МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Amport

Строганова Екатерина Андреевна

Интерметаллические соединения и их производные на основе гетерометаллических фрагментов со связями *d*- или *f*-металлов с *p*-металлами

1.4.1 – Неорганическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата химических наук

Научный руководитель: д.х.н., член-корр. РАН, в.н.с. Кузнецов А.Н.

Москва – 2022

Содержание

1. Введение 4
2. Обзор литературы
2.1. Бинарные интерметаллиды никеля- <i>р</i> -металлов 13–15 групп
2.2. Смешанные халькогениды никеля- <i>р</i> -металлов 13–15 групп с блочной структурой
2.3. Смешанные теллуриды никеля- <i>р</i> -металлов 13–15 групп со слоистой структурой
2.4. Смешанные халькогениды со структурой паркерита, шандита и ульманита 34
2.5. Бинарные интерметаллиды RE ₃ M и REM ₃ , (где M = <i>p</i> -металл, RE = металл ряда
лантанидов) со структурным типом AuCu ₃ 39
2.6. Интерметаллиды со структурным типом La ₁₆ Al ₁₃ 39
2.7. Постановка задачи
3. Экспериментальная часть 43
3.1. Синтез и рост кристаллов 43
3.2. Методы анализа 43
3.2.1. Рентгенофазовый анализ 43
3.2.2. Рентгеноструктурный анализ 44
3.2.3. Измерения поглощения водорода 45
3.2.4. Мессбауэровская спектроскопия на ядрах ⁵⁷ Fe, ¹¹⁹ Sn, ¹²¹ Sb 45
3.2.5. Локальный рентгеноспектральный анализ 46
3.2.6. Магнитные измерения 46
3.2.7. Квантовохимические расчеты 46
4. Обсуждение результатов 48
4.1. Блочные фазы в системах Ni-M-Ch (M = Al, Ga, In, Ch = S, Se, Te) 48
4.1.1. Система Ni-Al-Ch 48
4.1.2. Система Ni-Ga-Ch 52
4.1.3. Система Ni-In-Ch 54
4.2. Слоистые фазы с частичным замещением <i>d</i> - и <i>p</i> -металлов и Ni _{3-x} SbTe ₂ 89
4.2.1. Система Ni _{3-x} Fe _x GaTe ₂ 90
4.2.2. Система Ni _{3-x} Fe _x SnTe ₂ 101
4.2.3. Системы $Ni_{3-x}TM_xMTe_2$ (TM = Cu, Zn, M = Ga, Sn) 108

4.2.4. Система Ni ₃ Ga _{1-x} Sn _x Te ₂ 114
4.2.5. Система Ni _{3-x} SbTe ₂ 116
4.3. Бинарные интерметаллиды RE ₃ M (RE= Dy, Gd, Sm; M= In, Ga) 120
4.4. Интерметаллиды со структурой La ₁₆ Al ₁₃ 129
4.4.1. Система La-M (M = Al, Ga, Si, Sb) 129
4.4.2. Система La-Ga-Cu 130
4.4.3. Система RE-Al-M (RE = La, Ce, M = Cu, Ag) 131
4.4.4. Заключение
5. Выводы
6. Список литературы154
7. Приложение
8. Благодарности

1. Введение

Актуальность. На сегодняшний день одним из самых обширных и неизученных классов неорганических соединений является класс интерметаллических соединений (или интерметаллидов). Всего восемьдесят химических элементов - металлов способны образовать около трех тысяч двойных и восемьдесят тысяч тройных интерметаллических систем. Очевидно, что на данный момент изучена ничтожная часть от всех потенциально возможно существующих соединений, поэтому химия интерметаллических соединений и их производных – соединений с гетерометаллическими связями – является одной из наиболее бурно развивающихся и перспективных областей неорганической химии и химии твердого тела.

Одной из отличительных черт интерметаллических соединений является наличие нетривиальных химических связей, локальных или протяженных систем, которые охватывают весь диапазон возможных типов: от металлических до ковалентных и ионных, причем зачастую все они могут присутствовать в одном соединении одновременно. Такое разнообразие связей в интерметаллических соединениях является первопричиной проявления интересных физических свойств и, как следствие, применения этих интерметаллидов в важных технологических приложениях: от магнетизма до сверхпроводимости.

Необычная химическая связь и электронное строение, которые зачастую не удается описать в рамках классических теоретических подходов или свести к стандартным моделям, делают данные соединения интересными с фундаментальной точки зрения. До сих пор не всегда удается разработать общие принципы строения соединений даже внутри одного класса интерметаллидов, а также выявить четкую взаимосвязь между их кристаллическим и электронным строением и проявляемыми свойствами. Еще более нетривиальной становится ситуация при внедрении в трехмерную металлическую систему атомов неметалла, например, халькогена, понижающих ее размерность.

В рамках решения этой проблемы для нас наибольший интерес представляют низкоразмерные соединения, содержащие бесконечные системы связей *d*-металл-*p*-металл, *d*-металл-*f*-металл и *p*-металл-*f*-металл в виде квазидвумерных (слои, блоки) фрагментов, основанных на структурах известных интерметаллидов.

Таким образом, **целью данной работы** является выявление закономерностей образования и изменения кристаллического и электронного строения избранных классов неорганических соединений с гетерометаллическими фрагментами со связями *d*- или *f*-металлов с *p*-металлами.

4

Для достижения данной цели были поставлены следующие задачи:

- 1. Направленный синтез халькогенидов с блочной и слоистой структурой в системах Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ (M = Al, Ga, In, Ch = S, Se, Te) и Ni_{3-x}SbTe₂, новых четверных слоистых фаз с частичным замещением никеля на *d* и *p*-металлы в системах Ni_{3-x}GaTe₂ и Ni_{3-x}SnTe₂, направленный поиск новых бинарных интерметаллидов со структурой AuCu₃ и La₁₆Al₁₃ в системах RE-M (RE = La, Ce, Sm, Gd, Dy, M = Al, Ga, In, Sb) и тройных интерметаллидов со структурой La₁₆Al₁₃ в системах RE-M (RE = La, Ce, Sm, Ce, M = Cu, Ag).
- Определение кристаллического и электронного строения, а также анализ особенностей химической связи новых фаз.
- 3. Установление транспотрных и магнитных свойств новых фаз, относящихся к разным типам.
- 4. Выявление корреляции между геометрическими характеристиками гетерометаллических фрагментов и возможностью образования данных фаз.

Научная новизна работы. В данной работе были синтезированы и исследованы блочные халькогениды никеля-*p*-металлов 13 группы: Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂, Ni_{6.11}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂, Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂, при этом для трех последних ранее не была даже предположена возможность существования. Впервые было детально охарактеризовано кристаллическое строение данных фаз, в том числе для теллуросодержащих фаз впервые было выявлено наличие ромбического искажения тетрагональной структуры. Для всех соединений были впервые установлены электронное строение и особенности химических связей. Для Ni_{6.07}AlS₂, Ni_{5.80}GaTe₂, Ni_{5.78}InTe₂ и Ni_{9.39}Ga₂S₂ были изучены магнитные свойства.

Впервые был осуществлён направленный поиск и синтез новых слоистых соединений $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}SbTe_2$. С помощью мессбауэровской спектроскопии на ядрах ⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb была изучена локальная структура фаз в системе Ni-Fe-M-Te (M = Ga, Sn) и $Ni_{3-x}SbTe_2$. С помощью квантовохимических расчетов было охарактеризовано электронное строение фаз в системах Ni-TM-Ga-Te (TM = Fe, Cu). Для $Ni_{3-x}Fe_xMTe_2$ (M = Ga, Sn) были изучены магнитные свойства.

В системах RE-M (RE = La, Ce, Dy, Gd, Sm; M = Al, Ga, In, Si, Sb) была усовершенствована синтетическая методика, впервые описано и уточнено электронное строение и описание химических связей бинарных интерметаллидов со структурой AuCu₃ и La₁₆Al₁₃. Впервые был осуществлен поиск и синтез тройных фаз RE₁₆M_{13-x}TM_x со структурой La₁₆Al₁₃ в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag), охарактеризовано их кристаллическое и электронное строение, а также магнитные свойства.

Для блочных фаз на основе литературных и собственных данных впервые была проанализирована корреляция между геометрическими характеристиками квазидвумерных фрагментов, возможностью образования и типом структур Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂.

Практическая и теоретическая значимость работы. Полученные в работе результаты расширяют представления о химии интерметаллических соединений со связями *d*-металл-*p*-металл, *d*-металл-*f*-металл и *p*-металл-*f*-металл с квазидвумерными фрагментами, основанными на структурах бинарных интерметаллидов таких, как Ni₂In/NiAs, AuCu₃ и La₁₆Al₁₃. Данные о кристаллическом и электронном строении описанных в работе интерметаллических соединений могут быть использованы для разработки основ предсказания существования, дизайна и направленного синтеза других фаз с квазидвумерными фрагментами, в том числе, с анизотропными физическими свойствами: электропроводящими и магнитными. Кроме этого, данные о кристаллическом строении новых интерметаллических соединений включены в международные базы данных PDF (ICDD) и ICSD (Gmelin Institute, Karlsruhe) и вместе с данными о электронном строении могут быть использованы в качестве справочных материалов. Работа выполнена в рамках проектов РФФИ (РФФИ №20-33-90209 и РФФИ и Немецкого научно-исследовательского общества (грант 21-53-12015 ННИО_а).

Положения, выносимые на защиту: 1. Синтез, кристаллическое, электронное строение, магнитные свойства $Ni_{7-x}MCh_2$ и $Ni_{10-x}M_2Ch_2$ (M = Al, Ga, In, Ch = S, Se, Te).

2. Выявленная взаимосвязь между геометрическими характеристиками квазидвумерных фрагментов, возможностью образования и типом структур Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂.

3. Синтез, кристаллическое, локальное и электронное строение, магнитные свойства Ni_{3-x}TM_xMTe₂ (TM = Fe, Cu, Zn, M = Ga, Sn), Ni₃Ga_xSn_{1-x}Te₂ и Ni_{3-x}SbTe₂.

4. Выявленная взаимосвязь между содержанием Fe и типом магнитного упорядочения в $Ni_{3-x}Fe_xMTe_2$ (M = Ga, Sn).

5. Результаты поиска бинарных интерметаллидов со структурой $AuCu_3$ и $La_{16}Al_{13}$ на основе РЗЭ. Синтез, кристаллическое, электронное строение, магнитные свойства фаз со структурой $La_{16}Al_{13}$ в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag).

6. Выявленная взаимосвязь между кристаллическим и электронным строением и возможностью существования фаз в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag).

Достоверность результатов работы обеспечена большим комплексом современных надежных физико-химических методов анализа таких, как рентгеновская дифракция, в том числе, с использованием синхротронного излучения, порошковая in situ рентгеновская дифракция при разной температуре и под давлением газа, мессбауэровская спектроскопия на ядрах 57 Fe, 119 Sn, 121 Sb, квантовохимические расчеты и измерение магнитных свойств.

Публикация и апробация работы. По теме диссертационной работы опубликовано 5 научных статей в международных журналах, индексируемых Web of Science и Scopus. Результаты работы были представлены на 8 всероссийских и 14 международных конференциях в виде устных и стендовых докладов: Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов» (Москва, Россия, 2019-2022 гг.), конференции молодых ученых «Актуальные проблемы 2014-2020 неорганической химии» (Звенигород, гг.). Х Национальная кристаллохимическая конференция (Приэльбрусье, 2021 г.), V конференция по неорганической химии Европейского химического общества (Москва, 2019 г.).

Личный вклад автора. В качестве основы диссертационной работы были использованы результаты научных исследований, выполненных лично автором или при его непосредственном участии во время обучения на кафедре неорганической химии в период 2012 – 2022 гг. Личный вклад Строгановой Е.А. заключается в постановке цели и задач исследования, анализе литературных данных, синтезе объектов исследования, планировании экспериментальной работы, обработке и интерпретации полученных результатов, подготовке публикаций по теме диссертационной работы и представлении устных и стендовых докладов на научных конференциях. Во всех опубликованных работах вклад автора был определяющим.

Часть инструментальных исследований была выполнена д.х.н. Кузнецовым А.Н. (проведение квантовохимических расчетов и уточнение структур), к.х.н. Казаковым С.М. (проведение серии порошковых дифракционных экспериментов и уточнение структур), д.х.н. Лысенко К.А. (проведение монокристальных дифракционных экспериментов и уточнение структур), Д.Х.Н. Хрусталевым B.H. (проведение дифракционных экспериментов с использованием синхротронного излучения), к.х.н. Соболевым А.В. и д.ф.-м.н. Пресняковым И.А. (проведение экспериментов по ⁵⁷Fe, ¹¹⁹Sn мессбауэровской Фабричным П.Б. (проведение экспериментов по 121 Sb спектроскопии), д.х.н. мессбауэровской спектроскопии), к.х.н. Ефимовым Н.Н. (измерение магнитных свойств). Автор принимал непосредственное участие в обработке, анализе и интерпретации всех полученных данных. Эксперименты по ДСК и in situ рентгеновской дифракции

7

проводились автором в рамках командировки в ун-т Лейпцига (Германия) для выполнения совместных исследований.

Объем и структура работы. Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов и их обсуждения, заключения, выводов и списка литературы. Работа изложена на 179 страницах, содержит 87 рисунков, 73 таблицы и 103 ссылки на литературные источники.

2. Обзор литературы

2.1. Бинарные интерметаллиды никеля-р-металлов 13-15 групп

На сегодняшний день известно более пятидесяти бинарных интерметаллидов никеля-непереходных металлов 13–15 групп [1-3]. Большая часть из них кристаллизуется в кубической сингонии в структурных типах CsCl, AuCu₃, CaF₂, Ni₃Ga₄, FeSi, BiF₃, NaTl, FeS₂-в.т. (в.т. — высокая температура) и в гексагональной сингонии в структурных типах NiAs, Ni₂In, Mg₃Cd, Ni₂Al₃, Pd₅Sb₂, CoSn. Среди всех перечисленных структурных типов наибольший интерес для нашего исследования представляют бинарные интерметаллиды никеля и непереходных металлов 13–15 групп со структурой AuCu₃, Ni₂In и NiAs, поскольку в этих структурных типах никель образует бинарные соединения со многими непереходными металлами в пределах одной и той же группы.

Известны шесть интерметаллидов никеля-*р*-металла 13–15 групп, имеющие структуру AuCu₃: Ni₃Al [4], Ni₃Ga [5], Ni₃In-в.д. (в.д. — высокое давление) [6, 7], Ni₃Si [8], Ni₃Ge [9], Ni₃Sn-в.д. [6]; пять интерметаллидов со структурой Ni₂In и NiAs (Таблица 1)

Стр.	Пр.	13 группа				14 группа			15 группа		
тип	гр.	Al	Ga	In	Tl	Si	Ge	Sn	Pb	As	Sb
AuCu ₃	Pm-3m	Ni3Al [4]	Ni₃Ga [5]	Ni ₃ In в.д [6,7]		Ni₃Si [8]	Ni ₃ Ge [9]	Ni ₃ Sn в.д. [6]			
Ni ₂ In	P6 ₃ /mmc		Ni _{1.8} Ga [10]	Ni _{1.8} In [11]		Ni _{1.5} Si b.t. [12]	Ni _{1.5} Ge B.T. Ni _{1.9} Ge B.T. [10]	Ni _{1.5} Sn B.T. [10]			
NiAs	P63/mmc				NiTl [13]				NiPb [14]	NiAs [15]	NiSb [16]

Таблица 1. Бинарные интерметаллиды никеля-*р*-металлов 13-15 групп.

Интерметаллид AuCu₃ кристаллизуется в кубической ячейке с пространственной группой *Pm-3m* и является производным структурного типа меди (КПУ, *Fm-3m*) (Рисунок 1) [1]. Атомы золота, располагающиеся в вершинах кубической ячейки, и меди, располагающиеся в центрах всех граней, совместно образуют плотнейшую кубическую упаковку. Расположение атома никеля в структуре интерметаллидов никелянепереходных металлов, перечисленных выше, соответствует расположению атома меди в AuCu₃ (0; $\frac{1}{2}$; $\frac{1}{2}$), а непереходного металла 13–15 групп — золоту (0; 0; 0). Каждый атом никеля имеет идеальное кубооктаэдрическое окружение, образованное 8 атомами никеля, которые образуют верхнюю и нижнюю квадратные грани, и 4 атомами непереходного металла, которые лежат с ним в одной плоскости. Атомы непереходного металла также имеют идеальное кубооктаэдрическое окружение, но кубооктаэдр образуют 12 атомов никеля, которые располагаются в его вершинах. Кубооктаэдры в интерметаллидах никеля*р*-металлов сочленяются по общим квадратным граням. Все расстояния «никель-никель» и «никель-непереходный металл» равны друг другу.

Рисунок 1. Элементарная ячейка интерметаллида со структурой типа AuCu₃ (a); кубооктаэдр, центрированный атомом непереходного металла 13–15 группы (б); кубооктаэдр, центрированный атомом никеля (в).

Структурные типы NiAs (тип B81) и Ni₂In (тип B82) являются одними из самых распространённых структурных типов среди бинарных соединений переходных и рэлементов [14]. Данные соединения имеют гексагональную плотнейшую упаковку и кристаллизуются в пространственной группе *Р63/mmc*. Структура NiAs является производной от структуры Ni₂In. Обе структуры построены на основе гексагональной плотнейшей упаковки, образованной атомами *p*-элементов, которые находятся в позиции Вайкоффа 2c (координаты (1/3; 2/3; 3/4)). В структуре NiAs атомы никеля занимают октаэдрические пустоты (позиция Вайкоффа 2a с координатами (0; 0; 0), в свою очередь в структуре типа Ni₂In возникает дополнительная позиция никеля, которая находится в позиции Вайкоффа 2d (координаты (1/3; 2/3; 3/4)) и имеет тригонально-бипирамидальное окружение, образованное атомами p-элементов. В действительности между типами B8₁ и В82 может не наблюдаться четкого различия, т.к. нередко для соединений, относящихся к этим типам, может наблюдаться нестехиометрия по никелю, например, в Ni_{1.8}Ga [10], Ni_{1.5}Ge [10]. С точки зрения полиэдрического описания координационное окружение атомов никеля в NiAs образовано 6 атомами мышьяка, которые образуют октаэдр NiAs₆. Октаэдры NiAs₆ сочленяются друг с другом двумя противоположными гранями, образуя цепи октаэдров, направленные вдоль оси с. Однако в плоскости ab сочленение октаэдров происходит по общим ребрам, вследствие чего вдоль осей *а* и *b* образуются цепи октаэдров, сочлененные общими ребрами. Атом мышьяка окружен 6 атомами никеля, расположенными в вершинах тригональной призмы AsNi₆. В целом, структуру NiAs можно рассматривать как трехмерный каркас, основанный на тригональных призмах из атомов никеля, соединенных ребрами (Рисунок 2).

Рисунок 2. Элементарная ячейка интерметаллида NiAs (a); слои октаэдров NiAs₆, сочлененных гранями вдоль оси *с* и общими ребрами вдоль осей *а* и *b* (б); тригональные призмы, сочлененные ребрами (в).

В структуре Ni₂In атомы никеля имеют октаэдрическое и тригональнобипирамидальное окружение, а координационное окружение атомов индия пятишапочная тригональная призма InNi₁₁ (Рисунок 3).

Рисунок 3. Элементарная ячейка интерметаллида Ni₂In (a); координационное окружение двух типов атомов никеля в Ni₂In, (б); координационное окружение атома индия в Ni₂In (в).

Принципиальное отличие структур NiAs и Ni₂In заключается в том, что в элементарной ячейке структуры NiAs две из четырех тригональных призм центрированы атомом мышьяка, а в случае Ni₂In оставшиеся две тригонально-призматические пустоты заселены атомами никеля, поэтому Ni₂In можно рассматривать как структуру внедрения по отношению к NiAs (Рисунок 4).

Рисунок 4. Проекция кристаллической структуры NiAs (слева) и Ni₂In (справа) на плоскость *bc*. Зеленым показаны атома никеля, фиолетовым — атомы мышьяка и индия.

Как уже было отмечено выше, в структурах типа B8₂ может наблюдаться некоторая нестехиометрия по никелю Ni_{2-δ}In, которая связана с частичным заселением октаэдрических пустот. На данный момент существует только одно соединение со структурой Ni₂In с полной заселенностью всех позиций никеля — сам Ni₂In. Известно, что есть взаимосвязь между соотношением параметров *с* и *а* и типом стехиометрии соединений [14]. Если отношения *с/а* имеет значение 1.4–2.0, то в этом случае образуются или стехиометричные соединения со структурой NiAs, или соединения со структурой нестехиометричного Ni_{1-δ}As, которая основана на возникновении вакансий никеля в позиции *2a*. Строит отметить, что в структурном типе B8₁ также кристаллизуются некоторые халькогениды никеля (Таблица 2) [1].

Cap and	IIn rn	16 группа			
Стр. тип	пр. гр.	S	Se	Te	
NiAs	P6 ₃ /mmc	NiS-b.t. a = 3.9325 Å c = 5.1351 Å $V = 68.77 \text{ Å}^3$	NiSe-B.T. a = 3.634 Å c = 5.3175 Å $V = 60.81 \text{ Å}^3$	Ni _{0.8} Te a = 3.967 Å c = 5.361 Å V = 73.06 Å ³	

Таблица 2. Халькогениды никеля со структурой NiAs.

В случае низкого значения отношения c/a (1.2–1.3) имеется тенденция к образованию нестехиометричных интерметаллидов, обогащенных переходным металлом, со структурой Ni_{2- δ}In. Исходя из этого, авторы [14] предположили, что соединения типа B8 с составом между NiAs и Ni₂In могут иметь сверхструктуру, основанную на упорядочении атомов переходных металлов в позициях 2*a* и 2*d*, при этом мотив упорядочения никеля по частично заселенным позициям для каждого интерметаллида свой.

Ниже представлена таблица, в которой указаны параметры элементарной ячейки описанных выше интерметаллидов (Таблица 3).

		Кубическая сингония Стр. тип АиСиз Пр. гр. <i>Рт-3т</i>		Гексагональная сингония					
<i>р-</i> металл	Соединение			Стр. тип Ni₂In Пр. гр. <i>Р6₃/mmc</i>			Стр. тип NiAs Пр. гр. <i>Р6₃/mmc</i>		
		a, Å	$V, Å^3$	a, Å	<i>c</i> , Å	V, A^3	a, Å	<i>c</i> , Å	$V, Å^3$
Al	Ni ₃ Al	3.572	45.58	_	_	_		_	_
Ca	Ni ₃ Ga	3.582	45.96	_	_	_		_	_
Ga	Ni _{1.8} Ga	—	—	4.002	4.988	69.18	_	_	_
In	Ni ₃ In-в.д.	3.762	53.24	_	_	_		_	_
III	Ni ₂ In	—	—	4.189	5.123	77.85			
T1	NiTl	—	—	_	_	_	4.426	5.535	93.90
с:	Ni ₃ Si	3.505	43.064	_	_	_	_	_	_
51	Ni1.5Si-в.т.	—	—	3.820	4.906	62.00	_	_	_
	Ni ₃ Ge	3.627	47.71				_	_	_
Ge	Ni _{1.5} Ge-в.т.		—	3.964	3.964	68.50	_	_	_
	Ni _{1.9} Ge-в.т.		_	4.049	5.171	73.43	_	_	
C	Ni ₃ Sn-в.д.	3.738	52.23				_	_	_
Sn	Ni _{1.5} Sn-в.т.			4.078	5.197	74.85	_	_	_
Pb	NiPb		_	_		_	4.15	5.28	78.75
As	NiAs	_	_	_		_	3.620	5.035	57.13
Sb	NiSb	_	—	_		_	3.933	5.135	68.77

Таблица 3. Параметры элементарной ячейки бинарных интерметаллидов никеля-*р*-металлов 13–15 групп.

2.2. Смешанные халькогениды никеля-*p*-металлов 13–15 групп с блочной структурой

Известно, что никель способен образовывать два типа квазидвумерных соединений с гетерометаллическими связями никель-непереходный металл 13–15 групп. Первый тип – блочные халькогениды никеля-*p*-металлов, второй — слоистые соединения, которые представлены семейством теллуридов никеля-*p*-металлов 13–15 групп. Рассмотрим особенности строения соединений первого типа — блочных халькогенидов никеля.

Первые сведения о представителях данного семейства, халькогенидах никелясурьмы состава Ni_{7-x}SbCh₂ (Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂), были опубликованы в работе ДиСальво и др. в 2002 году [17]. В дальнейшем наибольшее количество представителей блочных халькогенидов никеля-*p*-металлов со стехиометрией Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = Si, Ge, Sn, Sb, In и Ch = S, Se, Te, было получено и исследовано на кафедре неорганической химии химического факультета Московского государственного университета имени M. В. Ломоносова в лаборатории направленного неорганического синтеза. В общей сложности на данный момент открыто и полностью охарактеризовано 12 блочных халькогенидов никеля состава Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, при этом с *p*-металлом 13 группы детально охарактеризовано только одно соединение — это Ni_{5.73}InSe₂ [18, 27], из 14 группы детально охарактеризованы соединения с тремя *p*-металлами: Si, Ge, Sn (Ni_{5.68}SiSe₂ [19, 20], Ni_{5.46}GeSe₂ [19, 20], Ni_{5.42}GeTe₂ [19, 20], Ni_{8.21}Ge₂S₂ [21], Ni_{8.45}Ge₂Se₂ [21], Ni₆SnS₂ [22, 26], Ni_{5.62}SnSe₂ [23], Ni_{5.78}SnTe₂ [23, 24] и Ni_{8.93}Sn₂S₂ [22]), а из 15 группы с одним *p*-металлом — Sb (Ni_{5.72}SbSe₂ [17] и Ni_{5.66}SbTe₂ [17]). Кроме этого было обнаружено существование 7 соединений с другими *p*-металлами 13 группы: Ni_{6.10}GaS₂, Ni_{5.69}GaSe₂, Ni_{5.74}GaTe₂, Ni_{8.54}Ga₂Se₂, Ni_{6.14}Al_{0.92}S₂, Ni_{7-x}AlSe₂, и Ni_{7-x}AlTe₂ [27–31] (Таблица 4), но строение и свойства этих соединений достоверно не были установлены.

Все вышеперечисленные соединения кристаллизуются в тетрагональной сингонии в пространственной группе *I4/mmm* и Z = 2. Данные соединения можно рассмотреть, как структуры линейного срастания фрагментов двух типов: гетерометаллического и никельхалькогенидного блоков. Гетерометаллический блок состава ${}^{2}_{\infty}$ [Ni₅M] имеет структуру тетрагонально искаженного фрагмента типа AuCu₃, центрированного атомом непереходного металла, в то время как, никель-халькогенидный блок ${}^{2}_{\infty}$ [Ni_xCh₂] имеет структуру типа антифлюорита Li₂O или структуру искаженного NaCl, которую также можно рассмотреть, как структуру дефектного Cu₂Sb (Рисунок 5).

Гетерометаллические блоки со структурой AuCu₃ образуют слои в плоскости *ab*, а никель-халькогенидные слои чередуются с ними вдоль оси с. За счет такого чередования слоев разного типа данную структуру также можно рассматривать как квазидвумерную. Отличительной чертой структур Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ является варьирование гетерометаллического слоя по высоте вдоль оси *с*: для Ni_{7-x}MCh₂ гетерометаллический фрагмент состоит из одного слоя кубооктаэдров ²_∞[Ni₅M], а в Ni_{10-x}M₂Ch₂ гетерометаллический фрагмент удваивается и имеет состав ²_∞[Ni₈M₂] (Рисунок 5). Фазы Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ условно можно рассматривать как первый и второй член гомологического ряда (Ni₃M)_n(Ni_{3-x}Ch₂). Авторы [18] отмечают, что на основе анализа имеющегося массива данных никель-халькогенидные блоки антифлюоритного типа образуются только в случае, если халькогеном в соединении является сера, причем антифлюоритный блок обязательно присутствует совместно с блоком Cu₂Sb. Структуры, в которых оба блока имеют структуру дефектного Cu₂Sb, образуются в случае, если Благодаря халькоген представлен селеном или теллуром. варьированию гетерометаллического блока по высоте, а никель-халькогенидного по геометрии, возможно существование четырех различных типов структур (Рисунок 5).

14

Рисунок 5. Кристаллические структуры Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, M = *p*-металлы 13–15 групп, Ch = S, Se, Te. 1 и 2 структуры являются однослойными, 3 и 4 — двухслойными, 1 и 3 структуры содержат гетерометаллические блоки только со структурой Cu₂Sb, а 2 и 4 — одновременно и Cu₂Sb, и Li₂O. Все позиции атомов никеля показаны полностью заселенными.

Таблица 4. Представители Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = р-металлы 13–15 групп, Ch = S, Se, Te. Жирным выделены соединения, для которых была определена структура.

		13 группа			15 группа					
Cn	Al	Ga	In	Si	Ge	Sn	Sb			
	Ni _{7-x} MCh ₂									
S	$Ni_{6.14}Al_{0.92}S_2$	Ni _{5.68} GaS ₂	_	—	Ni _{7-x} GeS ₂	Ni ₆ SnS ₂	—			
Se	Ni _{7-x} AlSe ₂	Ni5.69GaSe2	Ni _{5.73} InSe ₂	Ni5.68SiSe2	Ni _{5.46} GeSe ₂	Ni _{5.62} SnSe ₂	Ni _{5.72} SbSe ₂			
Te	Ni _{7-x} AlTe ₂	Ni _{5.74} GaTe ₂	—	—	Ni5.42GeTe2	Ni _{5.78} SnTe ₂	Ni5.66SbTe2			
	Ni _{10-x} M ₂ Ch ₂									
S		—	—	$Ni_{10-x}Si_2S_2$	$Ni_{8.21}Ge_2S_2$	$Ni_{8.93}Sn_2S_2$	—			
Se		Ni _{8.54} Ga ₂ Se ₂	_	—	Ni _{8.45} Ge ₂ Se ₂	—	—			
Te										

Из литературных данных известно, что во всех полученных на данный момент соединениях состава Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ позиции никеля в никель-халькогенидном блоке (Ni(3)/Ni(4) для Ni_{7-x}MCh₂ и Ni(4)/Ni(5) для Ni_{10-x}M₂Ch₂ (см. Рисунок 5 и Рисунок 6) никогда не бывают заселены полностью, поэтому стехиометрия Ni₇MCh₂ и Ni₁₀M₂Ch₂ не достигается. Во всех случаях наблюдается некоторая нестехиометрия по никелю, при этом стоит отметить, что для каждого соединения она своя (Таблица 5 и Таблица 6). Как отмечают авторы [18], нестехиометрия не может быть связана с разным количеством закладываемого при синтезе никеля, поскольку результаты локального рентгеноспектрального микроанализа и структурного анализа монокристаллов всегда показывают примерно одинаковый состав с различием в 1-2 атомный процент, исходя из чего можно сделать вывод, что данные соединения имеют крайне узкую область гомогенности.

Caaruuauua	Заселенность позиций никеля				
Соединение	Ni(3) / Ni(4)	Ni(4) / Ni(5)			
Ni _{5.72} InSe ₂	0.368(3) /				
Ni5.68SiSe2	0.342(7) / —				
Ni _{5.46} GeSe ₂	0.232(5) /				
Ni _{5.42} GeTe ₂	0.210(7) / —				
$Ni_{8.21}Ge_2S_2$		0.107(5)/			
Ni _{8.45} Ge ₂ Se ₂		0.224(5)/			
Ni5.98SnS2	0.286(6) /	0.204(7)/			
Ni _{5.62} SnSe ₂	0.309(7) / —				
Ni _{5.78} SnTe ₂	0.39(1) / —				
$Ni_{8.93}Sn_2S_2$	— / 0.262(3)	-/ 0.205(4)			
Ni _{5.72} SbSe ₂	0.359(17) / —				
Ni _{5.66} SbTe ₂	0.330(8) /				

Таблица 5. Заселенности позиций никеля Ni(3)/Ni(4), Ni(4)/Ni(5) в Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = p-металлы 13–15 групп, Ch = S, Se, Te.

Рисунок 6. Кристаллические структуры на примере Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂ с указанием частичной заселенности позиции Ni(3) (s.o.f. — заселенность позиции).

Для соединения Ni_{5.78}SnTe₂ по данным рентгеновской и электронной дифракции было установлено, что позиции никеля во фрагменте типа Cu₂Sb заселяются не статистически [24]. Упорядочение вакансий Ni(3) приводит к возникновению несоразмерной модуляции, которую можно описать в (3+1)- или (3+2)-мерном пространстве (Рисунок 7). Наличие такого рода упорядочения вакансий Ni(3) также было установлено для соединений состава Ni_{5.62}SnSe₂ и Ni_{5.46}GeSe₂ [23, 20]. Соединения, содержащие блок типа Li₂O, не исследовались на предмет наличия сверхструктуры, но поскольку соединения с разными типами гетерометаллических блоков имеют в целом схожее строение, то можно предположить, что она также имеется, но упорядочение должно носить еще более сложный характер ввиду возможной суперпозиции модуляции в обоих типах блоков. Вероятно, наличие модуляций в заселенности позиций никеля является общим признаком для всех блочных халькогенидов никеля-*p*-металлов, образованных срастанием блоков типа AuCu₃ с никель-халькогенидными.

Рисунок 7. Фрагменты слоев Ni(3) (черный)/Те (белый) модулированной структуры Ni_{7-x}SnTe₂, наблюдаемые вдоль [010] (слева) и [100] (справа); наверху: (3 + 2) -мерная модель, внизу: (3 + 1) -мерная модель [24].

Как уже отмечалось выше, данные соединения является структурами срастания гетерометаллического и никель-халькогенидного блоков, при этом кубооктаэдр 2_{∞} [Ni₅M], имеющий идеальную кубическую структуру, претерпевает тетрагональное искажение вдоль оси с связанное, по всей видимости, с необходимостью взаимной структурной подстройки блоков двух типов, что является очень характерным явлением при образовании структур срастания. Количественной оценкой тетрагонального искажения структуры является отношение высоты кубооктаэдра к его основанию $h_{\rm M}/a$ [20], чем для данных соединений выражается через отношение межатомного расстояния Ni(1)-Ni(1) к параметру а (Таблица 6 и Таблица 7). Для кубооктаэра с идеальной кубической структурой данное отношение должно равняться 1.0. Большая степень тетрагонального искажения гетерометаллического блока должна дестабилизировать структуру и делать ее образование невозможным, поэтому соответствие двух блоков по геометрии – один из самых главных критериев образования соединений данного семейства. Для всех известных на сегодняшний день соединений степень искажения *h*_M/*a* лежит в интервале от 0.95 до 1.06, что является довольно близким к 1.0 в идеальном кубооктаэдре (см. Обсуждение результатов).

Соединение	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	X
Ni _{5.72} InSe ₂	3.6797(5)	18.845(4)	255.16(9)	1.28
Ni ₃ In	3.762		53.24	
Ni _{5.68} SiSe ₂	3.576(1)	18.339(2)	234.5(3)	1.32
Ni ₃ Si	3.506		43.09	
Ni _{5.46} GeSe ₂	3.606(1)	18.276(5)	237.63(7)	1.54
Ni _{5.42} GeTe ₂	3.688(1)	19.027(2)	258.73(4)	1.58
Ni _{8.21} Ge ₂ S ₂	3.578(1)	24.687(5)	316.1(1)	1.79
Ni _{8.45} Ge ₂ Se ₂	3.601(1)	25.427(6)	329.8(1)	1.55
Ni ₃ Ge	3.627		47.71	
Ni _{5.98} SnS ₂	3.6500(5)	18.141(2)	241.68(6)	1.02
Ni _{5.62} SnSe ₂	3.6890(8)	18.648(3)	253.78(9)	1.38
Ni _{5.78} SnTe ₂	3.7680(5)	19.419(4)	275.71(8)	1.28
$Ni_{8.93}Sn_2S_2$	3.6710(5)	25.474(2)	343.29(7)	1.07
Ni ₃ Sn	3.738	52.23		
Ni _{5.72} SbSe ₂	3.7021(5)	18.593(4)	254.83(7)	1.28
Ni _{5.66} SbTe ₂	3.7824(5)	19.244(4)	275.32(8)	1.34

Таблица 6. Параметры кристаллической решетки соединений $Ni_{7-x}MCh_2$ и $Ni_{10-x}M_2Ch_2$, где M = p-металлы 13–15 групп, Ch = S, Se, Te, и бинарных халькогенидов.

	Межатомные расстояния, Å						
Соединение	Ni(1)-Ni(1) / Ni(1)-Ni(2) / Ni(1)-Ni(3)	Ni(1)-M / Ni(2)-M	Ni(1)-Ch / Ni(3)-Ch				
Ni _{5.72} InSe ₂	2.6019 / 2.6578/ 2.6133	2.6578 / 2.6019	2.3677 / 2.240; 2.6275				
Ni ₃ In	2.660						
Ni _{5.68} SiSe ₂	2.529 / 2.471 / 2.634	2.471 / 2.529	2.389 / 2.241; 2.553				
Ni ₃ Si	2.482	2.482					
Ni _{5.46} GeSe ₂	2.550 / 2.517 / 2.597	2.517 / 2.550	2.362 / 2.230; 2.573				
Ni _{5.42} GeTe ₂	2.608 / 2.500 / 2.672	2.500 / 2.608	2.524 / 2.480; 2.616				
Ni _{8.21} Ge ₂ S ₂	2.5300 / 2.510; 2.551 / 2.528	2.5338; 2.526 / 2.5303	2.07 / 2.571				
Ni _{8.45} Ge ₂ Se ₂	2.5465 / 2.510; 2.541 / 2.610	2.538; 2.512 / 2.5468	2.219 / 2.572				
Ni ₃ Ge	2.526	2.526					
Ni _{5.98} SnS ₂	2.5809-2.6508	2.5809-2.6508	2.054-2.631				
Ni _{5.62} SnSe ₂	2.6085 / 2.6362 / 2.589	2.6362 / 2.6085	2.374 / 2.245; 2.6283				
Ni _{5.78} SnTe ₂	2.6644 / 2.624 / 2.658	2.624 / 2.6644	2.536 / 2.484; 2.6703				
Ni _{8.93} Sn ₂ S ₂	2.5958 / 2.5999; 2.6739 / 2.577	2.6399; 2.6333 / 2.5964	2.252 / 2.052; 2.6443				
Ni ₃ Sn	2.643	2.643	_				
Ni _{5.72} SbSe ₂	2.61778 / 2.62494 / 2.59610	2.62494 / 2.61778	2.38515 / 2.24975; 2.63679				
Ni _{5.66} SbTe ₂	2.67456 / 2.61305 / 2.65052	2.61305 / 2.67456	2.53475 / 2.47093; 2.67992				

Таблица 7. Длины гетерометаллических и никель-халькогенидных связей в структурах Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = p-металлы 13–15 групп, Ch = S, Se, Te, и бинарных халькогенидов.

Расчеты электронной структуры $Ni_{5.73}InSe_2$ показали, что бейдеровские заряды на атомах составляют: 0.0 для Ni(1), -0.16 для Ni(2), +0.32 для Ni(3), +0.51 для In и -0.34 для Se [18]. Исходя из значений зарядов в тройном соединении и исходном бинарном интерметаллиде Ni_3In видно, что степень перераспределения электронов между индием и никелям в позиции Ni(2) схожа с тройным соединением. Возможно, это связано с тем, что атомы никеля и индия разнесены в пространстве с самым электроотрицательным атомом в структуре — селеном, поэтому заряды в тройном соединении не отличаются от зарядов в бинарном интерметаллиде (см. Таблица 8). Кроме этого существует небольшой перенос заряда от гетерометаллического блока к никель-селенидному блоку, на что указывает тот факт, что никель в позиции Ni(1), расположенный на границе блока, имеет нулевой заряд, в то время как в исходном Ni_3In все атомы никеля имеют отрицательный заряд. Селен в большей степени влияет на позицию Ni(3), поэтому атомы никеля в ней имеют самый высокий положительный заряд, однако нельзя говорить о большом ионном вкладе в образовании связи, поскольку атомные заряды довольно малы.

Используя теорию Бейдера [18] для анализа топологии индикатора электронной локализуемости, было показано, что в Ni₃In присутствуют четырехцентровые связи 3Ni+In

(по 1.17 е на связь). Идентичные результаты были получены и для тройного соединения Ni_{5.73}InSe₂, в котором также присутствуют четырехцентровые связи 3Ni+In (по 1.16 е на связь). Единственным отличием Ni_{5.73}InSe₂ от Ni₃In является то, что его системы связей металл-металл ограничены по одному из измерений. В никель-селенидном фрагменте также присутствуют четырехцентровые связи 3Ni+Se (по 0.8 е на каждую связь), что меньше, чем должно наблюдаться в случае сильной ковалетной связи. Таким образом, в обоих фрагментах (гетерометаллическом и никель-селенидном) Ni_{5.73}InSe₂ присутствуют делокализованные многоцентровые связи, наличие которых хорошо согласуются с тем, что данное соединение является металлом.

Сульфиды характеризуются более сложной структурой, связанной с наличием двух разупорядоченных никель-халькогенидных блоков. Для того, чтобы наиболее корректно смоделировать упорядочение позиций никеля в соединениях Ni₆SnS₂ и Ni₉Sn₂S₂, авторами [22] были рассмотрены три модели. В первой модели был рассмотрен никельхалькогенидный только со структурой антифлюорита, во второй — только дефектного Cu₂Sb, а в третьей модели — оба типа: и со структурой антифлюорита, и со структурой дефектного Cu₂Sb. Частичная заселенность позиций никель-сульфидного блока, при этом значения половины атомов никеля из каждого никель-сульфидного блока, при этом значения параметров *a* и *c* были зафиксированы. Все расчеты были проведены в рамках теории DFT (теория функционала плотности). Расчет полной энергии элементарной ячейки для всех трех моделей упорядочения показал близкие значения. На основании чего авторы [22] сделали вывод, что для расчетов электронной и зонной структуры может быть выбрана любая модель (в данном случае была выбрана третья модель упорядочения, поскольку именно она наблюдается в сульфидах никеля-олова).

По результатам квантовохимических расчетов было показано отсутствие ярко выраженной анизотропии зонной структуры. Расчеты электронной структуры для Ni_6SnS_2 и $Ni_9Sn_2S_2$ показали, что состояния никеля почти полностью заселены, причем плотность состояний на уровне Ферми имеет довольно низкое значение, но не нулевое, что соответствует металлическому типу проводимости и, вероятно, температурнонезависимому парамагнетизму Паули или ван Флека, но в данной работе результаты расчетов не были подтверждены физическими измерениями. Для Ni_6SnS_2 также были рассчитаны малликеновские заряды на атомах (см. Таблица 8). Расчеты разностной электронной плотности показали наличие четырехцентровой связи между Ni и Sn (3Ni+Sn), как и в случае $Ni_{5.73}InSe_2$. Однако, согласно анализу химической связи, в никельсульфидных блоках взаимодействия между Ni и S были описаны как классические парные, в то время как взаимодействия между никель-сульфидным блоком и гетерометаллическим — как трехцентровые (2Ni+S).

Соединение		Тип атома						
	Ni(1)	Ni(2)	Ni(3)/Ni(4)	Μ	Ch			
Ni _{5.73} InSe ₂	0.0	-0.16	+0.32	+0.51	-0.34			
Ni ₃ In		-0.17		+0.51				
Ni ₆ SnS ₂	0.0	+0.2	+1.0	+0.8	-1.2			
Ni _{5.62} SnSe ₂	0.0	+0.2	+0.3	+0.7	-1.0			

Таблица 8. Рассчитанные заряды на атомах для Ni_{5.73}InSe₂, Ni₃In, Ni₆SnS₂, Ni_{5.62}SnSe₂.

В случае селенида и теллурида никеля-олова в качестве модели была выбрана усредненная структура Ni_{5.75}SnCh₂, где Ch = Se, Te, с заселенностью позиции Ni(3) равной 0.375. Как и в предыдущих случаях, все расчеты были проведены в рамках теории DFT. Картины DOS (плотности состояний) для Ni_{5.75}SnSe₂ и Ni_{5.75}SnTe₂ имеют сильные сходства. Авторы [23] отмечают, что состояния всех атомов сильно смешаны, за счет чего, существенный вклад в общую плотность состояний от какого-то одного типа атома не наблюдается. Вид зонной структуры Ni_{5.75}SnCh₂ и небольшое значение плотности состояния вблизи уровня Ферми указывают на трехмерную металлическую проводимость и возникновение парамагнетизма.

На основании расчета разностной зарядовой плотности в гетерометаллическом блоке Ni_{5.75}SnSe₂ также наблюдаются четырехцентровые взаимодействия 3Ni + Sn, а на границе гетерометаллического и никель-халькогенидного слоя наблюдались четырехцентровые связи 3Ni+Se, которые, по утверждению авторов, связывают два этих блока. В никель-халькогенидном блоке связи Ni-Se могут быть интерпретированы как парные взаимодействия, что аналогично Ni₆SnS₂ [23].

Различия в описании связей Ni_{5.73}InSe₂, Ni₆SnS₂ и Ni_{5.75}SnSe₂ могут указывать на более локализованный характер взаимодействий на основе серы по сравнению с селеном, но более вероятно, что данные различия возникают вследствие различных подходов в описании химической связи (теория Бейдера, индикаторы электронной локализуемости против карт разностной зарядовой плотности, соответственно) [18].

Очень часто проведение физических измерений для соединений исследуемого типа затруднено вследствие сложности получения однофазных образцов, поэтому свойства многих соединений можно предположить только исходя из квантовохимических расчетов. Квантовохимические расчеты электронной структуры Ni_{5.73}InSe₂ в рамках теории DFT показали, что наибольший вклад в общую плотность состояний дает 3*d*-уровень никеля. Картина плотности состояния в области уровня Ферми позволяет сделать вывод, что данное соединение проявляет металлический тип проводимости, что также было подтверждено измерениями температурной зависимости электросопротивления. Магнитные измерения для соединения Ni_{5.73}InSe₂ показали наличие температурнонезависимого парамагнетизма [18].

Измерение магнитных свойств для $Ni_{7-x}SnCh_2$ (Ch=Se, Te) показало температурнонезависимый парамагнетизм, который может быть отнесен или к парамагнетизму Паули, или парамагнетизму ван Флека [23]. Вклад Кюри-Вейса в локальный магнитный момент составил 0.630µв на каждую формульную единицу. Как утверждают авторы, вклад Кюри-Вейса может быть отнесен или к парамагнитной примеси, или к наличию локального магнитного момента на атомах никеля. Наличие парамагнитной примеси не было подтверждено рентгенофазовым анализом (РФА), а последнее утверждение хорошо согласуется с теоретическими расчетами, которые показали полную заселенность состояний никеля и как следствие отсутствие локального магнитного. момента.

Физические измерения также были проведены для Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂. Данные соединения проявляют металлические свойства с высокой проводимостью и низким термоэдс, отрицательное значение которого свидетельствует о том, что электроны являются доминирующими носителями заряда. Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂ имеют довольно низкую для металлов теплопроводность, что может быть результатом наличия большого количества вакансий Ni. Также халькогениды никеля-сурьмы обладают температурнонезависимым парамагнетизмом Паули, который очень широко распространен для металлов [17].

