzki, J.M. Das Zustandsdiagramm des Systems Niob–Rhenium/ J.M. Savitzki, M.A. Tylkina, K.B. Povarova//Planseeberichte für Pulvermetallurgie. – 1961. – V 8. – P.188–191.

[97] Пантелеймонов, Л.А. Изучение свойств сплавов в системах рений-тантал и рений ниобий / Л.А. Пантелеймонов, И.Г. Соколова, Т.О. Мхитарян //Вестник Московского университета, Серия Химическая. – 1976. – № 31. – 94–95.

[98] Predel, B. Nb-Re (Niobium-Rhenium) / B. Predel //Li-Mg–Nd-Zr. – 1997. – P. 1–2.

[99] Liu, X. L. First-principles aided thermodynamic modeling of the Nb–Re system / X. L. Liu, C. Z. Hargather, Z. K.vLiu //Calphad. – 2013. – V. 41. – P. 119–127.

[100] Greenfield, P. Intermediate phases in binary systems of certain transition elements / P.
 Greenfield, P. A. Beck // Trans. Met. Soc. AIME. – 1956. – V. 8. – № 2. – P. 265–276.

[101] Knapton, A. G. An X-ray survey of certain transition-metal systems for sigma-phases / A.G.
 Knapton //JOURNAL OF THE INSTITUTE OF METALS. – 1958. – V. 87. – №. 1. – P. 28-32.

[102] Knapton, A. G. Niobium and tantalum alloys / A.G. Knapton //Journal of the Less Common Metals. – 1960. – V. 2. – №. 2-4. – P. 113-124.

[103] Brophy, J. H. The tantalum-rhenium system / J. H. Brophy, P. Schwarzkopf, J. Wulff //Trans. Met. Soc. AIME. – 1960. – V. 12. – P. 910–914.

[104] Тылкина, М. А. Фазовая диаграмма системы тантал-рений / М. А. Тылкина, И. А. Цыганова, Е. М. Савтцкий // Журнал неорганической химии. – 1960. – №5. – С. 925-927.

[105] Tilkina, M. A. The phase diagram Tantalum-Rhenium / M. A. Tilkina, I. A. Tsiganova, E.M. Savitskii //Planseeber. für Pulvermetall. – 1961. – V. 8. – P. 192-194.

[106] Трегубов, И. А. Исследование системы W–Ta–Re диффузионными методами / И.А. Трегубов, Л.Н. Кузина, В.А. Батырев, С.М. Кузнецова, О.С. Иванов, И.В. Боровский // Известия Акад. наук СССР, Сер. Мет. – 1967. – №4. – С.191-199.

[107] Tregubov, I.A. Phase-composition diagrams of W – Ta – Re by method of diffused layers /
I.A. Tregubov, L.N. Evseyeva, O.S. Ivanov, I.D. Marchukova // Materials Science. – 1973. – P. 144–148.

[108] Вавилова, В. В. Стабилизация быстрой закалкой фазы со структурой δ-Мп в системе рений-тантал / В.В, Вавилова, Л.Н. Галкин, М.В. Глазов, Я.К. Ковнеристый, Ю.В. Бармин, И.З. Золотухин, Ю.А. Обвинцев // Докл. Акад. Наук СССР. – 1988. – №5. – С. 531-535.

[109] Бармин Ю. В. Аморфные сплавы системы рений-тантал / Ю.В. Бармин, В.В. Вавилова, И.В. Золотухин, Я. К. Ковенеристый, Я. В. Обвинцев, О.В. Стогней // Доклады Академии наук СССР. – 1989. – №2. – С. 371-374.

[110] Massalski, T.B. Re–Ta (Rhenium–Tantalum) / T.B. Massalski // Binary Alloy Phase Diagrams Second Edition, Second Edition, Ed. T.B. Massalski. – ASM International, Materials Park, Ohio. – 1990. V. 3. – P. 3207–3208.

[111] Cui, Y. Assessment of the Re–Ta binary system / Y. Cui, Z. Jin //Journal of alloys and compounds. – 1999. – V. 285. – №. 1-2. – P. 150-155.

[112] Liu, Z. K. Evaluation of the thermodynamic properties of the Re–Ta and Re–W systems / Z.K.
 Liu, Y.A. Chang //Journal of alloys and compounds. – 2000. – V. 299. – №. 1-2. – P. 153-162.

[113] Huang, W. An assessment of the Co-Mn system / W. Huang //Calphad. – 1989. – V. 13. – №. 3. – P. 231-242.

[114] Ishida, K. The Co-Mn (cobalt-manganese) system / K. Ishida, T. Nishizawa //Bulletin of Alloy Phase Diagrams. $-1990. - V. 11. - N_{\odot}. 2. - P. 125-137.$

[115] Karlsen, O. B. Structure and magnetism of the β -Mn–Co solid-solution phase / O.B. Karlsen, A. Kjekshus, H. Fjellvag, P. Ravindran, R. Vidya, B.C. Hauback //Journal of alloys and compounds. – 2009. – V. 476. – No. 1-2. – P. 9-13.

[116] Hellawell, A. The constitution of manganese base alloys with metals of the second transition series / A. Hellawell //Journal of the Less Common Metals. – 1959. – V. 1. – No. 5. – P. 343-347.