2.3. Смешанные теллуриды никеля-*p*-металлов 13–15 групп со слоистой структурой

В данном разделе будут рассмотрены особенности строения слоистых квазидвумерных соединений с гетерометаллическими связями никель-непереходный металл 13–15 групп. Данный тип соединений представлен семейством смешанных теллуридов никеля-*p*-металла, имеющими слоистую структуру и состав Ni_{3-x}MTe₂, где M = Ga, In, Ge, Sn, Sb и $0 \le x \le 1$. Все эти соединения кристаллизуются в гексагональной сингонии и пространственной группе *P6₃/mmc* с Z = 2, кроме Ni_{2.58}SnTe₂, которое описано в группе *P-31c*, что может быть связано с проявлением сверхструктуры. Структура слоистых соединений является производной от комбинации структурного типа NiAs и структурного типа Ni₂In. Она основана на двумерно-бесконечных гетерометаллических фрагментах, ограниченных атомами теллура вдоль оси *c*, которые, в свою очередь,

посредством слабых взаимодействий Te-Te, образуют ван-дер-ваальсову щель (Рисунок 8).

С точки зрения описания кристаллической структуры в терминах ПШУ, как и в случае бинарных соединений, рассмотренных в первом разделе Обзора литературы, структура слоистых соединений представляет собой гексагональную плотнейшую упаковку, образованную атомами теллура и *р*-металлом, при этом атомы Ni тригонально-бипирамидальной октаэдрических располагаются В или пустотах. Октаэдрические пустоты можно разделить на два типа: первый представляет собой октаэдры, образованные только атомами Те (пустота типа В1). При заполнении данной пустоты атомами никеля, возникает позиция Ni(3), которая располагается в ван-дерваальсовой щели. Атом никеля в позиции Ni(1) имеет октаэдрическое окружение типа B2, образованное 3 атомами Те и 3 атомами *р*-металла, а позиция Ni(2) - тригональнобипирамидальное окружение типа А: обе этих позиции располагаются в гетерометаллическом слое (Таблица 8). Стоит отметить, что во всех соединениях состава Ni_{3-x}MTe₂ позиция Ni(1) полностью заселена атомами никеля, при этом позиции Ni(2) и Ni(3) заселены частично. Степень заселенности Ni(2) и Ni(3) зависит от количества никеля (от x) и типа непереходного металла в структуре Ni_{3-x}MTe₂[14].

Рисунок 8. Структура Ni_{3-х}MTe₂: А — тригонально-бипирамидальная пустота (позиция Ni(2)), B1 (позиция Ni(3)) и B2 (позиция Ni(1)) — октаэдрические пустоты (атомы Ni не показаны).

Стоит отметить, что гетерометаллические фрагменты имеют структуру типа NiAs, если позиция Ni(2) является пустой, и Ni₂In, если она заполнена. Также авторы [29] отмечают, что в тройных системах, не были обнаружены смешанные тройные теллуриды никеля-*p*-элемента, если отсутствует интерметаллид с соответствующей структурой типа

NiAs или Ni₂In. Следует также отметить, что такие соединения обнаружены только в ряду теллуридов, поскольку ни сера, ни селен не образуют с никелем халькогенидов, относящихся к структурному типу B8, при обычных условиях (Рисунок 9).

Рисунок 9. Кристаллическая структура Ni₂In, Ni₃GaTe₂, Ni₂SbTe₂ и NiAs (слева направо). Пунктирной линией выделен гетерометаллический слой.

Взаимодействия в гетерометаллическом слое в соединениях типа Ni_{3-x}MTe₂ (M = Ga, Ge, Sn, Sb; 0≤x≤1) являются делокализованными многоцентровыми, а в металлхалькогенидном — носят слабый ковалентный характер [29].

Ниже будут рассмотрены особенности строения отдельных представителей семейства слоистых теллуридов никеля-*p*-металлов 13–15 группы.

На сегодняшний день известны соединения с двумя непереходными металлами 13 группы — галлием и индием. Наиболее изученной системой является система Ni-Ga-Te, в которой был синтезирован ряд составов со стехиометрией Ni_{2.98}GaTe₂, Ni_{2.75}GaTe₂, Ni_{2.5}GaTe₂ и Ni_{2.3}GaTe₂ [32, 33].

Структура Ni_{2.98}GaTe₂ основана на чередующихся гетерометаллических фрагментах ${}^{2}_{\infty}$ [Ni_{2.6}Ga], ограниченных терминальными атомами теллура (d(Te-Te) = 3.652 Å) и расположенных вдоль оси *с*. В данном случае гетерометаллические фрагменты относятся к дефектной структуре Ni₂In. Длины гомо- и гетерометаллических связей Ni-Ni и Ni-M близки по значению во всех соединениях Ni_{3-x}GaTe₂. Расстояния Ni(1)-Ga и Ni(1)-Te в тройных соединениях схожи с такими же в структуре интерметаллида Ni_{1.8}Ga, который относится к структурному типу Ni₂In (Ni(1)-Ga = 2.625 Å).

Ближайшее октаэдрическое окружение Ni(1) образованно тремя атомами галлия и тремя атомами теллура. Это связано с тем, что позиция мышьяка в исходной структуре NiAs в нашем случае заселяется галлием и теллуром упорядоченно, что приводит к разделению ее на две независимые позиции и утроению исходной элементарной ячейки по оси *с*. Три атома галлия, занимающие экваториальные вершины тригональной бипирамиды, и два атома теллура, занимающие аксиальные вершины тригональной бипирамиды, образуют координационный полиэдр для атома Ni(2). Относительно короткое расстояние Ni(2)-Ga аналогично расстоянию в интерметаллиде Ni₂Ga (d(Ni(2)-Ga) = 2.311 Å). Частичную занятость позиции *d*-металла авторы работы [33] объясняют тем, что короткая гетерометаллическая связь не типична для пары элементов Ni-Ga, что не является, с нашей точки зрения, рациональным объяснением наблюдаемого явления. Координационный полиэдр для Ni(3) представляет собой октаэдр, образованный только атомами теллура.

Расстояние Ni-Te в перечисленных тройных соединениях схоже с типичными межатомными расстояниями, обнаруженными в структурах большого числа бинарных теллуридов никеля, особенно в твердом растворе Ni_{1-x}Te, который представляет собой дефектную структура NiAs. В работе [33] кристаллические структуры обедненных никелем соединений типа Ni_{3-x}GaTe₂ (x = 0.25, 0.5) были уточнены методом Ритвельда. В среднем, все соединения имеют такую же структуру, как и Ni₃GaTe₂. Кристаллографические параметры соединений Ni_{2.98}GaTe₂, Ni_{2.79}GaTe₂ и Ni_{2.58}GaTe₂ приведены в Таблице 9.

Параметры эл. яч.	Ni _{2.98(} GaTe ₂	Ni _{2.79} GaTe ₂	Ni2.58GaTe2
a, Å	3.93933(3)	3.93190(2)	3.9291(2)
<i>c</i> , Å	15.7933(2)	15.8571(1)	15.9060(6)
<i>V</i> , Å ³	212.250(3)	212.305(2)	212.65(2)
Заселенность Ni(2)	0.612(2)	0.500(3)	0.358(4)
Заселенность Ni(3)	0.372(3)	0.287(4)	0.224(5)

Таблица 9. Кристаллографические параметры соединений $Ni_{3-x}GaTe_2$ (x = 0, 0.25, 0.5).

Стоит отметить относительно постоянную заселенность позиции Ni(3) внутри вандер-ваальсовой щели, около 25–30 %, которая сопровождается снижением заселенности позиции Ni(2) внутри гетерометалического фрагмента по мере уменьшения общего содержания Ni (50% — в Ni_{2.79}GaTe₂, 36% в — Ni_{2.58}GaTe₂) (Таблица 9). Увеличение параметра *с* при переходе от Ni_{2.79}GaTe₂ к Ni_{2.58}GaTe₂, объясняется уменьшением заселенности позиции Ni(3), поскольку ван-дер-ваальсова щель становится более ярко выраженной и меньше «стягивается» за счет нахождения в ней атомов никеля в части ячеек.

Также авторы [33] полагают, что позиция Ni(2) в Ni_{3-x}GaTe₂. не может быть полностью свободной. При попытках синтезировать соединение состава Ni₂GaTe₂ была получена тройная фаза, содержащая Ni_{2.3}GaTe₂ и Ga₂Te₃, что является доказательством существования нижней границы содержания Ni в соединениях типа Ni_{3-x}GaTe₂.

Возникновение сверхструктуры связано с упорядоченным заполнением позиции Ni(3) в плоскости *ab*, что наблюдалось для соединений состава Ni_{3-x}GaTe₂, где 0.5≤x≤0.65, 3/4 атомов никеля регулярно отсутствует в позиции Ni(2), в отличие от соединения Ni₃GaTe₂, где позиции Ni(3)' и Ni(3)" полностью заняты (Рисунок 10) [33].

Рисунок 10. Вид элементарной ячейки Ni_{3-x}GaTe₂ со сверхструктурой, где $a_{sup} = b_{sup} = 2a_{sub}$ (слева). Атомы Ni(2) и Ga упорядочены в плоскости *ab*, 2D срез одного гетерометаллического слоя (справа).

В сверхъячейке с удвоенными параметрами *а* и *b*, позиция Ni(2) в гетерометаллическом слое, преобразуются в две другие позиции Ni(2)' и Ni(2)". В предложенной симметрии первая позиция занята, в то время как вторая остается вакантной, что приводит к возникновению гетерометаллических фрагментов типа ${}^{2}{}_{\infty}$ [Ni_{2.25}Ga]. Учитывая, что заселенность позиции Ni(3) в ван-дер-ваальсовой щели составляет примерно 30% (согласно данным уточнения по методу Ритвельда), авторы [33] оценивают, что идеальный состав для наблюдения данного типа упорядочения близок к Ni_{2.55}GaTe₂. Это согласуется с верхним пределом содержания никеля, для которого идентифицирована сверхструктура данного типа. При x<0.45 наблюдается «стандартная» ячейка типа Ni_{2.98}GaTe₂ с утроенным относительно NiAs параметром *c*. Авторами [33] предполагается, что занятость позиции никеля внутри ван-дер-ваальсой щели постоянна.

Однако в реальной структуре суммарная занятость может варьироваться, меняя соотношение между занятостью двух позиций *d*-металла и общим содержанием никеля [33].

Для Ni_{3-x}GaTe₂, где x = 1, 0.75, 0.25, 0, также были проведены квантово-химические расчеты, которые показали, что для всех соединений должен наблюдаться металлический тип проводимости и температурно-независимый парамагнетизм Паули, как следствие нахождения уровня Ферми на ненулевой плотности состояний, в которую больший вклад дает 3*d*-уровень никеля. Однако зонная структура вблизи уровня Ферми указывает на возможную анизотропию проводимости, что было доказано с помощью измерений электросопротивления в двух различных направлениях: вдоль гетерометаллических слоев и перпендикулярно им [29, 33]. Также для данных соединений были рассчитаны малликеновские заряды, которые представлены в Таблице 10.

Таблица 10. Рассчитанные малликеновские заряды для $Ni_{3-x}GaTe_2$ (x = 1, 0.75, 0.25, 0).

Соединение	Тип атома						
	Ni(1)/Ni(2)	Ni(3)	Ga	Te			
Ni ₃ GaTe ₂	+0.31	+0.39	+0.92/+1.15	-0.49/ -0.44			
Ni _{2.75} GaTe ₂	+0.41	+0.38	+0.99/ +1.13	-0.45/-0.37			
Ni _{2.25} GaTe ₂	+0.24	+0.17	+0.85/+0.99	-0.54/ -0.56			
Ni ₂ GaTe ₂	+0.18		+0.94	-0.65			

Соединения, где *p*-металлом является индий, Ni₃InTe₂, Ni_{3.32}InTe₂, Ni_{3.12}In_{0.86}Te_{2.14} несколько отличаются от остальных теллуридов никеля-*p*-металлов, т.к. в теллуридах никеля-индия происходит совместное заселение позиций атомами индия и теллура. Теллуриды никеля-индия также можно описать как область твердых растворов между NiTe₂ и Ni₂In с общей формулой Ni_{3±x}In_{1-y}Te_{2-y}, при этом стехиометрия Ni₃InTe₂ достигается в том случае, когда соотношение фрагментов NiTe₂ и Ni₂In стремится к 1:1. Существование непрерывного ряда твердых растворов возможно за счет увеличения количества следующих друг за другом фрагментов NiTe₂. Это означает, что структура данных соединений является модулированной, но при чередовании фрагментов NiTe₂ и Ni₂In стремится NiTe₂ и Ni₂In стремится типичной для Ni_{3-x}MTe₂ [34, 35].

Авторами [29, 33] также были предприняты попытки синтезировать слоистые соединения с другими *p*-металлами 13–15 группы (Al, Si, As), однако образование таких тройных фаз зафиксировано не было; во всех случаях наблюдалась смесь, состоящая из известных бинарных фаз и закладываемых простых веществ.

Представителями семейства слоистых теллуридов никеля-*р*-металлов 14 группы являются теллуриды никеля-германия и никеля-олова. В отличие от других непереходных

металлов для германия существует два аналога слоистого соединения T_{3-x} GeTe₂, где T = Fe, Ni [36].

Соединения Fe₃GeTe₂ Ni₃GeTe₂ представляют собой И структуры, кристаллизирующиеся, как и другие теллуриды никеля-*p*-металла типа Ni_{3-x}MTe₂, в гексагональной сингонии ($P6_3/mmc$, Z = 2; Fe₃GeTe₂: a = 3.991(1) Å, c = 16.33(3) Å; Ni₃GeTe₂: a = 3.911(1) Å, c = 16.020(3) Å). Для смешанных теллуридов железа и никеля наблюдается образование пустот, в данном случае, схожих по структуре с интерметаллидами Fe_{1.67}Ge и Ni_{1.67}Ge, причем в пустотах плотнейшей упаковки, состоящей из атомов Ge и Te, могут размещаться не только атомы никеля, но и атомы железа, что в случае соединений, где р-металлов является галлий, не наблюдалось. Слоистая структура соединений Fe₃GeTe₂ и Ni₃GeTe₂ представляет собой квазидвумерную структуру, состоящую из гетерометаллических фрагментов [Fe₃Ge] и [Ni₃Ge], ограниченных с двух сторон атомами Те (Рисунок 11) [36].

Рисунок 11. Проекция кристаллической структуры Fe₃GeTe₂ на плоскость *ac*. Все позиции железа показаны полностью заселенными.

Минимальные длины связей Fe-Ge в гетерометаллических слоях Fe₃GeTe₂ равны 2.30 Å (в интерметаллиде FeGe d(Fe-Ge)=2.38 Å [37], Fe_{1.7}Ge d(Fe-Ge)=2.33 Å [37]). В теллуриде железа-германия атомы германия окружены атомами железа в виде трехшапочной тригональной призмы, тогда как атомы теллура находятся в октаэдрическом окружении. Оба типа атомов Fe(1) и Fe(2) координируют атомы Ge, Fe и

Те именно в виде трехшапочной тригональной призмы, в частности, из-за более сильного взаимодействия атомов Fe (d(Fe-Fe)=2.55 Å, в сравнении в α-Fe d(Fe-Fe)=2.50 Å) [36].

Минимальные длины связей Ni-Ge в слоях соединения Ni₃GeTe₂ составляют 2.26 Å, в интерметаллиде NiGe d(Ni-Ge) = 2.33 Å, а в Ni_{1.9}Ge d(Ni-Ge) = 2.29 Å [36]. В структуре соединения Ni₃GeTe₂ происходит частичное заселение атомами Ni октаэдрических пустот в ван-дер-ваальсовой щели (Ni(3) ~ 25%) и тригонально-бипирамидальных пустот в гетерометаллическом слое (Ni(2) ~ 70%). Атомы Ge находятся в окружении из атомов Ni в виде трехшапочной тригональной призмы (в случае заселения позиции Ni(2) в гетерометаллическом слое) (см. Рисунок 12).

Рисунок 12. Проекция кристаллической структуры Ni₃GeTe₂ на плоскость *ac*.

На основе выше приведенных данных можно заключить, что единственное отличие структур соединений Fe₃GeTe₂ и Ni₃GeTe₂ состоит в том, что в Ni₃GeTe₂ присутствует частично заселенная позиция атомов Ni(3) в ван-дер-ваальсовой щели, в то время, как в Fe₃GeTe₂ дополнительных атомов железа в ван-дер-ваальсовой щели не обнаружено. В силу того, что у соединения Fe₃GeTe₂ ван-дер-ваальсова щель пустая, параметр *c* Fe₃GeTe₂ значительно больше, чем у Ni₃GeTe₂ (Fe₃GeTe₂: c = 16.33(3) Å; Ni₃GeTe₂: c = 16.02(3) Å).

В последнее время Fe₃GeTe₂ привлекает особое внимание как потенциальный материал для спинтроники, благодаря сочетанию слоистой 2D структуры и наличию магнитного упорядочения. Для Fe₃GeTe₂ было обнаружен ферромагнетизм ниже 230 K, а выше этой температуры магнитное упорядочение подчиняется закону Кюри-Вейса [36, 38-42]. Для сравнения стоит отметить, что Ni₃GeTe₂ демонстрирует независимый от

температуры парамагнетизм Паули в измеренном температурном диапазоне, а также металлический тип проводимости [36].

В нашей научной группе были получены соединения Ni_{3-x}GeTe₂ с меньшим содержанием никеля, что свидетельствует о том, что в системе Ni-Ge-Te заселенность позиции Ni(2) и Ni(3) также может меняться в широких пределах [29].

В системе Ni-Sn-Te были синтезированы соединения состава Ni_{3-x}SnTe₂ [43] и Ni_{3-x}Sn_{1-y}Te₂ [44]. Описание составов с x~0, в целом, аналогично другим соединениям типа Ni_{3-x}MTe₂. Гетерометаллические фрагменты ${}^{2}{}_{\infty}$ [Ni_{3-x}Sn] ограничены с двух сторон атомами теллура и разделены ван-дер-ваальсовой щелью, аналогично другим представителям семейства теллуридов никеля-*p*-металлов. С точки зрения структуры бинарных интерметаллидов, структура Ni_{3-x}SnTe₂ является комбинацией чередующихся слоев Ni_{1-x}Te и Ni_{1+x}Sn, которые расположены вдоль оси *c* [43]. Таким образом данные соединения также можно рассматривать как структуры срастания гетерометаллического блока и никель-теллуридного, границы срастания которых проходят по плоскостям атомов Ni(1) (Рисунок 13).

Рисунок 13. Кристаллическая структура Ni_{3-x}SnTe₂.

Мессбауэровские измерения на ядрах ¹¹⁹Sn, показали, что возможно два типа окружения атомов Sn в гетерометаллическом слое: без дополнительных позиций никеля (тригональная призма) и с дополнительной позицией (трехшапочная тригональная призма) [29]. При увеличении содержания никеля от состава Ni₂SnTe₂ происходит заполнение позиции в ван-дер-ваальсовой щели, а затем в гетерометаллическом слое, что приводит к увеличению доли атомов Sn, находящихся в окружении тригональной призмы, состоящей из атомов Ni. В образцах, обедненных никелем, гетерометаллический слой образован только фрагментами 2_{∞} [Ni₂Sn], в которых координационным полиэдром атомов

Sn является тригональная призма. По результатам рентгеновской дифракции и Мессбауэрской спектроскопии на ¹¹⁹Sn в работе [29], в соединении Ni_{3-x}SnTe₂ при изменении x от 1 до 0, сначала происходит заполнение ван-дер-ваальсовой щели атомами Ni, а при достижении определенного значения x (x~0.3-0.4) начинает постепенно заполняться дополнительная позиция никеля в гетерометаллическом слое. В результате, в соединении состава Ni₃SnTe₂ позиция Ni в ван-дер-ваальсовой щели будет иметь заселенность ~70%, а дополнительная позиция в гетерометаллическом слое будет заполнена на ~30%. [29]. Таким образом, соотношение заселенностей Ni(2) и Ni(3) в Ni₃SnTe₂ является обратным тому, что наблюдалось в германиевых и галлиевых соединениях.

С помощью электронной микроскопии авторами [44] было установлено, что в зависимости от стехиометрии в системе Ni-Sn-Te может наблюдаться как соразмерная (например, для Ni_{2.87}SnTe₂), так и несоразмерная модуляция (q=0.7 c^*), которая возникает вследствие совместной заселенности атомов Te и Sn, по аналогии с Ni_{3±x}In_{1-y}Te₂. Кроме этого, с помощью электронной микроскопии в совокупности с рентгеновскими методами исследования для соединений Ni_{2.87}SnTe₂, Ni_{2.51}Sn_{0.84}Te₂ и Ni_{2.35}Sn_{0.76}Te₂ было установлено, что при увеличении содержания никеля преимущественно заполняется вандер-ваальсова щель [44]. Количественные оценки заселенности позиций были даны только для Ni_{2.87}SnTe₂ (заселенность позиции Ni(3) равна 65.7%, а Ni(2) – 26.4%), что коррелирует с результатами мессбауэровской спектроскопии, полученными в работе [29].

На сегодняшний день теллурид никеля-сурьмы Ni₂SbTe₂ (т.е. Ni_{3-x}SbTe₂ с x=1) является единственным представителем слоистых соединений типа Ni_{3-x}MTe₂, где непереходным металлом являлся бы металл 15 группы. Для образования структуры Ni₂SbTe₂ необходимо удалить каждый третий слой атомов никеля из NiSb и с заменой атомов сурьмы на теллур в двух из трех слоев сурьмы (Рисунок 14). В Ni₂SbTe₂ удален каждый третий атом никеля, лежащий в плоскости *ab*, в следствие чего происходит утроение элементарной ячейки вдоль оси *c* [45, 46].

31

Рисунок 14. Образование структуры NiTe2 и Ni2SbTe2 из структуры NiSb.

Как и во всех вышеописанных соединениях в структуре Ni_2SbTe_2 можно выделить гетерометаллические фрагменты состава ${}^2_{\infty}$ [Ni_2Sb], которые ограничены атомами теллура, взаимодействие между которыми осуществляется посредством слабых ван-дерваальсовых взаимодействий. Следует отметить, что принадлежность Ni_2SbTe_2 к исследуемому типу квазидвумерных смешанных теллуридов никеля-металлов 13–15 групп было высказано в нашей научной группе. Авторы [45] не имели информации о других соединениях такого типа и описывали Ni_2SbTe_2 как точечный состав и изолированный случай слоистого соединения, являющегося производным от структур типа NiSb и NiTe₂ (Рисунок 14 и Рисунок 15).

Рисунок 15. Кристаллическая структура Ni₂SbTe₂.

Для теллурида никеля-сурьмы авторами работы [45] были выполнены квантовохимические расчеты на уровне DFT, которые показали картину, наблюдающуюся для всех соединений типа Ni_{3-x}MTe₂. Наличие на уровне Ферми ненулевой плотности состояний предсказывало то, что Ni₂SbTe₂ является металлом. Данный факт был подвержен измерением зависимости электрического сопротивления от температуры, подтвердившим металлический тип проводимости. Измерения коэффициента Зеебека, произведенные теми же авторами, показали отсутствие перспектив термоэлектрических применений данного вещества.

Кроме этого, в недавних работах с помощью квантовохимических расчетов было показано, что Ni₂SbTe₂ является высокоэффективным электрокатализатором для катодной реакции восстановления кислорода. Ni₂SbTe₂ и его легированные производные могут заменить катализаторы на основе благородных металлов в топливных элементах, тем самым сделать весь производственный процесс более экономичным [47-48].

Ниже приведены таблицы обобщающие основные параметры кристаллической решетки всех основных слоистых соединений. В Таблице 11 приведены длины гомо- и гетерометаллических связей и связей Ni-Te в тройных соединениях. В Таблице 12 приведены параметры элементарных ячеек для некоторых представителей семейства Ni_{3-х}MTe₂ и Fe₃GeTe₂.

Соединение	Межатомные расстояния, Å				
	Ni(1)-Ni(1) / Ni(1)-Ni(2) / Ni(1)-Ni(3)	Ni(1)-M / Ni(2)-M	Ni(1)-Te / Ni(2)-Te / Ni(3)- Te		
Ni _{2.98} GaTe ₂	2.550 / 2.607 / 2.675	2.607 / 2.274/	2.592 / 2.518 / 2.687		
Ni _{3.32} InTe ₂	2.731 / 2.702 / 2.567	2.702 / 2.332	2.618 / 2.555 / 2.709		
Ni _{2.95} GeTe ₂	2.656 / 2.619 / 2.677	2.619 / 2.257	2.585 / 2.587 / 2.666		
Ni _{2.87} SnTe ₂	2.689 / 2.671 / 2.610	2.671 / 2.307	2.615 / 2.574 / 2.689		
Ni ₂ SbTe ₂	2.633	2.609	2.566		

Таблица 11. Длины гомо- и гетерометаллических связей, связей Ni-Te в Ni_{3-x}MTe₂, где M = Ga, In, Ge, Sn, Sb.

Соединение	a, Å	<i>c</i> , Å	Заселенность позиций Ni(2)/Ni(3)
Ni _{2.35} GaTe _{1.9}	3.9315(4)	15.926(1)	Не уточнена
Ni _{2.58} GaTe ₂	3.9291(2)	15.9060(6)	0.358(4)/ 0.224(5)
Ni _{2.79} GaTe ₂	3.93190(2)	15.8571(1)	0.500(3)/ 0.287(4)
Ni _{2.98} GaTe ₂	3.93933(3)	15.7933(2)	0.612(2)/ 0.372(3)
Ni _{2.9} InTe ₂	4.0033(5)	15.738(2)	Не уточнена
Ni _{3.32} InTe ₂	4.0388(2)	15.7321(9)	0.497/0.809(6)
Ni _{3.12} In _{0.86} Te _{2.14}	4.0209(2)	15.7749(8)	0.386/0.737(6)
Ni ₃ InTe ₂	3.9989(2)	5.2470(3)	0.371/ 0.702(7)
Ni _{2.2} GeTe ₂	3.839(1)	16.039(6)	Не уточнена
Ni _{2.95} GeTe ₂	3.911(1)	16.020(3)	0.70(1)/ 0.25(1)
Fe ₃ GeTe ₂	3.991(1)	16.33(3)	0.83(2)/ 0
Ni _{2.58} SnTe ₂ *	3.9310(6)	15.795(3)	0/ 0.58(1)
Ni _{2.87} SnTe ₂	3.9965(4)	15.820(2)	0.264(8)/ 0.657(8)
Ni ₂ SbTe ₂	3.9030(9)	15.634(3)	0/0

Таблица 12. Параметры элементарной ячейки некоторых представителей семейства Ni₃₋ _xMTe₂, где M = Ga, In, Ge, Sn, Sb, и Fe₃GeTe₂.

*Авторы [49] рассматривали кристаллическую структуру Ni_{2.58}SnTe₂ в пространственной группе P-31с, поскольку решение структуры в данной пространственной группе позволяло снизить R-фактор. Тем не менее, есть основания полагать, что данный переход связан с проявлением модуляций.

В заключении к данному разделу хочется отметить, что соединения в ряду $Ni_{3-x}MTe_2$ можно рассматривать как твердый раствор фаз со структурой $NiAs+Ni_2In$, в котором в зависимости от «х» есть различные варианты упорядочения позиций никеля. В первом случае есть все три позиции никеля в структуре, во втором есть позиции Ni(1) и Ni(2), при этом ван-дер-ваальсова щель всегда пуста, а в третьем случае твердый раствор — типа NiAs, где есть только позиция Ni(1) и Ni(3).

С другой стороны, Ni₃MTe₂ и Ni₂MTe₂ — разные фазы, каждая из них со своей областью гомогенности по «х». Точка фазового перехода I рода наблюдается, когда возникает или исчезает позиция Ni(3).

2.4. Смешанные халькогениды со структурой паркерита, шандита и ульманита

Известны другие родственные смешанным халькогенидам никеля-*p*-металлов 13– 15 групп соединения – тройные халькогениды, кристаллизующиеся в структурных типах паркерита, шандита и ульманита.

Рассмотрим структурные типы паркерита и шандита. К структурному типу шандита относятся соединения с общей формулой $T_3M_2Ch_2$, где T = Co, Ni, Rh и Pd, M =

In, Tl, Sn, Pb; Ch = S и Se, которые кристаллизуются или в ромбической, или в гексагональной сингонии (Таблица 13) [50-55].

К структурному типу паркерита также относятся соединения с общей формулой $T_3M_2Ch_2$, но T = Ni, Rh и Pd, а M = Bi. Соединения со структурой паркерита кристаллизуются в моноклинной или кубической сингонии (Таблица 13) [56-60].

Таблица 13. Представители тройных соединений A₃M₂Ch₂ со структурой шандита и паркерита (T = Co, Ni, Rh и Pd, Pt, M = In, Tl, Sn, Pb, и Bi; Ch = S и Se). Желтым и зеленым цветом выделены соединения со структурой шандита, кристаллизующиеся в тригональной и ромбической сингонии соответственно. Синим и красным цветом выделены соединения со структурой паркерита, кристаллизующиеся в моноклинной и кубической сингонии.

S Se	In	Tl	Sn	Pb	Bi
Ni	Ni ₃ In ₂ S ₂ Ni ₃ In ₂ Se ₂	Ni ₃ Tl ₂ S ₂ Ni ₃ Tl ₂ Se ₂	Ni ₃ Sn ₂ S ₂	Ni ₃ Pb ₂ S ₂ Ni ₃ Pb ₂ Se ₂	Ni ₃ Bi ₂ S ₂ Ni ₃ Bi ₂ Se ₂
Co	$Co_3In_2S_2$		$Co_3Sn_2S_2$		
Rh		Rh ₃ Tl ₂ S ₂ Rh ₃ Tl ₂ Se ₂	Ph ₃ Sn ₂ S ₂	Rh ₃ Pb ₂ S ₂ Rh ₃ Pb ₂ Se ₂	Rh ₃ Bi ₂ S ₂ Rh ₃ Bi ₂ Se ₂
Pd		$Pd_{3}Tl_{2}S_{2}$ $Pd_{3}Tl_{2}Se_{2}$		$Pd_3Pb_2S_2$ $Pd_3Pb_2Se_2$	Pd ₃ Bi ₂ S ₂ Pd ₃ Bi ₂ Se ₂
Pt				$Pt_3Pb_2S_2$ $Pt_3Pb_2Se_2$	$Pt_3Bi_2S_2$ $Pt_3Bi_2Se_2$

Рассмотрим особенности строения соединений структурного типа шандита на примере Ni₃Sn₂S₂, который кристаллизуется в тригональной сингонии (пр. гр. *P-3m, a* = 5.4606 Å, *c* = 13.188 Å, *Z* = 3). Его структуру можно описать, как трехмерный каркас октаэдров, образованных двумя атомами серы в осевых вершинах и четырьмя атомами олова в экваториальных вершинах, которые связаны по общим ребрам и граням в двумерные слои с расстояниями d(Ni-Ni) = 2.73 Å, d(Ni-Sn) \approx 2.71–2.73 Å и d(Ni-S) = 2.19 Å. (Рисунок 16) [52].

Рассмотрим структуру моноклинных паркеритов на примере первого представителя – минерала Ni₃Bi₂S₂, в честь которого был назван данный структурный тип. Ni₃Bi₂S₂ кристаллизуется в моноклинной сингонии с параметрами элементарной ячейки: a = 11.065 Å, b = 8.078 Å, c = 11.451 Å, пр. гр. C2/m, Z = 8. Его структуру можно описать как

трехмерный каркас, образованный гетерометаллическими связями Bi-Ni (d(Ni-Bi) $\approx 2.70-2.96$ Å) и Ni–S (d(Ni-S) $\approx 2.18-2.19$ Å). В Ni₃Bi₂S₂ расстояния Bi–Ni близки к расстояниям Bi–Ni в известных интерметаллидах, расстояния Ni–S чуть меньше типичных межатомных расстояний в бинарных сульфидах никеля, а расстояния Ni–Ni значительно больше, чем расстояния Ni–Ni в металлическом никеле. С точки зрения полиэдрического описания данная структура представляет собой сочленение искаженных октаэдров, образованных висмутом и серой (Рисунок 16) [57].

Рисунок 16. Кристаллические структуры шандита $Ni_3Sn_2S_2$ и паркерита $Ni_3Bi_2S_2$.

Оба структурных типа: и паркерит, и шандит являются подклассом «полу»антиперовскита, который в свою очередь является производным структуры перовскита [61-63] Схема структурного перехода от перовскита к шандиту и паркериту представлена на Рисунке 17. В кубической структуре перовскита ABX₃ A и В являются катионами, которые находятся в углах и в центре элементарной ячейки, соответственно; X -это анион, который занимает центры граней элементарной ячейки, образуя трехмерную сетку из октаэдров, связанных вершинами (Рисунок 17а). Структурный тип антиперовскита A₃BX является антитипом структурного типа перовскита, в котором анионы X (B, C, N или O) не образуют октаэдр, как в случае перовскита, а находятся в центре октаэдра, образованного катионами A, например, Mn₃GaN (Рисунок 17б). Структуры «полу»антиперовскита образуются за счет того, что половина позиций катионов A становятся вакантными, что приводит к химической формуле A₃B₂X₂. Характер упорядочения вакансий определяет, какая именно структура образуется: шандита или паркерита. Структура шандита образуется путем упорядочивания вакансий катионов A во всех плоскостях семейства (111), что приводит к возникновению решетки кагоме, благодаря
чему становятся возможными необычные магнитные и электронные свойства, например, Co₃Sn₂S₂ является ферромагнитным полуметаллом Вейля (Рисунок 17в) [64-67].

В паркеритах вакансии катионов А могут располагаться в двух направлениях: вдоль каждой второй плоскости (110), за счет чего образуется моноклинная слоистая структура (пр.гр. *C12/m*), или вдоль каждой (110) плоскости, что приводит образованию кубической трехмерной структуры (пр. гр. *I2*₁3) (Рисунок 17г,д).

Известно, что сверхпроводимость в основном наблюдается в моноклинных 2Dпаркеритах $Ni_3Bi_2S_2$, $Ni_3Bi_2Se_2$ [68], $Pd_3Bi_2Se_2$ [69], и $Rh_3Bi_2Se_2$ [69], но при этом не наблюдается в кубических.

Для структурного типа шандита известно только одно соединение – Pd₃Pb₂Se₂, которое способно проявлять сверхпроводящие свойства при высоких давлениях [70]. Кроме этого, в недавнем исследовании было установлено, что паркерит Pd₃Bi₂S₂ является полуметаллом, и было показано, что для него возможны топологические поверхностные состояния [71].

Рисунок 17. Схема структурного перехода от перовскита к шандиту и паркериту (а) Кристаллическая структура перовскита. (б) Кристаллическая структура антиперовскита, образованная инверсией ионов А и Х. Кристаллические структуры «полу»-

антиперовскитов, образованные вакансиями, находящимися в позициях катионов А вдоль псевдокубической плоскости (111) для шандитов (в) или (110) для паркеритов (г, д) [63].

Соединения структурного типа ульманита кристаллизуются в кубической сингонии, имеют стехиометрию TMCh (T = Ni, Pd, Pt; M = Si, Ge, Sn, P, As, Sb; Ch = S, Se, Te) и принадлежат к семейству пирита FeS₂, в котором S₂-группы заменены на MCh-группы [72-74]. В зависимости от типа упорядочения и взаимной ориентации MCh-групп возможно существование не только кубического ульманита NiSbS (пр. гр. $P2_13$), но и ромбического кобальтита CoAsS (пр. гр. $Pca2_1$).

Рассмотрим особенности строения соединений структурного типа ульманита на примере NiSbS (пр. гр. $P2_13$, a = 5.931 Å, V = 206.43 Å³, Z = 4). С точки зрения полиэдрического описания данная структура представляет собой трехмерный гетерометаллический каркас, образованный октаэдрами, в центре которых находятся атомы никеля. Октаэдры образованы тремя атомами серы, находящимися в одной осевой и в двух соседних экваториальных вершинах, и тремя атомами сурьмы, находящимися в другой осевой и двух других соседних экваториальных вершинах (Рисунок 18). Межатомные расстояния соответственно равны: d(Ni-Sb) = 2.57 Å и d(Ni-S) = 2.35 Å. Гомо- и гетерометаллические связи в шандитах, паркеритах, ульманитах и Ni_{3-x}MTe₂ сопоставимы и в среднем составляют ~ 2.7 Å.

Рисунок 18. Кристаллическая структура ульманита NiSbS.

Благодаря особенностям кристаллической структуры представители данного структурного типа привлекают внимание как соединения с потенциально интересными физическими свойства, например, с термоэлектрическими [75-77]. Кроме этого, для PtSbS была обнаружена объемная сверхпроводимость при T_c = 0.15 K [78].

2.5. Бинарные интерметаллиды RE₃M и REM₃, (где M = *p*-металл, RE = металл ряда лантанидов) со структурным типом AuCu₃

В структурном типе AuCu₃ кристаллизуются не только интерметаллиды, содержащие p- и d-металлы, но также и те, которые в своем составе имеют f-металлы. В Таблице приведены все известные на данный момент интерметаллиды редкоземельных элементов с p-металлами, имеющие структурный тип AuCu₃ со стехиометрией RE:M = 3:1 или 1:3.

DE	<i>р</i> -метал	ілы 13 группы		<i>р</i> -металлн	ы 14 группы
KĽ	Al	Ga	In	Sn	Pb
La	La ₃ Al	La ₃ Ga	La ₃ In, LaIn ₃		
Ce	Ce ₃ Al	Ce ₃ Ga	Ce ₃ In, CeIn ₃		
Pr	Pr ₃ Al	Pr ₃ Ga	Pr ₃ In, PrIn ₃	_	Pr ₃ Pb, PrPb ₃
Nd	Nd ₃ Al	Nd ₃ Ga	Nd ₃ In, NdIn ₃		
Sm	Sm ₃ Al	Sm ₃ Ga	Sm ₃ In, SmIn ₃		SmPb ₃
Eu					
Gd	Gd ₃ Al	GdGa ₃	GdIn ₃		
Tb	Tb ₃ Al	TbGa ₃	TbIn ₃	TbSn ₃	TbPb ₃
Dy	Dy ₃ Al, DyAl ₃	DyGa ₃	DyIn ₃		
Ho	HoAl ₃ , Ho ₃ Al	HoGa ₃	—		
Er	ErAl ₃ , Er ₃ Al	—	—		
Tm	TmAl ₃	TmGa ₃	TmIn ₃		TmPb ₃
Yb	YbAl ₃		YbIn ₃	YbSn ₃	YbPb ₃
Lu	LuAl ₃	LuGa ₃	LuIn ₃		

Таблица 14. Представители интерметаллидов RE₃M и REM₃, (где M = *p*-металл, RE = металл ряда лантанидов) со структурным типом AuCu₃ [1-3].

На основе Таблицы 14 можно сделать вывод, что наибольшее число бинарных интерметаллидов RE образуется с p-металлами 13 группы. Стоит отметить тот факт, что для Tm, Yb и Lu в принципе не известно существование интерметаллидов со структурой AuCu₃ в стехиометрическом отношении RE:M = 3:1. Кроме этого, в литературе нет ни одного упоминания об интерметаллидах европия, которые кристаллизовались бы в структурном типе AuCu₃.

2.6. Интерметаллиды со структурным типом La₁₆Al₁₃

La₁₆Al₁₃ кристаллизуется в собственном структурном типе в гексагональной пространственной группе *P*-62*m* с параметрами элементарной ячейки a = 9.116 Å, c = 11.224 Å [79]. Особенность его кристаллической структуры заключается в том, что для всех четырёх позиций La и Al наблюдаются высокие координационные числа от 11 до 17. Атомы алюминия в позициях Al₂-Al₄ образуют клеткообразную бициклическую структуру

Al₁₁, которую авторы, за сходство с органическими карбосиланами назвали [3.3.3]баррелян (Рисунок 19). В барреляне два атома Al₂ образуют три гомометаллические связи, а девять атомов Al(3)/Al (4) образуют две гомометаллические связи. Кристаллическую структуру La₁₆Al₁₃ можно рассматривать как слоистую структуру, образованную слоями барреляна Al₁₁ и полиэдрами состава (AlLa₂La_{9/2})₂, сочлененными тригональными гранями. Межатомные расстояния La-La варьируются в диапазоне от 3.6 до 4.4 Å, расстояния La-Al – от 3.2 до 4.2 Å, а расстояния Al-Al ~ 2.7 Å.

Рисунок 19. Элементарная ячейка La₁₆Al₁₃ с изображением бареллянов Al₁₁.

Магнитные измерения, проведенные на поликристаллическом образце $La_{16}Al_{13}$, демонстрируют температурно-независимый парамагнетизм в интервале температур 4 K < T < 400 K. Измерение удельного электросопротивления образца $La_{16}Al_{13}$ свидетельствует о металлическом типе проводимости, поскольку наблюдается монотонное возрастание сопротивления с ростом температуры [79].

На данный момент единственным примером соединений, кристаллизующихся в структурном типе La₁₆Al₁₃ кроме самого La₁₆Al₁₃, являются соединения состава RE₁₆Au_xAl_{13-x} (RE = La–Nd, Sm, $x \le 3.37$), которые были получены случайно в рамках поиска соединений состава RE₄AuAl [80]. Рентгеноструктурный анализ по данным монокристальной дифракции для La₁₆Au_{2.85(1)}Al_{10.15(1)} и Ce₁₆Au_{3.37(1)}Al_{9.63(1)} показал, что золото совместно с алюминием заселяет три из четырех возможных позиций алюминия. Эти три совмещенные позиции также образуют баррелян состава (Au/Al)₁₁, который координирован одним атомом RE (Рисунок 20). Кроме этого, было установлено, что максимальная степень замещения для RE₁₆Au_xAl_{13-x} (RE = La–Nd, Sm) равна x = 3.

Основные структурные параметры для La₁₆Al₁₃, La₁₆Au_{2.85}Al_{10.15} и Ce₁₆Au_{3.37}Al_{9.63} приведены в Таблице 15. Видно, что при замещении части алюминия на золото происходит уменьшение параметров элементарной ячейки, а также межатомных расстояний, что возможно связано с возникновением более сильного взаимодействия между золотом и алюминием, а в случае с церийсодержащей фазой также и с уменьшением радиуса атома RE.

Рисунок 20. Фрагмент структуры с полиэдрами из церия, в центре которых находится алюминий, и элементарная ячейка Ce₁₆Au₃Al₁₀. Атомы церия показаны синим цветом, атомы алюминия – белым. Сегментированные части, обозначенные оранжевым цветом, указывают на частичную заселенность позиций алюминия золотом [80].

Данные магнитных измерений для $La_{16}Au_3Al_{10}$ демонстрируют температурнонезависимый парамагнетизм Паули во всем температурном интервале, в то время как для $Ce_{16}Au_3Al_{10}$ и $Pr_{16}Au_3Al_{10}$ наблюдается антиферомагнитное упорядочение ниже $T_N = 7.8$ K и ферромагнитное упорядочение ниже $T_c = 19.8$ K соответственно, а измерения удельного электрического сопротивления для данных соединений при комнатной температуре указывают на металлический тип проводимости [80].

Соединение	La ₁₆ Al ₁₃	La ₁₆ Au _{2.85} Al _{10.15}	Ce16Au3.37Al9.63				
Параметры элементарной ячейки							
<i>a</i> , Å	9.166	9.091	8.972				
<i>c</i> , Å ³	11.224	11.132	10.975				
<i>V</i> , Å ³	816.7	796.7	763.9				
Межатомные расстояния							
RE-RE, Å	3.63-4.14	3.40-4.02	3.35-3.97				
RE-Al, Å	3.20-4.17	3.23-4.09	3.18-4.04				
Al-Al, Å	2.66-2.69	2.65-2.66	2.63-2.64				

Таблица 15. Основные структурные параметры и межатомные расстояния для La₁₆Al₁₃, La₁₆Au_{2.85}Al_{10.15} и Ce₁₆Au_{3.37}Al_{9.63}.

2.7. Постановка задачи

На основе анализа обзора литературы можно сделать вывод, что фазы блочного типа состава $Ni_{7-x}MCh_2$ и $Ni_{10-x}M_2Ch_2$ известны для элементов всех элементов 13–15 групп 3–5 периода кроме Tl, Pb и Bi. На данный момент наиболее изученными и охарактеризованными являются соединения с *p*-металлами 14–15 групп (Si, Ge, Sn, Sb) и в наименьшей степени с *p*-металлами 13 группы (Al, Ga, In).

Ранее в нашей научной группе было показано, что для слоистых фаз Ni₃MTe₂ возможно сохранение структурного типа при частичном замещении никеля на другой *d*-или *p*-металл. Такое замещение возможно для случая, когда *p*-металлом является галлий или олово. В системе, содержащей галлий, атомы железа могут замещать никель в достаточно больших количествах (порядка 75%), для олова же в меньшей степени (до 20%). Однако подробно это явление не было исследовано, поэтому второй задачей является поиск новых слоистых четверных фаз — аналогов Ni_{3-x}MTe₂ (M = Ga, Sn) — с частичным замещением никеля не только на железо, но и на другие 3*d*-металлы, а также с частичным замещением на *p*-металлы. Кроме этого, на сегодняшний день в системе слоистых соединений в системе Ni-Sb-Te остается открытым вопрос о наличии сверхструктуры, которая присуща всем остальным системам типа Ni_{3-x}MTe₂ (M = Ga, Ge, Sn).

Несмотря на большое количество работ посвященных интерметаллидам, сведения даже о бинарных фазах не всегда надежно подтверждены, особенно для фаз богатых редкоземельными металлами. На данный момент нет достоверной информации о существовании Dy₃M, Gd₃M, Sm₃M (M = Ga, In) со структурой AuCu₃, а также не был осуществлён направленный поиск бинарных и тройных соединений со структурой La₁₆Al₁₃. В то же время такие соединения могли бы расширить представления об образовании гетерометаллических связей: они либо могут содержать блоки со структурой, аналогичной изучаемым комбинациям *d-p*-металл, только на основе *f-p*-металлов, либо представляют собой интересные объекты для сравнения гетерометаллических связей.

Исходя из этого задачами является поиск новых блочных, слоистых соединений, а также соединений богатых редкоземельными металлами, изучение их кристаллического и электронного строения и исследовании их магнитных свойств, а также анализ полученных данных и выявление основных закономерностей образования, строения и устойчивости соединений с гетерометаллическими фрагментами.