[117] Савицкий, Е.М. Физико-химическое взаимодействие марганца с ниобием / Е. М. Савицкий, С. В. Копецкий // Журнал неорганической химии. – 1960. – №3. – С.363-364.

[118] Свечников, В. Н. Формирование фаз Лавеса в сплавах марганца с переходными металлами IV-V групп / В. Н. Свечников, В. В. Петьков // Вестн. Акад. наук СССР, Металлофизика. – 1976. – №64. – С. 24 – 27.

[119] Massalski, T. B. Mn–Nb (Manganese–Niobium) / T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak //Binary Alloy Phase Diagrams. – ASM International Materials Park, Ohio, 1990. – V. 3. – P. 2578-2579.

[120] Liu, S. Ab initio calculations and thermodynamic modeling for the Fe–Mn–Nb system / S.
Liu, B. Hallstedt, D. Music, Y. Du //Calphad. – 2012. – V. 38. – P. 43-58.

[121] Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams: Ag-Sn, Al-Pd, Ba-Gd, Ba-Pr, Cu-P, Dy-Ni, Ga-Mn, Gd-Sb, Gd-Zr, Ho-Te, Lu-Sb, and Mn-Nb / H. Okamoto //Journal of phase equilibria and diffusion. $-2014. - V. 35. - N_{\odot} \cdot 1. - P. 105-116.$

[122] Савицкий, Е.М. Диаграмма состояния системы марганец-тантал / Е.М. Савицкий,
 С.В. Копецкий // Журнал Неорганической химии. – 1960. – Т.5. – № 11. – С. 2638-2640.

[123] Massalski, T. B. Mn—Ta (Manganese—Tantalum) / T.B. Massalski //Binary Alloy Phase Diagrams. – 1990. – P. 2609 – 2610.

[124] Liu, X. Experimental Investigation of Diagram Equilibria in the Co-Nb-Re Ternary System / X. Liu, D. Wu, L. Li, M. Yang, J. Zhang, J. Zhu, Y. Chen, S. Yang, J. Han, Y. Lu, C. Wang, //Journal of Phase Equilibria and Diffusion. – 2019. – V. 40. – №. 6. – P. 820-829.

[125] Liu, X. Experimental Investigation of Phase Equilibria in the Co-Re-Ta Ternary System
/ X. Liu, D. Wu, J. Zhang, M. Yang, J. Zhu, L. Li, Y. Chen, S. Yang, J. Han, Y. Lu, C. Wang
//Metals. - 2018. - T. 8. - №. 11. - C. 911.

[126] Туганбаев, М.Л. Изотермическое сечение системы Co-Cr-Re /М.Л. Туганбаев, Е.М. Соколовская, Е.Ф. Казакова // Известия Академии наук СССР. – 1988. – №1– Р.208-211
[127] Villars P. Handbook of ternary alloy phase diagrams/P. Villars, A. Prince and H. Okamoto. – American society for metals, 1995. – P. 10.

[128] Wang, C. Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system / C. Wang, C. Zhao, Z. Lin, X. Liu //International Journal of Materials Research. – 2014. – V. 105. – №. 12. – P. 1179-1190.

[129] Putland, F. Thermodynamically calculated phase diagrams for the Co - Cr - Ta and Co - Cr - Nb systems / F. Putland, T. Chart, A. Dinsdale //Calphad. - 1980. - V. 4. - No. 2. - P. 133-141.

[130] Шаипов, Р. Х. Особенности выделения упрочняющей фазы в никель-кобальтовых сплавах, легированных танталом / Р. Х. Шаипов, Э. Ю. Керимов, Е. М. Слюсаренко //Журнал физической химии. – 2017. – Т. 91. – №. 2. – С. 276-279.

[131] Yao, Q. First-principles studies of ternary site occupancy in the C15 NbCr2 Laves phase / Q. Yao, J. Sun, Y. Zhang, B. Jiang //Acta materialia. – 2006. – V. 54. – №. 13. – P. 3585-3591.

[132] Chu, F. Phase stability and defect structure of the C15 phase in the Hf – V – Nb system / F. Chu, Y.C. Lu, P.G. Kotula, S. Gerstl, T.E. Mitchell //Philosophical Magazine A. – 1998. – V. 77. – No. 4. – P. 941-956.

[133] Chu, F. Phase stability of C15 MV₂ (M= Zr, Hf or Ta): an electronic structure investigation / F. Chu, D.J. Thoma, T.E. Mitchell, M. Sob, C.L. Lin //Philosophical Magazine B. – 1998. – V. 77. – No. 1. – P. 121-136.

[134] Liu, C. T. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys / C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey, L.M. Pike //Intermetallics. – 2000. – V. 8. – №. 9-11. – P. 1119-1129.

[135] Radhakrishna, C. H. Srinivas S. Laves phase in superalloy 718 weld metals / C. H. Radhakrishna, K. P. Rao, S. Srinivas //Journal of materials science letters. – 1995. – V. 14. – №. 24. – P. 1810-1812.

[136] Leineweber, A. Phase transformations of iron nitrides at low temperatures (< 700 K)– application of mechanical mixtures of powders of nitrides and iron / A. Leineweber, J. Aufrecht, E. J. Mittemeijer //International journal of materials research. – 2006. – V. 97. – No. 6. - P. 753-759.

[137] Komura, Y. Long-period stacking variants and their electron-concentration dependence in the mg-base friauf–laves phases / Y. Komura, Y. Kitano //Acta Crystallographica Section
B: Structural Crystallography and Crystal Chemistry. – 1977. – V. 33. – №. 8. – P. 2496-2501. [138] Barrett C. S. Massalski., TB Structure of Metals. – 3rd ed. Elmsford, New York: Pergamon Press – 1980. – P. 654.

[139] Thoma, D. J. A geometric analysis of solubility ranges in Laves phases / D. J. Thoma,
J. H. Perepezko //Journal of alloys and compounds. – 1995. – V. 224. – №. 2. – P. 330-341.

[140] Komura, Y. Polytypism in alloys / Y. Komura //Phase transitions. – 1989. – V. 16. –
 №. 1-4. – P. 495-507.

[141] Пирсон У. Кристаллохимия и физика металлов и сплавов: Пер. с англ. Ч. 2. – Мир, 1977.

[142] Партэ Э. Некоторые главы структурной неорганической химии //М. Мир. – 1993. – С. 144.

[143] Шаипов, Р. Х. Изотермическое сечение диаграммы фазовых равновесий системы Co-Nb-Mo при 1375 К / Р. Х. Шаипов, Э. Ю. Керимов, Е. М. Слюсаренко //Вестник Московского университета. Серия 2. Химия. – 2015. – Т. 56. – №. 4. – С. 230-237.

[144] Балыкова, Ю.В. Изотермическое сечение диаграммы фазовых равновесий системы Cr-Nb-Re при 1375 К / Ю.В. Балыкова, С.В. Николаев, Э.Ю. Керимов, Е.М. Слюсаренко //Вестник Московского университета. Серия 2. Химия. – 2012. – Т. 53. – №. 6. – С. 380-385.
[145] Балыкова, Ю. В. Изотермическое сечение диаграммы фазовых равновесий системы Cr-Ta-Re при 1375 К / Ю.В. Балыкова, С.В. Николаев, Э.Ю. Керимов, Е.М. Слюсаренко //Вестник Московского университета. Серия 2. Химия. – 2013. – Т. 54. – №. 4. – С. 227-233.
[146] Николаев, С. В. Фазовые равновесия в трехкомпонентной системе никель-хромтантал при 1375 К / С.В. Николаев, Ю.В. Балыкова, Э.Ю. Керимов, Е.М. Слюсаренко //Вестник Московского университета. Серия 2. Химия. – 2013. – Т. 54. – №. 4. – С. 227-233.
[146] Николаев, С. В. Фазовые равновесия в трехкомпонентной системе никель-хромтантал при 1375 К / С.В. Николаев, Ю.В. Балыкова, Э.Ю. Керимов, Е.М. Слюсаренко //Вестник Московского университета. Серия 2. Химия. – 2013. – Т. 54. – №. 1. – С. 29-35.
[147] Кишаг К.S. Polytypic transformations in Laves phases / К.S. Кишаг, Р.М. Hazzledine //Intermetallics. – 2004. – Т. 12. – №. 7-9. – С. 763-770.

[148] Stein, F. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability / F. Stein, M. Palm, G. Sauthoff //Intermetallics. – 2004. – V. 12. – No. 7-9. – P. 713-720.

[149] Nie X. Comments on "The absence of a stable hexagonal Laves phase modification (NbCr₂) in the Nb–Cr system" //Scripta Materialia. – 2011. – V. 64. – No. 10. – P. 990-993. [150] Kubaschewski O., Hopkins B. E. Oxidation of metals and alloys. – Butterworths, 1967. [151] T. B. Massalski. The diagram Co – O // Binary Alloy Phase Diagrams Second Edition, Materials Park Ohio. – 1990. – P. 1214 – 1217. [152] Jacob, K. T. Thermodynamic Properties and Phase Boundaries of Co–O Solutions / K.
T. Jacob, J. P. Hajra // Z. Metallkd. – 1985. – T. 76. – №. 10. – C. 709-713.

[153] Fisher, B. Electrical properties of cobalt monoxide / B. Fisher, D. S. Tannhauser //The Journal of Chemical Physics. – 1966. – V. 44. – №. 4. – P. 1663-1672.

[154] Carter, R. E. An examination of the decrease of surface-activity method of measuring self-diffusion coefficients in wustite and cobaltous oxide / R.E. Carter, F.D. Richardson //JOM. $-1954. - V. 6. - N_{\odot}. 11. - P. 1244-1257.$

[155] Фейрбротер Ф. Химия ниобия и тантала. / Пер. с англ. М., 1968.

[156] Gatehouse, B. M. The crystal structure of the high temperature form of niobium pentoxide / B.M. Gatehouse, A.D. Wadsley //Acta Crystallographica. – 1964. – V. 17. – №. 12. – P. 1545-1554.

[157] Kato, K. Structure refinement of H-Nb₂O₅ / K. Kato //Acta Crystallographica Section B:
 Structural Crystallography and Crystal Chemistry. – 1976. – V. 32. – №. 3. – P. 764-767.