3. Экспериментальная часть

3.1. Синтез и рост кристаллов

Для синтеза образцов использовались следующие простые вещества: Ni (порошок), Fe (гранулы), Cu (порошок, фольга), Zn (порошок), Al (фольга, стружка), Ga (слиток), Sn (порошок), Sb (порошок), Si (порошок), Ag (нити) — все 99.99% чистоты; La, Ce, Sm, Gd и Dy (слиток) — все 99.98% чистоты; S (гранулы), Se (гранулы), Te (порошок), I₂ — все осч; LiCl, KCl, KI, PbCl₂ — все х.ч. Ni и Cu предварительно прокаливались в течение нескольких часов при 500 °C в токе сухого водорода хроматографической чистоты для восстановления оксидного слоя, a LiCl, KCl, KI и PbCl₂ предварительно были осушены при 125 °C в течение 5 часов в сушильном шкафу с последующей сушкой под динамическим вакуумом. Перед сплавлением навесок в дуговой печи поверхность редкоземельных металлов предварительно отчищалась от оксидного слоя. Все операции с редкоземельными металлами проводились в аргоновом перчаточном боксе. Исходные вещества взвешивали на электронных весах Ohaus Adventurer с точностью до 0.0001 г. Macca каждой навески составляла от 0.3 до 0.8 г.

Стехиометрические смеси исходных простых веществ помещались в прокаленные кварцевые ампулы диаметром 8-15 мм, длиной 50-100 мм, которые потом вакуумировались до остаточного давления $5-10\cdot10^{-3}$ мм рт.ст. и отпаивались в пламени кислородной горелки. Ампулы с образцами отжигались в печах СНОЛ (Технотерм) с программируемым режимом нагрева (точность измерения температуры ± 1 °C).

3.2. Методы анализа

3.2.1. Рентгенофазовый анализ

Рентгенофазовый анализ проводили с использованием автоматических порошковых дифрактометров Stoe STADI-P и Stoe Theta/Theta. В первом случае для регистрации использовали линейный координатный детектор PSD 120 и геометрию съемки на пропускание, во втором — сцинтилляционный точечный детектор и геометрию съемки Брэгга-Брентано на отражение в режиме постоянного вращения в горизонтальной плоскости (излучение в обоих случаях — CuK_{α 1}, $\lambda_{Cu} = 1.540598$ Å). В первом случае монохроматизация исходного излучения осуществлялась при помощи изогнутого германиевого кристалла, во втором — на вторичном пучке (плоский графит). Перед съёмкой образцы тщательно измельчали в агатовой ступке. Диапазон углов при съемке как правило составлял 2 $\theta = 5$ –80 °.

Фазовый анализ, индицирование порошкограмм и расчёт параметров элементарных ячеек осуществляли с использованием пакета программ Stoe WinXPOW [81] и баз порошковых данных ICDD (PDF1, PDF2) [2].

3.2.2. Рентгеноструктурный анализ

Массивы данных для расшифровки кристаллических структур по данным дифракции на монокристаллах были получены с использованием автоматического дифрактометра Bruker D8 QUEST (кафедра физической химии химического факультета МГУ имени М.В. Ломоносова), оснащенном матричным пиксельным детектором PHOTONII (тип CPAD), многослойным зеркалом с боковой градацией (Goebel) и микрофокусной рентгеновской трубкой с Мо-излучением ($\lambda = 0.71073$ Å). Первичная обработка и интегрирование массива данных были выполнены с помощью программного пакета Bruker SAINT (версия 8.40B) [82]. Данные были скорректированы с учетом эффектов Лоренца и поляризации. Коррекция поглощения была выполнена либо, с использованием процедуры «multiscan», реализованной в программе SADABS (версия 2016/2) [83], либо аналитически с учетом реальной формы кристалла.

Данные монокристальной дифракции Ni_{5.80}GaTe₂ и Ni_{6.07}AlS₂ были получены с использованием синхротронного излучения на канале «Белок» установке НИЦ «Курчатовский институт». Данные были скорректированы с учетом эффектов Лоренца и поляризации. Обработку данных и коррекцию поглощения проводили с использованием процедуры «multiscan» с помощью программы SCALA.11

Решение и уточнение кристаллических структур были выполнены при помощи пакета программ «SHELX-2018» [84]. Положения атомов были определены с использованием прямых методов и уточнены с использованием комбинации синтеза Фурье и уточнения по методу наименьших квадратов в изотропном и анизотропном приближении.

Уточнение кристаллических структур соединений по данным порошковой дифракции, полученным с помощью порошковых дифрактометров Bruker D8 Advance и Aeris (Panalytical) с геометрией съемки на отражение, без монохроматора (съемку осуществляли в режиме постоянного вращения образца, Си $K_{\alpha 1,2}$ – излучение, $\lambda = 1.5406$ Å), проводилось полнопрофильным методом Ритвельда, реализованном в пакете программ «TOPAS» версия 4.2 [85].

Порошковую in situ дифракцию проводили в диапазоне температур 26–550 °C с использованием рентгеновского порошкового дифрактометра высокого разрешения Rigaku SmartLab с двумерным полупроводниковым детектором HyPix-3000 с

использованием Си_{Ка}-излучения. Вклад Си_{Кβ} был удален с помощью никелевого фильтра. Измерения проводились в камере высокотемпературной печи Anton Paar HTK 1200N. Использовались как плоские образцы, так и капилляры. Картины от плоского образца регистрировались в режиме отражения в атмосфере сухого азота. Для капиллярной дифракции образцы помещали в капилляры из кварцевого стекла диаметром 0,3 мм (Hilgenberg, Malsfeld, Германия), которые пподсоединялись к газу N₂ или H₂ (p_{max} = 15 кТорр).

3.2.3. Измерения поглощения водорода

Дифференциальную сканирующую калориметрию (ДСК) in situ проводили под давлением водорода на приборе Q1000 (ТА Instruments), оборудованном газовой барокамерой. Порошкообразный образец массой ~20 мг помещали в алюминиевый тигель, закрывали алюминиевой крышкой и помещали в барокамеру, которую затем несколько раз продували газообразным водородом, прежде чем заполнить ее до исходного давления газа 37.5 кТорр при 35°С. Затем образец нагревали до 430°С со скоростью 10°С в минуту, выдерживали при этой температуре не менее 1 ч и охлаждали до 26°С. Во время цикла нагрева давление увеличивается до ~53.3 кТорр. Было выполнено два цикла; полученный образец охарактеризовали с помощью порошковой рентгеновской дифракции.

3.2.4. Мессбауэровская спектроскопия на ядрах ⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb

Регистрацию мессбауэровских спектров проводили на мессбауэровском спектрометре Ms-1104Em В лаборатории Мессбауэровской спектроскопии И радиохимических методов кафедры радиохимии Химического факультета МГУ имени М.В. Ломоносова. При проведении измерений на ядрах ⁵⁷Fe в качестве источника резонансного γ-излучения использовали ⁵⁷Co(Rh). Плотность поглотителей (природный изотопный состав) по ⁵⁷Fe составляла 0.3–0.4 мг/см². При проведении измерений на ядрах ¹¹⁹Sn в качестве источника резонансного у-излучения использовали Ca^{119m}SnO₃. Оба источника находились при комнатной температуре. Исследуемый образец (который служил поглотителем) во время регистрации спектров также находился при комнатной температуре в случае экспериментов на ядрах ⁵⁷Fe, ¹¹⁹Sn, а в случае экспериментов на ядрах 121 Sb – при T = 100 К.

Для обработки и анализа мессбауэровских спектров были использованы методы модельной расшифровки (программа «SPECTR» [86-89] и восстановления функций распределения сверхтонких параметров парциальных спектров (программа «DISTRI» [89]). Для калибровки скоростной шкалы измерений на ядрах ⁵⁷Fe в качестве эталона

применяли образец α-Fe (секстет зеемановского расщепления ядерных уровней ⁵⁷Fe), в случае ¹¹⁹Sn — эталонный образец CaSnO₃.

3.2.5. Локальный рентгеноспектральный анализ

Локальный рентгеноспектральный анализ кристаллов выполнялся на сканирующем электронном микроскопе JSM JEOL 6490 LV (ускоряющее напряжение 30 кВ, детектор вторично-эмитированных электронов), оборудованном системой энергодисперсионного рентгеновского анализа INCA Energy + (O xford Instruments). Для калибровки точечных спектров был использован элементарный кобальт, предоставленный аналитическими стандартами MAC. Количественный анализ проводился путем статистического усреднения точечных EDX-спектров.

3.2.6. Магнитные измерения

Магнитные измерения на объемных образцах проводились на магнетометре Quantum Design PPMS-9 в диапазоне температур 2-300 К при постоянном магнитном поле 100 Э. Были внесены поправки на магнитный вклад держателя зонда. Петли гистерезиса регистрировались при T = 2 K и 300 К при напряженности магнитного поля до 5 T.

3.2.7. Квантовохимические расчеты

Электронная структура соединений в рамках зонной модели была рассчитана в рамках теории функционала электронной плотности (DFT) преимущественно с использованием программы VASP (Vienna Ab initio Simulation Package) [90-91]. В программе используется метод псевдопотенциалов (PAW) для остовных оболочек и базис плоских волн для валентного пространства. В расчетах использовали обменно-корреляционные функционалы PBE/PBESol (галлий- и индийсодержащие фазы) типа GGA и r2SCAN (алюминийсодержащие фазы) типа meta-GGA [92-93]. Количество k-точек в первой зоне Бриллюэна выбиралось таким образом, чтобы обеспечить шаг между к-точками не более 0.02 Å⁻¹ [94].

При расчетах в рамках программы VASP для существующих соединений были использованы экспериментальные значения параметров решетки и координат атомов, во всех случаях проводилась релаксация атомных координат для устранения кристаллографических факторов. Для описания нестехиометрии использовались упорядоченные модели. Для расчетов все ячейки считались не содержащими элементов симметрии, т.е. переводились в пр. гр. Р1. В качестве критерия сходимости выступало соотношение: изменение энергии меньше 10⁻⁵ эВ. В избранных случаях, например, для оценки устойчивости структур, были использованы DFT расчеты также полнопотенциальным полноэлектронным методом присоединенных плоских волн (FP-

LAPW), реализованным в программе ELK. В таких расчетах использовали обменнокорреляционные функционалы PBE/PBESol.

Для более детального изучения особенностей химической связи в баррелянах они также моделировались как кластерные частицы на уровне DFT с функционалом r²SCAN при помощи программы ORCA 5.0.3. В этих расчетах были использованы базисные наборы def2-TZVPP [93].

Анализы ELF и зарядовой плотности проводились с использованием пакета Multiwfn 3.8. Информация о зарядах атомов оценивалась по схеме Бейдера, основанной на теории AIM [95]. Топология ELF была визуализирована с использованием пакета VESTA 3.5.7. Анализ заселенности гамильтониана кристаллических орбиталей (СОНР, COBI) был выполнен с использованием пакета LOBSTER 4.1.0. Диаграммы DOS и энергодисперсионные кривые («спагетти-диаграммы») были построены с использованием пакета sumo 2.2.5 [96-99].

4. Обсуждение результатов

4.1. Блочные фазы в системах Ni-M-Ch (M = Al, Ga, In, Ch = S, Se, Te)

4.1.1. Система Ni-Al-Ch

Ранее в системе Ni-Al-Ch было предположено существование тройных фаз халькогенидов никеля-алюминия Ni_{7-x}AlCh₂, но не была достоверно установлена их кристаллическая структура и не были исследованы физические свойства. Поэтому в данной части работы перед нами стояла задача получить монокристаллы и однофазные порошкообразные образцы тройных халькогенидов Ni_{7-x}AlCh₂ и осуществить их характеризацию.

Первоначально в качестве метода синтеза порошкообразных образцов был использован стандартный высокотемпературный ампульный синтез из простых веществ. Температурные режимы выбирались исходя из данных о синтезе ранее полученных блочных халькогенидов никеля-*p*-металлов.

При первых попытках синтезировать порошкообразные образцы были взяты составы Ni₆AlS₂, Ni₉Al₂S₂, Ni₉Al₂Se₂, Ni₉Al₂Se₂. По данным РФА после второго отжига все образцы содержали тройную фазу Ni_{7-x}AlCh₂ и бинарные примеси в значительном количестве (Приложение 1). Образование двухслойных сульфида и селенида Ni_{10-x}Al₂Ch₂ зафиксировано не было вследствие отсутствия на рентгенограмме характерных рефлексов на малых углах ($2\theta < 10^{\circ}$).

В дальнейшем при попытках избавиться от присутствия бинарных примесей мы варьировали температурный режим и содержание никеля, поскольку известно, что часто в блочных халькогенидах никеля-*p*-металла наблюдается занижение его количества по отношению к стехиометрии 6:1:2 вследствие наличия частично заселенной позиции в никель-халькогенидном блоке, однако варьирование условий синтеза в большинстве случаев не привело к существенному изменению фазового состава. По данным РФА только для образца состава Ni₆AlS₂ удалось избавиться от известных примесей, однако наблюдались дополнительные рефлексы, не относящиеся к тройной фазе и известным бинарным примесям.

Кроме описанных выше стандартных методов синтеза, нами был использован синтез из простых веществ с добавлением небольшого количества I₂. Данный метод синтеза был использован для получения порошкообразного образца родственного к семейству блочных халькогенидов Ni_{7-x}MCh₂ – соединения Pd₅InSe [100]. Как пишут авторы, добавление кристалла I₂ приводит к увеличению реакционной способности за счет химического газофазного транспорта, но в системе Ni-Al-Ch добавление I₂ вовсе не

привело к образованию тройных фаз, напротив, благоприятствуя образованию бинарных соединений. Кроме этого, были предприняты попытки механохимической активации образцов после первого гомогенизирующего отжига в шаровой мельнице, однако по данным РФА после второго отжига наблюдались только бинарные фазы.

Для роста монокристаллов был использован стандартный для таких систем метод – медленное охлаждение смеси простых веществ в расплаве флюса KI или PbCl₂, монокристаллы приемлемого размера для ЛРСА или РСтА с использованием обычного излучения получены не были, поэтому в дальнейшем кристаллы Ni_{7-x}AlS₂ были охарактеризованы с помощью синхротронного рентгеновского излучения. Использование разных флюсов, в том числе новый для таких систем флюс LiCl+KCl, и варьирование температурного режима не привели к росту кристаллов большего размера. Однако использование флюса LiCl+KCl увеличило кристалличность образцов, которой, как правило, невозможно было достичь без его использования. В конечном счете синтез порошкообразных образцов был сделан с помощью нетривиальный синтеза из расплава флюса LiCl+KCl при T = 550 °C, t = 240 ч. с последующим растворением флюса в дистиллированной воде. По данным РФА серосодержащий образец содержал незначительное количество бинарной примеси Ni₃Se₂, Ni₃Al и Ni₃Te₂ соответственно. Все условия синтеза и результаты РФА представлены в Приложении 1.

Рентгеноструктурный анализ соединений в системе Ni-Al-Ch. Кристаллические структуры Ni_{7-x}AlCh₂ были установлены по данным монокристальной рентгеновской дифракции с использованием синхротронного излучения и по данным порошковой рентгеновской дифракции. Селен- и теллурсодержащие образцы содержали небольшое количество хорошо идентифицируемой примеси 6.56% Ni₃Se₂ и 7.23% Ni₃Al и 23.81% Ni₃Te₂ соответственно, поэтому уточнения в случае Ni_{7-x}AlSe₂ и Ni_{7-x}AlTe₂ являются двух-и трехфазными. На Рисунке 21 показаны экспериментальный, уточненный и разностный профили для Ni_{7-x}AlCh₂. Параметры уточнения структур представлены в Таблице 16, координаты атомов и заселенности позиций приведены в Таблице 17, а основные межатомные расстояния — в Таблице 18. Уточнение параметров атомного смещения и заселенностей позиций проводили последовательно.

Стоит отметить, что данные порошковой дифракции хорошо согласуются с данными монокристалльной, и имеются лишь незначительные отличия, возникающие изза разной температуры проведения экспериментов. Порошковые данные не показали наличия ромбического искажения для теллурида никеля-алюминия, которое наблюдается для теллуридов никеля-галлия и никеля-индия и будет описано ниже.

Рисунок 21. Экспериментальная, расчетная и разностная рентгенограммы для образцов Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂ и Ni_{5.70}AlTe₂ (снизу вверх).

Формула	Ni _{6.07(1)} AlS ₂	Ni _{6.006(5)} AlS ₂	Ni _{5.612(2)} AlSe ₂	Ni _{5.702(3)} AlTe ₂		
Лифрактометр	Rayonix SX165 CCD.	SX165 D, Bruker D8 Advance, порошковый				
	монокристалльный					
	Синхротронное					
Тип излучения	излучение,	C	$\operatorname{CuK}_{\lambda}(\lambda = 1.54178\text{\AA})$)		
	$\lambda = 0.80246 \text{ Å}$					
Температура, К	100(2)		295			
20, °	6.643-31.062	8-100, 0.02	3-85, 0.02	8-80, 0.02		
Пространственная группа	<i>I</i> 4/ <i>mmm</i> (№ 139)					
Z		2				
М, г/моль	447.47	446.4	514.2	616.7		
Параметры элементарной ячейки, Å						
<i>a</i> (Å)	3.5350(5)	3.54380(3)	3.5886(5)	3.6804(1)		
c (Å ³)	18.006(4)	18.1057(1)	18.555(3)	19.2114(6)		
$V(Å^3)$	225.01(8)	227.382(4)	238.96(8)	260.22(2)		
Плотность, г/см ³	6.605	6.480	7.144	7.815		
R_1 / wR_{all}	0.0467 / 0.1135					
R_p / R_{wp}		0.025 / 0.033	0.053 / 0.069	0.038 / 0.051		
R _{Bragg}	—	0.015	0.014	0.064		
GoF	1.171	1.50	1.64	1.54		

В результате уточнения заселенности позиции Ni(3) и Ni(4) для Ni_{7-x}AlS₂ и Ni(3) для Ni_{7-x}AlSe₂ и Ni_{7-x}AlTe₂ точные формулы новых фаз могут быть записана как Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂, что хорошо согласуется с ранее описанными структурами блочных халькогенидов.

Атом	Позиция Вайкоффа	x/a	y/b	z/c	Заселенность позиции	$\begin{array}{c} U_{iso}{\cdot}10^2 / \\ B_{iso}, {\rm \AA}^2 \end{array}$
	1	1	Ni6.074	AIS ₂		1
Ni(1)	8g	1/2	0	0.39940(7)	1	1.50(7)
Ni(2)	<i>2b</i>	1	1	1/2	1	1.42(8)
Ni(3)	<i>4e</i>	0	0	0.2078(2)	0.390(7)	1.60(12)
Ni(4)	4d	-1/2	0	1/4	0.144(13)	1.3(5)
Al	2a	1/2	1/2	1/2	1	1.9(3)
S	<i>4e</i>	0	0	0.3223(1)	1	1.77 (10)
	1	r	Ni _{5.61} A	AlSe ₂		
Ni(1)	8g	0	1/2	0.09631(4)	1	0.6(1)
Ni(2)	<i>2b</i>	1/2	1/2	0	1	0.5(1)
Ni(3)	<i>4e</i>	0	0	0.1989(2)	0.304(2)	0.8(1)
Al	2a	0	0	0	1	0.5(1)
Se	4e	1/2	1/2	0.17937(4)	1	0.7(1)
			Ni5.70A	ITe ₂		
Ni(1)	8g	0	1/2	0.08980(6)	1	0.99(8)
Ni(2)	2a	1/2	1/2	0	1	0.99(8)
Ni(3)	4e	0	0	0.1905(3)	0.351(3)	1.0(4)
Al	2a	0	0	0	1	1.0(1)
Те	<i>4e</i>	1/2	1/2	0.17944(5)	1	0.60(7)

Таблица 17. Координаты атомов, заселенности позиций, значения параметров атомного смещения для Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂ и Ni_{5.70}AlTe₂.

U_{iso} дано для монокристального эксперимента, В_{iso} – для порошкового.

Таблица 18. Значения основных межатомных расстояний в Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂ и Ni_{5.70}AlTe₂.

Chan	Межатомные	Chan	Межатомные	Chapt	Межатомные	
Связь	расстояние, Å	Связь	расстояние, Å	Связь	расстояние, Å	
		Ni6.07	AlS ₂			
Ni(1)-Ni(1)	2.4996(4)	Ni(1)-Al	2.5309(11)	Ni(1)-S	2.248(2)	
Ni(1)-Ni(2)	2.5309(11)	Ni(2)-Al	2.4996(4)	Ni(3)-S	2.557(1)	
Ni(1)-Ni(3)	2.617(2)	Ni(4)-Ni(4)	2.4996(4)	Ni(4)-S	2.195(1)	
Ni _{5.61} AlSe ₂						
Ni(1)-Ni(1)	2.53756(4)	Ni(1)-Al	2.5325(6)	Ni(1)-Se	2.3654(8)	
Ni(1)-Ni(2)	2.5325(6)	Ni(2)-Al	2.53756(4)	Ni(3)-Se	2.257(5)	
Ni(1)-Ni(3)	2.617(4)				2.5635(6)	
Ni _{5.70} AlTe ₂						
Ni(1)-Ni(1)	2.60244(9)	Ni(1)-Al	2.5225(9)	Ni(1)-Te	2.520(1)	
Ni(1)-Ni(2)	2.5225(9)	Ni(2)-A1	2.60244(9)	Ni(3)-Te	2.6111(6)	
Ni(1)-Ni(3)	2.670(6)				2.498(8)	

4.1.2. Система Ni-Ga-Ch

Ранее в научной группе А.Н. Кузнецова А.А. Серовым в системе Ni-Ga-Ch были получены монокристаллы тройных халькогенидов никеля-галлия (Ni_{6.1}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂) из простых веществ при медленном охлаждении с использованием флюсов KI и PbCl₂, однако не был решен вопрос об их репрезентативности по отношению к объемным образцам. В этой части работы перед нами стояла задача получения однофазных порошкообразных образцов тройных халькогенидов никеля-галлия, монокристаллов Ni₇₋ $_x$ GaTe₂ и достоверное определение структур всех смешанных халькогенидов никеля-галлия.

При выборе метода роста монокристаллов для Ni_{7-x}GaTe₂ мы опирались на ранее описанные для подобных систем методы: рост из простых веществ при медленном охлаждении без флюса и с использованием флюса KI или PbCl₂. Использование данных методик не привело к росту монокристаллов приемлемого для PCтA размера. В качестве исходных веществ помимо простых веществ нами были использованы заранее синтезированные тройные соединения, но такой метод в принципе не привел к росту каких-либо монокристаллов. Флюс LiCl+KCl, который ранее был использован для системы Ni-Al-Ch, выводил галлий из реакционной зоны, в результате чего реакция не проходила до конца. Варьирование температурного режима также не привело к существенному изменению качества и размера кристаллов.

На первом этапе синтеза порошкообразных образцов были предприняты попытки получения однослойных и двухслойных тройных соединений состава Ni_{7-x}GaCh₂ (Ch = S, Se, Te) и Ni_{10-x}Ga₂Ch₂ (Ch = S, Se) с помощью стандартного высокотемпературного ампульного синтеза из простых веществ (Приложение 2). По результатам РФА было установлено, что образец с заложенной стехиометрией Ni_{5.7}GaSe₂ не содержит никаких известных бинарных примесей и является однофазным. Образец состава Ni_{5.8}GaTe₂ содержал примеси теллурида никеля Ni₃Te₂ и Ni₃Ga, а образец Ni_{8.5}Ga₂Se₂ представлял собой смесь однослойного селенида никеля-галлия Ni_{5.63}GaSe₂, Ni₃Ga и Ni₃Se₂, образование фазы со структурой типа Ni_{10-x}Ga₂Se₂ не наблюдалось.

При дальнейших попытках избавления от бинарных примесей изменялись температурный режим, длительность отжига (более 2 месяцев с промежуточной гомогенизацией через каждые 2 недели), содержание никеля, использовалась механохимическая активация, также были предприняты попытки синтеза тройных соединений из бинарных интерметаллидов и теллурида никеля (Приложение 2). Все это не привело к получению образцов с преобладающим содержанием целевой тройной фазы. При поиске новой методики синтеза было обнаружено, что ранее в системе Ni-Fe-Ga-S было установлено образование изоструктурного двухслойному сульфиду Ni_{10-x}Ga₂S₂ соединения, которое наблюдается только при частичном замещении никеля на железо, в то время как направленный синтез Ni_{10-x}Ga₂S₂ в принципе не приводит к образованию данной фазы в объемном образце [101]. Мы решили изучить этот вопрос более детально, для чего выполнили ряд синтезов, как с использованием железа, так и без него. По данным РФА оказалось, что даже при синтезе соединения состава Ni₉Ga₂S₂ в смеси с однослойным сульфидом Ni_{6.1}GaS₂ и бинарными примесями образуется двухслойный сульфид Ni_{10-x}Ga₂S₂, хоть и в небольших количествах. При синтезе четверных фаз состава Ni_{5.2}Fe_{0.5}GaS₂, Ni_{5.7}Fe_{0.3}GaS₂, Ni₈Fe_{0.5}Ga₂S₂, Ni_{8.4}Fe_{0.6}Ga₂S₂ содержание однослойного сульфида со структурой Ni_{6.1}GaS₂ уменьшается с увеличением содержания железа в образцах и достигает минимального количества в образце Ni₈Fe_{0.5}Ga₂S₂. Индицирование рентгенограмм данных образцов затруднено, т.к. большая часть рефлексов одновременно относится и к однослойной фазе Ni_{6.1}GaS₂, и к двухслойной фазе со структурой типа Ni₁₀₋ _xGa₂S₂ и плохо разрешаются.

При дальнейших попытках избавления от примесей мы перешли от стандартных к нестандартным для данной системы методов синтеза, а именно синтез из простых веществ с добавлением небольшого количества I₂ в качестве «минерализирующего» агента [100]. Как было показано ранее, в системе Ni-Al-Ch данный метод синтеза не привел к положительным результатам, однако в системе Ni-Ga-Ch использование нескольких кристаллов иода массой не более 0,003 г позволило получить однофазные образцы с заложенной стехиометрией Ni_{6.1}GaTe₂ и Ni₉Ga₂S₂ (Рисунок 22). Можно предположить, что добавление иода уменьшало некий активационный барьер и выступало в роли катализатора.

В итоге в системе Ni-Ga-Ch удалось получить три однофазных порошкообразных образца (Ni_{5.63}GaSe₂, Ni_{7-x}GaTe₂, Ni_{10-x}Ga₂S₂), что позволило использовать их для магнитных измерений, а два последних образца для уточнения кристаллической структуры полнопрофильным методом Ритвельда. Кроме этого, посредством медленного охлаждения были получены кристаллы Ni_{7-x}GaTe₂ очень маленького размера, но достаточного для РСтА с использованием синхротронного излучения.

Рисунок 22. Сравнение рентгенограмм Ni_{7-x}GaTe₂, полученного с помощью высокотемпературного синтеза из простых веществ (фиолетовая) и с добавлением небольшого количества иода (синяя). Красная штрих-рентгенограмма – теоретическая рентгенограмма Ni₆GaTe₂.

4.1.3. Система Ni-In-Ch

Ранее в данной системе с помощью стандартных методов синтеза был получен только один халькогенид никеля-индия – это Ni_{5.73}InSe₂, образование других тройных соединений не было зафиксировано даже в следовых количествах, наблюдалось образование смеси бинарных соединений. После ряда успешных синтезов халькогенидов никеля-галлия с использованием иода мы решили вернуться к поиску других представителей халькогенидов никеля-индия. По результатам РФА было установлено, что после одного отжига с добавлением нескольких кристаллов иода образец с заложенной стехиометрией Ni₆InTe₂ не содержит никаких известных бинарных примесей и является однофазным (Приложение 3). Образцы с заложенной стехиометрией Ni₆InS₂, Ni₁₀In₂S₂ и Ni₁₀In₂Se₂ в качестве основной фазы содержат Ni₃In₂S₂ и Ni₃In₂Se₂ со структурой шандита, а тройные соединения со структурой Ni_{7-x}InCh₂ (Ch = S, Se) и Ni_{10-x}In₂Ch₂ (Ch = S, Se, Te) не образуются даже в качестве примеси.

Рентгеноструктурный анализ соединений в системе Ni-Ga-Ch по данным монокристальной дифракции. Как уже упоминалось выше, кристаллы Ni_{7-x}GaS₂, Ni_{7-x}GaSe₂ и Ni_{10-x}Ga₂Se₂ были получены ранее из простых веществ при медленном охлаждении с использованием флюсов. Результаты ЛРСА кристаллов, показали, что состав соответствует следующим формулам: Ni_{6.06(5)}Ga_{1.00(3)}S_{2.03(3)}, Ni_{5.65(2)}Ga_{1.00(2)}Se_{2.01(2)} и

Ni_{8.60(5)}Ga_{1.99(4)}Se_{2.04(5)}. Из каждого образца были отобраны пригодные для РСтА кристаллы. Отбор затруднялся тем, что большая часть кристаллов представляла собой «двойники», вследствие чего требовалось проверить 5-6 кристаллов для выбора подходящего. Решение структуры проводилось В тетрагональной сингонии в пространственной группе *I4/mmm*, выбранной, исходя из анализа статистики интенсивностей, а также исходя из того, что ранее полученные соединения Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ были описаны в этой же пространственной группе. Параметры рентгеноструктурных экспериментов и детали уточнения приведены в Таблице 19, координаты атомов и параметры атомного смещения — в Таблице 20, а основные межатомные расстояния в Таблице 21. Для соединения Ni_{6.10}GaS₂ представлены данные низкотемпературного эксперимента и эксперимента, проведенного при комнатной температуре.

Формула	Ni6.098(4)GaS2	Ni6.111(6)GaS2	Ni5.634(4)GaSe2	Ni8.542(4)Ga2Se2			
Вид излучения		MoK_{α} (λ	L = 0.71073 Å)				
Температура, К	153(2)	293(2)	293(2)	293(2)			
Диапазон углов θ , °	4.54-29.71	4.52-29.60	2.20-30.63	4.79-30.04			
Пр. гр.		<i>I4/mmm</i> (№ 139)					
Z			2				
Плотность, г/см ³	7.292	7.233	7.730	8.110			
Коэффициент поглощения µ, см ⁻¹	317.21	314.72	421.56	430.77			
a, Å	3.5310(5)	3.5420(5)	3.5995(3)	3.5810(5)			
<i>c</i> , Å	17.968(4)	18.026(4)	18.517(3)	25.506(5)			
$V, Å^3$	224.02(8)	226.15(8)	239.91(5)	327.08(11)			
Всего рефл./незав. рефл.	1654 / 127	1581 / 126	1032 / 149	1894 / 184			
R_I / R_σ	0.015 / 0.033	0.016 / 0.032	0.019 / 0.042	0.028 / 0.063			
Рефлексы I>2σ(I)	113	125	138	178			
Число уточняемых параметров	20	20	17	22			
Остаточная электронная плотность max/min, е Å ⁻³	0.94 / -0.49	1.75 / -2.28	0.84 / -1.69	1.22 / -1.91			
$R_1(I > 2\sigma(I)) / R_{all}$	0.014 / 0.018	0.039 / 0.039	0.018 / 0.019	0.022 / 0.023			
$\frac{WR_1^2(I>2\sigma(I))}{WR_{all}^2}$	0.037 / 0.038	0.069 / 0.069	0.041 / 0.042	0.042 / 0.042			

Таблица 19. Параметры рентгеноструктурного эксперимента и анализа для Ni_{6.10}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂.

Атом	Позиция Вайкоффа	x/a	y/b	z/c	Заселенность	$U_{ m eq}^{*}, { m \AA}^2$
			Ni6.098	(4)GaS ₂		
Ni(1)	8g	0	1/2	0.10121(3)	1	0.0043(3)
Ni(2)	$2\overline{b}$	1/2	1/2	0	1	0.0035(3)
Ni(3)	4 <i>e</i>	0	0	0.2925(1)	0.378(4)	0.0076(8)
Ni(4)	4 <i>d</i>	0	1/2	1/4	0.171(4)	0.0067(15)
Ga	2 <i>a</i>	0	0	0	1	0.0035(3)
S	4 <i>e</i>	1/2	1/2	0.1776(1)	1	0.0075(4)
			Ni6.111	(6)GaS2		
Ni(1)	8g	0	1/2	0.10117(6)	1	0.0106(6)
Ni(2)	2b	1/2	1/2	0	1	0.0091(6)
Ni(3)	4 <i>e</i>	0	0	0.2925(2)	0.401(6)	0.0201(12)
Ni(4)	4 <i>d</i>	0	1/2	1/4	0.155(6)	0.014(3)
Ga	2 <i>a</i>	0	0	0	1	0.0100(6)
S	4 <i>e</i>	1/2	1/2	0.1778(1)	1	0.0139(7)
			Ni5.634(4)GaSe2		
Ni(1)	8g	0	1/2	0.09677(3)	1	0.0079(2)
Ni(2)	2b	1/2	1/2	0	1	0.0070(2)
Ni(3)	4 <i>e</i>	0	0	0.2002(1)	0.317(4)	0.0109(7)
Ga	2 <i>a</i>	0	0	0	1	0.0075(2)
Se	4 <i>e</i>	1/2	1/2	0.17976(3)	1	0.0100(2)
			Ni _{8.542(4}	₄₎ Ga ₂ Se ₂		
Ni(1)	8g	0	1/2	0.13945(2)	1	0.0063(2)
Ni(2)	4 <i>c</i>	0	1/2	0	1	0.0053(2)
Ni(3)	4 <i>e</i>	1/2	1/2	0.06909(2)	1	0.0054(2)
Ni(4)	4 <i>d</i>	0	0	0.2135(1)	0.271(4)	0.0088(9)
Ga	4 <i>e</i>	0	0	0.06975(2)	1	0.0058(2)
Se	4 <i>e</i>	1/2	1/2	0.19901(2)	1	0.0075(2)

Таблица 20. Координаты атомов, заселенности позиций, значения параметров атомного
смещения для Ni _{6.10} GaS ₂ , Ni _{5.63} GaSe ₂ , Ni _{8.54} Ga ₂ Se ₂ .

 $^*\mathrm{U}_{eq}$ — 1/3 следа ортогонализованного тензора U_{ij}

Таблица 21. Значения основных межатомных расстояний в $Ni_{6.10}GaS_2$, $Ni_{5.63}GaSe_2$ и $Ni_{8.54}Ga_2Se_2$.

Связь	Межатомные расстояние. Å	Связь	Межатомные расстояние. Å	Связь	Межатомные расстояние. Å		
	F	Ni _{6.098(4}	a)GaS ₂		F		
Ni(1)-Ni(1)	2.4968(4)	Ni(1)-Ga	2.5346(5)	Ni(1)-S	2.237(1)		
Ni(1)-Ni(2)	2.5346(5)	Ni(2)-Ga	2.4968(4)	Ni(3)-S	2.5537(7)		
Ni(1)-Ni(3)	2.600(2)	Ni(4)-Ni(4)	2.4968(4)	Ni(4)-S	2.193(1)		
	Ni _{6.111(6)} GaS ₂						
Ni(1)-Ni(1)	2.5046(4)	Ni(1)-Ga	2.5421(8)	Ni(1)-S	2.246(2)		
Ni(1)-Ni(2)	2.5421(8)	Ni(2)-Ga	2.5046(4)	Ni(3)-S	2.561(1)		
Ni(1)-Ni(3)	2.610(2)	Ni(4)-Ni(4)	2.5046(4)	Ni(4)-S	2.198(2)		
		Ni5.634(4))GaSe ₂				
Ni(1)-Ni(1)	2.5452(2)	Ni(1)-Ga	2.5397(4)	Ni(1)-Se	2.3665(5)		
Ni(1)-Ni(2)	2.5397(4)	Ni(2)-Ga	2.5452(2)	Ni(3)-Se	2.223(3)		
Ni(1)-Ni(3)	2.628(2)				2.5731(5)		
Ni _{8.542(4)} Ga ₂ Se ₂							
Ni(1)-Ni(1)	2.5321(4)	Ni(1)-Ga	2.5231(5)	Ni(1)-Se	2.3482(5)		
Ni(2)-Ni(3)	2.5122(5)	Ni(2)-Ga	2.5240(5)	Ni(4)-Se	2.230(3)		
Ni(2)-Ni(2)	2.5321(4)	Ni(3)-Ga	2.5322(4)		2.5591(5)		
Ni(1)-Ni(3)	2.5350(6)	Ni(1)-Ni(4)	2.603(2)				

Для монокристаллов Ni_{5.80}GaTe₂ был проведен низкотемпературный использованием монокристальный эксперимент с синхротронного излучения. Использование синхротронного излучения было обусловлено малым размером полученных кристаллов. Параметры рентгеноструктурного эксперимента и детали уточнения приведены в Таблице 22, координаты атомов и параметры атомного смещения — в Таблице 23.

Следует отметить, что по результатам РСтА для Ni_{5.80}GaTe₂ структура является тетрагональной (пр.гр. *I4/mmm*), как и все другие известные селениды и теллуриды типа Ni_{7-x}MTe₂.

Формула	Ni _{5.80(2)} GaTe ₂
Лифрактометр	Rayonix SX165 CCD,
Дифрактометр	монокристалльный
Вил излучения	Синхротронное, $\lambda =$
	0.80246 A
Температура, К	100(2)
Диапазон углов θ , °	2.402 - 30.946
Пространственная группа	<i>I4/mmm</i> (No.139)
Z	2
Молярная масса, г/моль	664.8
Плотность, г/см ³	8.42(1)
Коэффициент поглощения	54.077
μ, cm ⁻¹	54.077
<i>a</i> (Å)	3.6911(5)
<i>c</i> (Å)	19.146(4)
$V(Å^3)$	260.85(9)
Всего рефл./незав. рефл.	1129 / 117
$R_{\rm I}/R_{ m \sigma}$	0.0351 / 0.0560
Рефлексы с <i>I>2 σ(I)</i>	108
Количество уточняемых	17
параметров	17
$R_1(I > 2\sigma(I)) / R_{all}$	0.0363 / 0.038
$wR_{1}^{2}(I > 2\sigma(I)) / wR_{all}^{2}$	0.0957 / 0.097
W	$1/[\sigma^2(F_0^2) + (0.08P)^2]$
Р	$[F_0^2 + 2F_c^2]/3$
GoF	1.074

Таблица 22. Параметры рентгеноструктурного эксперимента и анализа для Ni_{5.80}GaTe₂.

Таблица 23. Координаты атомов и заселенности позиций для Ni_{5.80}GaTe₂ по данным монокристальной рентгеновской дифракции.

Связь	Межатомные расстояние, Å	Связь	Межатомные расстояние, Å	Связь	Межатомные расстояние, Å	
Ni5.80(2)GaTe2						
Ni(1)-Ni(1)	2.6100(4)	Ni(1)-Ga	2.5142(14)	Ni(1)-Te	2.5309(16)	
Ni(1)-Ni(2)	2.5142(14)	Ni(2)-Ga	2.6100(4)	Ni(3)-Te	2.6171(7)	
Ni(1)-Ni(3)	2.666(6)			Ni(3)-Te	2.502(8)	

Рентгеноструктурный анализ соединений в системе Ni-M-Ch (M = Ga, In) по данным порошковой дифракции. Кристаллические структуры Ni_{10-x}Ga₂S₂, Ni_{7-x}InTe₂, а также Ni_{7-x}GaTe₂ были уточнены полнопрофильным методом Ритвельда по данным порошковой дифракции. На Рисунке 23 показаны экспериментальный, уточненный и разностный профили для Ni_{7-x}GaTe₂, Ni_{10-x}Ga₂S₂ и Ni_{7-x}InTe₂. Параметры уточнения структур представлены в Таблице 24, а координаты атомов и заселенности позиций приведены в Таблице 25, а основные межатомные расстояния — в Таблице 26. Уточнение параметров атомного смещения проводили в изотропном приближении.

Изначально в качестве модели для уточнения структур теллуридов Ni_{7-x}GaTe₂ и Ni_{7-x}InTe₂ был использован Ni_{5.42}GeTe₂ [20], структура которого была определена по монокристальным данным. Использование данной модели для уточнения привело к удовлетворительному описанию структур, например, для Ni_{5.80}GaTe₂ описание в тетрагональной сингонии (пр. гр. *14/mmm)* дало следующие R-факторы: R_b=3.67%, R_p=4.36% и R_{wp}=7.37%. Однако более тщательный анализ профиля позволил выявить небольшое ромбическое искажение структуры, которое не обнаруживалось по данным монокристальной рентгеновской дифракции, но которое однозначно наблюдалось в виде расщепления рефлекса 200 на 200 и 020 на профиле, полученном по данным порошковой дифракции (см. Рисунок 24). В последствии структура Ni_{7-x}GaTe₂ была уточнена в ромбической сингонии (пр. гр. *Pnnm*), что снизило значения R-факторов до R_b=1,05%, R_p=3,03% и R_{wp}=3,87%, и самое главное, улучшило описание рефлексов на 20 ~ 50°. Стоит отметить, что наблюдаемое ромбическое искажение структур оно не влияет.

Данное расщепление не обнаруживалось по результатам экспериментов с использованием синхротронного излучения, которое было описано выше. Статистика интенсивности показала, что описание в пр. гр. *14/mmm* более предпочтительно, чем в пр. гр. *Pnnm*. При итегрировании интенсивностей и решении и уточнение структуры в пр. гр. *Pnnm* значительного улучшения по сравнению с решением в пр. гр. *I4/mmm* не наблюдалось, поэтому окончательное решение для низкотемпературного синхротронного эксперимента было сделано в тетрагональной сингонии. Стоит отметить, что, во-первых, нужно принять во внимание гораздо более короткую длину волну синхротронного излучения (~ 0.8 Å) по сравнению с СиК_λ для порошковой дифракции (~ 1.54 Å), что приводит к снижению линейного разрешения профиля отражений. Во-вторых, данные монокристальной рентгеновской дифракции были получены при T = 100 K, и, учитывая то, при комнатной температуре изначально плохо неразрешенные рефлексы 200 и 020

становятся отдельными рефлексами при T = 230°C, а при повышении температуры продолжают расщепляться, можно предположить, что понижение температуры имеет обратный эффект.

Рисунок 23. Экспериментальная, расчетная и разностная рентгенограммы для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂.

Рисунок 24. Экспериментальная, расчетная и разностная рентгенограммы для Ni_{7-x}GaTe₂ (сверху) и их участок в диапазоне $2\theta \sim 48-52$ при уточнении в пр.гр. *I4/mmm* и *Pnnm*.

Для Ni_{5.78}InTe₂ наблюдается аналогичное небольшое расщепление рефлекса 200, указывающее на ромбическое искажение. Разница между параметрами *a* и *b* всего ~ 0.008 Å, а переход к ромбической сингонии не только уменьшает значения R-факторов с $R_b/R_p/R_{wp}$ 1.10%/4.04%/5.81% до 0.73%/3.43%/4.63%, но и улучшает описание профиля.

По-видимому, такое небольшое ромбическое искажение наблюдается у обоих теллуридов, а у селенидов и сульфидов – нет (см. рис. Рисунок 25).

Рисунок 25. Картина расщепления рефлекса 200 в Ni_{5.80}GaTe₂ и Ni_{5.78}InSe₂ и отсутствия расщепления в Ni_{5.73}InSe₂ при комнатной температуре (сверху – излучение CuKα, в середине и снизу - CuKα₁).

На данный момент известны структурные данные, полученные с помощью монокристального анализа, только для двух двухслойных сульфидов: $Ni_{8.24}Ge_2S_2$ [21] и $Ni_{8.93}Sn_2S_2$. Структуры этих сульфидов принципиально отличаются типом никельсульфидного блока. Как уже отмечалось ранее, в структуре $Ni_{8.93}Sn_2S_2$ присутствуют два типа блока со структурой Li_2O и Cu_2Sb / NaCl, а в $Ni_{8.24}Ge_2S_2$ — только один тип со структурой Cu_2Sb / NaCl. При сравнении экспериментальной рентгенограммы $Ni_{10-x}Ga_2S_2$ с теоретическими $Ni_{8.24}Ge_2S_2$ и $Ni_{8.93}Sn_2S_2$ видно, что на рентгенограмме $Ni_{10-x}Ga_2S_2$ присутствуют все рефлексы, соответствующие теоретической рентгенограмме $Ni_{8.24}Ge_2S_2$, в то время как некоторые рефлексы характерные для $Ni_{8.93}Sn_2S_2$ или вовсе отсутствовали, или имели меньшую интенсивность, что могло отвечать наличию в структуре только одного типа никель-сульфидного блока, поэтому качестве модели для уточнения структуры Ni_{10-x}Ga₂S₂ были использованы структурные данные именно Ni_{8.24}Ge₂S₂. Можно считать, что модель выбрана корректно, поскольку при уточнении структуры были достигнуты хорошие значения R-факторов (Таблица 24).

Таблица 24. Параметры уточнения структурн	ы Ni _{5.80} GaTe ₂	, Ni _{9.39} Ga ₂ S ₂ и	$Ni_{5.78}InTe_2$.
---	--	---	---------------------

Формула	Ni _{5.80(1)} GaTe ₂ Ni _{9.39(1)} Ga ₂ S ₂ Ni _{5.78(1)} InTe				
Фазовый состав		однофазные			
Дифрактометр	Bruke	r D8 Advance, порош	ковый		
Вид излучения		CuK_{λ} ($\lambda = 1.54178$ Å)			
Температура, К		295			
Диапазон углов θ , °		3-90			
Пространственная группа	Pnnm (№.58)	<i>I</i> 4/ <i>mmm</i> (№ 139)	Pnnm (№ 58)		
Ζ		2			
Молярная масса, г/моль	664.8 754.68 709.27				
a, Å	3.70884(4)	3.5685(5)	3.77147(6)		
b, Å	3.69960(4)	—	3.76317(7)		
<i>c</i> , Å ³	19.11544(15) 25.1838(4) 19.5150				
<i>V</i> , Å ³	262.288(4)	320.702(1)	276.970(8)		
Плотность, г/см ³	8.418(12)	7.819(1)	8.506(14)		
R_p/R_{wp}	0.030 / 0.038 0.030 / 0.041 0.033/0.046				
R _{Bragg}	0.010	0.015	0.0073		
GoF	1.16	1.44	2.44		

Таблица 25. Координаты атомов и заселенности позиций для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂.