[158] Kikuchi, M. Observation of shock-induced phases of Nb₂O₅ single crystal under high-resolution electron microscopy / M. Kikuchi, K. Kusaba, E. Bannai, K. Fukuoka, Y. Syono, K. Hiraga //Japanese journal of applied physics. – 1985. – V. 24. – №. 12R. – P. 1600.

[159] Stephenson, N. C. Structural systematics in the binary system Ta_2O_5 –WO₃. V. The structure of the low-temperature form of tantalum oxide L- Ta_2O_5 / N. C. Stephenson, R. S. Roth //Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. – 1971. – V. 27. – No. 5. – P. 1037-1044.

[160] Earnshaw A., Greenwood N. N. Chemistry of the Elements. – Oxford: Butterworth-Heinemann, 1997. – P. 1600.

[161] Colaitis, D. Precisions sur les parametres cristallins et sur l'indexation des raies Debye et Scherrer des oxydes ReO_2 et ReO_3 / D. Colaitis, C. Lecaille, D. Lebas // Revue de Chimie Minerale. – 1972. – No 9, – P. 709 – 716.

[162] Radler, M. J. The defect structures of Mn1- xO / M.J. Radler, J.B. Cohen, G.P. Sykora, T. Mason, D.E. Ellis, J. Jr. Faber //Journal of Physics and Chemistry of Solids. – 1992. – V. 53. – №. 1. – P. 141-154.

[163] Wright I. G., Wood G. C. The isothermal oxidation of Co-Cr alloys in 760 Torr oxygen at 1000 C / I.G. Wright, G.C. Wood //Oxidation of Metals. $-1977. - V. 11. - N_{\odot}. 4. - P. 163-191.$

[164] Carter, R. E. Oxidation of cobalt metal / R.E. Carter, F.D. Richardson, C. Wagner //JOM.
 - 1955. - V. 7. - №. 2. - P. 336-343.

[165] Кофстад П. Высокотемпературное окисление металлов: Пер. с англ. – мир, 1969.

[166] Birks N., Meier G. H., Pettit F. S. Introduction to the high temperature oxidation of metals. – Cambridge university press, 2006. – P. 585.

[167] Kitayama, K. Thermogravimetric Study of the M-Co-O System: I, M= Ta and Nb at 1200° C / K. Kitayama //Journal of the American Ceramic Society. – 1992. – V. 75. – №. 6. – P. 1447-1451.

[168] Monteiro, M. J. The oxidation of Co− Nb alloys under low oxygen pressures at 600–800°
C / M.J. Monteiro, Y. Niu, F.C. Rizzo, Gesmundo F.//Oxidation of metals. – 1995. – V. 43. – №.
5. – P. 527-542.

[169] Magneli, A. Orthorhombic rhenium dioxide: a representative of a hypothetic structure type predicted by Pauling & Sturdivant //Acta Crystallographica. – 1956. – V. 9. – No. 12. – P. 1038-1039.

[170] Magneli, A. Studies on rhenium oxides / A. R. N. E. Magneli, S. Siitonen, B. Skrifvars,
J. Schliack, L. Reio //Acta Chem. Scand. – 1957. – T. 11. – №. 1.

[171] Mikhailova, D. Metallic Re–Re bond formation in different MRe₂O₆ (MFe, Co, Ni) rutile-like polymorphs: The role of temperature in high-pressure synthesis / D. Mikhailova, H. Ehrenberg, S. Oswald, D. Trots, G. Brey, H. Fuess //Journal of Solid State Chemistry. – 2009. – T. 182. – No. 2. – C. 364-373.

[172] Klauke, M. Oxidation behaviour of experimental Co–Re-base alloys in laboratory air at 1000 °C / M. Klauke, D. Mukherji, B. Gorr, V. Braz da Trindade Filho, J. Rösler, H.-J. Christ //International Journal of Materials Research. – 2009. – V. 100. – №. 1. – P. 104-111.

[173] Gorr, B. Oxidation behaviour of model cobalt-rhenium alloys during short-term exposure to laboratory air at elevated temperature / B. Gorr, V. Trindade, S. Burk, H.-J. Christ, M. Klauke, D. Mukherji, J. Rösler //Oxidation of metals. $-2009. - V. 71. - N_{\odot}. 3. - P. 157-172.$

[174]Li, W. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ' phase nano-hardness of multi-component Co–Ni-base superalloys / W. Li, L. Li, S. Antonov, F. Lu, Q. Feng //Journal of Alloys and Compounds. – 2020. – V. 826. – P. 154182.

[175] Graham, J. Lattice spacings and colour in the system alumina-chromic oxide / J. Graham //Journal of Physics and Chemistry of Solids. – 1960. – V. 17. – №. 1-2. – P. 18-25.

[176] Finger, L.W. Crystal structure and isothermal compression of Fe₂O₃, Cr₂O₃, and V₂O₃ to 50 kbars / L.W. Finger, R.M. Hazen //Journal of Applied Physics. $-1980. - V. 51. - N_{\odot}. 10. - P. 5362-5367.$

[177] Bracconi, P. R. Réactivité dans l'hydrogène du chromite de cobalt et de différentes solutions chromite de cobalt-cobaltite de cobalt / P. Bracconi, L.C. Dufour // Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences Chimiques 279 – 1974. – P. 245-248.

[178] Wright, I. G. The isothermal oxidation of Co-Cr alloys in 760 Torr oxygen at 1000° C / I.G. Wright, G.C. Wood //Oxidation of Metals. – 1977. – V. 11. – No. 4. – P. 163-191.

[179] Przybylski, K. Kinetics and mechanism of high-temperature oxidation of dilute cobaltchromium alloys / K. Przybylski, D. Szwagierczak //Oxidation of Metals. – 1982. – V. 17. – №. 3. – P. 267-295.

[180] Fryt, E. M. Influence of prior internal oxidation on the oxidation of dilute Co-Cr alloys in oxygen / E.M. Fryt, G.C. Wood, F.H. Stott, D.P. Whittle //Oxidation of metals. – 1985. – V. 23. – N_{2} . 1. – P. 77-106.

[181] Irving, G. N. The oxidation of Co-20% Cr base alloys containing Nb or Ta / G.N. Irving,
J. Stringer, D.P. Whittle //Corrosion Science. – 1975. – V. 15. – №. 5. – P. 337-344.

[182] Gorr, B. High-temperature oxidation behavior of Mo–Si–B-based and Co–Re–Cr-based alloys / B. Gorr, L. Wang, S. Burk, M. Azim, S. Majumdar, H.-J. Christ, D. Mukherji, J. Rösler, D. Schliephake, M. Heilmaier //Intermetallics. – 2014. – V. 48. – P 34-43.

[183] Sokolovskaya E. M. Interaction of cobalt with chromium and rhenium / E.M. Sokolovskaya, M.L. Tuganbaev, G.I. Stepanova, E.F. Kazakova, I.G. Sokolova //Journal of the Less Common Metals. $-1986. - V. 124. - N_{\odot}. 1-2. - P. L5-L7.$

[184] Villars, P. Handbook of ternary alloy phase diagrams/P. Villars, A. Prince and H. Okamoto. – American society for metals, 1995. – P. 10.

[185] Lowell, C. E. Formation and breakdown of a protective layer of chromium sesquioxide on L-605 alloy at 1100° C / C.E. Lowell, D.I. Deadmore //Oxidation of Metals. – 1973. – V. 7. – N_{\odot} . 1. – P. 55-69.

[186] Irving, G. N. Effect of the possible fcc stabilizers Mn, Fe, and Ni on the high-temperature oxidation of Co-Cr alloys / G.N. Irving, J. Stringer, D.P. Whittle //Oxidation of Metals. – 1974. – V. 8. – N_{2} . 6. – P. 393-407.

[187] Goldschmidt V.M. Geochemische Verteilungsgesetze der Elemente. VI. Über die Kristallstrukturen vom Rutiltypusmit Bermerkungen zur Geochemie Zweiwertiger und Vierwertiger Elemente / V.M. Goldschmidt //Videnskapsselskapets Academii i Oslo I, Math.-Naturv. – 1926. – P. 5-21.

[188] Natta, G. Soluzioni solide, isomorfismo e simmorfismo tra gli ossidi dei metalli bivalenti.

Sistemi: CaO-CdO. CaOMnO, CaO-CoO, CaO-NiO, CaO-MgO / G. Natta, L. Passerini //Gazzetta Chimica Italiana. – 1929. – V. 59. – P. 129-154.

[189] Tombs, N. C. Structure of monoxides of some transition elements at low temperatures / N. C. Tombs, H. P. Rooksby //Nature. – 1950. – V. 165. – №. 4194. – P. 442-443.

[190] Redman, M. J. Cobaltous oxide with the zinc blende/wurtzite-type crystal structure /
M.J. Redman, E.G. Steward //Nature. – 1962. – V. 193. – №. 4818. – P. 867-867.

[191] Natta, G. Ossidi ed idrossidi del cobalto / G. Natta, M. Steada //Z. Anorg. allg/chem. – 1927. – V. 163. – P. 345.

[192] Knop, O. Chalkogenides of the transition elements. VI. X-Ray, neutron, and magnetic investigation of the spinels Co_3O_4 , $NiCo_2O_4$, Co_3S_4 , and $NiCo_2S_4 / O$. Knop, K.I.G. Reid, Y. Sutarno Nakagawa //Canadian Journal of Chemistry. – 1968. – V. 46. – No. 22. – P. 3463-3476. [193] Smith, W. L. The structure of cobalt oxide, $Co_3O_4 / W.L$. Smith, A.D. Hobson //Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. – 1973. – V. 29. – No. 2. – P. 362-363.

[194] Bolzan, A.A. A powder neutron diffraction study of semiconducting and metallic niobium dioxide / A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard //Journal of Solid State Chemistry. $-1994. - V. 113. - N_{\odot}. 1. - P. 9-14.$

[195] Pialoux, A. Étude du comportement du niobium sous vide par diffraction des rayons X à haute température / A. Pialoux, M.L. Joyeux, G. Cizeron //Journal of the Less Common Metals. - 1982. - V. 87. - №. 1. - P. 1-19.

[196] Schweizer, H. J. Zur Darstellung und Kristallstruktur von β-NbO₂/Synthesis and Crystal Structure of β-NbO₂ / H.J. Schweizer, R. Gruehn //Zeitschrift für Naturforschung B. – 1982. – V. 37. – №. 11. – P. 1361-1368.