Атом	Позиция	x/a	y/b	z/c	Заселенность	B_{iso}, A^2				
	Вайкоффа		2		позиции	-				
Ni _{5.80(1)} GaTe ₂										
Ni(1)	4f	1/2	0	0.4114(5)	1	1.3(4)				
Ni(2)	4f	0	1/2	0.4101(5)	1	1.3(3)				
Ni(3)	2a	1/2	1/2	1/2	1	1.3(3)				
Ni(4)	4 <i>e</i>	1/2	1/2	0.1873(5)	0.396(2)	1.5(7)				
Ga	2b	0	0	1/2	1	0.5(3)				
Te	4 <i>e</i>	1/2	1/2	0.320139(81)	1	1.2(3)				
	Ni9.39(1)Ga2S2									
Ni(1)	8g	0	1/2	0.14491(1)	1	0.6(4)				
Ni(2)	4 <i>c</i>	0	1/2	0	1	1.0(4)				
Ni(3)	4 <i>e</i>	1/2	1/2	0.07239(3)	1	0.8(4)				
Ni(4)	4d	0	0	0.22022(3)	0.698(1)	1.0(7)				
Ga	4 <i>e</i>	0	0	0.07400(2)	1	1.0(4)				
Te	4 <i>e</i>	1/2	1/2	0.19800(5)	1	0.6(4)				
	Ni _{5.78(1)} InTe ₂									
Ni(1)	4f	1/2	0	0.4049(4)	1	1.0(3)				
Ni(2)	4f	0	1/2	0.4057(4)	1	2.1(3)				
Ni(3)	2a	1/2	1/2	1/2	1	1.3(3)				
Ni(4)	4 <i>e</i>	1/2	1/2	0.1908(3)	0.391(1)	1.1(4)				
In	2b	0	0	1/2	1	1.3(3)				
Te	4e	1/2	1/2	0.31875(5)	1	1.3(3)				

Связь	Межатомные расстояние, Å	Связь	Межатомные расстояние, Å	Связь	Межатомные расстояние, Å		
Ni _{5.80(1)} GaTe ₂							
Ni(1)-Ni(2)	2.6194(3)	Ni(2)-Ni(4)	2.6243(9)	Ni(1)-Te	2.5428(6)		
Ni(1)-Ni(3)	2.5079(6)	Ni(1)-Ga	2.5113(6)	Ni(2)-Te	2.5290(6)		
Ni(2)-Ni(3)	2.5282(6)	Ni(2)-Ga	2.5249(6)	Ni(4)-Te	2.5397(9)		
Ni(1)-Ni(4)	2.6453(9)	Ni(3)-Ga	2.6193(6)	Ni(4)-Te	2.6231(6)		
Ni _{9.39(1)} Ga ₂ S ₂							
Ni(1)-Ni(1)	2.5233(1)	Ni(1)-Ga	2.5233(1)	Ni(1)-S	2.2296(8)		
Ni(2)-Ni(3)	2.5510(5)	Ni(2)-Ga	2.5801(4)	Ni(4)-S	2.060(1)		
Ni(2)-Ni(2)	2.5233(1)	Ni(3)-Ga	2.5236(2)	Ni(4)-S	2.5846(3)		
Ni(1)-Ni(3)	2.5532(6)	Ni(1)-Ni(4)	2.6040(6)				
Ni _{5.78(1)} InTe ₂							
Ni(1)-Ni(2)	2.6639(2)	Ni(2)-Ni(4)	2.6625(7)	Ni(1)-Te	2.5233(5)		
Ni(1)-Ni(3)	2.6428(5)	Ni(1)-In	2.6458(5)	Ni(2)-Te	2.5367(5)		
Ni(2)-Ni(3)	2.6350(5)	Ni(2)-In	2.6320(5)	Ni(4)-Te	2.4962(6)		
Ni(1)-Ni(4)	2.6545(7)	Ni(3)-In	2.6639(5)	Ni(4)-Te	2.6705(5)		

Таблица 26. Значения основных межатомных расстояний в Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂.

In situ порошковая рентгеновская дифракция и гидрирование Ni_{7-x}MTe₂ (M = Ga, In). Для изучения возможности фазовых переходов тройных теллурридов никелягаллия и никеля-индия были проведены in situ дифракционные эксперименты при нагревании от комнатной температуры до 550 °C в атмосфере сухого азота. Расщепление рефлекса 200 сохранялось и даже немного увеличивалось с температурой. Этот эксперимент также был проведен в капилляре, в первом случае, заполненном азотом, а во втором случае – водородом при давлении ~ 52.5 кTopp, но вид дифрактограммы в целом не изменился, что указывает на то, что при использовании давления газа явных структурных изменений не происходит (Рисунок 26).

Рисунок 26. 3D-дифрактограмма in situ эксперимента $Ni_{5.80}$ GaTe₂ при T = 200-550°C в атмосфере сухого N_2 .

Кроме этого, также для изучения возможности существования структурных переходов и изменения электронных свойств $Ni_{5.80}$ GaTe₂ и $Ni_{5.78}$ InTe₂ были проведены эксперименты по гидрированию (p(H₂) ~52.5 кTopp и T = 430°C) (Рисунок 27). По данным термического анализа и последующего РФА продуктов никаких признаков возможного поглощения водорода не наблюдалось.

Таким образом, мы можем рассматривать этот случай, как первый, когда необходимость геометрической подстройки фрагментов при образовании структур линейного срастания типа Ni_{7-x}MCh₂ приводит не только к вертикальному искажению кубооктаэдрических блоков, но и к нарушению квадратной симметрии их оснований, что переводит структуру из тетрагональной в ромбическую сингонию.

Рисунок 27. 2D-дифрактограммы in situ эксперимента для Ni_{5.80}GaTe₂: а – плоский образец в атмосфере N₂, б – капилляр под давлением 750 Торр в атмосфере N₂, в - капилляр под давлением ~53 кТорр в атмосфере H₂. Красным цветом выделена область рефлексов 200 и 020.

Рассмотрим некоторые особенности строения и общие черты охарактеризованных выше блочных халькогенидов в сравнении с другими представителями этого класса.

Рисунок 28. Кристаллические структуры тройных халькогенидов никеля-*p*-металлов, установленные по данным монокристальной и порошковой рентгеновской дифракции.

Все рассматриваемые соединения кристаллизуются в тетрагональной сингонии с пр. гр. I4/mmm, Z = 2. По результатам рентгеноструктурного анализа структуры Ni_{6.07}AlS₂ и Ni_{6.10}GaS₂ можно описать аналогично смешанному сульфиду никеля-олова Ni₆SnS₂ [22], который до сих пор являлся единственным структурно охарактеризованным серосодержащим соединением типа Ni_{7-x}MS₂. Основными структурными единицами Ni_{6.01}AlS₂ и Ni_{6.10}GaS₂ являются бесконечные фрагменты [Ni₁₂M], имеющими структуру AuCu₃. Фрагмент [Ni₁₂M] чередуется вдоль оси *с* с двумя типами никель-сульфидных блоков [Ni_{4-x}S₂], один из которых имеет структуру Li₂O, а другой — структуру дефектного Cu₂Sb, также иногда представляемого как структура искаженного дефектного NaCl (Рисунок 28).

Структуры Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂ и Ni_{5.63}GaSe₂ имеет схожий мотив с единственным отличием, что фрагменты [Ni₁₂M] чередуются только с одним типом никель-халькогенидного блока – с Cu₂Sb.

Структуры теллуридов Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ в отличие от структур других представителей данного семейства претерпевают небольшое ромбическое искажения (пр. гр. *Pnnm*), но при этом в целом они изоструктурны другим соединениям типа Ni_{7-x}MCh₂, в которых наблюдается чередование только одного типа никель-теллуридного блока. Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ из всех структур типа Ni_{7-x}MCh₂ (M = In, Si, Sn, Ge, Sb) особенно близки к Ni_{5.78}SnTe₂. Сходство заключается не только в близости межатомных расстояний, но и в значениях заселенности позиций никеля, что приводит к очень близким значениям стехиометрии по никелю. Для Ni_{5.78}SnTe₂ ромбического искажения не наблюдалось, однако рентгеноструктурный анализ был проведен только по данным монокристальной

дифракции, уточнение структуры полнопрофильным методом Ритвельда по данным порошковой дифракции проведено не было [24].

Двухслойные халькогениды никеля-галлия Ni_{8.54}Ga₂Se₂ и Ni_{9.39}Ga₂S₂ являются изоструктурными соединениями по отношению к Ni_{8.21}Ge₂S₂ и Ni_{8.45}Ge₂Se₂ [21] и имеют тот же удвоенный по высоте кубооктаэдрический фрагмент 2·[Ni₁₂Ga], чередующийся вдоль оси *с* с никель-халькогенидным блоком [Ni_{4-x}Ch₂], имеющим структуру Cu₂Sb/NaCl. Стоит отметить, что Ni_{9.39}Ga₂S₂ изоструктурен именно селениду Ni_{8.43}Ga₂Se₂, а не сульфиду Ni₉Sn₂S₂, что делает это соединение достаточно уникальным примером сульфида со структурой, характерной для селенидов. Таким образом в системах Ni-M-Ch (M = Al, Ga, In, Ch = S, Se, Te) все охарактеризованные соединения имеют три из четырех возможных типа блочных структур.

Кубооктаэдрические гетерометаллические фрагменты полностью стехиометричны. Нестехиометрия, которая присуща каждому соединению, возникает только за счет частичного заселения позиций никеля в никель-халькогенидных блоках (позиции Ni(3) и Ni(4) в Ni_{7-x}MCh₂, позиция Ni(4) в Ni_{10-x}M₂Ch₂).

Соединения Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ в том числе можно рассмотреть как первый и второй гомолог в ряду структур линейного срастания (Ni₃M)_n(Ni_{4-x}Ch₂), однако значение n не превышает 2. На основании того, что данные соединения представляют собой чередование блоков с различной структурой и составом, их также можно рассмотреть, как квазидвумерные соединения.

Расстояния Ni–Ni и Ni–M в соединениях типа Ni_{7-х}MCh₂ и Ni_{10-х}M₂Ch₂ лежат в диапазоне 2.47–2.67 Å, причем расстояния в Ni_{5.68}SiSe₂ имеют наименьшие значения, а в случае Ni_{5.78}InTe₂ и Ni_{5.78}SnTe₂ – набольшие. В среднем расстояния Ni–Ni в тройных соединениях составляют ~2.5–2.7 Å, что больше, чем в металлическом никеле (2.49 Å [27]), а расстояния Ni–M и Ni–Ch сравнимы с наблюдаемыми в соответствующих интерметаллидах или бинарных халькогенидах, однако самые короткие расстояния Ni–Ch в никель-халькогеновых блоках, как правило, немного (примерно на 0.1 Å) короче, чем в соответствующих Ni₃Ch₂ [28–30].

Как уже отмечалось ранее, данные соединения могут быть рассмотрены с позиции структур линейного срастания гетерометаллического блока со структурой AuCu₃ и никель-халькогенидного блока. Известно, что срастание происходит только в случае взаимного геометрического соответствия двух блоков. Исходя из этого, можно предположить, что существование или отсутствие тех или иных блочных фаз должно объясняться такими геометрическими параметрами как длины связей и степень искажения блоков. Длины связей в гетерометаллическом блоке для большого числа соединений были

65

проанализированы в предыдущих работах, поэтому нами было выбрано и проанализировано тетрагональное искажение вдоль оси *c* гетерометаллических блоков относительно идеального кубоктаэдра в неискаженном кубическом AuCu₃ (h_M/*a*) (Рисунок 29) и искажение никель-халькогенидных блоков относительно исходного бинарного интерметаллида Cu₂Sb (d = h_{Ch}/ *a* / *a*(Cu₂Sb) / *c*(Cu₂Sb)) во всех известных на данный момент блочных соединениях Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = *p*-металлы 13–15 групп, a Ch = S, Se, Te (Таблица 27).

Рисунок 29. Элементарная ячейка Ni_{7-х}MCh₂ с указанием высоты и ширины гетерометаллического и никель-халькогенидного блоков.

Таблица 27. Параметры кристаллической решетки и степень искажения блоков для соединений Ni_{7-x}MCh₂, где M = *p*-металлы 13–15 групп, Ch = S, Se, Te.

Соединение	$r_{M,} { m \AA}$	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	h _M , Å	h _M /a	h _{Ch} , Å	d
Ni _{6.07} AlS ₂		3.5438	18.106	227.38	3.650	1.03	5.403	0.999
Ni _{5.61} AlSe ₂	1.18	3.5886	18.555	238.96	3.574	0.995	5.704	1.042
Ni _{5.70} AlTe ₂		3.6804	19.211	260.22	3.450	0.937	6.155	1.096
Ni _{6.1} GaS ₂		3.5420	18.026	226.15	3.637	1.03	5.347	0.990
Ni5.63GaSe2	1.36	3.5995	18.517	239.91	3.584	0.995	5.675	1.033
Ni _{5.88} GaTe ₂ *		3.7088	19.115	262.28	3.387	0.913	6.062	1.071
Ni _{5.73} InSe ₂	1 56	3.6797	18.845	255.16	3.836	1.04	5.586	0.995
Ni _{5.78} InTe ₂ *	1.30	3.772	19.515	276.97	3.712	0.984	6.061	1.001
Ni _{5.68} SiSe ₂	1.11	3.576	18.339	234.50	3.409	0.95	5.760	1.056
Ni _{5.46} GeSe ₂	1.25	3.606	18.276	237.63	3.514	0.97	5.624	1.022
Ni _{5.42} GeTe ₂	1.23	3.688	19.027	258.73	3.377	0.92	6.136	1.091
Ni5.98SnS2		3.650	18.141	241.68	3.845	1.05	5.237	0.941
Ni _{5.62} SnSe ₂	1.45	3.689	18.648	253.78	3.767	1.02	5.557	0.987
Ni _{5.78} SnTe ₂		3.768	19.419	275.71	3.651	0.97	6.058	1.054
Ni _{5.72} SbSe ₂	1 2 2	3.7021	18.593	254.83	3.722	1.01	5.574	0.987
Ni _{5.66} SbTe ₂	1.33	3.7824	19.244	275.32	3.606	0.95	6.016	1.043
Cu ₂ Sb [1]		4.001	6.104	97.71		_	6.104	1.000

* - для данных соединений наблюдается ромбическое искажение.

На основе рассчитанных значений были построены зависимости степени искажения для обоих блоков от атомного радиуса *p*-металла (радиусы были рассчитаны в рамках теории самосогласованного поля (SCF) с помощью минимального базисного набора орбиталей Слейтера [73]) (Рисунок 30). Теоретические атомные радиусы были выбраны исходя из того, что эмпирические радиусы в основном получены для атомов в определенной степени окисления в ионных соединениях, какими наши соединения не являются.

Рисунок 30. Зависимости степени тетрагонального искажения гетерометаллического блока (сверху) и искажения никель-халькогенидного блока (снизу) от атомного радиуса *p*-металла.

Видно, что в случае и гетерометаллических, и никель-халькогенидных блоков наблюдается как растяжение, так и сжатие (или сплющивание) относительно идеальных структур AuCu₃ и Cu₂Sb. В случае гетерометаллического блока прослеживается следующая тенденция: для всех существующих на данный момент сульфидов наблюдается растяжение блока (параметр $h_M/a>1$), для всех теллуридов наблюдается и растяжение, и сжатие (самое большое сжатие наблюдается для селенида никеля-кремния,

а растяжение — для селенида никеля-индия). В целом, для соединений Ni_{7-x}MCh₂ самое большое растяжение возникает для $Ni_{5.98}SnS_2$ ($h_M/a = 1.05$), а сжатие — для $Ni_{5.88}GaTe_2$ $(h_{\rm M}/a = 0.91)$. Стоит отметить, что не смотря на геометрическую оценку искажения гетерометаллического блока, для Ni_{5.88}GaTe₂ и Ni_{5.78}InTe₂ наблюдается действительное ромбическое искажение. Из всех блочных соединений кубооктаэдрические фрагменты в структурах Ni_{5.61}AlSe₂ и Ni_{5.63}GaSe₂ претерпевают наименьшее тетрагональное искажение $(h_M/a = 0.995)$. В случае селенидов растяжение гетерометаллического блока наблюдается только для тех *p*-металлов, у которых интерметаллид типа Ni₃M со структурой AuCu₃ существуют только при высоком давлении (Ni₃Sn-в.д., Ni₃In-в.д.) или вовсе имеет другой структурный тип — BiF₃ (Ni₃Sb-в.т.). В случае, когда интерметаллиды Ni₃M (для *p*металлов 14 группы) имеют структуру AuCu₃ при нормальных условиях, наблюдается сплющивание (Ni_{5.68}SiSe₂ и Ni_{5.46}GeSe₂), а для *р*-металлов 13 группы — практически идеальный неискаженный кубооктаэдр (Ni5.61AlSe2 и Ni5.63GaSe2). Возможно, такая тенденция связана с тем, что в ряду Al-Si и Ga-Ge происходит замена центрирующего атома на атомы *p*-элементов с меньшим радиусом, но при этом более богатые электронами, что сопровождается небольшим растяжением фрагмента в плоскости *ab* и сжатием по оси *c*.

На графике зависимости искажения никель-халькогенидного блока от атомного радиуса p-металла наблюдается обратная картина (Рисунок 30, снизу). Для всех теллуридов наблюдается растяжение (максимальное значение d для Ni_{5.70}AlTe₂ равное 1.096), причем минимальное растяжение наблюдается для ромбического Ni_{5.78}InTe₂ (d = 1.001). Для всех сульфидов наблюдается сжатие вдоль оси c (минимальное значение d для Ni_{5.98}SnS₂ равное 0.941), хотя никель-сульфидный блок в Ni_{6.01}AlS₂ вовсе не претерпевает искажения (d = 0.999). Для селенидов реализуется оба варианта искажения никель-халькогенидного блока, как и для блока Ni₃M. Видно, что минимальная степень искажения никель-селенидного блока обнаруживается для p-металлов пятого периода Периодической системы (Sn, In, Sb), в то время как гетерометаллический блок Ni₃M, по сравнению с другими селенидами, искажается в большей степени. Стоит отметить, что d в ряду In-Sn-Sb хоть и не значительно, но уменьшается (0.995-0.987-0.987), т.е. по мере уменьшения радиуса p-элемента и увеличении количества валентных электронов увеличивается степень сжатия блока, что аналогично изменению искажения для блока Ni₃M в ряду Al-Si и Ga-Ge.

Исходя из анализа, приведенного выше, интересно отметить, что прослеживается тенденция к двум типам геометрической подстройки блоков в селенидах Ni_{7-x}MSe₂. Первый тип реализуется, когда гетерометаллический блок Ni₃M не существует при обычных условиях в виде структуры AuCu₃ (In, Sn, Sb). В этом случае наблюдается

подстройка гетерометалического блока под метрики никель-халькогенидного, т.к. именно блок Ni₃M претерпевает значительное тетрагональное искажение, в отличие от блока Ni₃Ch₂, у которого искажение ~ 1. Второй тип подстройки возникает в случае, когда устойчивый при нормальных условиях интерметаллид Ni₃M со структурой AuCu₃ (M = Si, Al, Ge, Ga) подстраивает под себя никель-селенидный блок, в результате чего он претерпевает значительное искажение. Можно предположить, что Ni₃Se₂ является наиболее гибким из всех типов никель-халькогенидных блоков, благодаря чему именно селениды представлены наибольшем количеством соединений.

Соединение	d(Ni(1)-Ch) / d(Ni(3)-Ch)* / d(Ni(4)-Ch), Å
Ni _{6.01} AlS ₂	2.248 / 2.557 / 2.195
Ni _{5.61} AlSe ₂	2.365 / 2.257; 2.564 / —
Ni _{5.70} AlTe ₂	2.520 / 2.6111; 2.498 / —
Ni _{6.1} GaS ₂	2.237 / 2.554 / 2.193
Ni5.63GaSe2	2.367 / 2.223; 2.573 / —
Ni _{5.88} GaTe ₂	2.543/ 2.529 / 2.539; 2.623
Ni9.39Ga2S2	2.229 / — / 2.060; 2.5846
Ni _{8.54} Ga ₂ Se ₂	2.348 / — / 2.230; 2.559
Ni _{5.73} InSe ₂	2.368 / 2.240 /2.628 /
Ni _{5.78} InTe ₂	2.523 / 2.5367 / 2.4962; 2.6705
Ni _{5.68} SiSe ₂	2.389 / 2.241; 2.553 /
Ni _{5.46} GeSe ₂	2.362 / 2.230; 2.573 / —
Ni _{5.42} GeTe ₂	2.524 / 2.480; 2.616 /
$Ni_{8.21}Ge_2S_2$	2.230 / / 2.07; 2.571
Ni _{8.45} Ge ₂ Se ₂	2.362 / — / 2.230; 2.572
Ni5.98SnS2	2.260 / 2.058 / 2.232
Ni _{5.62} SnSe ₂	2.374 / 2.245; 2.628 / —
Ni _{5.78} SnTe ₂	2.536 / 2.484; 2.670 / —
$\overline{Ni_{8.93}Sn_2S_2}$	2.252 / — / 2.052; 2.644
Ni _{5.72} SbSe ₂	2.385 / 2.249; 2.637 /
Ni _{5.66} SbTe ₂	2.535 / 2.471; 2.679 / —

Таблица 28. Сравнение длин никель-халькогенидных связей.

* - для Ni_{5.88}GaTe₂ и Ni_{5.78}InTe₂ d(Ni(3)-Ch) – это d(Ni(2)-Ch)

В Таблице 28 приведены типичные межатомные расстояния в никельхалькогенидном блоке для всех блочных фаз с установленной структурой. Для наглядности были построены зависимости на примере длин связей Ni(1)-Se и Ni(3)-Se от радиуса *p*-металлов (Рисунок 31). Видно, что в целом длина связи никель-селен внутри блока Cu₂Sb (Ni(3)-Se) меньше, чем на границе двух блоков (Ni(1)-Se), а ход зависимости аналогичен $h_{Ch}/a(r_M)$.

Рисунок 31. Зависимость межатомного расстояния Ni-Ch от радиуса р-металла на примере Ni_{7-x}MSe₂.

На данный момент установлена кристаллическая структура пяти двухслойных халькогенидов никеля-*p*-металлов, два из которых были получены и охарактеризованы в нашей работе. В Таблице 29 суммированы параметры элементарной ячейке и степень искажения двух блоков при взаимной геометрической подстройки для всех Ni_{10-x}M₂Ch₂.

Таблица 29. Параметры кристаллической решетки и степень искажения блоков для соединений Ni_{10-x}M₂Ch₂, где M = *p*-металлы 13–15 групп, Ch = S, Se.

Соединение	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	h _M , Å	h _M /a	h _{Ch} , Å	d
Ni _{9.39} Ga ₂ S ₂	3.569	25.184	320.70	3.6494	1.00	5.2931	0.972
Ni _{8.54} Ga ₂ Se ₂	3.581	25.506	327.08	3.5568	1.02	5.6394	1.032
$Ni_{8.21}Ge_2S_2$	3.578	24.687	316.1	3.5781	1.03	5.1872	0.950
Ni _{8.45} Ge ₂ Se ₂	3.601	25.427	329.8	3.5405	0.98	5.6326	1.025
$Ni_{8.93}Sn_2S_2$	3.671	25.474	343.29	3.7847	0.99	5.1677	0.922

Рисунок 32. Зависимости степени искажения гетерометаллического блока (сплошная линия) и искажения никель-халькогенидного блока (пунктирная линия) от атомного радиуса *p*-металла для двухслойных халькогенидах Ni_{10-x}M₂Ch₂.

Видно, что двухслойные халькогениды образуются только в случае серы и селена с германием, галлием и оловом и вовсе не образуют теллуридов. Картина зависимости искажения блоков типа AuCu₃ и Cu₂Sb аналогична картине однослойных халькогенидов: в случае серы наблюдается растяжение, усиливающееся в ряду Ge-Ga-Sn, а для селена – сжатие, уменьшающееся в ряду Ge-Ga (Рисунок 32). Стоит отметить очень большую степень искажения никель-сульфидного блока для Ni_{8.93}Sn₂S₂ ($h_{Ch}/a = 0.922$), что, повидимому, связано с уже значительной разницей в размере блока Ni₃S₂ и Ni₃Sn.

Как было сказано ранее, особенностью соединений типа Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ является их нецелочисленная стехиометрия по никелю. Для всех соединений наблюдается только частичная заселенность позиции Ni внутри никель-халькогенидного блока, при этом позиции Ni в гетерометаллическом блоке всегда заселены на 100 %, исходя из чего составы Ni₁₀MCh₂ и Ni₁₀M₂Ch₂ никогда не достигаются. Стоит отметить, что индексы «7-х» и «10-х» не относятся к широкому диапазону гомогенности этих соединений, а лишь отражают тот факт, что каждое соединение имеет свое уникальное содержание никеля. Геометрическая подстройка гетерометаллического и никель-халькогенидного блоков требует частичного удаления атомов никеля из позиций Ni(3) в структурах типа 1, Ni(3) и Ni(4) в структурах типа 2, Ni(4) в структурах типа 3, Ni(4) и Ni(5) в структурах типа 4, по всей видимости для того, чтобы избежать слишком коротких расстояний Ni-Ni. На данном массиве данных прослеживается еще одна тенденция: для однослойных сульфидов значение стехиометрии по никелю всегда больше 6, для большинства селенидов ~ 5.6, а для большей части теллуридов лежит в диапазоне ~ 5.7-5.8. Данные вакансии такаже можно рассмотреть, как несоразмерные модуляции, которые, например, были описаны для Ni_{5.78}SnTe₂ [24].

Из литературных данных известно, что дефектная структура Cu₂Sb существует в некотором температурном интервале только для Ni₃Te₂ и вообще не существует для Ni₃S₂ и Ni₃Se₂ [74]. Кроме этого, было установлено, что метастабильную модификацию Ni₃Se₂, имеющую структуру дефектного Cu₂Sb, удается стабилизировать частичным замещением селена на теллур (Ni₃Se_{1.6}Te_{0.4}), а в более ранних работах [75] было показано, что частичное замещение никеля на кобальт и железо также стабилизирует структуру селенида никеля, но в объемоцентрированной тетрагональной модификации. Данный факт хорошо объясняет результаты синтеза тройных фаз, частично замещенных железом.

Рисунок 33. Рентгенограммы образцов Ni_{9.39}Ga₂S₂, Ni₈Fe_{0.5}Ga₂S₂ (снизу вверх). Зеленая штрих-рентгенограмма – теоретическая рентгенограмма Ni₉Ga₂S₂.

Выше уже было отмечено, что именно в случае образцов $Ni_{5.2}Fe_{0.5}GaS_2$ и $Ni_8Fe_{0.5}Ga_2S_2$, содержащих наибольшее количество железа по отношению к суммарному содержанию *d*-металлов, количество однослойного сульфида со структурой $Ni_{6.1}GaS_2$ достигает минимума (Рисунок 33). Это означает, что введение железа стабилизирует структуру двухслойного сульфида в тетрагональной модификации. Кроме этого, можно предположить, что железо должно замещать никель в никель-халькогенидном блоке, по аналогии с бинарным селенидом никеля. Исходя из этого, частичное замещение никеля на железо или кобальт можно использовать как еще один подход для стабилизации данных структур срастания.

Квантовохимические расчеты. На первом этапе квантовохимических расчетов была проверена принципиальная возможность образования тройных фаз на основании расчета энергий основного состояния (энергетического выигрыша), для чего были рассмотрены реакции образования галлиевых фаз. В качестве реакции образования соединений $Ni_{7-x}GaCh_2$ и $Ni_{10-x}Ga_2Ch_2$ было рассмотрено взаимодействие бинарных фаз, поскольку они являются продуктами распада тройных фаз, что было неоднократно подтверждено РФА, и характеризуют процесс образования структур срастания на основе интерметаллида Ni_3Ga и халькогенида Ni_3Ch_2 .

Расчет полной электронной энергии исходных веществ и продуктов реакции был выполнен с помощью теории функционала электронной плотности полнопотенциальным методом присоединенных плоских волн (FP-LAPW, программа ELK), однако сходимости результатов удалось достигнуть только для однослойного и двухслойного селенида. Однако, при расчете энергетического выигрыша реакции образования Ni_{7-x}GaSe₂ оказалось, что она имеет положительное значение, что означает, что образование Ni₇.
_xGaSe₂ термодинамически невыгодно, что противоречит экспериментальным данным, т.к. однофазность селенида никеля-галлия была подтверждена РФА.

Проблемы со сходимостью расчетов полной электронной энергии исходных соединений с использованием метода FP-LAPW частично объясняется тем, что в реальных соединениях типа Ni_{7-х}GaCh₂ стехиометрия по никелю имеет нецелое значение, соединения являются разупорядоченными по никелю. Для того, чтобы учесть нестехиометрию, при моделировании была искусственно удалена часть атомов никеля в элементарной ячейке исходных тройных соединений таким образом, что модельные фазы отвечали стехиометриям Ni₆GaCh₂ и Ni₉Ga₂Ch₂, но полученные при этом упорядоченные структуры не были полностью оптимизированы и за счет упорядочения должны были иметь полную энергию, несколько превышающую таковую для соединений со статистически разупорядоченными атомами. При этом полноэлектронный пакет ELK не обладает достаточно устойчивым алгоритмом оптимизации сложных структур, поэтому в дальнейшем мы обратились к использованию пакета VASP, в котором процедура оптимизации надежно отработана.

Принципиальное объяснение полученных результатов заключается в том, что, как упоминалось ранее, гетерометаллический фрагмент Ni₃Ga принадлежит к структурному типу AuCu₃ и имеет кубическую структуру, которая сохраняется при образовании конечной структуры срастания. Известно, что при нормальных условиях халькогениды Ni₃Ch₂ имеют только одну устойчивую модификацию — гексагональную. Поэтому для образования структуры срастания гексагональных и кубических блоков нужны значительно большие энергетические затраты, т.к. необходимы искажения исходных структур для их непосредственного срастания, чем в случае срастания блоков, имеющих одинаковый вид элементарной ячейки. Это является еще одним объяснением завышенных полных энергий, полученных в программе ELK, т.к. исходно для расчета полной энергии хальгогенидов Ni₃Ch₂ были взяты параметры элементарных ячеек устойчивых гексагональных модификаций.

Как упоминалось ранее, для решения этих проблем и получения истинных значений полной электронной энергии был выбран пакет VASP, в котором используется метод псевдопотенциалов (PAW). С помощью этого метода были рассчитаны полные энергии исходных соединений с оптимизированной геометрией и полные энергии теоретических кубических модификаций хальгогенидов Ni₃Ch₂, для подтверждения предположения о выгодности взаимодействия Ni₃Ga с кубическими модификациями по сравнению с гексагональными. Результаты расчетов энергии основного состояния по

73

известным литературным параметрам и энергии, полученные в результате оптимизации,

представлены в Таблице 30.

Таблица 30. Полная электронная энергия бинарных и тройных соединений состава Ni₃Ga, Ni₃Ch₂, Ni₆GaCh₂ и Ni₉Ga₂Ch₂, (где Ch = S, Se, Te), рассчитанных методом PAW и LAPW (пакет VASP и ELK соответственно).

Соединение	E _{tot} . эВ (PAW)	E _{tot} . a.e. (LAPW)
Ni ₃ Ga	-23.17	-6501.39
$Ni_3S_2(h)$	-29.58	-5355.88
$Ni_3S_2(c)$	-28.08	_
$Ni_3Se_2(c)$	-26.85	_
Ni ₃ Se ₂ (h)	-27.76	-9415.90
$Ni_3Te_2(c)$	-26.09	—
$Ni_3Te_2(h)$	-26.55	_
Ni ₆ GaS ₂	-52.15	—
Ni ₆ GaSe ₂	-50.78	-15917.27
Ni ₆ GaTe ₂	-49.80	—
Ni9Ga2S2	-72.87	—
Ni9Ga2Se2	-71.13	-22418.61
Ni ₉ Ga ₂ Te ₂	-69.85	

*Обозначение (h) и (c) соответственно гексагональная и кубическая модификации Ni₃Ch_{2.}

На основании этих данных рассчитаны $\Delta E (=\Delta G, т.к. \Delta G = \Delta E + p\Delta V - T\Delta S, где при 0К p\Delta V и T\Delta S обнуляются) реакций образования соединений из предполагаемых продуктов распада (Таблица 31).$

Таблица 31. Энергетический выигрыш реакции образования соединений Ni₆GaCh₂ и Ni₉Ga₂Ch₂ (где Ch = S. Se. Te), рассчитанных методом РАW и LAPW (пакет VASP и ELK соответственно).

Deergung	ΔΕ, эΒ	ΔΕ,	ΔE , a.e.	ΔΕ,
гсакция	(PAW)	кДж/моль	(LAPW)	кДж/моль
Ni ₃ Ga+Ni ₃ S ₂ (h)=Ni ₆ GaS ₂	0.59	57.79	—	
Ni ₃ Ga+Ni ₃ S ₂ (c)=Ni ₆ GaS ₂	-0.91	-87.36	—	
Ni ₃ Ga+Ni ₃ Se ₂ (h)=Ni ₆ GaSe ₂	0.15	14.81	0.0195	51.25
Ni ₃ Ga+Ni ₃ Se ₂ (c)=Ni ₆ GaSe ₂	-0.76	-73.20		
Ni ₃ Ga+Ni ₃ Te ₂ (h)=Ni ₆ GaTe ₂	-0.08	-7.91		
Ni ₃ Ga+Ni ₃ Te ₂ (c)=Ni ₆ GaTe ₂	-0.54	-51.88	—	
2Ni ₃ Ga+Ni ₃ S ₂ (h)=Ni ₉ Ga ₂ S ₂	3.05	294.80	—	
$2Ni_3Ga+Ni_3S_2(c)=Ni_9Ga_2S_2$	1.55	149.66	—	
$2Ni_3Ga+Ni_3Se_2(h)=Ni_9Ga_2Se_2$	2.98	287.19	0.0612	160.59
$2Ni_3Ga+Ni_3Se_2(c)=Ni_9Ga_2Se_2$	2.07	199.18		
2Ni ₃ Ga+Ni ₃ Te ₂ (h)=Ni ₉ Ga ₂ Te ₂	3.04	292.85		
2Ni ₃ Ga+Ni ₃ Te ₂ (c)=Ni ₉ Ga ₂ Te ₂	2.58	248.88		

*Обозначение (h). (c) соответственно гексагональная и кубическая модификации Ni₃Ch₂.

Аналогично были получены значения полной электронной энергии для системы Ni-

Al-Ch с использованием метод псевдопотенциалов (PAW, VASP) (Таблица 32).

Таблица 32. Полная электронная энергия Ni₃Al и тройных соединений, а также энергетический выигрыш реакции образования соединений Ni₆AlCh₂ и Ni₉Al₂S₂ (где Ch = S. Se. Te), рассчитанных методом PAW (пакет VASP).

Соединение	E _{tot} , эВ (PAW)	Реакция	ΔE , эB	ΔЕ, кДж/моль
Ni ₃ Al	-24.26	Ni ₃ Al+Ni ₃ S ₂ (h)=Ni ₆ AlS ₂	-2.39	-230.76
Ni ₆ AlS ₂	-56.24	Ni ₃ Al+Ni ₃ S ₂ (c)=Ni ₆ AlS ₂	-3.89	-375.44
Ni ₆ AlSe ₂	-51.43	Ni ₃ Al+Ni ₃ Se ₂ (h)=Ni ₆ AlSe ₂	0.59	57.26
Ni ₆ AlTe ₂	-50.31	Ni ₃ Al+Ni ₃ Se ₂ (c)=Ni ₆ AlSe ₂	-0.32	-30.51
Ni ₉ Al ₂ S ₂	-75.18	Ni ₃ Al+Ni ₃ Te ₂ (h)=Ni ₆ AlTe ₂	0.51	49.05
		Ni ₃ Al+Ni ₃ Te ₂ (c)=Ni ₆ AlTe ₂	0.05	4.68
		$2Ni_3Al+Ni_3S_2(h)=Ni_9Al_2S_2$	2.93	282.31
		$2Ni_3Al+Ni_3S_2(c)=Ni_9Al_2S_2$	1.22	117.56

*Обозначение (h) и (c) соответственно гексагональная и кубическая модификации Ni₃Ch_{2.}

При расчете энергетического выигрыша реакций методом PAW видно, что в равновесных условиях термодинамически возможно образование только соединений (выделены жирным), которые образуются из Ni₃M и соответствующего халькогенида никеля Ni₃Ch₂ кубической модификации, что соответствует нашим предположениям и результатам РФА. Видно, что во всех реакциях энергия Гиббса меньше в случае, когда исходным халькогенидом является его кубическая модификация, даже при условии нестабильности фазы. Однако не во всех случаях, когда двухслойные халькогениды никеля-галлия существует, энергия Гиббса имеет отрицательное значения. По-видимому, это связано с невозможностью корректно смоделировать сложное разупорядочение в никель-халькогенидных блоках. Поэтому на следующем этапе работы в качестве реакции образования двухслойных соединений Ni₉M₂Ch₂ было решено перейти к рассмотрению взаимодействие бинарных интерметаллидов с однослойными тройными фазами (Таблица 33). Такой подход позволил нам в некоторой степени учесть разупорядочение по никелю в данных соединениях, так как недостатки упорядоченной модели в однослойной и двухслойной фазах будут частично компенсировать друг друга. Видно, что расчет энергетического выигрыша образования двухслойных соединений исходя из реакции Ni₆MCh₂+Ni₃M=Ni₉M₂Ch₂ дает энергию Гиббса меньше нуля именно в тех случаях, когда образование фаз наблюдается в действительности (Ni₉Ga₂S₂ и Ni₉Ga₂Se₂). Таким образом, использование данной реакции в рамках нашего квантовохимического подхода имеет прогностическую силу и может быть использовано для оценки вероятности существования новых гомологов.

Реакция	ΔЕ. эВ	ΔЕ. кДж/моль
Ni ₆ AlS ₂ +Ni ₃ Al=Ni ₉ Al ₂ S ₂	5.32	513.07
Ni ₆ GaS ₂ +Ni ₃ Ga=Ni ₉ Ga ₂ S ₂	-0.94	-90.72
Ni ₆ GaSe ₂ +Ni ₃ Ga=Ni ₉ Ga ₂ Se ₂	-0.13	-12.23
Ni ₆ GaTe ₂ +Ni ₃ Ga=Ni ₉ Ga ₂ Te ₂	0.55	53.02

Таблица 33. Энергетический выигрыш реакции образования соединений Ni₉M₂Ch₂ (где M = Al. Ga. Ch = S. Se. Te), рассчитанных методом PAW (пакет VASP).

Для того, чтобы более детально исследовать, как разные упорядоченные модели нестехиометрии по никелю влияют на результат, для некоторых соединений также были проведены расчеты, в которых использовалось два варианта упорядочения атомов никеля в позициях Ni(3)/Ni(4). Как видно из Таблицы 34, существенных отличий в результатах расчета полной электронной энергии нет, небольшие отличия есть у Ni₆AlS₂ и Ni₆GaS₂, что объясняется тем, что одна из двух моделей упорядочения предполагала полное удаление позиции Ni(4), однако в целом, результаты почти не зависят от типа упорядочения, которое искусственно создавалось при удалении части атомов из элементарной ячейки.

Таблица 34. Полная электронная энерг	чя тройных соединен	ий, рассчитанных методом
РАW (пакет VASP) при двух	к типах упорядочении	атомов никеля.

Соединение	Etot. 3B (PAW)
Ni ₆ GaS ₂ (1 тип)	-52,4835
Ni ₆ GaS ₂ (2 тип)	-50,3424
Ni ₆ GaTe ₂ (1 тип)	-24,799
Ni ₆ GaTe ₂ (2 тип)	-24,7904
Ni ₉ Ga ₂ S ₂ (1 тип)	-75,5073
Ni ₉ Ga ₂ S ₂ (2 тип)	-75,5041
Ni ₆ AlS ₂ (1 тип)	-53,2396
Ni ₆ AlS ₂ (2 тип)	-48,6426

Расчеты электронной структуры Ni₃M, Ni₆MCh₂, Ni₉Ga₂S₂ (M = Al, Ga, In, Ch = S, Se, Te) проведены с помощью метода псевдопотенциалов (PAW, программа VASP). Общая плотность состояний и вклады атомных орбиталей вблизи уровня Ферми для некоторых представителей тройных соединений показаны на Рисунке 34. Картины общей плотности состояний очень похожи для всех соединений, при этом основной вклад в плотность состояний обусловлен почти заполненными *3d*-состояниями никеля. Вклады *s*-и *p*-состояний алюминия/галлия/индия и *p*-состояний халькогена находятся в том же энергетическом диапазоне, что и нижняя часть *3d*-зоны никеля, но при этом значения их плотности состояний значительно ниже. Картины DOS для всех соединений показывают ненулевую плотность состояний на уровне Ферми и указывают на металлический тип

проводимости, что хорошо согласуется с металлическим блеском этих соединений и с результатами квантовохимических расчетов для других соединений этого семейства [22-24]. Кроме этого, довольно низкая плотность состояний на уровне Ферми указывает на возможное проявление температурно-независимого парамагнетизма для данных фаз, так как коллективные взаимодействия, например, магнитное упорядочение, обычно связаны с высокой плотностью состояний.

Рисунок 34. Общая плотность состояний и вклады атомных орбиталей вблизи уровня Ферми для Ni_3M , Ni_6MCh_2 , $Ni_9Ga_2S_2$ (M = Al, Ga, In, Ch = S, Se, Te) (M = Al, Ga, In, Ch = S, Se, Te). Черная линия – TDOS, зеленая – Ni PDOS, синяя – Al/Ga/In PDOS, оранжевая – Ch (S, Se, Te) PDOS.

Картины энергетической дисперсии зон вдоль различных кристаллографических направлений в обратном пространстве для Ni_6AlCh_2 (Ch = S, Se, Te) и Ni_6GaTe_2 и $Ni_9Ga_2S_2$ приведены на Рисунке 35. Зонная структура для всех тройных соединений в целом схожа, и поскольку дисперсионные кривые пересекают уровень Ферми, можно сделать вывод, что все соединения имеют металлический тип проводимости и высокую подвижность электронов по большинству направлений в обратном пространстве. Стоит отметить, что в

направлении Γ -Z, перпендикулярного плоскости *ab*, т.е гетерометаллическому слою, дисперсионных кривых параллельных уровню Ферми больше, чем в каком-либо другом направлении в обратном пространстве, что может свидетельствовать об анизотропии проводимости вдоль оси *c*, однако в зонной структуре Ni₉Ga₂S₂ такой особенности не наблюдается, что согласуется как с бо́льшим содержанием металлов, так и с несколько меньшими размерами блоков Ni₉Ga₂S₂.

Рисунок 35. Дисперсионные кривые в *k*-пространстве вблизи уровня Ферми для Ni₆AlS₂ (a), Ni₆AlSe₂ (б), Ni₆AlTe₂ (в) (слева) и Ni₆GaTe₂ и Ni₉Ga₂S₂ (справа).

В Таблице 35 представлены рассчитанные бейдеровские заряды на атомах для тройных халькогенидов Ni₆MCh₂, Ni₉Ga₂S₂ (M = Al, Ga, In, Ch = S, Se, Te) и Ni₃M (M = Al, Ga). В бинарных интерметаллидах Ni₃Al и Ni₃Ga наблюдается достаточно сильный перенос электронов от *p*-металла к никелю, однако в значительной степени он наблюдается для алюминия. Такой перенос электронов должен приводить к существенному вкладу в связи Ni-M ионной составляющей. При появлении в тройных фазах никель-халькогенидного блока наблюдается перенос электронов на атомы халькогенов, тем сильнее, чем ближе другие атомы к халькогенам и чем выше электроотрицательность соответствующего халькогена. Таким образом, степень переноса электронов от гетерометаллического блока к никель-халькогенидному блоку уменьшается

от S к Te, о чем свидетельствует уменьшение значения заряда на атоме халькогена. Больше всего воздействию атомов халькогена подвержены атомы никеля, находящиеся на границе блока (Ni(1)) или внутри никель-халькогенидного блока (Ni(3), Ni(4)), наименьшему воздействию – атомы внутри гетерометаллического блока (Ni(2), Al/Ga/In). В их случае наблюдается почти такое же распределение заряда, как и в бинарных интерметаллидах Ni₃M. Кроме этого, следует отметить, что хотя традиционно мы называем эти соединения «халькогенидами», атомы теллура в Ni₆MTe₂ имеют практически нулевой заряд. Стоит отметить, что также атомы халькогена в «селениде» и «теллуриде» несут значительно меньший или сопоставимый отрицательный заряд по сравнению с атомами никеля в позициях Ni(1) и Ni(2). Таким образом, только серосодержащие тройные соединения можно назвать «сульфидами», остальные соединения в большей степени относятся к интерметаллидам, чем к халькогенидам.

Таблица 35. Рассчитанные заряды на атомах для Ni_3M , Ni_6MCh_2 , $Ni_9M_2Ch_2$ (M = Al, Ga, In, Ch = S, Se, Te).

Соединение	Ni(1)	Ni(2)	Ni(3)	Ni(4)	Al/Ga/In	Ch
Ni ₃ Al	-0.64				+1.91	
Ni ₆ AlS ₂	-0.12	-0.66	+0.	46	+1.96	-0.72
Ni ₆ AlSe ₂	-0.22	-0.60	+0.	28	+1.93	-0.37
Ni ₆ AlTe ₂	-0.34	-0.46	+0.	02	+1.86	-0.02
Ni ₃ Ga	-0.15				+0.45	
Ni ₆ GaS ₂	+0.15	-0.05	+0.	65	+0.54	-1.21
Ni ₆ GaSe ₂	0.0	-0.15	+0.25		-0.40	0.0
Ni ₆ GaTe ₂	-0.	05	-0.10	+0.03	+0.36	-0.03
Ni6InTe2	-0.	07 -0.13 +0.02		+0.42	-0.04	
Ni ₉ Ga ₂ S ₂	-0.13	-0.17	+0.20	+0.41	+0.43	-0.66
Ni ₉ Ga ₂ Se ₂	-0.05	-0.16	-0.15	+0.22	+0.45	-0.26

Топологический анализ функции электронной локализации (ELF) для Ni₃Al показал, что неатомные аттракторы начинают проявляться при значении параметра локализации ниже η ~0.46. При этом значении и ниже наблюдаются аттракторы, которые ранее приписывали четырехцентровым взаимодействиям 3Ni+Al, т.е. это тетрасинаптические бассейны Ω 1, представляющие собой многоцентровые связи (Рисунок 36). Для тройных соединений первыми (при η ~0.86) появляются дисинаптические бассейны Ω 2, соответствующие парным взаимодействиям никель-халькоген. При более низком значении параметра локализации (η ~0.47) также наблюдаются бассейны типа Ω 1, соответствующие многоцентровым интерметаллическим связям.

Рисунок 36. Изоповерхности функции электронной локализации (ELF) Ni₃Al (η=0.44, a), Ni₆MQ₂ (η~0.8, b), Ni₆MQ₂ (η~0.4, c).

Плотность заряда, интегрированная по этим бассейнам, соответствует заселенности бассейнов. Как видно из Таблица 36, заселенность бассейнов четырехцентровой интерметаллической связи составляет ~ 1.2-1.3 е/бассейн, а бассейны, соответствующие взаимодействиям никель-халькоген в зависимости от халькогена, заселены ~ 1.6-1.8 е/бассейн. Это указывает на то, что многоцентровая связь 3Ni+Al достаточно делокализована, а связь Ni-Ch близка к классической ковалентной двухцентровой двухэлектронной 2с,2е-связи. Однако следует отметить, что заселенность бассейнов является только косвенным индикатором типа связи и используется в рамках имеющихся химических представлений о локализованных взаимодействиях. Равно как и количество электронов в пределах бассейна не является математическим индикатором силы связи, а, скорее, позволяет различить типичную ковалентную и более делокализованную металлическую связи.

Для Ni₃Ga наблюдается схожая с Ni₃Al картина: неатомные аттракторы, которые можно отнести к химическим связям, начинают проявляться ниже η ~0.38, при этом так же в центрах каждого октанта куба наблюдаются восемь максимумов, симметрично расположенных вокруг атомов галлия или никеля, что соответствует тетрасинаптическим бассейнам связи 3Ni+Ga (Ω 1) (Рисунок 37). Плотность заряда, интегрированная по этим бассейнам, составляет 1.06 е на бассейн, что немного меньше, чем соответствующая населенность бассейна для Ni₃In (1.17 е) и для Ni₃Ga (1.24 е), рассчитанная с помощью ELI-D, однако учитывая в целом металлическую природу соединений, эти расхождения приемлемы. Практически идентичная картина наблюдается для кубооктаэдрических блоков Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ и 1.16-1.20 е для Ni_{9.39}Ga₂S₂. В случае Ni_{9.39}Ga₂S₂ бассейны, принадлежащие внутренней части двух соседних кубооктаэдров, имеют большую заселенность, чем принадлежащие внешней части. Таким образом, заселенность бассейнов в тройных фазах выше, чем в Ni₃Ga, что может означать несколько более

высокую степень локализации химических связей, что вполне логично, поскольку в тройных соединениях металлические связи находятся внутри слоев, а в исходном бинарном интерметаллиде – в объеме, т.к. он трехмерный. Связь никель-халькоген в Cu₂Sb-блоке более локализована, а парные взаимодействия Ni-S и Ni-Te наблюдаются при η ~0.80-0.85. Бассейны Ω 2 соответствуют более коротким, а Ω 3 – более длинным расстояниям Ni-Ch. Соответствующие заселенности бассейна Ω 2 составляют: 1.93 е (Ni_{5.80}GaTe₂), 1.92 е (Ni_{5.78}InTe₂), 1.93 е (Ni_{9.39}Ga₂S₂), что является практически идеальной 2-центровой 2-электронной связью. Значения заселенности Ω 3 немного меньше в соответствии с большими расстояниями: 1.55 е (Ni_{5.80}GaTe₂), 1.50 е (Ni_{5.78}InTe₂), 1.62 е (Ni_{9.39}Ga₂S₂), но при этом это все еще локализованная ковалентная связь.

Таблица 36. Рассчитанные заселенности бассейнов для Ni_3M , $Ni_6MCh_2 u Ni_9Ga_2S_2$ (M = Al, Ga, In, Ch = S, Se, Te).

Тип		Заселенность бассейна, е						
бассейна	Ni ₃ Al	Ni ₆ AlS ₂	Ni ₆ AlSe ₂	Ni ₆ AlTe ₂	Ni ₃ Ga	Ni ₆ GaTe ₂	Ni ₆ InTe ₂	Ni9Ga2S2
Ω1	1.20	1.30	1.31	1.18	1.06	1.18	1.15	1.16-1.20
Ω2		1.84	1.82	1.58		1.93	1.92	1.93
Ω3						1.55	1.50	1.62

Рисунок 37. Изоповерхности функции электронной локализации (ELF) для Ni₃Ga (a), Ni₆GaTe₂ (b), Ni₉Ga₂S₂ (c) иNi₆InTe₂ (d). Светло-голубой бассейн – η =0.36, синий – η =0.83 (только на рисунке b), темно синий – η =0.85.

Другая важная характеристика химических связей, дополняющая общую картину, может быть выведена из анализа связей в орбитальном пространстве, основанного на расчетах заселенности гамильтониана кристаллических орбиталей (Crystal Orbital Hamilton Polulation, COHP) [27-29]. В этом подходе кристаллические орбитали могут быть восстановлены с помощью проекции волновых функций, полученных в базисе плоских волн, на произвольный базис локальных орбиталей. Для каждой пары атомов можно рассчитать интегральное значение COHP (integral projected COHP) ниже уровня Ферми, которое является вкладом соответствующих взаимодействий в энергию зонной структуры и может служить индикатором относительной прочности ковалентной связи, а связевый индекс кристаллических орбиталей (Crystal Orbital Bond Index, COBI, ICOBI) может быть интерпретирован как величина близкая к порядку связи [31].

Таблица 37. Рассчитанные характеристики связи (усредненный IpCOHP (эВ), COBI) для Ni₃Al и Ni₆AlCh₂.

Связь	Ni	3A1	Ni64	$A1S_2$	Ni ₆ A	AlSe ₂	Ni ₆ A	AlTe ₂
	IpCOHP	ICOBI	IpCOHP	ICOBI	IpCOHP	ICOBI	ІрСОНР	ICOBI
Ni-Al	-1.08	0.21	-1.00	0.21	-1.03	0.21	-1.04	0.20
Ni-Ni	-0.35	0.09	-0.32	0.11	-0.32	0.09	-0.30	0.08
Ni-Ch			-1.60	0.26	-1.49	0.20	-1.33	0.18

Анализ IpCOHP показывает, что связь Ni-Ch вносит больший вклад в энергию зонной структуры, чем связь Ni-Al или Ni-Ni, но т.к. гетерометаллических связей в целом больше, то комбинация всех взаимодействий приводит к устойчивости системы. Связи Ni-Al обладают большей энергией, чем связи Ni-Ni, что логично, т.к. в прямом пространстве связи Ni-Ni представляют собой многоцентровые взаимодействия, а не отдельные парные. Энергия связи Ni-Ch уменьшается от S к Se и к Te, в то время как другие типы взаимодействий в этом ряду изменяются незначительно. Интегрированные значения COBI (ICOBI) определяют степень ковалентность связи, где 1,0 – это полноценная одинарная ковалентная связь, при этом чем больше степень ионности или металличности связи, тем значение ICOBI будет ниже. Взаимодействие Ni-Al во всех соединениях всего лишь на 20% обусловлено ковалентностью, что хорошо согласуется с топологическим анализом, по данным которого эти связи являются многоцентровыми и металлическими. Значение ICOBI для взаимодействий Ni-Ni более чем в два раза ниже, чем для Ni-Al, что логично, т.к. эти взаимодействия являются более делокализованными. Стоит отметить, что значение ICOBI для взаимодействий Ni-Ch почти такие же, как и для Ni-Al, что указывает на то, что, несмотря на достаточно высокую заселенность бассейна Ω2, соответствующей 2с,2е-связи Ni-Ch, степень ковалентности во взаимодействиях Ni-Ch не слишком велика, что хорошо коррелируют с металлической природой соединений. С другой стороны, нельзя не отметить того факта, что Ni₃Al является крайне прочным интерметаллидом, поэтому энергия связей в нем, очевидно, довольно высока (Таблица 37).

Все отмеченные особенности электронной структуры являются общими для всех соединений, и даже разная степень полярности связи Ni-M в разных соединениях не препятствует образованию фаз, как не препятствует этому и разница в числе валентных электронов между металлами 13 и 15 групп (что свидетельствует о наличии определенной электронной емкости у фаз). Таким образом, эти факторы нельзя рассматривать как доминирующий лимитирующий фактор образования фаз такого типа. Исходя из этого можно сделать вывод, что устойчивость или отсутствие блочных фаз типа Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂, где M = *p*-металлы 13–15 групп, Ch = S, Se, Te, определяется в значительной мере геометрическими параметрами и, как следствие, возможностью или невозможностью взаимной подстройки двух блоков при образовании блочной структуры.

Магнитные свойства Ni_{6.07}AlS₂. При сравнении кривых DOS видно, что на картине плотности состояний для Ni₃Al уровень Ферми находится на одном из максимумов, а в случае тройных соединений он находится в одной из псевдощелей. Это может свидетельствовать о различии магнитных свойств Ni₃Al и тройных соединений, т.к. по критерию Стонера высокая плотность состояний на уровне Ферми связана с возможным проявлением различных кооперативных взаимодействий, в том числе ферромагнитного упорядочения. Для изучения этой возможности были проведены спинполяризованные расчеты, результаты которых указывают на то, что для Ni₃Al должно наблюдаться ферромагнитное поведение, в то время как для тройных соединений, в частности Ni₆AlS₂, – парамагнитное (Рисунок 38).

Рисунок 38. Спин-поляризованная плотность состояний для Ni₃Al и Ni₆AlS₂ (зеленый – спин вверх, красная – спин вниз).

Результаты расчетов для Ni₃Al хорошо согласуется с литературными данными, согласно которым Ni₃Al является слабым ферромагнетиком с температурой Кюри T_c ~ 41-43 К, точное значение которой зависит от содержания никеля [32-36]. Кроме этого, для Ni₃Al было показано, что искажение структуры также влияет на магнитные свойства соединения [37,38]. Рассчитанный магнитный момент на ячейку для Ni₃Al составляет ~ $0.72 \ \mu_B (0.24 \ \mu_B$ на атом никеля, с ферромагнитным упорядочением магнитных моментов), что выше, чем описанные ранее результаты (около 0.23 μ_B на ячейку, 0.08 μ_B на атом никеля [39]), но хорошо согласуется с ранее проведенными расчетами [40]. Учитывая высокую чувствительность намагниченности Ni₃Al к любым дефектам и искажениям, результаты расчетов можно считать достоверными. По данным расчетов для тройных соединений на атомах никеля наблюдаются нулевые локализованные магнитные моменты, что исключает в них магнитное упорядочение и свидетельствует о температурно-независимом парамагнетизме Паули или ван Флека.

Температурные зависимости магнитной восприимчивости, а также полевые зависимости намагниченности для Ni_{6.07}AlS₂ представлены на Рисунке 39. Исходя из вида зависимости магнитной восприимчивости от температуры Ni_{6.07}AlS₂ в диапазоне температур ~50-300 К демонстрирует температурно-независимый парамагнетизм. К сожалению, несмотря на все наши усилия, однофазные порошкообразные образцы селенидов и теллуридов никеля-алюминия получить не удалось, и нет экспериментальных доказательств их магнитных свойств, однако теоретические расчеты предсказывают, что магнитное поведение должно быть схожим с поведением Ni_{6.07}AlS₂. Отличие свойств тройных фаз и исходного бинарного интерметаллида можно связать не только с

механическим давлением, но и с химическим, которое обусловлено образованием структур срастания с искаженными кубооктаэдрами [Ni₁₂Al], как следствие такие структурные особенности могут влиять на магнитные свойства фаз.

Рисунок 39. Температурные зависимости магнитной восприимчивости и полевая зависимость намагниченности Ni_{6.07}AlS₂. На рисунке слева красным цветом обозачена зависимость χ(T), синим - χT(T). На вставке рисунка справа изображена полевая зависимость намагниченности при низких значениях поля.

Магнитные измерения Ni_{5.63}GaSe₂, Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂. Температурные зависимости магнитной восприимчивости, χ T, эффективный магнитный момент, 1/ χ , а также температурные и полевые зависимости намагниченности для Ni_{5.63}GaSe₂ представлены на Рисунках 40-41. Исходя из вида зависимости магнитной восприимчивости от температуры, Ni_{5.63}GaSe₂ выше T ~ 160 К проявляет парамагнитные свойства. Линейный участок температурной зависимости 1/ χ (T ~ 160 – 300 K) подчиняется закону Кюри-Вейса, т.к. может быть аппроксимирован уравнением $\chi = (0.125\mu^2)/(T-\Theta_w)$, где $\Theta_w = -1250 (\pm 20)$ К. Температурная зависимость намагниченности и ее разностный график указывает на антиферромагнитный переход при 7 К. Полевая зависимость намагниченности при 4 К показывает ферримагнитное поведение Ni_{5.63}GaSe₂ со слабой коэрцитивной силой 65 кЭ.

Рисунок 40. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента Ni_{5.63}GaSe₂.

Рисунок 41. Температурная зависимость обратной магнитной восприимчивости (а), температурная и полевая зависимости намагниченности (б) Ni_{5.63}GaSe₂.

Эффективный магнитный момент, рассчитанный по закону Кюри-Вейса, равен 19.34 µ_B, что составляет ~ 3.4 µ_B на один атом никеля. Исходя из вида температурной зависимости эффективного магнитного момента (Рисунок 40), видно, что при 300 К эффективный магнитный момент составляет ~ 1.48 µв на атом, т.е. состояния атомов никеля близки к металлическому состоянию, что может свидетельствовать о том, что не все атомы никеля обладают локализованными магнитными моментами. Это также может свидетельствовать о том, что два блока (никель-галлиевый блок и никель-селеновый) вносят различный вклад в магнитные свойства, причем локализованные магнитные моменты есть только в одном блоке, что согласуется с результатами квантовохимических расчетов, которые показывают разную плотность заряда атомов никеля в разных блоках. Вероятно, в магнитной структуре Ni_{5.63}GaSe₂ при низких температурах проявляются антиферромагнитные взаимодействия с между атомами никеля, находящихся в разных позициях. Взаимодействия на более коротких расстояниях приводят к возникновению некомпенсированных магнитных моментов (из-за большого количества различных положений) и суммарному моменту около 200 э.м.е./моль, который наблюдается на быстрой части полевой зависимости намагниченности. Дальние антиферромагнитные взаимодействия никель-никель, по-видимому, слабые и разрушаются при увеличении поля, что видно из линейной части графика. Стоит отметить, что нельзя полностью

исключить присутствие следовых количеств какой-либо ферромагнитной, например, никеля, и что, возможно, антиферромагнитный переход связан с наличие магнитной примеси, которую не удалось идентифицировать с помощью РФА.

Температурные и полевые зависимости намагниченности для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe, также обратной магнитной восприимчивости для Ni_{5.78}InTe представлены на Рисунке 42. Исходя из вида магнитных кривых от температуры поведение образцов в широком диапазоне температур T~50-300 К соответствует температурно-независимому парамагнетизму.

Рисунок 42. Температурная и полевая зависимости намагниченности и температурная зависимость, обратной магнитной восприимчивости для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂.

При сравнении магнитных свойств Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ можно ожидать схожих магнитных свойств, т.к. это изоструктурные соединение с близкой стехиометрией по никелю. Однако намагниченность при 300 К для Ni_{5.80}GaTe₂ составляет всего 0,035 Гс·см³/г против 0,155 Гс·см³/г для Ni_{5.78}InTe₂. Вероятно, это связано с различиями в соответствующих атомных радиусах и электроотрицательности галлия и индия, что как следствие влияет на кристаллическую и электронную структуру тройных соединений. Кроме этого, для Ni_{5.78}InTe₂ наблюдается небольшой рост намагниченности при понижении температуры. Такой рост намагниченности может быть связан с долей атомов

никеля, которые не вносят большого вклада в делокализованные электроны проводимости или ковалентную связь и, таким образом, ведут себя как невзаимодействующие парамагнитные центры, причем их температурная зависимость намагниченности подчиняется закону Кюри-Вейса, т.е. намагниченность уменьшается с ростом температуры. Эти наблюдения согласуются с различиями как в кристаллической, так и в электронной структуре Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂. Как было сказано выше, кубооктаэдры [Ni₁₂Ga] гораздо более искажены и имеют более короткие межатомные расстояния, чем кубооктаэдры [Ni₁₂In]. В то же время атомы никеля в Ni_{5.78}InTe₂ несут больший отрицательный заряд, чем в Ni_{5.80}GaTe₂, а в локализованных многоцентровых связях Ni-Ga задействовано несколько больше электронов, чем в Ni-In. Все эти факторы способствуют более высоким значениям локализованного магнитного момента на атомах никеля в Ni_{5.78}InTe₂.

Ниже 50 К для всех соединений наблюдается заметный рост намагниченности, повидимому, связанный с возникновением дальнего (ферро- или ферримагнитного) магнитного упорядочения. Для более детального изучения этого эффекта были получены полевые зависимости намагниченности при 4 К (Рисунок 42). Графики для всех трех соединений показывают значительную остаточную намагниченность (M_r) и относительно высокую коэрцитивную силу (H_c) при 4 К (Рисунок 42, Таблица 38), что подтверждает наличие ферро-/ферримагнитного упорядочения. Однако значения намагниченности при 4 К в поле 5 Тл (М_{5Т}, см. Таблица 38) указывают на то, что в этих взаимодействиях участвуют лишь небольшая доля неспаренных электронов, менее 1%, атомов никеля. Большая часть атомов никеля не участвуют в магнитных взаимодействиях, скорее всего, обеспечивая электроны проводимости, которые способствуют температурнонезависимому парамагнетизму Паули или ван Флека.

На Рисунке 42 видно, что полевые зависимости намагниченности не достигают насыщения даже в поле 5 Тл, что также подтверждает температурно-независимый парамагнетизм. Стоит отметить, что нельзя полностью исключить присутствие следового количества ферромагнитной примеси (никеля), находящегося за пределом обнаружения РФА (около 0.5-1%), но которое также может способствовать наблюдаемому низкотемпературному увеличению намагниченности.

Близкие значения коэрцитивной силы для Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ при 4 К указывают на то, что они возникают из-за сходного структурного мотива, упаковки атомов и, следовательно, связаны со структурной анизотропией. Следует отметить, что если намагниченность в поле 0.5 Тл показывает значительную разницу для двух соединений выше 50 К, то при более низких температурах с увеличением магнитного поля

> 1 Тл эта разница становится менее заметной, что подтверждает примерно одинаковое количество атомов никеля, которое вносит вклад в магнитное поведение.

Таблица 38. Коэрцитивное поле (H_c), остаточная намагниченность (M_r), намагниченность в поле 0.5 Тл (M_{0.5T}) и 5 Тл (M_{5T}) для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe при 4 К.

Соединение	Нс, Э	М _г , Гс∙см ³ /г	М _{0.5Т} , Гс∙см ³ /г	М₅т, Гс∙см ³ /г
Ni _{5.80} GaTe ₂	150	0.014	0.161	0.331
Ni9.39Ga ₂ S ₂	210	0.011	0.075	0.183
Ni _{5.78} InTe ₂	150	0.039	0.216	0.392

Данные Рисунка 42 и Таблицы показывают, что Ni_{9.39}Ga₂S₂ имеет более низкую намагниченность, чем описанные выше теллуриды. Стоит отметить, что это первый пример магнитных измерений двухслойного соединения типа Ni_{10-x}M₂Ch₂, поэтому нет какого-то примера для сравнения.

Температурно-независимый парамагнетизм Ni_{9.39}Ga₂S₂ полностью согласуется с магнитным поведением однослойных соединений типа Ni_{7-x}MTe₂, а более низкая намагниченность, скорее всего, отражает различия в электронной структуре и химических связях. Причинами уменьшения локализованных магнитных моментов, и как следствие намагниченности, могут быть относительно высокая ковалентность связей и более короткие межатомные расстояния.

Литературные данные о магнитных свойствах однослойных фаз Ni_{7-x}MCh₂ различны и ограничены, что связано со сложностью получения однофазных порошкообразных образцов. Например, Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂ являются температурнонезависимыми парамагнетиками, однако в магнитной восприимчивости Ni_{5.62}SnSe₂ и Ni_{5.78}SnTe₂ есть как вклад Паули или ван Флека (температурно-независимого), так и Кюри-Вейса, однако чистота образцов остается под вопросом.

В заключении можно отметить, что в случае алюминий- и галлийсодержащих соединений наблюдается явный паулиподобный парамагнетизм, подобно Ni_{5.72}SbSe₂ и Ni_{5.66}SbTe₂ [16], тогда как для Ni_{5.63}GaSe₂ и Ni_{5.78}InTe₂ наблюдается дополнительный вклад Кюри-Вейса, как в случае Ni_{5.62}SnSe₂, Ni_{5.78}SnTe₂ [16].

4.2. Слоистые фазы с частичным замещением *d*- и *p*-металлов и Ni_{3-x}SbTe₂.

Одним из подходов к созданию сверхструктуры в структурах типа B8 является смешение двух разных по природе атомов в позиции *p*-металла. Такое смешение не только вызывает упорядочение атомов в данной позиции, но и отражается на упорядочении вакансий никеля, которое является уникальным для каждого тройного соединения типа $Ni_{3-x}MTe_2$ (M = Ga, Ge, Sn, Sb). В данной части работы будет рассмотрено три таких

семейства: Ni_{3-x}GaTe₂, Ni_{3-x}SnTe₂ и Ni_{3-x}SbTe₂ ($0 \le x \le 1$). Тип упорядочения вакансий в Ni_{3-x}GaTe₂ и Ni_{3-x}SnTe₂ был подробно изучен ранее [29, 33, 37, 38], а вопрос о существовании сверхструктуры в Ni_{3-x}SbTe₂ оставался открытым, поэтому он явился одним из наших объектов изучения. Благодаря наличию упорядочения вакансий никеля в Ni_{3-x}GaTe₂ и Ni_{3-x}SnTe₂ данные серии тройных соединений можно рассматривать как потенциальную матрицу для внедрения других металлов, которые могли бы менять физические свойства исходной матрицы. В качестве таких металлов нами были взяты железо, медь и цинк.

4.2.1. Система Ni_{3-x}Fe_xGaTe₂

Для оценки возможности замещения никеля на железо в галлиевых соединениях был приготовлен ряд образцов состава $Ni_{3-x}Fe_xGaTe_2$, где х изменялся от 0.2 до 1.2 с шагом 0.2, и состава $Ni_{2.8-x}Fe_xGaTe_2$, где х изменялся от 0.2 до 0.6. Стехиометрии выбирались так, чтобы общая мольная доля *d*-металлов оставалась постоянной и менялось только соотношение Ni/Fe. Заложенные стехиометрии и результаты РФА после второго отжига приведены в Таблице 39.

Таблица 39. Стехиометрия и результаты РФА после второго отжига образцов системы Ni-Fe-Ga-Te.

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
Ni _{2.8} Fe _{0.2} GaTe ₂		Ni _{3-x} GaTe ₂
Ni _{2.6} Fe _{0.4} GaTe ₂		Ni _{3-x} GaTe ₂
Ni _{2.4} Fe _{0.6} GaTe ₂	1 – 2 отжиг: нагрев до T = 750 °C, охлаждение до T = 600 °C, отжиг при	Ni _{3-x} GaTe ₂
Ni _{2.2} Fe _{0.8} GaTe ₂		Ni _{3-x} GaTe ₂
Ni ₂ FeGaTe ₂		Ni _{3-x} GaTe ₂
Ni _{1.8} Fe _{1.2} GaTe ₂	T = 600 °C, t = 240 ч	Ni _{3-x} GaTe ₂ , Fe _{2.25} Te ₂
Ni _{2.4} Fe _{0.4} GaTe ₂		Ni _{3-x} GaTe ₂
Ni _{2.6} Fe _{0.2} GaTe ₂		Ni _{3-x} GaTe ₂
Ni _{2.2} Fe _{0.6} GaTe ₂	1 отжиг: Т = 830 °С,	Ni _{3-x} GaTe ₂
	медленное охлаждение	
Ni _{2.2} Fe _{0.6} GaTe ₂	Закалка	Ni _{3-x} GaTe ₂

По данным РФА в образцах Ni_{3-x}Fe_xGaTe₂ (x = 0.2-1.0) не было обнаружено никаких известных бинарных фаз, а в образце со стехиометрией Ni_{1.8}Fe_{1.2}GaTe₂ содержалась примесь Fe_{2.25}Te₂. Фазовый состав образца Ni_{1.8}Fe_{1.2}GaTe₂ не изменился даже после третьего отжига. Рефлексы на экспериментальных рентгенограммах смещены относительно рефлексов тройной фазы Ni_{2.98}GaTe₂, что является доказательством образования четверных соединений типа Ni_{3-x}Fe_xGaTe₂ со структурой Ni_{3-x}GaTe₂ с пределом замещения $0.2 \le x \le 1.0$, т.к. в образце с x=1.2 наблюдалась примесь Fe_{2.25}Te₂ (Рисунок 43).

Рисунок 43. Рентгенограммы Ni_{3-x}Fe_xGaTe₂ (снизу вверх: x=0.2, 0.4, 0.6, 0.8, 1.0, 1.2). Звездочкой показана примесь Fe_{2.25}Te₂.

Для рентгенограмм Ni_{3-x}Fe_xGaTe₂ были проведены индицирования В предположении об изоструктурности Ni_{3-x}GaTe₂ (пространственная группа P6₃/mmc). Для индицирования Ni_{1.8}Fe_{1.2}GaTe₂ предварительно были исключены линии примеси. Таблицы Приложении Результаты индицирования приведены В 4-13. индицирования рентгенограмм образцов после второго отжига приведены в Таблице 40. Курсивом выделены приведенные для сравнения литературные данные о параметрах структур Ni_{2.98}GaTe₂.

Таблица 40. Параметры элементарных ячеек четверных фаз типа Ni_{3-x}GaTe₂ по данным индицирования рентгенограмм (после второго отжига).

Заложенная	<i>a</i> , Å	<i>c</i> , Å	V, Å ³
Ni _{2.8} Fe _{0.2} GaTe ₂	3.9394(17)	15.820(5)	212.61(16)
Ni _{2.6} Fe _{0.4} GaTe ₂	3.9426(8)	15.875(5)	213.71(8)
Ni _{2.4} Fe _{0.6} GaTe ₂	3.9491(11)	15.895(4)	214.68(12)
Ni _{2.2} Fe _{0.8} GaTe ₂	3.9606(15)	15.849(4)	215.30(15)
Ni ₂ FeGaTe ₂	3.9617(8)	15.862(2)	215.61(8)
Ni _{1.8} Fe _{1.2} GaTe ₂	3.9710(10)	15.918(3)	217.44(10)
Ni _{2.4} Fe _{0.4} GaTe ₂	3.9417(12)	15.906(4)	214.02(12)
Ni _{2.6} Fe _{0.2} GaTe ₂	3.9353(13)	15.883(4)	213.02(12)
Ni _{2.2} Fe _{0.6} GaTe ₂	3.935(2)	15.885(11)	213.1(3)
Ni2.98GaTe2 [33]	3.933(1)	15.788(5)	211.50(6)

Результаты ЛРСА кристаллов, полученных для заложенного состава Ni_{2.2}Fe_{0.6}GaTe₂ приведены в Таблице 41.

ЛРСА, ат. %					
Fe	Ni	Ga	Te	Состав по данным лг СА	
10.83	37.38	17.30	34.48	Ni _{2.16} Fe _{0.62} Ga _{1.0} Te _{2.0}	
<u>0.09</u>	<u>0.14</u>	<u>0.33</u>	<u>0.11</u>		
11.30	37.18	16.84	34.68	Ni _{2.14} Fe _{0.65} Ga _{0.97} Te _{2.0}	
<u>0.10</u>	<u>0.15</u>	<u>0.35</u>	<u>0.12</u>		
10.64	38.07	16.43	34.86	Ni _{2.18} Fe _{0.61} Ga _{0.94} Te _{2.0}	
<u>0.08</u>	<u>0.13</u>	<u>0.29</u>	<u>0.10</u>		
10.42	37.15	17.81	34.62	$Ni_{2.15}Fe_{0.6}Ga_{1.02}Te_{2.0}$	
<u>0.08</u>	<u>0.13</u>	<u>0.29</u>	<u>0.10</u>		

Таблица 41. Результаты ЛРСА анализа кристаллов из образца со стехиометрией Ni_{2.2}Fe_{0.6}GaTe₂.

Уточнение структуры. Для Ni_{2.4}Fe_{0.6}GaTe₂ была уточнена кристаллическая структура полнопрофильным методом Ритвельда по данным порошковой дифракции. Уточнение параметров атомного смещения проводили в изотропном приближении. Параметры уточнения структуры Ni_{2.4}Fe_{0.6}GaTe₂ представлены в Таблице 42.

Основная цель данного уточнения заключалась в том, чтобы убедиться, что структурный мотив и частичная заселенность позиций Ni(2) и Ni(3) не претерпевают существенных изменений при частичном замещении никеля на железо.

В случае расположения только атомов никеля во всех трех возможных позициях, уточнение имело следующие значения R-факторов: $R_p = 0.04$ и w $R_p = 0.07$. При фиксированной сумме заселенности позиций Ni(2) и Ni(3) равной 1, отношение значений заселенностей для этих позиций составляло соответственно 63.4:36.6%.

Для того, чтобы выяснить, возможно ли из порошковых данных получить какую-то информацию о предпочтительном заселении позиций, мы допустили возможность смешанной заселенности позиции Ni(3) железом и никелем с их фиксированной суммой. Лучший R-фактор ($R_p \sim 0.02$) был достигнут в случае заселения позиции Ni(3) только атомами железа, при этом заселенность этой позиции составила 31.8%, что соответствует 53 атомных % от содержания всего железа в образце. Остальное железо (47 атомных %) помещено в позицию Ni(2) (общая заселенность 68.2%), которая также заселена атомами никеля. Далее, мы допустили возможность варьирования общей заселенности позиции Ni(2) (с фиксированным содержанием железа 0.282), что дало нам формулу Ni_{2.392(8)}Fe_{0.600(8)}GaTe₂ и небольшое улучшение в описании профиля с $R_p = 0.018$.

Очевидно, что из-за близости факторов атомного рассеяния железа и никеля невозможно уточнить заселенность смешанных позиций из рентгеновских данных,

поэтому это решение может быть использовано только в качестве модели и указывать на общие тенденции, например, на то, что заселенность позиции Ni(3) равна примерно 32%, что сопоставимо с заселенностью этой позиции в Ni₃GaTe₂ (37%) [33], и на возможность предпочтительного заселения железом позиции Ni(3) в ван-дер-ваальсовой щели. Однако, решение не очень устойчиво и не чувствительно к перераспределению железа и никеля в позиции Ni(2), и также допускает некоторую смешанную заселенность никелем и железом позиции Ni(1). Однозначного вывода из всего этого сделать нельзя, поэтому для ответа на этот вопрос в дальнейшем нами была использована мессбауэровская спектроскопия.

Формула	Ni2.392(8)Fe0.600(8)GaTe2
Пространственная группа	P6 ₃ /mmc
Параметры элементарной	a = 3.94878(6)
ячейки, Å	c = 15.8903(4)
$V, Å^3$	214.48(2)
Ζ	2
20, °	$3.90 < 2\theta < 99.86$
Количество уточняемых	25
параметров	23
R _p , R _w	0.018, 0.059
Профильная функция	Pseudo-Voigt
Программа	Jana 2006 [76]

Таблица 42. Параметры уточнения структуры Ni_{2.39}Fe_{0.6}GaTe₂.

Мессбауэровская спектроскопия для образцов Ni_{3-x}Fe_xGaTe₂ (0.2 \leq x \leq 1). Локальное окружение железа в Ni_{3-x}Fe_xGaTe₂ было определено с помощью мессбауэровской спектроскопии на ядрах ⁵⁷Fe. Мессбауэровские спектры ⁵⁷Fe однофазных по данным РФА образцов Ni_{2.8}Fe_{0.2}GaTe₂, Ni_{2.6}Fe_{0.4}GaTe₂, Ni_{2.4}Fe_{0.6}GaTe₂ и Ni₂FeGaTe₂ представлены на Рисунке 44. Для интерпретации этих спектров вначале была проведена немодельная обработка таким образом, что на первом этапе для каждого спектра были восстановлены функции распределения p(ν) положения одиночной резонансной линии от доплеровской скорости ν . В результате анализа полученных функций распределения p(ν) для дальнейшей модельной обработки соответствующих спектров были выбран следующий вариант: спектры были обработаны как суперпозиция трех квадрупольных дублетов. Таким образом, были достигнуты удовлетворительные описания (χ^2) экспериментальных спектров ⁵⁷Fe. Результаты обработки и значения сверхтонких параметров приведены в Таблице 43.

			I	
Состав	Позиция	δ, мм/с	Δ , мм/с	I, %
	Fe1/Ni1	0.362(5)	0.22(1)	45.1(7)
Ni _{2.8} Fe _{0.2} GaTe ₂	Fe2/Ni2	0.654(6)	0.29(1)	45.8(7)
	Fe3/Ni3	-0.10(1)	0.12(3)	9.1(5)
	Fe1/Ni1	0.390(5)	0.28(1)	30.8(5)
Ni _{2.6} Fe _{0.4} GaTe ₂	Fe2/Ni2	0.650(2)	0.312(4)	51.1(3)
	Fe3/Ni3	-0.033(4)	0.136(8)	18.0(4)
	Fe1/Ni1	0.411(5)	0.24(1)	19.5(5)
Ni _{2.4} Fe _{0.6} GaTe ₂	Fe2/Ni2	0.669(2)	0.275(2)	51.9(5)
	Fe3/Ni3	-0.010(3)	0.122(8)	28.6(4)
	Fe1/Ni1			
Ni ₂ FeGaTe ₂	Fe2/Ni2	$0.72\overline{3(7)}$	0.19(1)	50(2)
	Fe3/Ni3	0.00(1)	0.20(1)	50(3)

Таблица 43. Основные значения сверхтонких параметров мессбауэровских спектров для образцов системы Ni-Fe-Ga-Te.

Рисунок 44. Мессбауэровские спектры ⁵⁷Fe образцов Ni_{2.8-x}Fe_xGaTe₂ ($0.2 \le x \le 1$), измеренные при T = 295К.

Изомерный сдвиг дублета Fe(2) (~ 0.67 мм/с) значительно больше, чем у дублета Fe(1) (~ 0.39 мм/с). Это указывает на то, что атом в этой позиции находится в более «металлическом» и менее симметричном окружении, чем атом соответствующий дублету Fe(1). Это позволяет нам установить, что дублет Fe(2) соответствует атомам железа в позиции Ni(2) (железо имеет с тригонально-бипирамидальное окружение и находится в гетерометаллическом слое), а дублет Fe(1) — позиции Ni(1) (железо имеет смешанное

Te/Ga искаженное октаэдрическое окружение. Третий дублет Fe(3), имеющий наименьшее квадрупольное расщепление (~ 0.14 мм/с) соответствует атомам железа в позиции Ni(3) (железо находится в октаэдрах, образованными атомами теллура).

Для соединения с «х» = 0.2 интенсивности дублетов от атомов железа в позициях Ni(1) и Ni(2) являются практически равными (45 %:46 %), тогда как интенсивность дублета, соответствующая железу в Ni(3) довольно мала (~ 9 %). Однако если принять во внимание суммарную заселенность соответствующих позиций, мы увидим, что 46 % железа находится в позиции Ni(2), при ее заселенности около 67%, т.е. эта позиция больше заселена железом, чем Ni(1). В позиции Ni(3) содержится лишь 9% железа, однако ее заселенность составляет примерно 32%. Можно сделать вывод, что при низких концентрациях железо распределяется по позициям статистически. Это объясняется, по всей вероятности, тем, что при малых количествах введенного железа его атомы, находящиеся в разных кристаллографических позициях, практически не влияют друг на друга.

По мере увеличения содержания железа в образцах интенсивности дублетов Fe(2) и Fe(3) быстро возрастают, при этом интенсивность дублета Fe(1) уменьшается (см. на Рисунок 44). Это означает, что содержание железа в позициях Ni(2) и особенно в Ni(3) возрастают, тогда как относительная заселенность железом позиции Ni(1) падает. Исходя из состава образца Ni_{2.4}Fe_{0.6}GaTe₂ ~ 30% всего железа находится в позиции Ni(3), что хорошо согласуется с результатами уточнения по данным порошковой дифракции, приведенными выше.

В случае образца Ni₂FeGaTe₂, последнего, для которого мы не наблюдаем железосодержащих примесей, отношение интенсивностей дублетов Fe(2) и Fe(3) составляет ~ 50:50, а сигнал от дублета Fe(1) больше не наблюдается. Исходя из тенденции изменения значений сверхтонких параметров и интенсивности дублетов от «х» = 0.2 до 1 можно сказать, что железо преимущественно заполняет позиции Ni(3) и Ni(2). Заселенность железом позиции Ni(2) во всех образцах равно ~50%, а доля железа в Ni(3) растет с 9% до 50%. Это может объяснять, почему предел замещения железа равен «х» = 1. Если в позиции Ni(1) вообще не происходит замена железом (особенно при высоких значениях «х», когда атомы железа в позициях Ni(2) и Ni(3) уже заметно влияют на атомы в других позициях, и, соответственно, заселение позиции Ni(1) железом приводило бы к существенному напряжению в структуре), то заселение позиций Ni(2) и Ni(3) только железом как раз должно обеспечивать состав очень близкий к Ni₂FeGaTe₂ (Pucyнок 45).

Рисунок 45. Заселение позиций никеля атомами железа в Ni_{3-x}Fe_xGaTe₂. Стрелками указано заселение железа в двух предельных случаях: Ni_{2.8}Fe_{0.2}GaTe₂ в Ni₂FeGaTe₂.

Квантовохимические расчеты. При расчете электронной структуры тройного соединения Ni_{3-x}GaTe₂ и Ni_{3-x}Fe_xGaTe₂ мы использовали упорядоченную модель со степенью заселения позиций Ni(2) и Ni(3) равной 50:50. Исходя из этого, стехиометрия для тройного соединения оказалась равна Ni₃GaTe₂. Для Ni_{3-x}Fe_xGaTe₂ нами были выбраны две модели заселенности позиций никелем и железом: 1) Ni(2) заселена только никелем, а Ni(3) — железом, что соответствует стехиометрии Ni_{2.5}Fe_{0.5}GaTe₂; 2) как Ni(2), так и Ni(3), заселены железом, что соответствует Ni₂FeGaTe₂. Электронная структура была рассчитана с помощью полноэлектронного полнопотенциального метода присоединенных плоских волн (FP-LAPW, программа ELK) (Рисунок 46).

Как и в случае блочных халькогенидов, вклад в плотность состояний на уровне Ферми вносят все атомы (ненулевая плотность для всех атомов), однако значительно доминирует вклады состояний никеля. Картины плотности состояний для всех соединений показывают отличную от нуля плотность состояний на уровне Ферми, следовательно, соединения должны проявлять металлический тип проводимости, что согласуется с предыдущими результатами расчетов для аналогичных соединений [33].

Рисунок 46. Общая плотность состояний и вклады атомных орбиталей вблизи уровня Ферми для Ni₃GaTe₂ (слева), гипотетического Ni_{2.5}Fe_{0.5}GaTe₂ (по середине) и Ni₂FeGaTe₂ (справа).

Магнитные измерения образцов Ni_{3-x}Fe_xGaTe₂ ($0.2 \le x \le 1$). Изучение магнитных свойств Ni_{3-x}Fe_xGaTe₂ показало, что Ni_{2.8}Fe_{0.2}GaTe₂ выше ~ 10–11 К является парамагнетиком Паули, в то время как разностная кривая температурной зависимости намагниченности указывает на магнитный переход ниже этой температуры (Рисунок 47-Рисунок 50). Это хорошо согласуется с кривой полевой зависимости намагниченности при 4 К, которая указывает на слабый ферримагнетизм с коэрцитивной силой ~ 57 Э. Возможно, такое поведение соединения является следствием конкурирующих слабо ферромагнитных взаимодействий атомов железа и исходной парамагнитной матрицы. Такое поведение подтверждает отсутствие сильных взаимодействий между атомами железа в разных позициях.

По мере увеличения содержания железа в соединениях увеличивается ферромагнитный вклад в поведение системы и T_c. Для Ni_{2.8}Fe_{0.4}GaTe₂ ферромагнитный переход наблюдается уже при T_c ~ 21 K, а на картине полевой зависимости намагниченности при 4 K видно значительное увеличение коэрцитивной силы до 455 Э. Это указывает на существенное увеличение силы ферромагнитного взаимодействия, хотя кривая полевой зависимости намагниченности все еще не достигает точки насыщения.

Выше 30 К для Ni_{2.8}Fe_{0.4}GaTe₂ также наблюдается парамагнитное поведение, подчиняющееся закону Паули.

Для Ni_{2.4}Fe_{0.6}GaTe₂ T_c увеличивается до ~ 32 К. Однако для данного соединения коэрцитивная сила при 4 К имеет аномально низкое значение (~ 7 Э). Такое падение коэрцитивной силы может быть вызвано образованием протяженной цепи магнитных фрагментов, в которых парамагнитная матрица больше не экранирует расширение магнитных моментов доменов. Таким образом, для образца Ni_{2.4}Fe_{0.6}GaTe₂ эту аномалию можно отнести к состоянию упорядочения при 4 К, когда полный дальний порядок уже близок, но еще не достигнут. При более высоких температурах никаких аномалий в магнитном поведении не наблюдается, хотя при температуре чуть выше 40 К наблюдается парамагнитное поведение с увеличенным вкладом Кюри-Вейса.

Наиболее обогащенный железом образец, Ni₂FeGaTe₂, имеет $T_c = 75$ K, коэрцитивную силу равную 32 Э и намагниченность насыщения на зависимости от поля достигающей 0.6 µB, что однозначно указывает на ферромагнитное упорядочение, которое для данного образца имеет дальний порядок. Участок между 150 и 300 K аппроксимируется законом Паули-Кюри-Вейса. Для этого образца интересно отметить, что вместе с ожидаемым увеличением силы ферромагнитного взаимодействия также наблюдается небольшое увеличение вклада Паули. Это может быть связано с тем, что в обогащенных железом образцах железо сконцентрировано в позициях Ni(3) и Ni(2), а никель остается в основном в гетерометаллическом слое, немного увеличивая взаимодействия Паули.

Рисунок 47. Температурные зависимости магнитной восприимчивости, χT, эффективный магнитный момент, 1/χ, а также температурные и полевые зависимости намагниченности для Ni_{2.8}Fe_{0.2}GaTe₂ (слева направо).

Рисунок 48. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также температурные и полевые зависимости намагниченности для Ni_{2.6}Fe_{0.4}GaTe₂ (слева направо).

Рисунок 49. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также температурные и полевые зависимости намагниченности для Ni_{2.4}Fe_{0.6}GaTe₂ (слева направо).

Рисунок 50. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также температурные и полевые зависимости намагниченности для Ni₂FeGaTe₂.

Возможность возникновения дальнего порядка также можно оценить с помощью изотерм Белова-Арротта, описывающие зависимости квадрата средней намагниченности от отношения величины магнитного поля к средней намагниченности (Рисунок 51). Линейный участок зависимости Белова-Арротта в точке пересечения с вертикальной осью дает значение M_s^2 . Его положительное значение связано с дальним ферромагнитным порядком. Как видно, оно отрицательно для «х» = 0.6 и положительно для «х» = 1, таким образом указывая на возможность возникновения дальнего порядка во втором случае. Строя зависимость M_s^2 от «х» можно приблизительно оценить критическую концентрацию железа — точку, в которой в окружении магнитного атома присутствует как минимум один другой магнитный атом.

Стоит отметить, что исходные свойства образцов («х» = 0.2–0.4) в значительной степени определяются свойствами матрицы и конкурирующими слабыми ферримагнитным и ферромагнитным поведениями ниже T_c . С увеличением содержания железа сила ферромагнитного взаимодействия увеличивается и при высоких содержаниях железа становится более выраженной. Стоит отметить, что эффект парамагнитной матрицы все еще наблюдается, т. к. только 1/3 атомных позиций никеля занята железом, в отличие от Fe₃GeTe₂, который был охарактеризован как соразмерный ферромагнетик. Также стоит отметить, что между данными мессбауэровской спектроскопии и магнитных

измерений есть корреляция, хорошо объясняющая границу замещения по «х» для Ni_{3-x}Fe_xGaTe₂ равную 1.0.

Рисунок 51. Изотермы Белова-Аррота для соединений Ni_{2.4}Fe_{0.6}GaTe₂ (сверху) и Ni₂FeGaTe₂ (по середине) и оценка критической концентрации (снизу).

4.2.2. Система Ni_{3-x}Fe_xSnTe₂

Для оценки возможности замещения никеля на железо в Ni_{3-x}SnTe₂ был приготовлен ряд образцов состава Ni_{3-x}Fe_xSnTe₂, где х изменялся от 0.2 до 0.6 с шагом 0.2 и от 0.7 до 0.8 с шагом 0.1. Образцы состава Ni_{3-x}Fe_xSnTe₂, где x = 0.2–0.6, подвергали трем последовательным отжигам. По данным РФА после второго отжига образцы были однофазными, однако на рентгенограммах всех образцов не наблюдались рефлексы на малых углах, что соответствовало отсутствию сверхструктуры. Возможно, наличие сверхструктуры, как некоторого «порядка» в системе, сильно зависит от температурного режима синтеза. Для подтверждения данного предположения образцы подверглись третьему отжигу при более низкой температуре (T = 650°C, t = 7.5 суток). По данным РФА после третьего отжига образцы Ni_{3-x}Fe_xSnTe₂ также не содержали видимых примесей, но наблюдалось возникновение рефлексов на малых углах, что соответствовало наличию сверхструктуры.

Для установления предела замещения железа в оловянных образцах были взяты составы с большим содержанием железа: Ni_{2.3}Fe_{0.7}SnTe₂ и Ni_{2.2}Fe_{0.8}SnTe₂. По данным РФА

после второго отжига образцы Ni_{2.3}Fe_{0.7}SnTe₂ и Ni_{2.2}Fe_{0.8}SnTe₂ содержали примеси теллурида железа Fe_{2.25}Te₂ и теллурида олова SnTe в большом количестве. После третьего отжига фазовый состав образцов и количество примесей не изменились, таким образом предел замещения лежит в интервале 0.6≤x≤0.7. Заложенная стехиометрия и результаты РФА после третьего отжига приведены в Таблице 44.

Таблица 44. Стехиометрия и результаты РФА после третьего отжига образцов системы Ni-Fe-Sn-Te.

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
Ni _{2.8} Fe _{0.2} SnTe ₂		Ni _{3-x} Fe _x SnTe ₂
Ni _{2.6} Fe _{0.4} SnTe ₂		Ni _{3-x} Fe _x SnTe ₂
Ni _{2.4} Fe _{0.6} SnTe ₂	1 отжиг: Т = 650 °С, t = 180 ч	Ni _{3-x} Fe _x SnTe ₂
Nia Fea SpTea	2 отжиг: Т = 800 °С, t = 240 ч	Ni _{3-x} Fe _x SnTe ₂ ,
112.31 00.7511102	3 отжиг: Т = 650 °С, t = 240 ч	Fe _{2.25} Te ₂ , SnTe
Nie Foe SpToe		Ni _{3-x} Fe _x SnTe ₂ ,
112.21 00.8511102		Fe _{2.25} Te ₂ , SnTe

Индицирование однофазных образцов было проведено в предположении об изоструктурности Ni_{3-x}SnTe₂ (пространственная группа $P6_3/mmc$). Таблицы 14-16. Приложении Результаты индицирования индицирования приведены В рентгенограмм образцов после третьего отжига приведены в Таблице 45. Курсивом выделены приведенные для сравнения литературные данные о параметрах структуры Ni₃SnTe₂.

Таблица 45. Параметры элементарных ячеек четверных фаз типа Ni_{3-x}SnTe₂ по данным индицирования рентгенограмм (после третьего отжига).

Заложенная	a, Å	c, Å	<i>V</i> , Å ³
стехиометрия)	-)	. ,
Ni _{2.8} Fe _{0.2} SnTe ₂	3.9746(11)	15.788(4)	216.00(7)
Ni _{2.6} Fe _{0.4} SnTe ₂	3.9755(11)	15.796(4)	216.20(7)
Ni _{2.4} Fe _{0.6} SnTe ₂	3.9847(10)	15.819(2)	217.52(7)
Ni ₃ SnTe ₂ [29]	3.9837(9)	15.779(2)	216.90(4)

По данным индицирования были построены графики зависимости параметров элементарной ячейки от содержания железа х для образцов Ni_{3-x}Fe_xGaTe₂ и Ni_{3-x}Fe_xSnTe₂. Как видно из графиков на Рисунке 52 для Ni_{3-x}Fe_xGaTe₂ с увеличением содержания железа в целом наблюдается рост величины параметров *a* и *c*. Линейное увеличение параметра *a* в большей степени связано с заселением железа позиций никеля в гетерометаллическом слое, а преимущественное заселение ван-дер-ваальсовой щели при «x» = 0.8 и 1.0 — уменьшение параметра *c*, возможно, за счет взаимодействия металла в позиции Ni(3) с атомами теллура. Поскольку линейное увеличение параметра *a* преобладает над

нелинейным уменьшением *c*, изменение объема ячейки также можно аппроксимировать линейной зависимостью. Для образцов Ni_{3-x}Fe_xSnTe₂ зависимости параметров от содержания железа имеют противоположных характер. Видно, что по мере увеличения железа в оловянных образцах параметр *a* линейно уменьшается, а параметр *c* линейно возрастает. Следует также отметить, что для образцов Ni_{3-x}Fe_xSnTe₂ (и, по всей видимости, также верно для Ni_{3-x}SnTe₂) нами было показано, что упорядочение проявляется только в случае относительно низкотемпературного (T<750 °C) отжига, в то время как для галлийсодержащих образцов такая зависимость не наблюдалась.