[197] Mertin, W. Über die Kristallstruktur von M-Nb₂O₅ / W. Mertin, S. Andersson, R. Gruehn
//Journal of Solid State Chemistry. – 1970. – V. 1. – №. 3-4. – P. 419-424.

[198] Ehrenberg, H. Magnetic structures of CoNb₂O₆ / H. Ehrenberg, W. Scharf, H. Weitzel,
I. Yaeger, I. Maartense, B.M. Wanklyn //J. Magn. Magn. Mater. – 1979. – P. 121-124.

[199]Heid, C. Magnetic phase diagram of $CoNb_2O_6$: A neutron diffraction study / C. Heid, H. Weitzel, P. Burlet, M. Bonnet, W. Gonschorek, T. Vogt, J. Norwig, H. Fuess //Journal of magnetism and magnetic materials. – 1995. – V. 151. – No. 1-2. – P. 123-131.

[200] Sarvezuk, P.W.C. Suppression of magnetic ordering in quasi-one-dimensional Fe_xCo_{1-x}Nb₂O₆ compounds / P.W.C. Sarvezuk, E.J. Kinast, C.V. Colin, M.A. Gusmao, J.B.M.

da Cunha, O. Isnard //Physical Review B. – 2011. – V. 83. – №. 17. – P. 174412.

[201] Lehmann, U. Ein Beitrag zur Kristallchemie der Kobaltoxoniobate: CoNb2O6 mit Rutilstruktur / U. Lehmann, H. Müller-Buschbaum //Monatshefte für Chemie/Chemical Monthly. – 1980. – V. 111. – №. 5. – P. 1225-1227.

[202] Kitayama, K. Thermogravimetric Study of the M-Co-O System: I, M= Ta and Nb at 1200° C / K. Kitayama //Journal of the American Ceramic Society. – 1992. – V. 75. – №. 6. – P. 1447-1451.

[203] Заславский, А.И. Рентгеновское исследование полиморфизма Та₂O / А.И.
Заславский, Р.А. Звинчук, А.Г. Тутов // Доклады Академии наук СССР. – 1955. – Т. 104.
– С. 409-411.

[204] Hummel, H.U. Tantaloxide durch Gasphasenhydrolyse, Druckhydrolyse und Transportreaktion aus 2H-TaS₂: Synthesen von TT-Ta₂O₅ und T-Ta₂O₅ und Kristallstruktur von T-Ta₂O₅ / H. U. Hummel, R. Fackler, P. Remmert //Chemische Berichte. – 1992. – V. 125. – N_{2} . 3. – P. 551-556.

[205] Izumi, F. A new modification of tantalum (V) oxide / F. Izumi, H. Kodama //Journal of the Less Common Metals. – 1979. – V. 63. – №. 2. – P. 305-307.

[206] Reimers, J. N. Crystal structure and magnetism in $CoSb_2O_6$ and $CoTa_2O_6 / J.N.$ Reimers, J.E. Greedan, C.V. Stager, R. Kremer //Journal of Solid State Chemistry. – 1989. – V. 83. – No. 1. – P. 20-30.

[207]Antonietti, V. Structure refinement of mixed oxides $Fe_xCo_{1-x}Ta_2O_6 / V$. Antonietti, E.J. Kinast, L.I. Zawislak, J.B.M. da Cunha, C.A. dos Santos //Journal of Physics and Chemistry of Solids. – 2001. – V. 62. – No. 7. – P. 1239-1242.

[208] Keller, C. Über ternäre oxide des niobs und tantals vom typ ABO₄ / C. Keller //Zeitschrift für anorganische und allgemeine Chemie. – 1962. – V. 318. – №. 1-2. – P. 89-106.

[209]Colaitis, D. Precisions sur les parametres cristallins et sur l'indexation des raies Debye et Scherrer des oxydes ReO_2 et ReO_3 / D. Colaitis, C. Lecaille, D. Lebas // Revue de Chimie Minerale. – 1972. – N_2 9. – P. 709 – 716.

[210] Bordeneuve, H. Structural variations and cation distributions in $Mn_{3-x}Co_xO_4$ ($0 \le x \le 3$) dense ceramics using neutron diffraction data / H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R.I. Smith, E. Suard, A. Rousset, //Solid State Sciences. – 2010. – V. 12. – No. 3. – C. 379-386.

[211] Bhowmik, R. N. Lattice expansion and noncollinear to collinear ferrimagnetic order in a

Mn Cr₂O₄ nanoparticle / R.N. Bhowmik, R. Ranganathan, R. Nagarajan //Physical Review B. – 2006. – V. 73. – №. 14. – PC. 144413.

[212] Przybylski, K. Kinetics and mechanism of high-temperature oxidation of dilute cobaltchromium alloys / K. Przybylski, D. Szwagierczak //Oxidation of Metals. – 1982. – V. 17. – №. 3. – P. 267-295.

[213] Rocchiccioli-Deltcheff, C. Spectres d'absorption infrarouge de niobates, tantalates et antimoniates de structure rutile / C. Rocchiccioli Deltcheff, T. Dupuis, R. Franck, M. Harmelin, C. Wadier //Journal de Chimie Physique. – 1970. – V. 67. – P. 2037-2044.