Рисунок 52. Зависимость параметров элементарной ячейки от содержания железа «х» для образцов Ni_{3-x}Fe_xGaTe₂ и Ni_{3-x}Fe_xSnTe₂.

Мессбауэровская спектроскопия для образцов Ni_{3-x}Fe_xSnTe₂ ($0.2 \le x \le 0.6$). Для соединений Ni_{3-x}Fe_xSnTe₂ также была проведена мессбауэровская спектроскопия на ядрах ⁵⁷Fe и на ядрах ¹¹⁹Sn с целью изучения локального окружения железа и олова в четверных соединениях. Спектры на ядрах ⁵⁷Fe соединений Ni_{3-x}Fe_xSnTe₂ (x = 0.2-0.6) можно описать суперпозицией только двух квадрупольных дублетов, в отличие от, например, Ni_{3-x}Fe_xGaTe₂ (x = 0.2-0.8) (Рисунок 53). Данные дублеты можно отнести к заселению железом позиций Ni(1) и Ni(2). Сделать это можно на основе того, что значения изомерного сдвига

дублетов соответствующих железу в позициях Ni(1) и Ni(2) в Ni_{3-x}Fe_xGaTe₂, Fe₃GeTe₂ [102] и Ni_{3-x}Fe_xSnTe₂ сопоставимы (изомерный сдвиг дублета Fe(1) ~ 0.3 мм/с, Fe(2) ~ 0.6 мм/с) (Таблица 46).

По мере увеличения содержания железа в образцах интенсивность дублета Fe(2) возрастает, а интенсивность дублета Fe(1) уменьшается, что можно связать с тем, что позиция Ni(2) в Ni₃SnTe₂ имеет частичную заселенность ~30%, поэтому вероятность ее заселения с увеличением концентрации железа возрастает.

Рисунок 53. Мессбауэровские спектры 57 Fe образцов Ni_{2.8}Fe_{0.2}SnTe₂ (a), Ni_{2.6}Fe_{0.4}SnTe₂ (б), Ni_{2.4}Fe_{0.6}SnTe₂ (б), измеренные при T = 300 К.

Таблица 46. Основные значения сверхтонких параметров мессбауэровских спектров ⁵⁷Fe для образцов системы Ni-Fe-Sn-Te.

Состав	Позиция	δ, мм/с	Δ, мм/с	Г, мм/с	A, %
Ni _{2.8} Fe _{0.2} SnTe ₂	Fe1	0.63(1)	0.25(1)	0.32(1)	95.3(3)
	Fe2	0.25(1)	0.84(2)	0.32(1)	4.7(3)
Ni _{2.6} Fe _{0.4} SnTe ₂	Fe1	0.62(1)	0.28(1)	0.29(1)	83(1)
	Fe2	0.25(1)	0.69(2)	0.29(1)	17(1)
Ni _{2.4} Fe _{0.6} SnTe ₂	Fe1	0.58(1)	0.23(1)	0.36(1)	75(1)
	Fe2	0.29(1)	0.81(1)	0.36(1)	25(1)

Для данных образцов также была проведена мессбауэровская спектроскопия на ядрах ¹¹⁹Sn, которая могла ответить на вопрос об изменении окружения атома олова в гетерометаллическом слое при замещении никеля на железо. На Рисунке 54 приведены

мессбауэровские спектры исследуемых соединений (температура съемки 300 К). В Таблице 47 представлены основные сверхтонкие параметры мессбауэровских спектров.

Спектр на ядрах ¹¹⁹Sn описывается тремя дублетами. С точки зрения структуры, они, по всей видимости, отвечают трем возможным вариантам окружения олова в гетерометаллическом слое: без дополнительной позиции никеля (тригональная призма только из атомов только в позиции Ni(1)) и с дополнительными позициями (одно- и двухшапочная тригональная призма из атомов в позициях Ni(1) и Ni(2)). Как видно из Таблицы 47, при увеличении количества атомов железа наблюдается увеличение интенсивности Дублета 2 и 3, что хорошо согласуется с данными мессбауэровской спектроскопии на ядрах ⁵⁷Fe, что по мере увеличения концентрации железа увеличивается заселенность позиции Ni(2) в гетерометаллическом слое, и, как следствие, увеличивается доля олова в окружении одно- и двухшапочных тригональных призм из атомов никеля и железа.

Рисунок 54. Мессбауэровские спектры ¹¹⁹Sn образцов Ni_{2.8}Fe_{0.2}SnTe₂ (a), Ni_{2.6}Fe_{0.4}SnTe₂ (б), Ni_{2.4}Fe_{0.6}SnTe₂ (в), измеренные при T = 300 K (слева); возможные варианты окружения олова в структуре (справа).

Состав	Координация	δ, мм/с	Δ, мм/с	Г, мм/с	Α, %
	Sn-Ni2(x0)	2.07(1)	1.69(2)	0.85(1)	$48(2)^{*}$
$N_{12.8}Fe_{0.2}SnTe_2$	Sn-Ni2(x1)	2.18(1)	0.91(4)	0.85(1)	$40(1)^{*}$
$(C_{Ni2} = 0.22(1))$	Sn-Ni2(x2)	2.06(4)	0.47(8)	0.85(1)	$12(1)^{*}$
Ni Eo SeTo	Sn-Ni2(x0)	2.06(1)	1.67(3)	0.88(2)	$45(2)^{*}$
$N_{2.6}Fe_{0.4}SnTe_2$ (Cup = 0.24(2))	Sn-Ni2(x1)	2.18(1)	0.95(4)	0.88(2)	$42(1)^{*}$
$(C_{Ni2} = 0.24(2))$	Sn-Ni2(x2)	2.11(1)	0.51(6)	0.88(2)	$13(1)^{*}$
Ni Es CaTs	Sn-Ni2(x0)	2.07(1)	1.70(3)	0.84(1)	$28(2)^{*}$
$1N12.4\Gamma c_{0.6}Sn T c_{2}$ (C = 0.26(2))	Sn-Ni2(x1)	2.17(1)	1.06(3)	0.84(1)	$46(1)^{*}$
$(C_{Ni2} - 0.50(2))$	Sn-Ni2(x2)	2.14(1)	0.66(2)	0.84(1)	$26(2)^*$

Таблица 47. Основные значения сверхтонких параметров мессбауэровских спектров ¹¹⁹Sn для образцов системы Ni-Fe-Sn-Te.

^{*} интенсивность дублетов рассчитывалась по нормальному распределению атомов в позиции Ni(2) по формуле:

$$A_{i} = \frac{N!}{(N-m)!m!} (1 - C_{Ni2})^{N-m} C_{Ni2}^{m},$$

где N, m – общая и заселенная позиция Ni(2) соответственно; C(Ni(2)) – частичная заселенность позиций Ni(2), оцененная по аппроксимированным спектрам на ядрах ¹¹⁹Sn.

Магнитные измерения образцов Ni_{3-x}Fe_xSnTe₂ (0.2≤x≤0.6). Изучение магнитных свойств Ni_{3-x}Fe_xSnTe₂ показало для Ni_{2.8}Fe_{0.2}SnTe₂ явный антиферромагнитный переход с T_N ~ 120 K, однако по мере увеличения содержания железа в образцах на магнитных кривых наблюдается более одного перехода (Рисунок 55-57).

Интерпретация магнитного поведения образцов также является открытым вопросом. Важно отметить при этом, что в образцах с частичным замещением никеля на железо в галлий- и оловосодержащих системах принципиальным отличием матриц является только разный мотив упорядочения вакансий, в которые и заселяется железо. Соответственно, более сложный вид мессбауэровских спектров и температурной зависимости магнитной восприимчивости для обогащенных железом оловосодержащих образцов однозначно связан с более сложным характером упорядочения заполняемых вакансий, описываемым в рамках модели несоразмерных модуляций.

Рисунок 55. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также полевая зависимость намагниченности для Ni_{2.8}Fe_{0.2}SnTe₂ (слева направо).

Рисунок 56. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также полевая зависимость намагниченности для Ni_{2.6}Fe_{0.4}SnTe₂ (слева направо).

Рисунок 57. Температурные зависимости магнитной восприимчивости и эффективного магнитного момента, 1/χ, а также полевая зависимость намагниченности для Ni_{2.4}Fe_{0.6}SnTe_{2.}

Стоит отметить, что отличия в результатах мессбауэровской спектроскопии, магнитных измерениях и зависимостей параметров от содержания железа по всей видимости связано с разным типом заселения железом вакансий никеля в Ni_{3-x}Fe_xGaTe₂ и Ni_{3-x}Fe_xSnTe₂, таким образом, варьируя вид исходной матрицы (Ni_{3-x}GaTe₂ или Ni_{3-x}SnTe₂), можно влиять на степень заселения железом вакансий никеля и на предпочтительный тип заселения и как следствие на магнитные свойства.

4.2.3. Системы $Ni_{3-x}TM_xMTe_2$ (TM = Cu, Zn, M = Ga, Sn)

Следующая часть работы посвящена синтезу фаз с 3*d*-металлами, стоящими после никеля, — медью и цинком. Предпосылкой для синтеза таких фаз явилось то, что ранее в нашей научной группе были предприняты попытки замещения никеля на другие переходные металлы, такие как титан, ванадий, хром, марганец и кобальт. При выборе металлов для замещения ориентиром служил критерий Стоунера, который гласит, что чем выше плотность состояний на уровне Ферми, тем больше вероятность возникновения коллективных эффектов, например, ферро- и антиферромагнетизма. Поэтому мы стремились понизить количество электронов в системе для смещения уровня Ферми в области с высокой плотностью состояний (что эквивалентно замещению никеля на металл, стоящий слева от него). Однако ранее никогда не предпринималось попыток замещения никеля на металлы 3*d*-ряда, стоящие за ним, для того чтобы, наоборот, увеличить количество электронов в системе и тем самым сдвинуть уровень Ферми в
область с низкой плотностью состояний, что, возможно, послужит причиной возникновения полупроводниковых свойств.

Для оценки возможности замещения никеля на медь в галлиевых соединениях был приготовлен ряд образцов состава Ni_{3-x}Cu_xGaTe₂, где х изменялся от 0.2 до 1 с шагом 0.2 и Cu₃GaTe₂ В Таблице 48 приведены условия отжига образцов и результаты рентгенофазового анализа. Первоначально в качестве метода синтеза порошкообразных образцов был использован стандартный высокотемпературный ампульный синтез из простых веществ, температура отжига была выбрана исходя из данных о синтезе Ni₃₋ _xFe_xMTe₂. Однако после отжига таких образов на стенках ампул наблюдалось медное зеркало, что свидетельствовало о нарушении стехиометрии закладываемых веществ. По данным РФА образцы, полученные таким образом, даже при небольших степенях замещения меди содержали примесь CuGaTe₂. При дальнейших попытках избавиться от присутствия примеси варьировался температурный режим, а также использовались предварительно синтезированные тройные матрицы Ni_{3-x}GaTe₂, к которым в последующем добавлялась медь. Такое варьирование условий синтеза позволило снизить количество примесей, но не избавиться полностью. Повторные отжиги и промежуточное прессование образцов в таблетки также не привели к изменение фазового состава. В соединениях Ni₃₋ _xCu_xGaTe₂, где x ≥ 1, после отжига наблюдалось образование Cu₂Te и наличие непрореагировавшего галлия.

Таблица 48. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-Cu-Ga-Te.

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
Ni _{2.8} Cu _{0.2} GaTe ₂		Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (мало)
Ni _{2.6} Cu _{0.4} GaTe ₂	T = 650 °С, t = 180 ч	Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂
Ni _{2.4} Cu _{0.6} GaTe ₂		CuGaTe ₂ , CuTe, Ni ₃ Te ₂ , Ni ₂ Ga ₃
Ni _{2.6} Cu _{0.4} GaTe ₂	1 отжиг: Т = 550 °С, t = 180 ч	Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (мало)
Ni _{2.4} Cu _{0.6} GaTe ₂	2 отжиг: Т = 600 °С, t = 180 ч	Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (мало)
Ni _{2.6} GaTe ₂	$T = 750 \circ C t = 180 m$	Ni _{3-x} GaTe ₂
Ni _{2.4} GaTe ₂	I = 730 C, $t = 180$ 4	Ni _{3-x} GaTe ₂
Ni _{2.6} Cu _{0.4} GaTe ₂	1 отжиг: Т = 700 °С, t = 180 ч	Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (мало)
Ni _{2.4} Cu _{0.6} GaTe ₂	2 отжиг: Т = 550 °С, t = 180 ч	Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (мало)
Ni _{2.2} Cu _{0.8} GaTe ₂		Ni _{3-x} Cu _x GaTe ₂ , CuGaTe ₂ (много)
Ni ₂ CuGaTe ₂	T = 750 °С, t = 240 ч	Cu ₂ Te, Ni, Ga
Cu ₃ GaTe ₂		Cu ₂ Te, Ni, Ga

Для образцов, содержащих наименьшее количество примесей, было проведено индицирование в предположении об изоструктурности теллуриду Ni_{3-x}GaTe₂ (пространственная группа *P6₃/mmc*) без учета рефлексов примеси (П17-П22). Результаты

индицирования рентгенограмм образцов после последнего отжига приведены в Таблице

49. Курсивом выделены литературные данные.

Состав	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
Ni _{2.8} Cu _{0.2} GaTe ₂	3.945(2)	15.771(5)	212.65(13)
Ni _{2.75} GaTe ₂ [33]	3.9305(4)	15.852(3)	212.09(3)
Ni _{2.6} Cu _{0.4} GaTe ₂	3.9523(17)	15.702(5)	212.41(11)
Ni _{2.6} Cu _{0.4} GaTe ₂	3.9595(10)	15.751(4)	213.86(7)
Ni _{2.6} Cu _{0.4} GaTe ₂	3.9569(7)	15.761(2)	213.72(5)
Ni _{2.5} GaTe ₂ [33]	3.9301(4)	15.909(1)	212.80(3)
Ni _{2.4} Cu _{0.6} GaTe ₂	3.968(3)	15.765(9)	214.9(3)
Ni _{2.4} Cu _{0.6} GaTe ₂	3.9792(18)	15.768(6)	216.22(11)
Ni _{2.3} GaTe ₂ [33]	3.9315(4)	15.926(1)	213.18(3)

Таблица 49. Параметры элементарных ячеек четверных фаз Ni_{3-x}Cu_xGaTe₂ по данным индицирования рентгенограмм.

Поскольку для всех степеней замещения никеля на медь в Ni_{3-x}Cu_xGaTe₂ наблюдается образование медьсодержащих примесей, о значительном внедрении меди в Ni_{3-x}GaTe₂ однозначно сказать нельзя, хотя параметры элементарной ячейки для Ni_{3-x}Cu_xGaTe₂, содержащих наименьшее количество примесей, несколько увеличиваются относительно параметров тройных фаз Ni_{3-x}GaTe₂.

Для оценки возможности замещения никеля на медь в оловянных соединениях был приготовлен ряд образцов состава Ni_{3-x}Cu_xSnTe₂, где х изменялся от 0.2 до 0.6 с шагом 0.2. В Таблице 50 приведены условия отжига образцов и результаты рентгенофазового анализа. В качестве метода синтеза порошкообразных образцов был использован стандартный высокотемпературный ампульный синтез из простых веществ при медленном охлаждении и закалке. По данным РФА все образцы содержали небольшое количество неизвестной примеси и изоструктурную фазу Ni_{3-x}SnTe₂ (Рисунок 58).

Рисунок 58. Рентгенограммы Ni_{3-x}Cu_xSnTe₂ (снизу вверх: x=0.2, 0.4, 0.6). Звездочкой показана неизвестная примесь. Черным цветом выделена теоретическая штрихрентгенограмма Ni_{2.9}SnTe₂.

Таблица 50.	Условия	отжига	образцов	и резули	ьтаты р	рентгено	фазового	анализа	в системе
			1	Vi-Cu-Sn	-Te.				

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
$Ni_{2.8}Cu_{0.2}SnTe_2$		
Ni _{2.6} Cu _{0.4} SnTe ₂	1 отжиг: T = 650 °C, t = 180 ч 2 отжиг: T = 730 °C, t = 180 ч	
$Ni_{2.4}Cu_{0.6}SnTe_2$, , , ,	Ni _{3-x} Cu _x SnTe ₂ ,
Ni _{2.6} Cu _{0.4} SnTe ₂	$T = 750 \circ C$ $t = 200 H parameter$	неизвестная примесь
Ni _{2.4} Cu _{0.6} SnTe ₂	1 - 750 C, $t - 500$ 4, 3akajika.	

Для образцов, содержащих наименьшее количество примесей, было проведено индицирование в предположении об изоструктурности Ni_{3-x}SnTe₂ (пространственная группа *P6₃/mmc*) без учета рефлексов примеси (П23-П25). Результаты индицирования рентгенограмм образцов после последнего отжига приведены в Таблице 51. Курсивом выделены литературные данные.

Таблица 51. Параметры элементарных ячеек тройных фаз Ni _{3-x} Cu _x SnTe ₂ по данны	JM
индицирования рентгенограмм.	

Состав	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
Ni _{2.8} Cu _{0.2} SnTe ₂	4.0000(3)	15.8233(6)	219.25(2)
Ni _{2.8} SnTe ₂ [29]	3.970(1)	15.788(5)	215.49(1)
Ni _{2.6} Cu _{0.4} SnTe ₂	4.0105(4)	15.8420(10)	220.66(4)
Ni _{2.6} SnTe ₂ [29]	3.9479(3)	15.760(1)	212.72(3)
Ni _{2.4} Cu _{0.6} SnTe ₂	4.0067(3)	15.8561(11)	220.44(2)
Ni _{2.4} SnTe ₂ [29]	3.9378(4)	15.754(1)	211.56(4)

Параметры элементарной ячейки Ni_{3-x}Cu_xSnTe₂, даже несмотря на примесь, значительно увеличиваются по сравнению с параметрами тройной фазы, что может свидетельствовать о высокой степени внедрения меди.

Для принципиальной оценки возможности замещения никеля на цинк в соединениях типа Ni_{3-x}MTe₂ для начала было приготовлено два образца со стехиометрией Ni_{2.5}Zn_{0.5}GaTe₂ и Ni_{2.5}Zn_{0.5}SnTe₂. Однако по данным РФА в обоих образцах присутствовал ZnTe в большом количестве, из чего мы предположили, что замещения вовсе не происходит. Кроме этого, при наложении рентгенограмм Ni_{2.5}Zn_{0.5}MTe₂ и исходного тройного соединения Ni_{2.5}MTe₂ не наблюдался сдвиг рефлексов, который обычно наблюдается для замещенных соединений. Предпочтительное заселение меди в Ni_{3-x}Cu_xSnTe₂, а не в Ni_{3-x}Cu_xGaTe₂, возможно, связано с большим размером пустот, отвечающих вакансиям никеля в Ni_{3-x}SnTe₂, а причина, по которой цинк не внедряется в исходную тройную матрицу, — это наличие заполненной 3*d*-оболочки, а также уже довольно большой атомный радиус по сравнению с никелем.

Квантовохимические расчеты. Расчеты электронной структуры Ni₃GaTe₂ и гипотетических соединений Ni_{3-x}Cu_xGaTe₂ и Cu₃GaTe₂ проведены с помощью метода псевдопотенциалов (PAW, программа VASP). Для Ni₃GaTe₂ в этот раз использовались две модели упорядочения атомов никеля в позициях Ni(2) и Ni(3). В первом случае использовалась модель со степенью заселения позиций Ni(2) и Ni(3) равной 50:50, во втором случае — со степенью заселения позиции Ni(2) = 100 %, в то время как ван-дерваальсова щель (позиция Ni(3)) оставалась пустой. Для гипотетического Cu₃GaTe₂ со структурой Ni₃GaTe₂ была рассмотрена модель с заселением меди позиций в соотношении 50:50. Для гипотетического Ni₂CuGaTe₂ были выбраны две модели заселенности позиций никелем и медью: 1) атомы никеля и меди заселяют и гетерометаллический слой, и ван-дер-ваальсову щель; 2) атомы меди и никеля заселяют только гетерометаллический слой (Рисунок 59).

Рисунок 59. Зонная структура Ni₃GaTe₂, рассчитанная для случая, когда атомы Ni в вандер-ваальсовой щели, и в гетерометаллическом слое (слева) и когда атомы Ni только в гетерометаллическом слое (справа).

На Рисунках 60-61 показаны картины плотностей состояний вблизи уровня Ферми для соединений Cu₃GaTe₂ и Ni₂CuGaTe₂. Видно, что для Cu₃GaTe₂ уровень Ферми сдвигается в область низких плотностей состояний. Однако при частичном замещении никеля на медь видно, что уровень Ферми значительно не смещается и наибольший вклад в плотность состояний на уровне Ферми все также вносит 3*d*-состояние никеля, т.е. для проявления полупроводниковых свойств нужно внедрить большее количество меди в тройное соединение (x≥1).

Рисунок 60. Зонная структура гипотетического соединения Cu₃GaTe₂.

Рисунок 61. Зонная структура Ni₂CuGaTe₂, рассчитанная для случая, когда атомы Ni (PDOS зеленый) и Cu (PDOS красный) в ван-дер-ваальсовой щели, и в гетерометаллическом слое (а) и когда атомы Ni и Cu только в гетерометаллическом слое (б).

Однако при синтезе данных фаз даже при небольшой степени замещения «х» возникает примесь CuGaTe₂, а при большом «х» фазы типа Ni_{3-x}GaTe₂ вовсе не образуются, поэтому на практике принципиальное изменение электропроводности относительно исходных тройных фаз за счет вхождения меди, по всей видимости, неосуществимо.

4.2.4. Система Ni₃Ga_{1-x}Sn_xTe₂

В предположении, что замещением *p*-металлов в Ni_{3-x}SnTe₂ и Ni_{3-x}GaTe₂ может направленно влиять на тип упорядочения вакансий никеля, были синтезированы твердые растворы состава Ni₃Ga_{1-x}Sn_xTe₂. По результатам РФА было установлено, что все соединения являются однофазными и являются изоструктурными соединениям типа Ni_{3-x}MTe₂, где M = Ga, Sn (Таблица 52).

При качественном сравнении рентгенограммы соединения $Ni_3Ga_{0.25}Sn_{0.75}Te_2$, содержащим наибольшее количество олова, с рентгенограммой Ni_3SnTe_2 , оказалось, что все рефлексы последнего присутствуют на рентгенограмме четверной фазы. Начиная с «х» = 0.5, для соединения $Ni_3Ga_{0.5}Sn_{0.5}Te_2$ можно отметить появление дополнительных рефлексов, которые характерны для Ni_3GaTe_2 (см. Рисунок 62). Таким образом, мы можем утверждать, что между $Ni_{3-x}GaTe_2$ и $Ni_{3-x}SnTe_2$ образуется область твердых растворов, а не два набора фаз переменного состава. Однако, по данным порошковой дифракции о том или ином типе упорядочения мы можем судить только на качественном уровне. Для однозначного установления типа упорядочения необходимо более детальное изучение с помощью электронной микроскопии.

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
$Ni_3Ga_{0.25}Sn_{0.75}Te_2$		Ni ₃ Ga _x Sn _{1-x} Te ₂
Ni ₃ Ga _{0.5} Sn _{0.5} Te ₂	1 отжиг: $T = 750$ °C $t = 240$ и	Ni ₃ Ga _x Sn _{1-x} Te ₂
Ni ₃ Ga _{0.6} Sn _{0.4} Te ₂	2 отжиг: $T = 750$ °C, $t = 180$ ч	Ni ₃ Ga _x Sn _{1-x} Te ₂
Ni ₃ Ga _{0.7} Sn _{0.3} Te ₂	3 отжиг: Т = 750 °С, t = 120 ч	Ni ₃ Ga _x Sn _{1-x} Te ₂
Ni ₃ Ga _{0.75} Sn _{0.25} Te ₂		Ni ₃ Ga _x Sn _{1-x} Te ₂

Таблица 52. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-Ga-Sn-Te.

Рисунок 62. Рентгенограммы ряда твердых растворов Ni₃Ga_xSn_{1-x}Te₂: Ni₃Ga_{0.25}Sn_{0.75}Te₂, Ni₃Ga_{0.5}Sn_{0.5}Te₂, Ni₃Ga_{0.6}Sn_{0.4}Te₂, Ni₃Ga_{0.7}Sn_{0.3}Te₂ и Ni₃Ga_{0.75}Sn_{0.25}Te₂ (снизу вверх).

Для индицирования рентгенограмм соединений Ni₃Ga_xSn_{1-x}Te₂ были использованы изоструктурные теллуриды Ni_{3-x}MTe₂ (пространственная группа *P6₃/mmc*). Таблицы индицирования приведены в Приложении 26-30. Результаты индицирования рентгенограмм образцов после последнего отжига приведены в Таблице 53. Курсивом выделены литературные данные.

Состав	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
Ni ₃ SnTe ₂ [29]	3.995(1)	15.789(6)	218.2(4)
$Ni_{3}Ga_{0.25}Sn_{0.75}Te_{2}$	3.974(3)	15.756(8)	215.5(3)
Ni ₃ Ga _{0.5} Sn _{0.5} Te ₂	3.9592(17)	15.769(5)	214.06(17)
Ni ₃ Ga _{0.6} Sn _{0.4} Te ₂	3.9482(12)	15.742(4)	212.51(12)
Ni ₃ Ga _{0.7} Sn _{0.3} Te ₂	3.9435(9)	15.755(2)	212.19(6)
Ni ₃ Ga _{0.75} Sn _{0.25} Te ₂	3.9410(4)	15.7493(12)	211.84(2)
Ni ₃ GaTe ₂ [33]	3.933(1)	15.788(2)	211.5(1)

Таблица 53. Параметры элементарных ячеек ряда твердых растворов Ni₃Ga_xSn_{1-x}Te₂ по данным индицирования рентгенограмм (после третьего отжига).

4.2.5. Система Ni_{3-x}SbTe₂

В системе Ni-Sb-Te синтезированы однофазные образцы состава Ni_{3-x}SbTe₂, где «х» = 0, 0.15, 0.25, 0.5, 0.75, 0.9, 1.0. В Таблице 54 приведены взятые стехиометрии, условия отжига образцов и результаты рентгенофазового анализа.

Таблица 54. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-Sb-Te и Ni-Fe-Sb-Te.

Заложенная стехиометрия	Режим отжига	Состав по данным РФА
Ni ₃ SbTe ₂		Ni _{3-x} SbTe ₂ , NiSb
Ni2.85SbTe2 Ni2.75SbTe2 Ni2.5SbTe2 Ni2.25SbTe2 Ni2.1SbTe2 Ni2.1SbTe2 Ni2SbTe2	1 отжиг: Т = 750 °С, t = 180 ч; 2 отжиг: Т = 750 °С, t = 180 ч; 3 отжиг: Т = 450 °С, t = 180 ч.	Ni _{3-x} SbTe ₂
Ni ₂ Fe _{0.2} SbTe ₂	1 и 2 отжиг: T = 550 °C, t = 180 ч.	Ni ₂ SbTe ₂ , Fe _{2.25} Te ₂

Для рентгенограмм всех образцов было осуществлено индицирование в предположение об изоструктурности ранее полученным слоистым теллурилам никеля-*p*-металла (пространственная группа *P6₃/mmc*) (Таблица 55, П31-П35). Установлено, что в системе Ni-Sb-Te наблюдение сверхструктурных рефлексов на малых углах, обуславливающих утроение ячейки по с относительно простого типа NiAs, наблюдается при содержание никеля в диапазоне 0.9<х≤1.0 (Рисунок 63).

Рисунок 63. Рентгенограммы Ni_{3-x}SbTe₂, где x = 0, 0.15, 0.25, 0.5, 0.75, 0.9, 1.0.

Заложенный состав	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
Ni ₃ SbTe ₂	3.9696(1)	5.2692(1)	71.905(3)
Ni _{2.8} 5SbTe ₂	3.9742(5)	5.2724(6)	72.12(1)
Ni _{2.75} SbTe ₂	3.9529(8)	5.2583(1)	71.16(1)
Ni _{2.5} SbTe ₂	3.9280(1)	5.2518(1)	70.17(2)
Ni _{2.25} SbTe ₂	3.9114(2)	5.2418(2)	69.451(4)
Ni _{2.1} SbTe ₂	3.9169(9)	5.2462(9)	69.70(2)
Ni ₂ SbTe ₂	3.9048(9)	15.661(3)	206.80(6)

Таблица 55. Параметры элементарных ячеек тройных фаз Ni_{3-x}SbTe₂ по данным индицирования рентгенограмм (после третьего отжига).

По данным in situ рентгеновской дифракции показано, что на упорядочение также влияет температура, но только в случае Ni_2SbTe_2 (Ошибка! Неверная ссылка закладки.). Сверхструктура в Ni_2SbTe_2 исчезает при T ~ 600 °C. Осуществлен поиск соединения состава $Ni_2Fe_{0.2}SbTe_2$, но по данным РФА показано образование $Fe_{2.25}Te_2$ и отсутствие заметного внедрения железа.

Рисунок 64. 3D и 2D дифрактограммы in situ эксперимента Ni₂SbTe₂ (сверху) и Ni_{2.75}SbTe₂ (снизу).

Кристаллические структуры Ni_{3-x}SbTe₂ были уточнены полнопрофильным методом Ритвельда по данным порошковой дифракции. В качестве модели для уточнения структур была использована структура Ni₂SbTe₂, определенная по данным монокристалльной рентгеновской дифракции [45-46]. Уточнение параметров атомного смещения проводили в изотропном приближении. В случае Ni_{2.44}SbTe₂ и Ni_{2.75}SbTe₂ наименьших значений R-

факторов удалось достичь при двухфазном уточнении, где одна фаза имеет структуру Ni₂Sb, а другая – NiAs.

На Рисунке 65 показаны экспериментальный, уточненный и разностный профили для Ni_{3-x}SbTe₂. Параметры уточнения структур и другие структурные параметры представлены в Таблице 56-58.

Рисунок 65. Экспериментальные, расчетные и разностные рентгенограммы для Ni_{3-x} SbTe₂, где x = 1, 0.5, 0.25.

Таблица 56. Параметры уточнения структур Ni_{3-x}SbTe₂, где x = 1, 0.5, 0.25 по порошковым данным.

Формула	Ni ₂ SbTe ₂ Ni _{2.44(1)} SbTe ₂ Ni _{2.75(1)} SbTe ₂			SbTe ₂	
Тип излучения	$\frac{\text{CuK}_{\alpha}}{(\lambda = 1.54178\text{\AA})}$				
Пространственная группа		P6 ₃ /mmc			
Состав, %	100	47.42	52.58	70.79	29.21
<i>a</i> , Å	3.9076(5)	3.9402(2)	3.9406(7)	3.9558(1)	3.9555(1)
<i>c</i> , Å	15.6742(1)	15.8349(4)	5.2494(1)	15.8749(5)	5.2354(2)
<i>V</i> , Å ³	207.273(6)	212.91(2)	70.595(3)	215.13(1)	70.939(6)
Ζ	2				
Плотность, г/см ³	7.921(2) 8.115(15) 8.310(15)			(15)	
Коэффициент поглощения µ, см ⁻¹	22.32(2)	23.70(55)		17.36	(27)
Число уточняемых параметров	15 22 22			2	

20, °	$8 < 2\theta < 115$		
R_p / R_w / R_{Bragg}	0.059 / 0.079 / 0.029	0.051 / 0.067 / 0.011	0.049 / 0.065 / 0.015

Таблица 57. Координаты атомов, заселенности позиций, значения параметров атомного смещения для Ni_{3-x}SbTe₂, где x = 1, 0.5, 0.25.

Атом	Кратность	r/a 1	v/b	y/b z/c	Заселенность	$B_{iso}, Å^2$		
	позиции	λ/u	<i>y</i> /0		позиции			
	Ni ₂ SbTe ₂							
Ni(1)	4e	0	0	0.16652(9)	1	0.44(5)		
Sb	2c	1/3	2/3	1/4	1	1.13(5)		
Te	4f	1/3	2/3	0.58639(5)	1	0.98(4)		
	Ni _{2.44(1)} SbTe ₂							
Ni(1)	4e	0	0	1/2	0.441(16)	1		
Ni(2)	2a	0	0	0.1671(4)	1	2.08(12)		
Sb	2c	1/3	2/3	1/4	1	1.3(2)		
Te	4f	1/3	1/6	0.5839(2)	1	0.97(10)		
			Ni _{2.75(1)}	SbTe ₂				
Ni(1)	4e	0	0	1/2	0.749(17)	1		
Ni(2)	2a	0	0	0.1584(4)	1	1.41(10)		
Sb	2 <i>c</i>	1/3	2/3	1/4	1	0.98(13)		
Te	4f	1/3	2/3	0.5821(2)	1	0.54(7)		

Таблица 58. Значения основных межатомных расстояний в Ni_{3-x}SbTe₂, где x = 1, 0.5, 0.25.

Связь	Межатомные расстояние, Å	Связь	Межатомные расстояние, Å				
	Ni	₂ SbTe ₂	·				
Ni(1)-Ni(1)	2.63954	Ni(1)-Sb	2.61373				
Ni(1)-Ni(1)	3.90760	Ni(1)-Te	2.56985				
	Ni _{2.4}	4(1)SbTe ₂					
Ni(1)-Ni(1)	3.94020	Ni(2)-Sb	2.62646				
Ni(1)-Ni(2)	2.64601	Ni(1)-Te	2.62883				
Ni(2)-Ni(2)	2.62543	Ni(2)-Te	2.62883				
Ni(2)-Ni(2)	3.94020						
	Ni _{2.75(1)} SbTe ₂						
Ni(1)-Ni(1)	3.95580	Ni(2)-Sb	2.70752				
Ni(1)-Ni(2)	2.51458	Ni(1)-Te	2.62960				
Ni(2)-Ni(2)	2.90828	Ni(2)-Te	2.58520				
Ni(2)-Ni(2)	3.95580						

При сравнении структурных параметров Ni₂SbTe₂, полученных с помощью порошковой (a = 3.9076(5) Å, b = 15.6742(1) Å) и монокристальной рентгеновской дифракции (a = 3.9030(9) Å, c = 15.634(3) Å) [45], видно, что значительных отличий нет, параметры имеют одинаковое значения в пределах погрешности.

Мессбауэровская спектроскопия для образцов Ni_{3-x}SbTe₂ (x = 0.25; 0.5; 0.75; 1). На мессбауэровских спектрах на ядрах ¹²¹Sb всех образцов серии Ni_{3-x}SbTe₂ (x = 0.25; 0.5; 0.75; 1) наблюдается один синглет (Рисунок 66, ПЗ9). В случае состава Ni₂SbTe₂ это означает наличие только одной позиции никеля – Ni(1), при этом позиции Ni(2) и Ni(3) являются незаполненными. Как было упомянуто ранее, по данным рентгеновской дифракции для составов Ni_{3-x}SbTe2 (x = 0.25, 0.5, 0.75) пропадает упорядочение позиции Ni(3). Поскольку на мессбауэровском спектре наблюдается только один синглет, это означает, что позиции Ni(1) и Ni(2) становятся одной, и ее заселенность в целом не меняет координацию Sb.

Рисунок 66. Мессбауэровские спектры ¹²¹Sb образцов Ni₂SbTe₂ (справа) и Ni_{2.75}SbTe₂ (слева), измеренные при T = 100 K.

4.3. Бинарные интерметаллиды RE₃M (RE= Dy, Gd, Sm; M= In, Ga)

На данный момент в литературе есть много упоминаний о существовании различных бинарных интерметаллидов со структурой AuCu₃, но зачастую достоверная информация об их кристаллической структуре и физических свойствах отсутствует. Для нашей научной группы наибольших интерес представляют соединения со структурой AuCu₃, поэтому данная часть работы посвящена поиску новых бинарных интерметаллидов со структурой AuCu₃ в системах RE – M (RE= Dy, Gd, Sm; M= In, Ga).

Стоит отметить, что синтез фаз богатых редкозмельными металлами очень сильно осложнен из-за быстрого окисления образцов, поэтому в первую очередь стояла задача в подборке метода синтеза данных соединений.

Стехиометрические навески первой серии образцов в система Sm — M с закладываемой стехиометрией Sm₃Ga и Sm₃In помещали в прокаленные, кварцевые ампулы, покрытые слоем пиролитического углерода. Все операции с исходными веществами и продуктами синтезов проводились в сухом боксе. В отличие от первых попыток синтеза этих соединений (условия предыдущих синтезов: T = 800-1000°C, время отжига ~ 2-14 дней), последующие отжиги образцов проводились при относительно более низких температурах 600-750°C и за более длительное время (время отжига ~ 20-60 дней).

Первая серия образцов отжигалась при температуре 650°С в течение 20 дней. После первого отжига на стенках ампулы наблюдались следы возгонки, предположительно, самария, что, как следствие, привело к нарушению стехиометрии. По данным РФА первая серия образцов содержала следующие фазы: SmGa₂, SmGa₆, Sm₂O₃ в случае Sm₃Ga и Sm₂O₃ и неизвестная фаза в случае Sm₃In. Исходя из результатов РФА видно, что карбонизация не предотвращает образец от взаимодействия со стенками кварцевой ампулы, поэтому использование танталовых вкладышей – обязательное условие для синтеза самарийсодержащих соединений.

Стехиометрические навески второй серии образцов предварительно сплавлялись в электрической дуге, после чего полученные сплавы помещались в танталовые вкладыши. Данные образцы отжигались при температуре 750°C в течение 14 дней, затем перетирались, и подвергались второму отжигу при температуре 650°C в течение 20 дней. Во всех случаях на стенках ампулы наблюдались следы возгонки самария, хоть и менее значительные, чем в образцах из первой серии. Однако провести РФА для этой серии не удалось по причине того, что все образцы представляли собой рентгеноаморфные фазы.

Для избежание возгонки самария последующие отжиги образцов проводились под избыточным давлением аргона и в танталовых вкладышах. Стехиометрические навески третьей серии образцов также сплавлялись в электрической дуге, однако в процессе плавки было замечено, что происходит частичное испарение самария, что подтвердило взвешивание образцов после сплавления – уменьшение массы составило ~ 5%. Режим отжига: нагрев за 6 часов до 600 °C, выдержка при этой температуре – 60 дней. После отжига образцы представляли собой целые спеки без следов возгонки самария. По результатам РФА третья серия образцов содержала: Sm₅Ga₃, Sm₃Ga₂, Sm₂O₃ и следовые количества Sm₃Ga (Рисунок 67) в случае галлийсодержащего образца и Sm₃In и примеси металлического Sm, Sm₂In и какой-то неизвестной фазы в случае индийсодержащего образца (Рисунок 68).

Рисунок 67. Рентгенограмма образца Sm₃Ga.

Рисунок 68. Рентгенограмма образца Sm₃In после первого отжига.

Поскольку все действия с третьей серией образцов проводились в одинаковых условиях, можно предположить, что наличие Sm₂O₃ в образце Sm₃Ga связано с небольшой устойчивостью галлийсодержащих фаз на воздухе, из-за чего произошло частичное окисление образца во время его съемки на дифрактометре.

Наличие металлического Sm и Sm₂In, возможно, связано с недостаточно большим временем отжига, поэтому индийсодержащий образец был подвергнут второму отжигу при температуре 720°C в течение 20 дней.

По результатам РФА образца Sm₃In после второго отжига не наблюдалось наличие металлического Sm и Sm₂In, а также некой неизвестной фазы. Все рефлексы были отнесены к двум фазам: Sm₃In и Sm₂O₃ (Рисунок 69). Наличие оксида можно объяснить тем, что второй отжиг Sm₃In был проведен без избыточного давления аргона, из-за чего

наблюдалась возгонка образца, что привело к взаимодействию со стенками кварцевой ампулы.

Рисунок 69. Рентгенограмма образца Sm₃In после второго отжига.

Основная фаза в образце Sm₃In индицируется в кубической сингонии в пр.гр. *Рт-3m* с параметрами элементарной ячейки: a = 4.9161(5) Å, V = 118.810(21) Å³, что совпадает с литературными данными и свидетельствует о том, что нами был получен Sm₃In со структурным типом AuCu₃.

Образцы со стехиометрией RE₃M в система Dy — М помещали как в кварцевые ампулы, покрытые слоем пиролитического углерода, так и в танталовые вкладыши. Для лучшей гомогенизации навески предварительно справляли в дуговой печи. В случае с диспрозийсодержащими образцами отжиги также проводились при более низких температурах (T = 750°C, t = 14 дней), чем в первых попытках синтеза (800-1000°C).

Прежде всего, однозначно судить о том, что больше подходит для синтеза данных интерметаллидов – карбонизирование ампул или использование вкладышей из танталовой фольги – в данном случае нельзя, так как ампула с образцом Dy₃Ga, в синтезе которого был использован танталовый вкладыш, взорвалась, что, возможно, связано с сильным экзотермическим эффектом этой реакции, поэтому для второго синтеза Dy₃Ga был использован более длительный выход на режим.

На рентгенограмме образца с закладываемой стехиометрией Dy₃In наиболее яркие рефлексы принадлежат фазе, которые удалось проиндицировать в пространственной группе *Pm-3m* с параметром a = 5.3051(12) Å, V = 149.31(6) Å³ (П37). Стоит отметить, что параметры элементарной ячейки слишком большие для бинарного соединения со структурным типом AuCu₃, поэтому, вероятно, было получено соединение со структурой антиперовскита – Dy₃InO. Для сравнения Dy₃InC имеет параметр a = 4.888(1) Å [1-3].

РФА показал, что рефлексы образца со стехиометрией Dy₃Ga не относятся к известным бинарным оксидам и интерметаллидам Dy и Ga. Однако, можно точно сказать, что неизвестная фаза не кристаллизуется в кубической сингонии и что образование Dy₃Ga со структурой AuCu₃ не наблюдается.

В системе Gd — M (M = Ga, In) при синтезе фаз варьировалось исходное состояние Gd: были использованы порошок, стружка или слиток. К нескольким образцам со стехиометрией Gd₃Ga и Gd₃In добавили небольшие крупинки кристаллического йода, т.к. в литературе встречаются примеры, когда использование иода в синтезе интерметаллидов помогал в получении однофазных образцов. Это явление наблюдалось и в работах нашей научной группы. Дуговая плавка была сделана только для одного образца Gd₃Ga, для которого был использован танталовый вкладыш. Гомогенизирующий отжиг данного образца проводился при температуре 750°C за 14 дней. Остальные образцы сразу подвергались отжигу при температуре 650°C за 20 дней в карбонизированных кварцевых ампулах.

Стоит заметить, что по результатам РФА ни в одном образце не были найдены фазы со структурой AuCu₃, поскольку практически все образцы имели рентгенограммы плохого качества, как в случае образцов с самарием. Так же стоит отметить, что использование иода в синтезах не привело к образованию однофазного образца, а только ухудшило прохождение реакции между металлами, и часть Gd осталась непрореагировавшей.

Наилучшее качество рентгенограммы наблюдалось для образца Gd₃Ga, который был приготовлен из порошкообразного Gd. На рентгенограмме данного образца наиболее рефлексы принадлежат фазе, которые проиндицировать яркие удалось В пространственной группе *Рт-3m* с параметрами a = 5.3006(11)Å и V = 148.93(6) Å³ (П36). При наложении рентгенограммы образца Gd₃Ga на рентгенограмму образца Dy₃In, который предположительно содержит Dy₃InO со структурой антиперовскита со схожими параметрами, было замечено, что большинство рефлексов совпадают. Исходя из этого мы можем предположить, что образец со стехиометрией Gd₃Ga также содержит соединении со структурой антиперовскита – Gd₃GaO. Для сравнения Gd₃GaC имеет параметр a =4.909(2) Å [1-3].

Таким образом, в системах RE-M (RE = Dy, Gd, Sm; M= In, Ga) по данным индицирования рентгенограмм фазы со структурой AuCu₃ в условиях проведенных экспериментов не образуются, за исключением Sm₃In.

Квантовохимические расчеты. Учитывая нетривиальность неэмпирических расчетов систем, содержащих редкоземельные металлы, на первом этапе выполнения

задачи необходимо было подобрать расчетные условия, которые позволили бы адекватно моделировать системы, содержащие значительное количество *f*-электронов, что является серьезной проблемой и может вносить существенные погрешности в расчеты, основанные на Теории функционала плотности (DFT), поэтому при расчетах с использованием пакета VASP было изучено влияние вида используемого псевдопотенциала на результат. Модельные расчеты выполнялись для RE = Ce, Pr, Sm, Eu, Gd, Dy, Er и M=In. В результате лучшими оказались псевдопотенциалы для In серии GW, включающие в валентную оболочку 21 электрон, а для RE – псевдопотенциалы, включающие в валентную оболочку от 12 (Се) до 22 (Ег) электронов. При этом для индия оказалось, что использование минимального размера валентного пространства $(5s^{1}5p^{2})$ крайне негативно сказывается на результатах. В расчетах соединений, включающих катионы RE, часто используется прием удаления f-оболочки из валентного пространства и включения ее в остов, однако, наши исследования, в частности анализ тенденций переноса заряда, показали, что валентное состояние RE в интерметаллидах не позволяет выводить *f*-состояния из валентного пространства. Это еще раз демонстрирует далекий от рутинного характер выполнения расчетов для таких систем. В расчетах использовался как метод DFT, так и DFT+U, что позволяло улучшить описание *f*-состояний для элементов, у которых степень заполнения f-оболочки близка к половине.

Для всех интерметаллических соединений проводилась оценка устойчивости в рамках структурного типа AuCu₃, также для всех интерметаллидов проводилась неограниченная оптимизация элементарной ячейки и координат атомов с целью выявления возможности перехода в другой структурный тип. В результате показано, что Ce₃In, Pr₃In, Eu₃In, Er₃In в кубической структуре типа AuCu₃ отвечают минимуму потенциальной энергии, а для Gd₃In, Dy₃In, Sm₃In наблюдается тетрагональное искажение с b>a. Выигрыш в энергии для тетрагональной модификации невелик (~0.04-0.9 эВ) и максимален для Dy, что позволяет рассчитывать на возможность получения кубическое или механическое давление).

Картины плотности состояния вблизи уровня Ферми (DOS) для всех интерметаллидов качественно близки (Рисунок 70). Все соединения, как и следует ожидать, являются металлическими проводниками. Наибольший вклад в DOS вносят *f*-электроны RE, при этом *f*-состояния, как правило, отличает высокая степень локализации (наименьшая – у церия). Состояния индия не так ярко выражены, а *s* – еще и значительно смешены вниз по энергии. Таким образом, можно предположить, что в связывании преимущественно участвуют валентные электроны RE и *p*-состояния индия. При

сравнении картин плотности состояний вблизи уровня Ферми для более богатого RE Sm₃In и инвертированного SmIn₃ видно, что наибольший вклад в общую плотность состояний все также вносят *f*-состояния Sm.

Рисунок 70. Общая плотность состояний и вклады атомных орбиталей в RE₃In и SmIn₃. Уровень Ферми находится в точке E = 0.

Анализ зарядовой плотности в рамках концепции QTAIM Бэйдера показывает, что во всех случаях наблюдается перенос заряда с атома RE на атом индия, однако, зарядовое состояние RE сильно отличается от двух- или трехзарядных ионов, заряд несколько увеличивается от Се к Er, но даже для последнего он ~ +0.5 (Таблица 59). Такой невысокий заряд не позволяет рассматривать эти интерметаллиды как ионные и указывает на высокую вероятность наличия ковалентной составляющей в связях.

Соединение	Ce ₃ In	Sm ₃ In	Eu ₃ In	Gd ₃ In	Dy ₃ In	Er ₃ In
Атом	Заряд					
RE	+0.33	+0.46	+0.44	+0.45	+0.48	+0.51
In	-0.99	-1.37	-1.33	-1.34	-1.43	-1.52

Таблица 59. Рассчитанные заряды на атомах для RE₃In.

Анализ топологии ELF для RE₃M показывает значительные отличия в схеме связывания от детально изученном нами ранее и описанных в других работах [103] кубических интерметаллидов TM₃In (TM=Ni, Pd, Pt) со структурой AuCu₃ или

производной от нее (Рисунок 71). В ТМ₃In (ТМ = Ni, Pd) наблюдался только один вид локализации электронов (Домен 1), отвечающий четырехцентровым ломенов взаимодействиям 3TM+In. В случае Pt помимо Домена 1 наблюдаются домены второго типа (Домен 2), отвечающие парным связям Pt-Pt. В случае RE₃M первый тип домена сохраняется от структуры к структуре, а домены второго типа вовсе не встречаются, однако для Се, Pr, Sm, Dy, Gd и Eu наблюдается возникновение доменов третьего типа (Домен 3), отвечающие многоцентровым взаимодействиям RE-In (исходя из топологии доменов, присутствуют вклады от 8 атомов), и домены четвертого типа (Домен 4), отвечающие парным (или в значительной степени парным, возможен очень небольшой вклад RE) взаимодействиям In-In. Домены 3, но не Домен 4, также встречаются в топологии ELF для Er₃In, для которого также наблюдаются домены пятого типа (Домен 5), которые можно отнести к преимущественно парным взаимодействиям In-In с очень небольшими вкладами Er. Таким образом, топология ELF для последнего интерметаллида (гипотетического) заметно выпадает из общего ряда, который включает как структурно охарактеризованные (Се, Pr), так и смоделированные интерметаллиды. Для группы RE = Ce, Pr, Eu, Sm, Gd, Dy характеристики областей локализации электронов качественно очень сходны, системы многоцентровых частично локализованных взаимодействий RE-In дополняются в значительной мере парными связями RE-RE, т.е. имеет место инвертированная по сравнению с Pt₃In картина. В целом, следует отметить большее, чем в случае TM₃In, количество областей локализации электронов для RE₃In. Кроме того, анализ ELF полностью подтверждает данные анализа зарядовой плотности о наличии областей ковалентности.

Рисунок 71. Топология ELF для интерметаллидов TM₃In и RE₃In (η = 0.38 – 0.46).

Построение СОНР для анализа связей в орбитальном пространстве выполнялось при помощи реконструкции атомных кристаллических орбиталей путем проекции волновой функции на условный базис атомных орбиталей. Из кривых СОНР следует, что устойчивости структур в существенной степени способствуют связи RE-RE, которые на уровне Ферми имеют либо связывающий, либо несвязывающий характер, а ниже уровня Ферми являются связывающими (Рисунок 72). В то же время связи RE-In на уровне Ферми имеют слабый антисвязывающий характер для СезIn и Sm3In и несвязывающий – для Dy3In. В то же время в СезIn связи Се-Ce, по-видимому, не очень хорошо оптимизированы, так как наблюдается заметный связывающий характер выше уровня Ферми, не присущий Sm3In и Dy3In. Интегрированные до уровня Ферми значения СОНР, которые можно ассоциировать с условной прочностью связи, равны для Ce3In: -1.69 эВ/связь (Ce-Ce), -1.33 эВ/связь (Ce-In); для Sm3In: -2.81 эВ/связь (Sm-Sm), -2.35 эВ/связь

(Sm-In); для Dy₃In: -2.05 эВ/связь (Dy-Dy), -1.77 эВ/связь (Dy-In). Видно, что во всех случаях связи RE-RE выглядят прочнее, чем RE-In.

Рисунок 72. Кривые парциальных СОНР для Се₃In, Sm₃In и Dy₃In (черный – усредненные СОНР, зеленый – связи RE-In, синий – связи RE-RE).

4.4. Интерметаллиды со структурой La₁₆Al₁₃

4.4.1. Система La-M (M = Al, Ga, Si, Sb)

Раннее в обзоре литературе было описано, что на данный момент известно только одно соединение со структурой La₁₆Al₁₃ – сам La₁₆Al₁₃, при этом нет упоминаний о поиске бинарных соединений, содержащих другие *p*-металлы. Исходя из этого данная часть работы посвящена поиску бинарных интерметаллидов со структурой La₁₆Al₁₃ в системах La-M (M = Al, Ga, Si, Sb). В качестве метода синтеза был использован высокотемпературный синтез с предварительным сплавлением исходной навески в дуговой печи. При синтезе соединений со структурой La₁₆Al₁₃ были учтены все синтетические особенности, с которыми мы столкнулись при синтезе интерметаллидов RE₃M, которые также являлись богатыми редкоземельными металлами фазами. Заложенная стехиометрия, условия синтеза и результаты РФА указаны в Таблице 60.

Таблица 60. Условия отжига	образцов и результаты рентгенофаз	ового анализа в системах
	La-M ($M = Ga$, Al, Sb, Si).	

Заложенная стехиометрия	Режим отжига	Фазовый состав по данным РФА после последнего отжига
La ₁₆ Ga ₁₃		Неизвестная фаза I
La ₁₆ Sb ₁₃	1 отжиг: T=550 °C, t = 180 ч.;	LaSb, неизвестная фаза II
La ₁₆ Si ₁₃	2 отжиг: Т=700 °С, t = 362 ч.	La5Si4, LaSi
La ₁₆ Al ₁₃		La ₁₆ Al ₁₃ , LaAl, La ₃ Al (ст.т. AuCu ₃)

На рентгенограмме La₁₆Ga₁₃ рефлексы не удалось отнести к каким-либо галлийили лантансодержащим фазам из базы PDF2, и также не удалось провести индицирование рентгенограммы в предположение об изоструктурности La₁₆Al₁₃ (пространственная группа *P-62m*). По данным PФA образец с закладываемой стехиометрией La₁₆Si₁₃ содержит La₅Si₄, и помимо него других лантан- или кремнийсодержащих фаз обнаружено не было. В случае образца La₁₆Sb₁₃ было обнаружено, что большая часть рефлексов относится к LaSb и неидентифицируемой примеси «Неизвестная фаза II». На рентгенограмме образца La₁₆Al₁₃ наблюдаются рефлексы основной фазы интерметаллида состава La₁₆Al₁₃, а также примесей – LaAl и La₃Al (ст. т. AuCu₃), которые упоминались в статье [79] как сопутствующие фазе La₁₆Al₁₃.

4.4.2. Система La-Ga-Cu

В литературе нет упоминаний о существовании или попытках синтеза тройных соединений со структурой La₁₆Al₁₃, где в качестве *p*-металла выступали бы другие металлы 13 группы и другие *d*-металлы 11 группы, поэтому мы решили произвести поиск галлий-содержащих соединений. Всего в этой системе было приготовлено 4 образца с различной степенью замещения галлия на медь (см. Таблица 61)

Таблица 61. Условия	отжига образцов и результать	ы рентгенофазового	анализа в системе
	La-Ga-Cu.		

Заложенная стехиометрия	Режим отжига	Фазовый состав по данным РФА после последнего отжига	
La ₁₆ Ga ₁₀ Cu ₃	1 отжиг: T=550 °C, t = 180 ч.; 2 отжиг: T=550 °C, t = 300 ч.	Рентгеноаморфный образец	
La ₁₆ Ga ₁₂ Cu	1 отжиг: T=550 °C, t = 180 ч.; 2 отжиг: T=700 °C, t = 362 ч.		
La ₁₆ Ga ₁₁ Cu ₂	1 - 550 % 4 - 200 %	LaGa _{1-x} Cu _x , La ₂ O ₃	
La ₁₆ Ga ₁₀ Cu ₃	1 отжиг: 1-330 °C, t = 300 4.		

По данным РФА было установлено, во всех образцах есть одна преобладающая фаза, имеющая структуру LaGa, при этом рентгенограммы данных образцов не имеют схожего мотива с теоретическими рентгенограммами тройных соединений типа $RE_{16}Au_xAl_{13-x}$ (RE = La–Nd, Sm). Это свидетельствует о том, что тройные соединения со структурой La₁₆Al₁₃ не образуются, но можно предположить об образовании твердых растворов на основе LaGa, например, LaGa_{1-x}Cu_x, т.к. при увеличении количества меди в синтезируемом образце, схожие отражения смещаются влево, и в целом рентгенограммы похожи друг на друга, а рефлексы с учетом смещения совпадают. Стоит отметить, что всех образцах в небольшом количестве присутствует оксид лантана (пр. гр. *Im-3m)*, что возможно связано с недостаточной изоляцией образцов от кварца при использовании карбонизированных ампул, но поскольку фазы со структурой La₁₆Al₁₃ не образуются даже в следовых количествах, то лучшая изоляция образца от кварца кардинально не повлияла бы на образование La₁₆Ga_{13-x}Cu_x.

Система La-Ce-Al. Помимо поиска соединений, в которых *p*-металл замещался на *d*-металл, был проведен поиск соединений с замещением лантана на другой редкоземельный металл с близким радиусом – церием. По результатам РФА образец La₄Ce₁₂Al₁₃ содержал LaAl, Al₂Ce и AlCe. Содержание AlCe в соединении преобладает, поэтому можно предположить, что замещение лантана на церий не дает соединения изоструктурного La₁₆Al₁₃.

4.4.3. Система RE-Al-M (RE = La, Ce, M = Cu, Ag)

В литературе описаны тройные интерметаллиды типа RE₁₆Al_{13-x}Au_x (RE = La-Nd), но нет никаких упоминаний о поиске или существовании подобных фаз для других

металлов 11 группы – Сu, Ag, поэтому нами был осуществлен синтез других соединений класса баррелянов с закладываемой стехиометрией RE₁₆Al₁₀T₃, RE = La,Ce, M = Cu, Ag (Таблица 62).

Заложенная стехиометрия	Режим отжига	Фазовый состав по данным РФА после последнего отжига
La ₁₆ Al ₁₀ Cu ₃		La ₁₆ Al _{13-x} Cu _x
La ₁₆ Al ₁₀ Ag ₃	1 отжиг: T=550 °C, t = 240 ч.;	La ₁₆ Al _{13-x} Ag _x
Ce ₁₆ Al ₁₀ Cu ₃	2 отжиг: 550 °C, t = 240 ч.	Ce ₁₆ Al _{13-x} Cu _x
Ce ₁₆ Al ₁₀ Ag ₃		Ce ₁₆ Al _{13-x} Ag _x

Таблица 62. Условия отжига образцов и результаты рентгенофазового анализа $RE_{16}Al_{10}T_3, RE = La, Ce, M = Cu, Ag.$

По результатам РФА в данных системах были получены тройные соединения со структурой La₁₆Al₁₃, при этом образование значительного количества каких-либо известных примесей обнаружено не было. При наложении рентгенограмм видно систематическое смещение положения рефлексов относительно La₁₆Al₁₃, причем рефлексы La₁₆Al₁₀Ag₃ смещены в область меньших углов 2θ , что хорошо коррелирует с тем, что у серебра больший радиус по сравнению с медью (Рисунок 73).

Рисунок 73. Рентгенограммы La₁₆Al₁₀Cu₃ и La₁₆Al₁₀Ag₃ и наложенная теоретическая штрих-рентгенограмма La₁₆Al₁₃.

Параллельно синтезу порошкообразных образцов были сделаны эксперименты по росту монокристаллов данных соединений. На первом этапе была опробована медленная кристаллизация из стехиометрического сплава (T = 550 °C охлаждение до T = 310 °C со скоростью 2 °С/ч), полученного взаимодействием простых веществ в дуговой печи. По данным ЛРСА полученные кристаллы представляли собой бинарные интерметаллиды LaAl₂ и CeAl₂. На втором этапе был опробован рост тройных кристаллов из расплава свинца, однако в результате наблюдалось взаимодействие свинца с исходном сплавом. На третьем этапе был осуществлен рост монокристаллов из расплава RE4AlM с небольшим избытком редкоземеельного металла по сравнению с составом RE₁₆Al₁₀M₃: La₁₆Al_{13-x}Cu_x La₁₆Al_{13-x}Ag_x, Ce₁₆Al_{13-x}Cu_x, Ce₁₆Al_{13-x}Ag_x. Монокристаллы были получены для всех составов, кроме Ce₁₆Al_{13-x}Ag_x, для которого варьирование температурного режима и других параметров синтеза не привело к росту монокристаллов. По данным ЛРСА полученные кристаллы представляли собой тройные фазы с составом RE_{~16}Al_{~10}M_{~3} (Таблица 63). Стоит отметить, что для полученных данных наблюдается достаточно большая погрешность. Это связано с тем, что кристаллы тройных фаз имеют сложную морфологию, при этом на атомные соотношения в том числе оказывает влияние угол наклона поверхности. Сильные нарушения геометрии искажают соотношения интенсивностей в рентгеновском спектре и в наивысшей степени влияют на определение лёгких элементов, в нашем случае на определение алюминия, поэтому данные результаты ЛРСА можно рассматривать как полуколичественные и по большей части необходимые для подтверждения качественного состава.

	Заложенная	ЛРСА, масс. %	Состав по данным	
	•	= Cu, Ag).		
Табл	ица 63. Результат	ы ЛРСА кристаллов из образцов	системы RE-Al-M (RE = La, G	Ce, M

Заложенная	Л	РСА, масс. %	Состав по данным	
стехиометрия	La (Ce)	Al	Cu / Ag	ЛРСА
La AlCu	52.77	38.82	8.42	Laura Alura Cuara
La4AICu	<u>1.57</u>	<u>1.98</u>	<u>0.43</u>	La16.0A111.8Cu2.55
La AlAg	59.08	32.89	8.03	Lou Alen Agene
LatAIAg	<u>4.86</u>	4.65	<u>1.51</u>	La ₁₆ A18.89Ag _{2.17}
La AlCu A a	59.25	31.04	3.58 / 6.13	Lau Alex Cue Agen
La4AICu _{0.5} Ag _{0.5}	<u>5.35</u>	<u>6.47</u>	0.2 / 1.26	La ₁₆ A18.38Cu _{0.97} Ag _{1.66}
CalAlCu	55.09	15.16	29.75	ConAlexCurr
CE4AICU	<u>1.14</u>	<u>0.63</u>	<u>1.61</u>	UC16A18.64UU4.4

Рентгеноструктурный анализ монокристаллов. Кристаллические структуры $RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag) и La₂Al_{1.02}Ag_{0.28} были установлены по данным монокристальной рентгеновской дифракции. Решение структур $RE_{16}Al_{13-x}M_x$ проводилось в гексагональной сингонии (пр. гр. *P-62m*), выбранной исходя из того, что ранее

полученные соединения со структурой La₁₆Al₁₃ были описаны в этой же пространственной группе. Параметры рентгеноструктурных экспериментов и детали уточнения приведены в Таблице 64, координаты атомов и параметры атомного смещения — в Таблице 65, а основные межатомные расстояния в Таблице 66.

Структуры $RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag) можно описать аналогично RE₁₆Al_{13-x}Au_x (RE = La, Ce) (Рисунок 74). Одной из особенностей кристаллических структур тройных фаз со структурой La₁₆Al₁₃ является то, что все позиции лантана или церия занятые исключительно редкоземельным металлом. В случае лантансодержащих фаз три из четырех позиций алюминия частично заселены переходным металлом и образуют 11-атомный аналог [3.3.3]-барреляна, в то время как четвертая позиция алюминия, находящаяся в гетерометаллическом слое, заселена только алюминием. В случае Ce₁₆Al_{8,64}Cu_{4.36} две из четырех позиций (Al(3) и Al(4)) в слое барреляна заселены медью. Возможен также вариант с частичным заселением меди позиций Al(1) и Al(2), но разница в значениях R-факторов практически отсутствует, при этом значение заселенностей находятся на уровне погрешности: 0.023(14) для Cu(1) и 0.024(14) для Cu(2). Возможно, это связано с незначительным расхождением в значениях интенсивностей, что может быть скомпенсировано небольшим процентом меди в данных позициях. В случае La₁₆Al_{8.38}Cu_{0.97}Ag_{1.66} итоговым решением структуры является то, в котором заселённости меди и серебра в позициях Al(2)-Al(3) уточнялись совместно, т.к. при тройном уточнении значения R-факторов менялись в пределах погрешности, но при этом решение структуры оказывалось нестабильным.

Межатомные расстояния в барреляне лежат в диапазоне 2.591-2.637 Å для $La_{16}Al_{10.37}Cu_{2.61}$, 2.640-2.659 Å для $La_{16}Al_{11.06}Ag_{1.94}$, 2.640-2.662 Å для $La_{16}Al_{8.38}Cu_{0.97}Ag_{1.66}$, 2.558-2.588 Å для $Ce_{16}Al_{8.64}Cu_{4.36}$. В среднем расстояния в барреляне в тройных соединениях составляют ~2.6-2.7 Å, что чуть больше, чем в металлическом алюминии (2.5 Å [80]) и сопоставимо с расстояниями в $La_{16}Al_{13}$ и $RE_{16}Al_{13-x}Au_x$ (RE = La, Ce): 2.67–2.69 Å и 2.63–2.66 Å соответственно [80].

В барреляне Al₁₁ атомы в позиции M/Al(2) координированы тремя атомами в позиции M/Al(4), а атомы в позициях M/Al(3) и M/Al(4) координируются двукратно. Позиции M/Al координируются атомом редкоземельного металла с координационными числами от 10 до 12. Данные структуры также можно описать полиэдрами Эдшаммара по аналогии с золотосодержащими фазами RE₁₆Al_{13-x}Au_x [80].

Рисунок 74. Кристаллические структуры тройных соединений в системах RE-Al-M.

Таблица 64. Параметры рентгеноструктурного эксперимента и анализа для RE ₁₆ Al _{13-x} M	l _x
(RE = La, Ce, M = Cu, Ag) и La ₂ Al _{1.02} Ag _{0.28} .	

Формула	La16Al10.37(12)Cu2.61(12)	La16Al11.06(8)Ag1.94(8)	Ce16Al8.64(12)Cu4.36(12)	$La_{16}Al_{8.38(4)}Cu_{0.97(4)}Ag_{1.66(4)}$	
Вид излучения		ΜοΚ _α (λ	λ = 0.71073 Å)		
Температура, К	100	(2)	164(2)	100(2)	
Диапазон углов θ, °	1.854-28.935	1.83-28.99	1.906-28.954	1.830-28.994	
Пр. гр.	<i>P-62m</i> (№ 189)				
Z			1		
Плотность, г/см ³	5.666	4.559	6.243	5.609	
Коэффициент поглощения µ, мм ⁻¹	23.348	15.433	27.616	20.600	
<i>a</i> , Å	9.0737(4)	9.1046(4)	8.8932(3)	9.1036(14)	
<i>c</i> , Å	10.9864(10)	11.1123(5)	10.6854(5)	11.130(2)	
$V, Å^3$	783.35(10)	797.73(8)	731.88(6)	798.8(3)	

Всего рефл. / незав. рефл.	7694 / 811	6196 / 827	7285 / 755	4420 / 824
R_I/R_{σ}	0.0247 / 0.0497	0.0367 / 0.0683	0.0255 / 0.0457	0.0339 / 0.0503
Рефлексы I>2σ(I)	791	775	753	809
Число уточняемых параметров	39	38	36	38
Остаточная электронная плотность max/min, е Å ⁻ 3	0.677 / -0.784	0.809 / -0.638	0.864 / -0.782	1.056 / -0.971
R ₁ (I>2σ (I)) / R _{all}	0.0149 / 0.0156	0.0219 / 0.0247	0.0159 / 0.0159	0.0236 / 0.0245
$\frac{\overline{wR_1^2(I>2\sigma}}{(I)) / wR_{all}^2}$	0.0314 / 0.0316	0.0447 / 0.0455	0.0343 / 0.0343	0.0455 / 0.0459
GoF	1.072	0.993	1.169	1.165

Таблица 65. Координаты атомов, заселенности позиций, значения параметров атомного смещения для $RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag).

Атом	Позиция	x/a	y/b	z/c	Заселенность	$U_{\rm eq}^{*},{ m \AA}^2$
			La ₁₆ Al _{10.37}	7Cu _{2.61}		
La(1)	3f	0.25295(8)	0	1/2	1	0.01628(16)
La(2)	3g	0.76939(8)	0	0	1	0.01479(15)
La(3)	4h	1/3	2/3	0.16308(5)	1	0.0139(14)
La(4)	6i	0.60807(6)	0	0.33400(4)	1	0.01482(12)
Al(1)	2c	1/3	2/3	1/2	1	0.0148(9)
Al(2)	2e	0	0	0.2599(4)	0.970(12)	0.0167(13)
Cu(2)	2e	0	0	0.2599(4)	0.030(12)	0.0167(13)
Al(3)	3g	0.4186(4)	0	0	0.908(10)	0.014(10)
Cu(3)	3g	0.4186(4)	0	0	0.092(10)	0.014(10)
Al(4)	6i	0.28374(19)	0	0.20792(15)	0.621(7)	0.0144(5)
Cu(4)	6i	0.28374(19)	0	0.20792(15)	0.379(7)	0.0144(5)
			$La_{16}Al_{11.06}$	$_{5}Ag_{1.94}$		
La(1)	3f	0.25379(12)	0	1/2	1	0.017(2)
La(2)	3g	0.76929(13)	0	0	1	0.0184(2)
La(3)	4h	1/3	2/3	0.16215 (8)	1	0.0166(2)
La(4)	6i	0.60869(9)	0	0.33534 (6)	1	0.01775(18)
Al(1)	2c	1/3	2/3	1/2	1	0.0165(13)
Al(2)	2e	0	0	0.2660 (4)	0.827(8)	0.0188(13)
Ag(2)	2e	0	0	0.2660 (4)	0.173(8)	0.0188(13)
Al(3)	3g	0.4204(4)	0	0	0.945(7)	0.0181(15)
Ag(3)	3g	0.4204(4)	0	0	0.055(7)	0.0181(15)
$\overline{Al}(4)$	<u>6i</u>	0.28380(3)	0	0.20956(19)	0.762(5)	0.0175(7)
Ag(4)	6i	0.28380(3)	0	0.20956(19)	0.238(5)	0.0175(7)
			Ce16Al8.64	Cu _{4.36}		
Ce(1)	3f	0.25323	0	1/2	1	0.01438(15)
Ce(2)	3g	0.77381	0	0	1	0.0148(17)
Ce(3)	4Ă	1/3	2/3	0.16548	1	0.01434(15)
Ce(4)	6i	0.61042	0	0.32993	1	0.01516(14)
Al(1)	2c	1/3	2/3	1/2	1	0.0117(8)
Al(2)	2e	0	0	0.26220	1	0.0106(8)
Al(3)	3g	0.42360	0	0	0.844(12)	0.0148(9)
Cu(3)	3g	0.42360	0	0	0.156(12)	0.0148(9)
Al(4)	6i	0.28405	0	0.20934	0.368(8)	0.0136(4)

Cu(4)	6i	0.28405	0	0.20934	0.632(8)	0.0136(4)		
$La_{16}Al_{8.38}Cu_{0.97}Ag_{1.66}$								
La(1)	3f	0.25426(11)	0	1/2	1	0.0143(2)		
La(2)	3g	0.76947(12)	0	0	1	0.0161(2)		
La(3)	4h	1/3	2/3	0.16219(8)	1	0.0142(2)		
La(4)	6i	0.60910(8)	0	0.33565(6)	1	0.01532(17)		
Al(1)	2c	1/3	2/3	1/2	1	0.0151(12)		
Al(2)	2e	0	0	0.26630(4)	0.914(4)	0.0129(11)		
Cu(2)/Ag(2)	2e	0	0	0.26630(4)	0.086(4)	0.0129(11)		
Al(3)	3g	0.4201(5)	0	0	0.978(4)	0.0143(14)		
Cu(3)/Ag(3)	3g	0.4201(5)	0	0	0.022(4)	0.0143(14)		
Al(4)	<i>6</i> i	0.2841(2)	0	0.2095(2)	0.885(3)	0.0139(7)		
Cu(4)/Ag(4)	<i>6</i> i	0.2841(2)	0	0.2095(2)	0.115(3)	0.0139(7)		

 $U_{eq} = 1/3$ от изотропного теплого параметра U_{ij} .

Таблица 66. Значения основных межатомных расстояний в $RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag).

Связь	Межатомные Связь		Межатомные	Связь	Межатомные		
	расстояние, А	LaicAli	о 37 С Ш2 61		pacerosnine, A		
La(1)-La(1)	3.9754(13)	Al(1)-La(1)	3.4476(5)	Cu/Al(3)-La(2)	3.295(4)		
La(1)-La(4)	3.6164(5)	Al(1)-La(3)	3.7015(6)	Cu/Al(3)-La(3)	3.2583(9)		
La(1)-La(4)	3.7026(9)	Al(1)-La(4)	3.3390(3)	Cu/Al(3)-La(4)	4.0522(17)		
La(2)-La(2)	3.6243(13)	Cu/Al(2)-Cu/Al(4)	2.637(2)	Cu/Al(4)-La(1)	3.2210(17)		
La(2)-La(3)	4.0057(6)	Cu/Al(2)-La(1)	3.497(4)	Cu/Al(4)-La(2)	3.2921(15)		
La(2)-La(4)	3.9506(6)	Cu/Al(2)-La(2)	3.540(4)	Cu/Al(4)-La(3)	3.3097(11)		
La(3)-La(3)	3.5833(12)	Cu/Al(2)-La(4)	3.6482(12)	Cu/Al(4)-La(4)	3.4696(9)		
La(3)-La(4)	3.3688(5)	Cu/Al(3)-Cu/Al(4)	2.591(3)	Cu/Al(4)-La(4)	3.2526(18)		
La(4)-La(4)	3.6475(9)	Cu/Al(3)-La(2)	3.183(4)				
	•	La ₁₆ Al ₁	$1.06Ag_{1.94}$				
La(1)-La(1)	4.002(3)	Al(1)-La(1)	3.4544(8)	Ag/Al(3)-La(2)	3.320(4)		
La(1)-La(4)	3.7133(13)	Al(1)-La(3)	3.7543(9)	Ag/Al(3)-La(3)	3.2680(12)		
La(1)-La(4)	3.6260(7)	Al(1)-La(4)	3.3519(5)	Ag/Al(3)-La(4)	4.102(3)		
La(2)-La(2)	3.6382(19)	Ag/Al(2)-Ag/Al(4)	2.659(3)	Ag/Al(4)-La(1)	3.239(3)		
La(2)-La(3)	4.0207(8)	Ag/Al(2)-La(1)	3.479(4)	Ag/Al(4)-La(2)	3.329(2)		
La(2)-La(4)	4.0030(8)	Ag/Al(2)-La(2)	3.626(4)	Ag/Al(4)-La(3)	3.3257(17)		
La(3)-La(3)	3.6037(18)	Ag/Al(2)-La(4)	3.6451(13)	Ag/Al(4)-La(4)	3.4810(13)		
La(3)-La(4)	3.4045(7)	Ag/Al(3)-Ag/Al(4)	2.640(4)	Ag/Al(4)-La(4)	3.272(3)		
La(4)-La(4)	3.6595(14)	Ag/Al(3)-La(2)	3.177(5)				
		La ₁₆ Al _{8.38}	Cu _{0.97} Ag _{1.66}				
La(1)-La(1)	4.0091(19)	Al(1)-La(1)	3.4512(8)	M/Al(3)-La(2)	3.317(4)		
La(1)-La(4)	3.6236(7)	Al(1)-La(3)	3.7598(9)	M/Al(3)-La(3)	3.2702(12)		
La(1)-La(4)	3.7123(12)	Al(1)-La(4)	3.3524(5)	M/Al(3)-La(4)	4.113(3)		
La(2)-La(2)	3.6350(18)	M/Al(2)-M/Al(4)	2.662(3)	M/Al(4)-La(1)	3.245(3)		
La(2)-La(3)	4.0228(8)	M/Al(2)-La(1)	3.482(4)	M/Al(4)-La(2)	3.3321(18)		
La(2)-La(4)	4.0109(8)	M/Al(2)-La(2)	3.632(4)	M/Al(4)-La(3)	3.3236(12)		
La(3)-La(3)	3.6103(18)	M/Al(2)-La(4)	3.6413(12)	M/Al(4)-La(4)	3.4814(12)		
La(3)-La(4)	3.4088(7)	M/Al(3)-M/Al(4)	2.640(4)	M/Al(4)-La(4)	3.275(3)		
La(4)-La(4)	3.6584(14)	M/Al(3)-La(2)	3.181(5)				
	$Ce_{16}Al_{8.64}Cu_{4.36}$						
Ce(1)-Ce(1)	3.9009(7)	Al(1)-Ce(1)	3.3773(7)	Cu/Al(3)-Ce(2)	3.265(3)		
Ce(1)- $Ce(4)$	3.5462(7)	Al(1)-Ce(3)	3.5745(6)	Cu/Al(3)-Ce(3)	3.190(3)		
Ce(1)-Ce(4)	3.6595(7)	Al(1)-Ce(4)	3.2951(4)	Cu/Al(3)-Ce(4)	3.8972(8)		
Ce(2)-Ce(2)	3.4843(7)	Al(2)-Cu/Al(4)	2.5885(13)	Cu/Al(4)-Ce(1)	3.1179(14)		
Ce(2)-Ce(3)	3.9555(8)	Al(2)-Ce(1)	3.395(4)	Cu/Al(4)-Ce(2)	3.2171(15)		
Ce(2)-Ce(4)	3.8130(6)	Al(2)-Ce(2)	3.449(4)	Cu/Al(4)-Ce(3)	3.2402(6)		

Ce(3)-Ce(3)	3.5364(11)	Al(2)-Ce(4)	3.5394(11)	Cu/Al(4)-Ce(4)	3.3605(15)
Ce(3)-Ce(4)	3.2623(5)	Cu/Al(3)-Cu/Al(4)	2.5581(15)	Cu/Al(4)-Ce(4)	3.1756(11)
Ce(4)-Ce(4)	3.6347(11)	Cu/Al(3)-Ce(2)	3.1144(14)		

Поскольку для Ce₁₆Al_{10-x}Ag_x рост монокристаллов был безуспешен, то параметры элементарной ячейки были получены индицированием порошкограммы в предположение об изоструктурности La₁₆Al₁₃ (пр. гр. *P-62m*) без учета рефлексов примесей (Таблица 67).

Параметры элементарных ячеек всех полученных соединений представлены в Таблице 67. Как и ожидалось, наблюдается почти линейная тенденция в изменении параметров, кроме Ce₁₆Al_{10-x}Ag_x, что, возможно, связано с тем, что для данной фазы значения параметров получены с помощью индицирования порошкограммы, в то время как остальные параметры получены из данных монокристального рентгеноструктурного анализа. При переходе от меди к золоту у лантансодержащих фаз сначала происходит увеличение параметра a, затем его уменьшение, что можно объяснить тем, что радиус серебра больше меди и даже золота, т.к. в случае золота происходит сжатие из-за заполненного $4f^{14}$ -подуровня, при этом параметр *c* монотонно увеличивается.

Формула	a, Å	<i>c</i> , Å	$V, Å^3$
La ₁₆ Al ₁₃ [79]	9.183(2)	11.238(3)	816.7(2)
La ₁₆ Al _{10.15} Au _{2.85} [80]	9.091(3)	11.132(4)	796.7(3)
La ₁₆ Al _{10.37} Cu _{2.61}	9.0737(4)	10.9864(10)	783.35(10)
La16Al11.06Ag1.94	9.1046(4)	11.1123(5)	797.73(8)
La ₁₆ Al _{8.38} Cu _{0.97} Ag _{1.66}	9.1036(14)	11.130(2)	798.8(3)
Ce ₁₆ Al _{9.67} Au _{3.37} [80]	8.972(3)	10.975(3)	763.9(3)
Ce ₁₆ Al _{8.64} Cu _{4.36}	8.8932(3)	10.6854(5)	731.88(6)
Ce ₁₆ Al _{10-x} Ag _x	9.167(2)	11.248(2)	818.6(2)

Таблица 67. Сравнение параметров элементарной ячейки тройных фаз со структурой La₁₆Al₁₃.

Стоит отметить, что данные соединения можно рассмотреть, как твердые растворы, где степень замещения алюминия на переходный металл равна ~3. В La₁₆Al_{10.37}Cu_{2.61} степень замещения меньше, чем в Ce₁₆Al_{8.64}Cu_{4.36}, причем в церийсодержащей фазе в принципе наблюдается самая большая степень замещения среди всех фаз со структурой La₁₆Al₁₃. В RE₁₆Al_{13-x}Au_x наблюдается такая же тенденция: для Ce₁₆Al_{9.67}Au_{3.37} степень замещения больше, чем для La₁₆Al_{10.15}Au_{2.85}, но при этом меньше, чем для медьсодержащих фаз. Данное явление можно связать с меньшим радиусом церия и в следствии большей «емкости» элементарной ячейки.

Данные структуры также можно рассмотреть, как слоистые, где слои барреляна Al₁₁ сочлененными тригональными гранями с полиэдрами состава (AlLa₂La_{9/2})₂. Для объяснения тенденции в изменении параметров элементарной ячейки и устойчивости фаз

рассмотрим степень искажения баррелянов (d = $h/h_1/l/l_1$), для чего проанализируем отношение высоты барреляна к его ширине в тройных фазах и к высоте и ширине в идеальном неискаженном барреляне La₁₆Al₁₃ (Рисунок 75).

Рисунок 75. Фрагмент барреляна с указанием высоты и ширины.

Видно, что для баррелянов тройных фаз относительно идеального барреляна La₁₆Al₁₃ наблюдается как растяжение, так и сжатие (или сплющивание) по ширине и высоте (Таблица 68). Для лантансодержащих фаз прослеживается следующая тенденция: в случае La₁₆Al_{10.37}Cu_{2.61} наблюдается самое большое сжатие и высоты, и ширины барреляна, для La₁₆Al_{8.38}Cu_{0.97}Ag_{1.66} и La₁₆Al_{11.06}Ag_{1.94} значения максимально приближены к 1, а для $La_{16}Al_{10.15}Au_{2.85}$ наблюдается небольшое растяжение по высоте, но сжатие по ширине. Для церийсодержащих фаз наблюдается такая же тенденция: в случае Се₁₆Аl_{8.64}Си_{4.36} наблюдается сжатие высоты и ширины барреляна, для Се₁₆Al_{9.67}Au_{3.37} искажения по высоте практически нет, но наблюдается сжатие по ширине. В большей или меньшей степени сжатие по ширине наблюдается абсолютно для всех фаз, причем для $Ce_{16}Al_{8.64}Cu_{4.36}$ оно имеет самое большое значение (1/1 = 0.975), что, скорее всего, связано с меньшими атомными радиусами и меди, и церия по сравнению с другими металлами. Подобные тенденции изменения ширины и высоты можно связать с тем, что данная структура является слоистой, и что вдоль слоя баррелянов свободного объема меньше, чем перпендикулярно слою, поэтому для ширины наблюдается только сжатие относительно идеального La₁₆Al₁₃, а перпендикулярно слою как сжатие, так и растяжение в зависимости от переходного металла.

Степень искажения d для медьсодержащих фаз меньше единицы, что означает, что барреляны чуть более вытянутые вдоль оси b, для серебросодержащих фаз значения ~1, барреляны практически не искажены, для золотосодержащих фаз больше единицы, что указывает на то, что барреляны чуть более вытянуты вдоль оси c.

Соединение	h, Å	h/h1	l, Å	l/l ₁	d
La16Al10.37Cu2.61	5.711	0.963	6.579	0.983	0.980
La ₁₆ Al _{8.38} Cu _{0.97} Ag _{1.66}	5.928	1.000	6.624	0.990	1.010
La16Al11.06Ag1.94	5.912	0.997	6.630	0.991	1.007
La ₁₆ Al _{10.15} Au _{2.85} [80]	6.418	1.083	6.618	0.989	1.095
Ce ₁₆ Al _{8.64} Cu _{4.36}	5.603	0.945	6.525	0.975	0.969
Ce ₁₆ Al _{9.67} Au _{3.37} [80]	5.939	1.002	6.568	0.981	1.021
La ₁₆ Al ₁₃ [79]	5.929	1.000	6.693	1.000	1.000

Таблица 68. Геометрические параметры и степень искажения баррелянов для соединений со структурой La₁₆Al₁₃.

Квантовохимические расчеты. Для La₁₆Al₁₃ и тройных соединений со структурой La₁₆Al₁₃ была рассчитана электронная структура в рамках теории функционала электронной плотности (DFT) с использованием программы VASP.

Расчеты зонной структуры для $La_{16}Al_{13}$ предсказывают металлический тип проводимости, при этом основной вклад в общую плотность состояний вблизи уровня Ферми вносят *d*-состояния атомов лантана. Исходя из вида картины энергетической дисперсии зон вдоль различных кристаллографических направлений можно сказать, что высокая подвижность электронов наблюдается по всем направлениям в обратном пространстве (Рисунок 76).

Рисунок 76. Общая плотность состояний, вклады атомных орбиталей (слева) и дисперсионные кривые в k-пространстве вблизи уровня Ферми для La₁₆Al₁₃ (справа). Уровень Ферми находится в точке E = 0.

Расчет бейдеровских зарядов на атомах проводился как для трехмерной ячейки $La_{16}Al_{13}$, так и для ионного кластера Al_{11}^{11-} . Данный заряд кластера был получен по результатам анализа бэйдеровских зарядов для трехмерной ячейки $La_{16}Al_{13}$. Кроме этого, выполнялись расчеты для Al_{11}^{41-} в предположении о полном переходе электронов от лантана к алюминию по типу ионов Цинтля, однако заряд иона сказывается только на объеме и заселенности «неподеленных пар» алюминия, но не на характеристиках связей.

Стоит отметить, что с помощью расчетов на более высоком уровне в целом удалось улучшить описание электронной структуры La₁₆Al₁₃ и устранить неразумно высокие заряды на атомах Al, предложенные авторами оригинальной статьи [79] (Таблица 69).

Атом	La ₁₆ Al ₁₃	La ₁₆ Al ₁₃ [79]			
	Заряд				
La	+0.70 - +0.97	~+3			
Al	-0.701.24	-1.13.8			

Таблица 69. Рассчитанные заряды на атомах для трехмерной структуры La₁₆Al₁₃.

Топологический анализ функций распределения электронной плотности (ELF), рассчитанный как для трехмерной структуры La₁₆Al₁₃, так и для ионного кластера Al₁₁¹¹⁻, показал, что неатомные аттракторы начинают проявляться при значениях параметра локализации ниже η ~0.73-0.83, при этом в La₁₆Al₁₃ присутствуют три типа не ядерноцентрированных аттракторов: связи Al-Al (Рисунок 77, 1); неподеленные электронные пары на атомах алюминия в баррелянах (Рисунок 77, 2); неподеленные пары на атомах алюминия в гетерометаллическом слое вне слоя баррелянов (Рисунок 77, 3). Стоит отметить, что неподеленные электронные пары на атомах алюминия – это в пироком смысле избыточная электронная плотность. Заселенность дисинаптического бассейна в Al₁₁¹¹⁻ между атомами Al(3) и Al(4), составляет 2.09 е, что является практически 2с,2е-ковалентной связью. Заселенность дисинаптических бассейнов между атомами Al(2) и соседними атомами Al(4) равна 1.61 е, что также очень близко к 2с,2е-связи (Таблица 73).

Рисунок 77. Изоповерхности функции электронной локализации (ELF) для La₁₆Al₁₃ (η =0.73) и ионного кластера Al₁₁¹¹⁻ в La₁₆Al₁₃ (η =0.83).

В рамках периодического расчета тройных соединений со структурой La₁₆Al₁₃ невозможно полностью заместить больше одной из позиций Al в барреляне на Cu/Ag. В

результате успешно были смоделированы тройные фазы с замещением только одного атома в слое барреляна. Исходя из вида зонной структуры можно сделать вывод, что тройные соединения, как и La₁₆Al₁₃, должны проявлять металлический тип проводимости, при этом основной вклад в общую плотность состояний вблизи уровня Ферми также вносят *d*-состояния атомов лантана или церия (Рисунок 78). Стоит отметить, что для тройных соединений наблюдается сильно локализованные состояния *d*-металлов, которые слабо перекрываются с состояниями алюминия.

Рисунок 78. Общая плотность состояний, вклады атомных орбиталей вблизи уровня Ферми для La₁₆Al₁₂M (M = Cu, Ag). Уровень Ферми находится в точке E = 0.

Расчет бейдеровских зарядов на атомах для тройных фаз показывает, что атомы меди и серебра, замещающие Al в слое барреляна, несут значительный отрицательный коррелируют серебро большую заряд, что с тем. что медь имеют И электроотрицательность, чем алюминий (Таблица 70). Атомы алюминия вне слоя барреляна имеют наиболее отрицательный заряд (-1.92),поскольку В гетерометаллическом слое они окружены менее электроотрицательными атомами лантана или церия. Атомы лантана, находящиеся ближе всего к слою баррелянов, имеют наиболее положительный заряд (+1.02), т.к. суммарный заряд барреляна складывается из отрицательных зарядов алюминия и переходных металлов и превосходит заряд алюминия в гетерометаллическом слое. Исходя из значений рассчитанных зарядов можно предположить, что отрицательные заряды алюминия и меди или серебра в барреляне должны очень сильно дестабилизировать каркас и негативно сказывается на устойчивость фаз, что, в том числе, наблюдается экспериментально.

Атом	La ₁₆ Al ₁₂ Cu	La ₁₆ Al ₁₂ Ag		
	Заряд			
La	+0.71 - +1.02	+0.74 - +1.03		
Al	-0.701.92	-0.71.96		
Cu/Ag	-2.87	-3.21		

Таблица 70. Рассчитанные заряды на атомах для трехмерных структур $La_{16}Al_{12}Cu$ и $La_{16}Al_{12}Ag$.

Анализ топологии функции электронной локализации трехмерных структур тройных фаз показал, что при замещении одного атома алюминия на медь или серебро в слое барреляна происходит исчезновение парных взаимодействия Al-d-металл, что хорошо коррелирует с зонной структурой данных фаз. В результате для La₁₆Al₁₂M проявляются только два типа не ядерно-центрированных аттракторов: неподеленные электронные пары на атомах алюминия в баррелянах и неподеленные пары на атомах алюминия, находящихся в гетерометаллическом слое вне слоя баррелянов (Рисунок 79).

Рисунок 79. Изоповерхности функции электронной локализации (ELF) La₁₆Al₁₂M (M = Cu, Ag) (η=0.73).

Для выявления влияния атомов *d*-металла на атомы алюминия и более детального изучения особенностей химических связей были смоделированы ионные кластеры Al11- $_{x}TM_{x}^{11-}$ (TM = Cu, Ag, x = 0, 1, 2) с различными вариантами замещения меди и серебра позиций алюминия в барреляне (Рисунок 80 и Рисунок 81). Суммарный заряд барреляна был зафиксирован на основании расчетов периодических структур. Рассчитанные бейдеровские заряды на атомах в Al11-xTMx¹¹⁻ в целом коррелируют с зарядами, рассчитанными для трехмерных структур. Во всех случаях на атомах переходных металлов наблюдается больший, чем на атомах алюминия, отрицательный заряд, кроме случая, когда атом меди замещает алюминий в аксиальной позиции барреляна (Таблица

71 и Таблица 72). Атом переходного металла влияет на заряд алюминия только, если он находится в соседней позиции.

Анализ топологии функции электронной локализации всех случаях замещения алюминия медью в $Al_{11-x}Cu_x^{11-}$ показал образование дисинаптических бассейнов между атомами Al и соседними атомами с разной степенью заселенности. Заселенность дисинаптических бассейнов между атомами алюминия составляет ~ 2 е, что является 2с,2е-связью (Рисунок 80 и Рисунок 81, Таблица 73). Во всех случаях замещения алюминия серебром $Al_{11-x}Ag_x^{11-}$ образование значительных дисинаптических бассейнов наблюдается только между атомами Al, заселенность которых близка к 2 е, при этом между атомами серебра и соседними атомами почти нет локализованных связей, что можно связать с диффузностью *d*-орбиталей, которая увеличивается с увеличением главного квантового числа.

Атом	Al ₁₁ ¹¹⁻	1 тип Al ₁₀ Cu ¹¹⁻	2 тип Al ₁₀ Cu ¹¹⁻	3 тип Al ₁₀ Cu ¹¹⁻	1 тип Al ₁₀ Ag ¹¹⁻	2 тип Al ₁₀ Ag ¹¹⁻
				Заряд		
Al(2)	-0.21	-1.04	-0.13	-1.06	-0.21	-0.014
Al(3)	-0.74	-0.98	-0.91	-0.92	-0.79	-0.81
Al(4)	-1.39	-0.82	-1.19	-1.17	-1.11	-1.35
Cu/Ag		-1.99	-1.69	-0.59	-2.38	-1.83

Таблица 71. Рассчитанные заряды на атомах для изолированных ионных кластеров.

Рисунок 80. Изоповерхности функции электронной локализации (ELF) для Al₁₀TM¹¹⁻ в La₁₆Al₁₂TM (TM = Cu, Ag) с разными вариантами заселения d-металла позиций алюминия (η=0.82-0.83 (темно-желтый), η=0.64-0.73 (светло-желтый)).
Атом	Al ₉ Cu ₂ ¹¹⁻	1 тип Al9Ag2 ¹¹⁻	2 тип Al9Ag2 ¹¹⁻
		Заряд	
Al(2)	-1.10	-0.13	—
Al(3)	-1.09	-0.85	-0.91
Al(4)	-0.88	-1.14	-0.79
Cu(2)/Ag(2)	-1.35		-1.78
Cu(4)/Ag(4)	-0.83	-1.89	
Ag(3)		-1.33	

Таблица 72. Рассчитанные заряды на атомах для изолированных ионных кластеров $Al_9TM_2^{11-}$ (TM = Cu, Ag).