[214] Астров, Д. Н. Атомно-молекулярное упорядочение в MeTaO⁴ (Me= Ti, V, Cr, Fe) со структурой рутила / Д.Н. Астров, Н.А. Крюкова, Р.В. Зорин, В.А. Макаров, Р.П. Озеров, Ф.А. Рождественский, В.П. Смирнов, А.М. Турчанинов, Н.В. Фадеева // Сов. Физ. Кристаллогр. – 1973. – Т. 17. – С. 1017-1023.

[215] Massard, P. Structure cristalline et proprietes de l'oxyde CrTa₂O₆ / P. Massard, J. C.
 Bernier, A. Michel //Annales de Chimie (Paris)(Vol= Year). – 1971. – P. 41-52.

[216] Bernier, J.C. Préparation et propriétés d'un nouvel oxyde trirutile Ta₂CrO₆ / J.C. Bernier,
P. Massard // Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences
Chimiques.– 1998. – V.268. – P. 498-500

[217] Saes, M. Structure and magnetism in $CrTa_2O_6$: A trirutile oxide based on Cr^{2+} / M. Saes, N. P. Raju, J. E. Greedan //Journal of Solid State Chemistry. – 1998. – V. 140. – No. 1. – P. 7-13.

[218] WinXpow S. Program Package for the Operation of Powder Diffractometers and Analysis of Powder Diffractograms. – 2015.

[219] Rodriguez-Carvajal, J. FULLPROF: a program for Rietveld refinement and pattern matching analysis / J. Rodriguez-Carvajal //satellite meeting on powder diffraction of the XV congress of the IUCr. – Toulouse, France:[sn], 1990. – V. 127.

[220] Roisnel, T. Proceedings of the seventh European powder diffraction conference (EPDIC
7) / T. Roisnel, J. Rodriguez-Carvajal // WinPLOTR: a Windows tool for powderdiffraction patterns analysis materials science forum. – 2000. – P. 20-23.

[221] Методы исследования материалов / Тушинский Л.И., Плохов А.В., Токарев А.О. и др. – М: Мир, 2004 – 161 с.

[222] Курнаков, Н. С. Введение в физико-химический анализ. 4-е изд., доп //М.-Л.: Химтехиздат. – 1940. – С. 563.

[223] Rhines, F. N. Phase diagrams in metallurgy: their development and application. -

McGraw-Hill Companies. - 1956. - C. 340.

[224] Жиляков, А. Ю. Низкотемпературное старение никель-хром-молибденового сплава g35 / А. Ю. Жиляков, А. А. Попов, С. В. Беликов // Современные проблемы науки и образования. – 2014. – №. 4. – С. 236-236.

[225] Singh, M. High-temperature X-ray diffraction study on Co75Sn25 alloy / M. Singh, M. Barkei, G. Inden, S. Bhan //physica status solidi (a). – 1985. – V. 87. – №. 1. – P. 165-168.

[226] Niemiec, J. X-ray analysis of technetium binary alloys with tungsten and rhenium / J. Niemiec //Bull. Acad. Polon. Sci., Ser. Sci. Chim. – 1963. – V. 11.

[227] Pialoux, A. Étude du comportement du niobium sous vide par diffraction des rayons X à haute température / A. Pialoux, M. L. Joyeux, G. Cizeron //Journal of the Less Common Metals. – 1982. – V. 87. – №. 1. – P. 1-19.

[228] Krug, M. P. The solid state portion of the Hf-Ta phase diagram / M. P. Krug, L. L. Oden, P. A. Romans //Metallurgical Transactions A. – 1975. – V. 6. – №. 5. – P. 997-1002.

[229] Suzuki, H. Chemical interaction of solute atoms with dislocations / H. Suzuki //Sci. Rep. Res. Inst. Tohoku Univ. A. – 1952. – V. 4. – P. 455-463.

[230] Suzuki, H. Segregation of solute atoms to stacking faults / H. Suzuki //Journal of the Physical Society of Japan. – 1962. – V. 17. – №. 2. – P. 322-325.

[231] Wagner, C., Mott N. F. Z. phys. Chem. – 1933.

Список работ, опубликованных автором по теме диссертации

Статьи, опубликованные в рецензируемых научных изданиях (журналах), в том числе индексируемых в базах данных Web of Science и Scopus:

1. <u>Федораев И.И.</u>, Гусалова М.И., Керимов Э.Ю., Чернышев В.В., Слюсаренко Е.М. Кристаллическая структура тройных фаз Лавеса в системах Co–Mn–Nb, Co–Mn–Ta, Co–Re–Nb и Co–Re–Ta // Известия Академии наук. Серия химическая, 2017, № 11, с. 2009-2014. (Fedorayev I.I., Gusalova M.I., Kerimov E.Yu, Chernyshev V.V., Slyusarenko E.M. Crystal structure of ternary Laves phases in Co–Mn–Nb, Co–Mn–Ta, Co–Re–Nb, and Co–Re–Ta systems // Russian Chemical Bulletin, 2017, V. 66, № 11, р. 2009-2014.) **IF** 2,086 (доля участия 50 %)

2. <u>Fedorayev I.I.</u>, Kerimov E.Yu., Sulyanov S.N., Leonov A.V., Slyusarenko E.M. Isothermal sections of the Co–Re–Ta phase diagram at 1200 and 1375 K // Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, Vol. 65, pp. 244 – 259. **IF** 2,004 (доля участия 50 %)

3. <u>Fedorayev I.I.</u>, Kerimov E.Yu., Sulyanov S.N., Leonov A.V., Slyusarenko E. M. Isothermal sections of the Co–Nb–Re phase diagram at 1200 and 1375K // Journal of Alloys and Compounds, 2020, V. 814, pp. 1 – 14. **IF** 6,371 (доля участия 50 %)

4. <u>Fedorayev I.I.</u>, Kerimov E.Yu., Leonov A.V., Philippova S.E., Slyusarenko E.M. Isothermal sections of the Co–Mn–Nb and Co–Mn–Ta phase diagrams at 1200 K // Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, V. 76, pp. 102363. **IF** 2,086 (доля участия 50 %).

Статьи в сборниках:

1. <u>Федораев И.И.</u>, Керимов Э.Ю., Слюсаренко Е.М. Особенности выделения фазы (Co,Ni)₃Ta из никель-кобальтового сплава, легированного танталом и рением. // В сб. «Труды Международной конференции «Наноматериалы: новые методы синтеза». – М.: МАКС Пресс, 2017. – с. 73–74.

2. <u>Федораев И.И.</u>, Гусалова М.И., Керимов Э.Ю., Чернышев В.В., Слюсаренко Е.М. Тройные фазы Лавеса в трехкомпонентных системах Co–Nb–Mn и Co–Nb–Re при 1200 К // В сб. «Труды Международного симпозиума «Дифракционные методы в характеризации новых материалов». – М.: МАКС Пресс, 2017. – с. 61–62.

3. <u>Федораев И.И.</u>, Керимов Э.Ю., Слюсаренко Е.М. Особенности распада ГЦКтвердого раствора в кобальт-ниобиевых и кобальт-танталовых сплавах, легированных рением // В сб. «Химия твердого тела и функциональные материалы – 2022 и XIV симпозиум «Термодинамика и материаловедение» – материалы XII-й Всероссийской конференции». – Екб.: ООО «ДжиЛайм», 2022. – с. 359–361.

4. <u>Федораев И.И.</u>, Гусев Д.И., Керимов Э.Ю., Слюсаренко Е.М. Влияние легирования рением, марганцем и хромом на устойчивость к высокотемпературному окислению на воздухе кобальт-ниобиевых и кобальт-танталовых сплавов при 1200 К // В сб. «Химия твердого тела и функциональные материалы – 2022 и XIV симпозиум «Термодинамика и материаловедение» – материалы XII-й Всероссийской конференции». – Екб.: ООО «ДжиЛайм», 2022. – с. 362–364.

5. <u>Федораев И.И.</u>, Керимов Э.Ю., Слюсаренко Е.М. Влияние марганца и хрома на процессы старения кобальт-ниобиевых и кобальт-танталовых сплавов, легированных рением // В сб. «Химия твердого тела и функциональные материалы – 2022 и XIV симпозиум «Термодинамика и материаловедение» – материалы XII-й Всероссийской конференции». – Екб.: ООО «ДжиЛайм», 2022. – с. 365–367.

Тезисы докладов:

1. <u>Федораев И.И.</u> Фазовые равновесия в системе кобальт-рений-тантал при 1375 К. // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2016» / Отв. ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов. [Электронный ресурс] — М.: МАКС Пресс, 2016.

2. <u>Федораев И.И.</u> Фазовые равновесия в системе Co–Nb–Re при 1375 К. // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2017» / Отв. ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов. [Электронный ресурс] — М.: МАКС Пресс, 2017.

 <u>Федораев И.И.</u> Тройные фазы Лавеса в системах Со–Мп–Та и Со–Rе–Та при 1200 К. // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2018» / Отв. ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов. [Электронный ресурс] — М.: МАКС Пресс, 2018.

4. E.Yu. Kerimov. High-temperature oxidation of cobalt alloys alloying by niobium, tantalum, and rhenium / E.Yu. Kerimov, <u>I.I.Fedoraev</u>, E.M.Slyusarenko // XXI Mendeleev Congress on General and Applied Chemistry. Book 2a. Chemistry and technology of materials: Abstracts. – Saint Petersburg, 2019. – V.2. – C. 84.

Благодарности

Автор выражает благодарность и глубочайшую признательность научному руководителю – доценту, канд. хим. наук Э.Ю. Керимову; ведущему научному сотруднику, д-ру хим. наук Е.М. Слюсаренко; ведущему научному сотруднику, д-ру физ.-мат. наук В.В. Чернышеву; профессору, д-ру хим. наук А.В. Яценко; ведущему научному сотруднику, канд. хим. наук К.Б. Калмыкову; ведущему научному сотруднику, канд. хим. наук С.Н. Нестеренко; старшему научному сотруднику, канд. хим. наук С.Н. Нестеренко; старшему научному сотруднику, канд. хим. наук Е.Ф. Казаковой; старшему преподавателю, канд. хим. наук Н.Е. Дмитриевой; ведущему специалисту, канд. хим. наук С.В. Максимову.