Рисунок 81. ELF для Al₉TM₂¹¹⁻ в La₁₆Al₁₁TM₂ (TM = Cu, Ag) с разными вариантами заселения *d*-металла позиций алюминия (η=0.82 (темно-желтый), η=0.66 (слева, светло-желтый) и η=0.63 (справа, светло-желтый)).

Таблица 73. Рассчитанные заселенности	бассейнов для изолированных ионных
класст	еров

Тип	A1 11-	1 тип	2 тип	3 тип	1 тип
бассейна	All	Al ₁₀ Cu ¹¹⁻	Al ₁₀ Cu ¹¹⁻	Al ₁₀ Cu ¹¹⁻	Al ₁₀ Ag ¹¹⁻
		Засел	енность бассе	йна, е	
Al2-Al4	1.61	1.69	1.64	1.72	1.67
Al3-Al4	2.09	1.99	2.04	1.99	1.99
Al-TM		0.86	0.86	0.64	0.04
Тип	2 тип	Al-Cu-ll-	1 тип	2 тип	
бассейна	$Al_{10}Ag^{11-}$	Al9Cu ₂	Al9Ag2 ¹¹⁻	Al9Ag2 ¹¹⁻	
		Засел	енность бассе	йна, е	
Al2-Al4	1.67, 1.72	1.68	1.76		
Al3-Al4	2.00	1.85	1.93	1.91	
Al-TM	0.02	0.72	0.22	0.03	

В заключение стоит отметить, что атомы церия потенциально способны отдавать больше электронов, чем атомы лантана, что должно негативно сказываться на устойчивости структуры, т.к. возрастание суммарного заряда барреляна повышает избыточный отрицательный заряд на атомах алюминия и усиливает электрон-электронное отталкивание, что делает образование бинарного интерметаллида с церием и другими редкоземельными металлами невыгодным. Более того, как показывают расчеты, увеличение отрицательного заряда кластера не влияет на заселенность бассейнов парных связей. В случае с тройными соединениями по данным расчетов на атомах переходных металлов образуется большой отрицательный заряд, что позволяет компенсировать больший положительный заряд не только атомами лантана, но и атомами других редкоземельных металлов, в нашем случае церия, без существенного увеличения отрицательных зарядов на алюминии. Можно предположить, что образование тройных соединения со структурой La₁₆Al₁₃ становится возможным, в том числе, благодаря подобной компенсации зарядов.

Магнитные измерения. По данным магнитных измерений образцы $La_{16}Al_{10.37}Cu_{2.61}$ и $La_{16}Al_{11.06}Ag_{1.94}$ проявляют сверхпроводимость с $T_c \sim 6$ К. Это хорошо видно по появлению сильного диамагнитного сигнала на кривых ZFC-FC в магнитном поле 100 Э (Рисунок 82, слева), а также по характерным для сверхпроводников II рода петлям гистерезиса М(Н) при 2 К (Рисунок 83, слева). По петлям гистерезиса можно оценить, что критическое поле для образцов не превышает 5000 Э при 2 К. Возможно, именно по этой причине диамагнетизм никак не проявляется при измерениях магнитной восприимчивости в магнитном поле 5000 Э. Для La₁₆Al_{11.06}Ag_{1.94} кривые ZFC-FC выглядит аналогично La₁₆Al_{10.37}Cu_{2.61} за исключением абсолютных значений. На кривых ZFC-FC для La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} измеренных в магнитном поле 100 Э наблюдается ферромагнитный сигнал (Рисунок 82, справа), который ниже 6 К становится существенно меньше по абсолютным значениям диамагнитного вклад обусловленного сверхпроводимостью (Рисунок 82, слева).

Рисунок 82. Кривая ZFC-FC для La₁₆Al_{10.37}Cu_{2.61} в 100 Э (слева) и увеличенная часть тех же зависимостей с только положительными значениями магнитной восприимчивости (справа).

При 10 К петли гистерезиса М(H) для образцов La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} выглядят похожими на парамагнитные с отсутствием насыщения и значениями намагниченности значительно меньше 1 магнетона Бора (Рисунок 83, справа).

Рисунок 83. Петли гистерезиса М(Н) образцов La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} при 2 К (слева) и 10 К (справа).

Температурная зависимость магнитной восприимчивости образцов La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} не подчиняется закону Кюри-Вейса (Рисунок 84, слева), значения χT при комнатной температуре, рассчитанные на атом серебра/меди (Рисунок 84, справа), близки к 0.375 э.м.е. К, что соответствует 1 неспаренному электрону на атом металла. При более низких температурах наблюдается рост χT при понижении температуры, что указывает на наличие ферромагнитных взаимодействий.

Рисунок 84. Зависимости обратной магнитной восприимчивости (слева) и χT (справа) от температуры образцов La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} в магнитном поле 5000 Э.

Для образца Ce₁₆Al_{8.64}Cu_{4.36} зависимость магнитной восприимчивости от температуры в магнитном поле 5000 Э можно описать законом Кюри-Вейса (Рисунок 85) с константой Кюри, близкой по значению к характерным величинам для невзаимодействующих ионов Ce³⁺, и константой Вейса 62.9 К, что указывает на преобладание антиферромагнитных взаимодействий в образце.

Рисунок 85. Зависимости обратной магнитной восприимчивости (слева) и χT (справа) от температуры образца Ce₁₆Al_{8.64}Cu_{4.36} в магнитном поле 5000 Э.

Значения χT при понижении температуры до 35 К заметно уменьшаются (Рисунок 85, справа), что указывает на преобладание антиферромагнитных взаимодействий в Ce₁₆Al_{8.64}Cu_{4.36}. При дальнейшем охлаждении до 7 К наблюдается резкое увеличение значений χT , указывающее на присутствие в образце ферромагнитных взаимодействий. Характер зависимости в целом похож на образцы La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94}.

На зависимостях ZFC-FC образца Ce₁₆Al_{8.64}Cu_{4.36} в магнитном поле 100 Э (Рисунок 86) особенностей, аналогичных La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94}, не наблюдается. Расхождение ZFC-FC начинается ниже 7 К, что, вероятно, связано с сосуществованием двух фаз: сверхпроводящей и парамагнитной.

Рисунок 86. Кривые ZFC-FC для Ce₁₆Al_{8.64}Cu_{4.36} в магнитном поле 100 Э (слева), увеличенная часть тех же зависимостей в интервале значений магнитной восприимчивости от -1.5 до 3.5 ети и температур от 0 до 40 К (слева).

На зависимость М(Н) для Ce₁₆Al_{8.64}Cu_{4.36} (

Рисунок 87 87) не обнаруживает сверхпроводящий сигнал, что, возможно, связано с тем, что диамагнетизм не виден на фоне парамагнетизма церия, при этом намагниченность не выходит на насыщение и очень далека от значений насыщения для свободного церия.

Рисунок 87. Петля гистерезиса М(Н) образца Се₁₆Аl_{8.64}Си_{4.36} при 2 К.

4.4.4. Заключение

На основе полученных результатов и анализа литературных данных можно выделить три основных класса объектов: соединения со связями *d*-металл-*p*-металл: более богатые и менее богатые *d*-металлом соединения (Ni_{7-x}MCh₂, Ni_{10-x}M₂Ch₂ и Ni_{3-x}MTe₂); и соединения со связями *p*-металл-*f*-металл.

Фазы с блочной и со слоистой структурой существуют для одних и тех же комбинаций *d*-металл-*p*-металл, при этом соотношение *p*-металла и халькогена всегда остается 1:2. Исходя из этого можно заключить, что тип структуры (блочная или слоистая) и то, какие прототипы бинарных интерметаллидов образуют тройную фазу, определяется количеством *d*-металла.

Особенностью и блочных, и слоистых фаз является также то, что они проявляют анизотропную трехмерную металлическую проводимость. Стоит отметить, что типы связей в этих двух классах соединений образуются одинаковым способом — в гетерометаллическом фрагменте в обоих случаях они являются делокализованными многоцентровыми, а в металл-халькогенидном — носят более ковалентный характер. Общей особенностью электронной структуры является также доминирующий вклад 3dсостояний переходного металла вблизи уровня Ферми, что означает, что для изменения свойств соединений нужна модификация именно в подсистеме переходного металла. Для обоих типов соединений, как блочных, так и слоистых, не происходит принципиального изменения кристаллической структуры при переходе от металлов 13-й к металлам 15-й группы, что указывает на определенную электронную емкость данных фаз. Напротив, фазы очень чувствительны к типу переходного металла и практически (за исключением Fe₃GeTe₂) не образуются для других *d*-металлов. Также общей чертой является то, что оба типа фаз являются нестехиометрическими по никелю. Однако, если слоистые теллуриды допускают переменную емкость по никелю, связанную с возможностью стабилизации вакансий, то фазы линейного срастания имеют составы, близкие к точечным, а нестехиометрия в металл-халькогенидных блоках вызвана, по всей видимости, необходимостью геометрической подстройки. Однако, и в первом, и во втором случае именно наличие металлических свойств и электронной емкости позволяет реализовать зарядовую компенсацию и сохранить электронейтральность ячеек.

Стоит отметить, что в случае Ni_{7-x}MCh₂, Ni_{10-x}M₂Ch₂ внедрение никельхалькогенидного блока сохраняется «псевдослоистость» для любого халькогена, при этом в целом фазы являются объемными. В случае Ni_{3-x}MTe₂ существование слоистых фаз возможно только для теллура, что вероятно связанно с тем, что для атомов теллура способность образовывать ван-дер-ваальсову щель более характерна, чем для серы и селена, т.к. теллур будучи менее электроотрицательным халькогеном способен без существенного изменения полярности связи образовывать стабильные ван-дер-ваальсовы контакты. Возможность образования атомами серы и селена слоистых фаз не исключается, например, существует слоистый MoS₂, но вероятность образования цепей, т.е. возникновения катенации, выше. Фазы 3-1-2 имеют меньшую электронную емкость, т.к. в целом содержат меньше атомов металлов. Факт того, что слоистые фазы не образуются для серы и селена, но образуются для теллура, также связан с тем, что сера и селен в силу большей электроотрицательности сильнее стягивают электроны с блока Ni₂In, что приводит к дестабилизации структуры, в отличии от теллура. Блочные содержат большее количество атомов металлов, поэтому с точки зрения стягивания электронов тип халькогена не влияет на возможность существования фаз.

Бинарные интерметаллиды со структурой AuCu₃ в большей части случаев существуют для менее богатых редкоземельными металлами составов, что подтверждается результатами синтеза и литературными данными.

В случае соединений *p*-металл-*f*-металл отсутствуют признаки ковалентости гетерометаллических связей, которая играет важную роль для образования протяженных структур. Например, в фрагменте барреляна Al₁₁ есть только связи *p*-металл-*p*-металл, при этом связей связи *p*-металл-*f*-металл отсутствуют в принципе, также для данных соединений нет прототипа структуры, что обычно характерно для интерметаллидов, содержащих *p*-металлы, например, фаз Цинтля.

5. Выводы

- 1. Синтезированы охарактеризованы порошкообразные образцы И И монокристаллы девяти блочных тройных фаз $Ni_{7-x}MCh_2$ (Ch = S, Se, Te, M = Al, Ga, In) и $Ni_{10-x}Ga_2Ch_2$ (Ch = S, Se), относящихся к структурному типу Ni_{7-1} ромбическое $_{x}MCh_{2}/Ni_{10-x}M_{2}Ch_{2}$. Впервые установлено искажение тетрагональной структуры Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂. По ДЛЯ данным квантовохимических расчетов зонная структура для всех соединений является близкой и имеет значительное сходство с таковой для прототипов их структур, для всех фаз предсказана металлическая проводимость. Анализ химической связи показал наличие четырехцентровых взаимодействий 3Ni+M (где M = Al, Ga, In) как для исходных интерметаллидов Ni₃M, так и для тройных соединений. По данным магнитных измерений установлено, ЧТО все соединения. кроме Ni_{5.63}GaSe₂, проявляют температурно-независимый парамагнетизм, а Ni_{5.63}GaSe₂ – антиферромагнетизм ниже 11 К и парамагнетизм, подчиняющийся закону Кюри-Вейса в интервале температур 160-300 К.
- 2. Анализ всех экспериментальных данных в совокупности с литературными для блочных фаз показывает наличие корреляции между геометрическими характеристиками их фрагментов и возможностью образования, а также пространственным строением тройных соединений, что позволяет сделать заключение, что для устойчивости блочных фаз именно геометрический фактор является определяющим.
- 3. Синтезированы порошкообразные образцы состава Ni_{3-x}Fe_xGaTe₂, где 0.2≤x≤1.0 с шагом 0.2, и Ni_{3-x}Fe_xSnTe₂, где 0.2≤x≤0.6 с шагом 0.2. Установлено, что в Ni_{3-x}Fe_xGaTe₂ заселение железом происходит преимущественно для двух из трех возможных позиций никеля при максимальном количестве железа в структуре (x = 1.0). Данные магнитных измерений Ni_{3-x}Fe_xGaTe₂ показывают переход от парамагнетизма Паули к парамагнетизму Кюри-Вейса для малых количеств железа, а при дальнейшем увеличении его концентрации (x>0.2) к ферромагнитному упорядочению. Показано, что в Ni_{3-x}Fe_xSnTe₂ заселение железом происходит преимущественно для двух из трех позиций

никеля, а данные магнитных измерений показывают существенное отличие от поведения галлиевых фаз с аналогичной степенью замещения железа.

- 4. Синтезированы соединения состава Ni_{3-x}SbTe₂ (x = 0–1.0). По данным рентгеновской дифракции и мессбауэровской спектроскопии на ядрах ¹²¹Sb показано, что образование сверхструктуры по отношению к NiAs происходит только для Ni₂SbTe₂ и только при относительно низких (T<750°C) температурах синтеза.</p>
- Получены соединения замещения состава Ni_{3-x}Cu_xSnTe₂, где x = 0.2, 0.4, 0.6. Для Ni_{3-x}TM_xMTe₂ (при TM = Zn, M=Ga, Sn; при TM = Cu, M=Ga) показано отсутствие замещения никеля на *d*-металл.
- 6. Направленный поиск новых бинарных интерметаллидов в системах RE-M со структурой AuCu₃ (RE = Ce, Sm, Gd, Dy, M = Ga, In) и La₁₆Al₁₃ (RE = La, Ce, Dy, Gd, Sm; M = Al, Ga, In, Si, Sb) показал практическое отсутствие искомых фаз в условиях синтеза, за исключением Sm₃In.
- 7. Синтезированы и структурно охарактеризованы монокристаллы тройных интерметаллидов $RE_{16}Al_{13-x}TM_x$ (RE = La, Ce, TM = Cu, Ag). Установлено, что все соединения относятся к структурному типу La₁₆Al₁₃. Квантовохимические расчеты предсказывают для всех соединений металлический тип проводимости. Анализ химической связи показал наличие 2с,2е-связей Al-Al и отсутствие ковалентности между La и Al, а при замещении алюминия на переходный металл происходит уменьшение или полное исчезновение областей локализации парных взаимодействий, что негативно сказывается на устойчивости тройных фаз.
- По данным магнитных измерений установлено, что La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} являются низкотемпературными сверхпроводниками с T_c ~ 6 K, в отличие от Ce₁₆Al_{8.64}Cu_{4.36}, для которого сверхпроводящее состояние не наблюдается.

6. Список литературы

- 1. P. Villars. The Pauling File Inorganic Materials Database and Design System—Binaries Edition (CD-ROM). ASM International, Ohio, 2002.
- PDF-2. Database for powder diffraction data International Centre for Difraction Data, 1999.
- 3. ICSD database. Version 1.3.3, release 2005, copyright by Fachinformationszentrum Karlsruhe, Germany.
- M. Ellner, K. Kolatschek, B. Predel. On the partial atomic volume and the partial molar enthalpy of aluminium in some phases with Cu and Cu₃Au structures. // J. Less-Comm. Met. 1991. V. 170. P. 171–184.
- S.Y. Lee, P. Nash. Ga-Ni (Gallium-Nickel). // Binary Alloy Phase Diagrams, Second Edition, Ed. T.B. Massalski, ASM International, Materials Park, Ohio. 1990. V. 2. P. 1829–1833.
- J.F. Cannon. Effect of high pressure on the structures of AB₃-type layered compounds. // Materials Research Society Symposia Proceedings. 1984. V. 22. P. 113–116.
- A.W. Webb, E.F. Skeleton, S.B. Qadri, J.B. Cannon. Compressibility of Ni₃In. // Physica B+C. 1986. V. 139–140. P. 311–313.
- Y. Oya, T. Suzuki. The Nickel-Rich Portion of the Ni-Si Phase Diagram. // Z. Metallkde. 1983. V. 74. P. 21–24.
- S. Bhan, H. Kudielka. Ordered bcc-Phases at High Temperatures in Alloys of Transition Metals and B-Subgroup Elements. // Z. Metallkde. 1978. V. 69. P. 333–336.
- M. Ellner. Über die Kristallchemischen Parameter der Ni-, Co- und Fe-Haltigen Phasen vom NiAs-Typ. // J. Less-Comm. Met. 1976. V. 48. P. 21–52.
- 11. R.S.K. Raman, R.K. Gupta, M.N. Sujir, S. Bhan. Lattice constants of B8 structure in Cu₂In – Ni₂In alloys. // J. Sci. Res. Banaras Hindu University. 1964. V.14. P. 95–99.
- K. Cenzual, L. M. Gelato, M. Penzo, E. Parthé. Inorganic Structure Types with Revised Space Groups. // Acta Cryst. 1991. V.47. P. 433–439.
- R. Ricci Bitti, V.A. Cascioli. New NiAs type phase obtained by simultaneous evaporation of Ni and Tl. // Scripta Metallurgica. 1969. V. 3(10). P. 731–733.
- 14. S. Lidin, A.-K. Larsson. A survey of superstructures in intermetallic NiAs-Ni₂In-type phases. // J. Solid State Chem. 1995. V. 118. P. 313–322.
- P. Brand, J. Briest. Das quasi-binäre System NiAs-Ni_{1.5}Sn. // Z. Anorg. Allg. Chem. 1965.
 V. 337. P. 209–213.

- 16. Kjekshus, K.P. Walseth. On the Properties of the $Cr_{1+x}Sb$, $Fe_{1+x}Sb$, $Co_{1+x}Sb$, $Ni_{1+x}Sb$, $Pd_{1+x}Sb$, and $Pt_{1+x}Sb$ Phases. // Acta Chem. Scand. (1947-1973) 1969. V. 23. P. 2621-2630.
- 17. T. K. Reynolds, J. G. Bales, F. J. DiSalvo. Synthesis and Properties of a New Metal-Rich Nickel Antimonide Telluride or Selenide: $Ni_{7-\delta}SbX_2$ ($\delta \approx 1.3$; X = Se or Te). // Chem. Mater. 2002. V. 14. P. 4746.
- A. N. Kuznetsov, A. A. Serov. Ni_{5.73}InSe₂ a Metal-Rich Selenide Based on the Cu₃Au-Type 2D Heterometallic Framework: Synthesis, Structure, and Bonding. // Eur. J. Inorg. Chem. 2016. V. 3. P. 373–379.
- А. А. Исаева, А. И. Баранов, Т. Доэрт, М. Рук, В. А. Кульбачинский, Р. А. Лунин, Б.
 А. Поповкин. Новые низшие смешанные халькогениды с блочной структурой: Ni_{5.68}SiSe₂, Ni_{5.46}GeSe₂ и Ni_{5.42}GeTe₂. // Известия РАН. Серия химическая. 2007. Т. 56. С. 1632.
- 20. A. A. Isaeva, A. I. Baranov, Th. Doert, M. Ruck, V. A. Kulbachinskii, R. A. Lunin, B. A. Popovkin New metal–rich mixed chalcogenides with an intergrowth structure: Ni_{5.68}SiSe₂, Ni_{5.46}GeSe₂, and Ni_{5.42}GeTe₂. // Russ. Chem. Bull. 2007. V. 56. P. 1694–1700.
- 21. A. A. Isaeva, A. I. Baranov, L. Kloo, M. Ruck, B. A. Popovkin. New Metal-Rich Mixed Chalcogenides with Intergrowth Structures: Ni_{8.21}Ge₂S₂ and Ni_{8.45}Ge₂Se₂. // Solid State Sciences. 2009. V. 11. P. 1071–1076.
- 22. A. I. Baranov, A. A. Isaeva, L. Kloo, B. A. Popovkin. New Metal-Rich Sulfides Ni₆SnS₂ and Ni₉Sn₂S₂ with a 2D Metal Framework: Synthesis, Crystal Structure, and Bonding. // Inorg. Chem. 2003. V. 42. P. 6667.
- 23. A. I. Baranov, A. A. Isaeva, L. Kloo, V. A. Kulbachinskii, R. A. Lunin, V. N. Nikiforov,
 B. A. Popovkin. 2D Metal Slabs in New Nickel–Tin Chalcogenides Ni_{7-δ}SnQ₂ (Q = Se,
 Te): Average Crystal and Electronic Structures, Chemical Bonding and Physical Properties. // J. Solid State Chem. 2004. V. 177. P. 3616.
- 24. A. A. Isaeva, A. I. Baranov, Th. Doert, B. A. Popovkin, V. A. Kulbachinskii, P.V. Gurin, V.G. Kytin, V.I. Shtanov. Ni_{7-δ}SnTe₂: Modulated crystal structure refinement, electronic structure and anisotropy of electroconductivity. // J. Solid State Chem. 2007. V. 180 P. 221.
- 25. A. A. Serov, A. N. Kuznetsov, B. A. Popovkin, L. Kloo. A New Member of Quazi-2D Heterometallic Phases: Synthesis and Crystal Structure of Ni_{7-δ}GaS₂. // 7th International Workshop on High Temperature and Novel Inorganic Materials Engineering. Moscow, 2004, Book of Abstracts, 126.

- 26. А. И. Баранов. Низшие смешанные халькогениды и халькогенгалогениды никеляметаллов 14-15 групп (Sn, Pb, Sb, Bi). Кристаллическое и электронное строение. Дисс. канд. хим. наук. М. 2002.
- 27. A. N. Kuznetsov, A. A. Serov, V. E. Fedorov, B. A. Popovkin. New compounds featuring extended systems of heterometallic bonds between nikel and group 13 metals: the structures of Ni_{6-x}MSe₂ (M=In, Ga). // 10th European Conference on Solid State Chemistry. Sheffield, 2005, Book of Abstracts, 95.
- 28. A. A. Serov, A. N. Kuznetsov, B. A. Popovkin, L. Kloo. A New Member of Quazi-2D Heterometallic Phases: Synthesis and Crystal Structure of Ni_{7-δ}GaS₂. // 7th International Workshop on High Temperature and Novel Inorganic Materials Engineering. Moscow, 2004, Book of Abstracts, 126.
- 29. О. В. Макаревич. Низкоразмерные системы гетерометаллических связей никельнепереходный металл 13–15 групп в кристаллах низших смешанных халькогенидов. Дипломная работа. МГУ им. М. В. Ломоносова. М. 2008.
- 30. А.А. Серов, А.Н. Кузнецов, Б.А. Поповкин, Л. Клоо. Новый представитель квазидвумерных бинарных гетерометаллических фаз: синтез и кристаллическая структура Ni_{8.54}Ga₂Se₂ // IV Всероссийская конференция по химии кластеров. 25-29 авг. 2004. Иваново. Тезисы докладов. С. 144.
- 31. A.N. Kuznetsov, A.A. Serov, B.A. Popovkin. New Low-dimensional Mixed Nickel-Gallium Telluride Ni_{6-x}GaTe₂: Synthesis and Structure // V Conference on Clusters and Polynuclear Compounds. Astrakhan. 2006. Book of abstracts. P. 53.
- 32. О.Н. Литвиненко, А.Н. Кузнецов, А.В. Оленев, Б.А. Поповкин. Новые смешанные теллуриды никеля с металлами 13–14 групп Ni_{3-δ}MTe₂ (M=Sn, In, Ga). // Изв. Акад. наук. Сер. хим. 2007. Т. 10. С. 1879–1882.
- 33. A.A. Isaeva, O.N. Makarevich, A.N. Kuznetsov, T. Doert, A.M. Abakumov, G. Van Tendeloo. Mixed Tellurides Ni_{3-x}GaTe₂ (0 ≤ x ≤ 0.65): Crystal and Electronic Structures, Properties, and Nickel Deficiency Effects on Vacancy Ordering. // Eur. J. Inorg. Chem. 2010. P. 1395–1404.
- 34. A.-K. Larsson, L. Noren, R.L. Withers, H. Rundloef. Coupled In/Te and Ni/vacancy ordering and the modulated crystal structure of a B8 type, Ni_{3±x}In_{1-y}Te_{2+y} solid solution phase. // J. Solid State Chem. 2007. V. 180. P. 2723–2733.
- L. Noren, R.L. Withers, F.J. Brink. Te for two: ordering phenomena in doped Ni_{1+x}M_yTe₂ (M=Ag, Cu, In). // J. Alloys Compd. 2003. V. 353. P. 133–142.
- 36. H.-J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, R. K. Kremer. Fe₃GeTe₂ and Ni₃GeTe₂ — Two New Layered Transition-Metal Compounds: Crystal Structures,

HRTEM Investigations, and Magnetic and Electrical Properties. // Eur. J. Inorg. Chem. 2006. V. 8. P. 1561–1567.

- A. K. Yasukochi, K. Kanematsu, T. Ohoyama. Magnetic Properties of Intermetallic Compounds in Iron-Germanium System: Fe_{1.67}Ge and FeGe₂. // J. Phys. Soc. Jpn. 1961. V. 16. P. 429.
- 38. B. Liu, Y. Zou, S. Zhou, L. Zhang, Z. Wang, H. Li, Z. Qu and Y. Zhang. Critical behavior of the van der Waals bonded high TC ferromagnet Fe₃GeTe₂. // Sci. Rep. 2017. V. 7. 6184. P. 1–8.
- 39. Y. Liu, V. Ivanovski, C. Petrovic. Critical behavior of the van der Waals bonded ferromagnet Fe_{3-x}GeTe₂. // Phys. Rev. 2017. V. 96. 144429. P. 1–8.
- 40. N. León-Brito, E. D. Bauer, F. Ronning, J. D. Thompson, R. Movshovich. // Magnetic Microstructure and Magnetic Properties of Uniaxial Itinerant Ferromagnet Fe₃GeTe₂. // J. Appl. Phys. 2016. V. 120. 083903. P. 1–6.
- 41. B. Chen, J. Yang, H. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura. Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe₃GeTe₂. // J. Phys. Soci. Japan. 2013. V. 82. 124711. P. 1–7.
- 42. J. Yi, et al. Competing Antiferromagnetism In A Quasi-2D Itinerant Ferromagnet: Fe₃GeTe₂. // 2D Mater. 2016. V. 4. 011005. P. 1–18.
- 43. H.-J. Deiseroth, F. Sprirovski, C. Reiner, M. Schlosser. Crystal Structure of Trinickel Tin Ditelluride, Ni_{3-x}SnTe₂ (x = 0.13). // Z. Kristallogr. New Crystal Structures. 2007 V. 222. P. 169.
- 44. T. Dankwort, V. Duppel, H.-J. Deiseroth, C. Reiner, M. Schlosser, L. Kienle. Semicond. Nanostructure Investigation of The Layered Ternary Compound Ni_{3-x}Sn_{1-y}Te₂. // Sci. Technol. 2016. V. 31. P. 7.
- 45. T. K. Reynolds, R. F. Kelley, F. J. DiSalvo. Electronic Transport and Magnetic Properties of A New Nickel Antimonide Telluride, Ni₂SbTe₂. // J. Alloys Comp. 2004. V. 366. P. 136.
- 46. F. Laufek, M. Drábek, R. Skála, J. Haloda, Z. Táborský, I. Císařová. Vavřínite, Ni₂SbTe₂, a New Mineral Species from The Kunratice Cu–Ni Sulfide Deposit, Czech Republic. // The Canadian Mineralogist. 2007. V. 45. P. 1213-1219.
- 47. L. Zhao, G. Yu, X. Huang, W. Chen. Realizing Efficient Catalytic Performance and High Selectivity for Oxygen Reduction Reaction on a 2D Ni₂SbTe₂ Monolayer. // norg. Chem. 2022. V 61. P. 2284–2291.

- Li-Heng Li, Jun-Hui Yuan, Kan-Hao Xue, Meng Xu, Ming Xu, Jia-Fu Wang, Xiang-Shui Miao. Synergic Effect in a New Electrocatalyst Ni₂SbTe₂ for Oxygen Reduction Reaction.
 // J. Phys. Chem. 2020. V. 124. P. 3671–3680.
- 49. O. N. Litvinenko, A. N. Kuznetsov, A. V. Olenev and B. A. Popovkin. New mixed tellurides of nickel and Group 13-14 metals Ni_{3-δ}MTe₂ (M = Sn, In, Ga). // Russ. Chem. Bull., International Edition. 2007. V. 56. P. 1945–1947.
- M. A. Peacock, J. McAndrew. On parkerite and Shandite and the Crystal Structure of Ni₃Pb₂S₂ // Amer. Miner. 1950, V. 35. P. 425.
- 51. K. J. Range, H. Paulus, F.Rau, M. Zabel. Crystal Structure of Nickel Lead Selenide (3/2/2), Ni₃Pb₂Se₂. // Z. Kristall. 1997, B. 212, S. 136.
- K.-J. Range, F. Rau, M. Zabel, H. Paulus. Crystal structure of nickel tin sulfide (3/2/2), Ni₃Sn2S₂. // Z. Kristallogr. 1997, B. 212, S. 50.
- 53. R. Weihrich, I. Anusca, M. Zabel. Halbantiperowskite: Zur Struktur der Shandite M₃A₂S₂ (M = Co, Ni; A = In, Sn) und ihren Typ-Antitypbeziehungen.// Z. Anorg. Allg. Chem. 2005. V. 631. P. 1463-1470.
- 54. I. Anusca, A. Schmid, P. Peter, J. Rothballer, F. Pielnhofer, R. Weihrich. Half Antiperovskites: IV. Crystallographic and Electronic Structure Investigations on A₂Rh₃S₂ (A = In, Sn, Tl, Pb, Bi). // Z. Anorg. Allg. Chem. 2009. V. 635(15). P. 2410–2428.
- 55. I. Anusca. Neue Shandite und Parkerite Darstellung und röntgenographische Charakterisierung. // Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften. Universität Regensburg. Regensburg. 2008.
- 56. K. J. Range, M. Zabel, S. Wardinger, H. P. Bortner. Neue ternäre Chalkogenide M₃M'₂X₂ mit Parkeritstruktur. // Rev. Chim. Miner. 1983. V. 20. P. 698.
- 57. А. И. Баранов, А. В. Оленев, Б. А. Поповкин. Кристаллическая и электронная структура Ni₃Bi₂S₂ (паркерита) // Известия РАН. Серия химическая. 2001. Т. 3. С. 337.
- 58. A. Clauss. Die Kristallstruktur von Ni₃Bi₂Se₂. // Neu. Jahrb. Miner. 1975. P. 385.
- R. Weihrich, I. Anusca. Halbantiperowskite II: zur Kristallstruktur des Pd₃Bi₂S₂. // Z. Anorg. Allg. Chem. 2006. V. 632. P. 335-342.
- 60. E. Y. Zakharova, S. M. Kazakov, and A. N. Kuznetsov, A New Representative of the Cubic Parkerites Family: Synthesis, Crystal and Electronic Structure of Pt₃Bi₂Se₂ J. Alloys Compd. 2015. V. 651. P. 193.

- Weihrich R., Matar S.F., Eyert V., Rau F., Zabel M., Andratschke M., Anusca I., Bernert T. Structure, ordering, and bonding of half antiperovskites: PbNi_{3/2}S and BiPd_{3/2}S. // Prog. Solid State Chem. 2007. V. 35. P. 309–327.
- 62. Weihrich R., Matar S.F., Anusca I., Pielnhofer F., Peter P., Bachhuber F., Eyert V. Palladium site ordering and the occurrence of superconductivity in Bi₂Pd₃Se_{2-x}S_x. // J. Solid State Chem. 2011. V. 184. P. 797–804.
- 63. Lapano J., Pai Y., Mazza A.R. Self-regulated growth of candidate topological superconducting parkerite by molecular beam epitaxy. // APL Mater. 2021. V. 9. P. 101110.
- 64. Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, Y. Sun. Topological surface Fermi arcs in the magnetic Weyl semimetal Co₃Sn₂S₂ // Phys. Rev. 2018. V. 97. P. 235416.
- 65. S. Natarajan, G. V. S. Rao, R. Baskaran, T. S. Radhakrishnan. Synthesis and electrical properties of shandite-parkerite phases, A₂M₃Ch₂. // J. Less- Common Met. 1988. V. 138. P. 215.
- 66. P. Gütlich, K.-J. Range, C. Felser, C. Schultz-Münzenberg, W. Tremel, D. Walcher, and M. Waldeck. The Valence States of Nickel, Tin, and Sulfur in the Ternary Chalcogenide Ni₃Sn₂S₂-XPS, ⁶¹Ni and ¹¹⁹Sn Mössbauer Investigations, and Band Structure Calculations. // 1999. Angew. Chem. Int. Ed. Engl. V. 38. P. 2381.
- F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo,
 P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C.
 Felser, Y. L. Chen. Magnetic Weyl Semimetal Phase in a Kagome Crystal // Science.
 2019. V. 365. P. 1282.
- 68. T. Sakamoto, M. Wakeshima, Y. Hinatsu. Superconductivity in ternary chalcogenides Bi₂Ni₃X₂ (X = S, Se) // J. Phys.: Condens. Matter. 2006. V. 18. P. 4417.
- T. Sakamoto, M. Wakeshima, Y. Hinatsu, and K. Matsuhira. Transport properties in normal-metal Bi₂Pd₃S₂ and superconducting Bi₂Pd₃Se₂. // Phys. Rev. 2008. V. 78. P. 060503.
- 70. F. H. Yu, X. Y. Hua, T. Chen, J. Sun, M. Z. Shi, W. Z. Zhuo, D. H. Ma, H. H. Wang, J. J. Ying, and X. H. Chen. Pressure-induced superconductivity in a shandite compound Pd₃Pb₂Se₂ with the Kagome lattice. // New J. Phys. 2020. V. 22. P. 123013.
- Shama, R. K. Gopal, G. Sheet, Y. Singh. 2D weak anti-localization in thin films of the topological semimetal Pd₃Bi₂S₂ // Sci. Rep. 2021. V. 11. P. 12618.

- 72. A. J. Foecker, W. Jeitschko. The Atomic Order of the Pnictogen and Chalcogen Atoms in Equiatomic Ternary Compounds TPnCh (T=Ni, Pd; Pn=P, As, Sb; Ch=S, Se, Te). // J. of Solid State Chem. 2001. V.162. P. 69-78.
- 73. R. Weihrich, D. Kurowski, A. C. Stuckl, S.F. Matar, F. Rau, Th. Bernerta. On the ordering in new low gapsemiconductors: PtSnS, PtSnSe, PtSnTe. Experimental and DFT studies. // J. of Solid State Chem. 2004. V. 177. P. 2591–2599.
- 74. F. Laufek, A. Vymazalova, J. Navratil b, M. Drabek, J. Placil, T. Plechacek. Synthesis and crystal structure of PdSnTe // J. of Alloys and Compounds. 2009. V. 468. P. 69–72.
- 75. R. Carlini, G. Zanicchi, G. Borzone, N. Parodi, G. A. Costa. Synthesis and characterization of the intermetallic compound NiSbS. // J. Therm. Anal. Calorim. 2012. V. 108. P. 793–797.
- 76. R. Carlini, D. Maccio', M. Pani, N. Parodi, G. Zanicchi, M. M. Carnasciali, G. A. Costa. Synthesis and thermal properties of NiSbS–As doped phase. // J. Therm. Anal. Calorim. 2013. V. 112. P. 513–517.
- 77. M. Miyata, T. Ozaki, S. Nishino, M. Koyano. Thermoelectric properties of high power factor sulfide NiSbS and Co substitution system Ni_{1-x}Co_xSbS. // Jpn. J. Appl. Phys. 2017. V. 56. P. 021801.
- Mizutani R., Okamoto Y., Nagaso H., Yamakawa Y. Superconductivity in PtSbS with a Noncentrosymmetric Cubic Crystal Structure // J. Phys. Soc. Jpn. 2019. V. 88. P. 093709.
- 79. R. Niewa, M. Kirchner, H. Zhang, W. Schnelle, Y. Grin. // Metallic barrelane: crystal structure, physical properties and bonding analysis of La16Al13. Z. Kristallogr. 2005. V. 220. P. 115–121
- 80. F. Stegemann, O. Janka. // RE16AuxAl13−x with RE = La–Nd, Sm (x ≤ 3.37): synthesis, crystal structure and physical properties of an intermetallic solid solution with barrelane analogue units. Dalton Trans. 2016. V. 45. P. 13863-13871.
- 81. STOE WinXPow, Version 1.06, 1999. STOE & Cie GmbH.
- 82. SAINT, Version 8.40B; Bruker AXS Inc.: Madison, Wisconsin, USA, 2017.
- 83. L. Krause, R. Herbst-Irmer, G.M Sheldrick, D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. // J. Appl. Cryst. 2015. V. 48. P. 3-10.
- 84. Sheldrick, G.M. SHELX-2018/3, Program package for crystal structure solution and refinement, Göttingen, Germany. 2018.
- 85. Bruker AXS Topas V4.2: General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany. 2009.

- В.И. Николаев, В.С. Русаков. Мессбауэровские исследования ферритов. // Изд-во Московского университета. 1985. С. 224.
- В.С. Русаков. Мессбауэровская спектроскопия локально неоднородных систем. // Алматы. 2000. С. 431.
- 88. В.С. Русаков. Восстановление функций распределения сверхтонких параметров мессбауэровских спектров локально неоднородных систем. // Изв. РАН. Серия физическая. 1999. Т. 63(7). С. 1389.
- V.S. Rusakov, K.K. Kadyrzhanov. Mössbauer spectroscopy of locally inhomogeneous systems. // Hyperfine Interact. 2005. V. 164 (1–4). P. 87–97.
- 90. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758 1775. DOI: 10.1103/PhysRevB.59.1758
- 91. Kresse, G.; Furthmüller, J. Vienna Ab initio simulation package (VASP), v.5.4.4, http://www.vasp.at/.
- 92. Furness, J.W; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. // J. Phys. Chem. Lett. 2020. V. 11. P. 8208–8215.
- 93. r2SCAN subroutines: Repository for subroutines/patches needed to implement r2SCAN in popular electronic structure codes. https://gitlab.com/dhamil/r2scan-subroutines/-/tree/master
- 94. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin zone integrations. // Phys. Rev. B. 1976. V. 13. P. 5188-5192.
- 95. R. F. W. Bader. Atoms in: Molecules: A Quantum Theory. Oxford University Press, Oxford, UK. 1990.
- 96. Lu, T.; Chen, F.; Multiwfn: A multifunctional wavefunction analyzer. // J. Comput. Chem. 2012. V. 33. P. 580-592.
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. // J. Appl. Crystallogr. 2011. V. 44. P. 1272-1276.
- Nelson, R.; Ertural, C.; George, J.; Deringer, V.; Hautier, G.; Dronskowski, R. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. // J. Comput. Chem. 2020. V. 41. P. 1931–1940.
- Ganose, A.M.; Jackson, A.J.; Scanlon, D.O. sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. // J. Open Source Softw. 2018. V. 3. P. 717-719.

- 100.A. Götze, P. Urban, O. Oeckler, H. Kohlmann. Synthesis and crystal structure of Pd₅InSe.
 // Z. Naturforsch., B: Chem. Sci. 2014. V. 69. P. 417–422.
- 101. А.В. Солопченко. Направленный синтез новых смешанных халькогенидов переходного (Ni, Fe, Mn) и непереходного (Ga, Ge, Sn) металлов с блочной и слоистой структурой. Дипломная работа. МГУ им. М. В. Ломоносова. М. 2008.
- 102.V.Yu. Verchenko, A.A. Tsirlin, A.V. Sobolev, I.A. Presniakov, A.V. Shevelkov. Ferromagnetic Order, Strong Magnetocrystalline Anisotropy, and Magnetocaloric Effect in the Layered Telluride Fe_{3-δ}GeTe₂. // *Inorg. Chem.* 2015. V. 54. P. 17, 8598–8607
- 103. A. N. Kuznetsov, E. A. Stroganova, E. Yu. Zakharova. Many Faces of a Single Cuboctahedron: Group 10 Metal-rich Ternary Compounds based on the AuCu₃ Structure Type (Review). Russ. J. Inorg. Chem. 2019. V. 64. P. 1625-1640.

7. Приложение

Таблица П1. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-Al-Ch.

Заложенная	D	Фазовый состав по данным
стехиометрия	Режим отжига	РФА после последнего отжига
Ni ₆ AlS ₂		Ni _{7-x} AlS ₂ , Ni ₃ Al, Ni ₃ S ₂
Ni ₉ Al ₂ S ₂	1 отжиг∙ Т=600 °С t = 180 ч ∙	Ni _{7-x} AlS ₂ , Ni ₃ Al, Ni ₂ S ₃
Ni ₆ AlSe ₂	2 отжиг: Т=650 °С, t = 180 ч.	Ni _{7-x} AlSe ₂ , Ni ₃ Al, Ni ₃ Se ₂
Ni ₉ Al ₂ Se ₂		Ni _{7-x} AlSe ₂ , Ni ₃ Al, Ni ₂ Se ₃
Ni ₆ A1S ₂	1 отжиг: T= 550 °C, t = 180 ч.;	Ni _{7-x} AlS ₂ , неидентифицируемая примесь
Ni ₆ AlSe ₂	2 OTWALL 1-750 C, 1-180 4.;	Ni_{7-x}AlSe ₂ , Ni ₃ Al (много), Ni ₃ Se ₂
Ni ₆ AlTe ₂	t = 180 ч. (исходные вещества прессовались в таблетку).	После 1 отжига: Ni ₃ Al, Ni ₂ Te ₃ ; После 2 отжига: Ni ₃ Al, Ni ₂ Te ₃
Ni ₆ AlS ₂	Флюс: KCl+LiCl (1:1),	Ni _{7-x} AlS ₂
Ni ₆ AlSe ₂	T = 650 °C, охлаждение 2 °C/ч	Ni _{7-x} AlSe ₂ , Ni ₃ Se ₂
Ni ₆ AlTe ₂	до 300 °С.	Ni _{7-x} AlTe ₂ , Ni ₃ Te ₂ , Ni ₃ Al
Ni _{5.8} AlS ₂	Φ we as $L(C) + K(C)(1,1)$	$Ni_{7-x}AlS_2$, Ni_3Al , Ni_3S_2
Ni _{5.8} AlSe ₂	Ψ T = 550 °C t = 240 H	$Ni_{7-x}AlSe_2$, Ni_3Se_2
Ni _{5.8} AlTe ₂	1 = 350 C, $t = 240$ 4.	$Ni_{7-x}AITe_2$, Ni_2Te_3
Ni _{5.8} AlS ₂	I ₂ ,	Ni ₃ Al, Ni ₃ S ₂
Ni _{5.8} AlSe ₂	1 отжиг: T = 550 °C,	Ni ₃ Al, Ni ₃ Se ₂
Ni _{5.8} AlTe ₂	t = 240 ч.; 2 отжиг: T = 750 °С, t = 360 ч.	Ni ₃ Al, Ni ₂ Te ₃
Ni _{5.7} AlSe ₂	Φ we as $L(C) + K(C)(1,1)$	$Ni_{7-x}AlSe_2, Ni_3Se_2$
Ni _{5.6} AlSe ₂	Ψ T = 550 °C t = 180 m	$Ni_{7-x}AlSe_2, Ni_3Se_2$
Ni _{5.6} Al _{1.05} Se ₂	1 - 350 C, $1 - 100$ 4.	$Ni_{7-x}AlSe_2, Ni_3Se_2$

Таблица П2. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-Ga-Ch.

Заложенная стехиометрия	Режим отжига	Фазовый состав по данным РФА
Ni _{6.1} GaS ₂		
Ni _{5.7} GaSe ₂	1	Ni _{5.63} GaSe ₂
Ni _{5.8} GaTe ₂	1 отжиг: 1=650 °C, t = 180 4.;	Ni7-xGaTe2, Ni3Te2 (мало);
Ni _{8.5} Ga ₂ S ₂	2 OTXUI: $1-030$ C, $t = 180$ 4.;	
Ni _{8.5} Ga ₂ Se ₂	501 $\times 10^{-000}$ C, $1 - 180$ 4.	Ni_{5.63}GaSe ₂ , Ni ₃ Ga (много), Ni ₃ Se ₂
Ni _{5.68} GaTe ₂	1 отжиг: T=650 °C, t = 180 ч.; 2 отжиг для C24: T = 1000 °C,	После 1 отжига: Ni_{7-x}GaTe ₂ , Ni ₃ Ga (много), Ni ₃ Te ₂ (много); После 2 отжига: Ni ₃ Ga, Ni ₃ Te ₂
Ni ₆ GaTe ₂	t = 180 ч.	Ni _{7-x} GaTe ₂ , Ni ₃ Ga (много), Ni ₃ Te ₂ (много)
Ni ₆ GaTe ₂		Ni _{7-x} GaTe ₂ , Ni ₃ Ga (много), Ni ₃ Te ₂ (много)

Ni _{5.68} GaTe ₂	Флюс: PbCl ₂ (1:1), T=750 °С, охлаждение 2 °С/ч до 300 °С.			
Ni ₆ GaTe ₂	Флюс: КІ (1:1), T=750 °C, охлаждение 2 °C/ч до 300 °C.			
Ni _{5.68} GaTe ₂	Флюс: КІ (1.5:1), T=750 °C, охлаждение 2 °C/ч до 300 °C.			
Ni ₆ GaTe ₂	Флюс: КІ (1.5:1), T=750 °С, охлаждение 2 °С/ч до 300 °С.	_		
Ni ₆ GaTe ₂	1 отжиг: Т=700 °С, t = 180 ч.; 2 отжиг: Т=700 °С, t = 180 ч.; 3 отжиг: Т=700 °С, t = 180 ч.; 4 отжиг: Т=700 °С, t = 180 ч.	Ni_{7-x}GaTe2 , Ni ₃ Ga, Ni ₃ Te ₂		
Ni ₆ GaTe ₂	Флюс: КІ (1:1), T=800 °C, охлаждение 2 °C/ч до 300 °C.	_		
Ni _{5.6} GaTe ₂	1 отжиг: T=600 °С, t = 80 ч.;	Ni_{7-x}GaTe ₂ , Ni _{3-x} GaTe ₂ , Ni ₃ Ga, Ni ₃ Te ₂		
Ni _{5.3} GaTe ₂	2 отжиг: Т=600 °С, t = 80 ч.	N_{17-x} Ga 1 e ₂ , N_{13-x} Ga 1 e ₂ , N_{13} Ga, N_{13} Te ₂		
Ni _{5.8} GaTe ₂	Флюс: КІ (1:1), T= 900 °C, охлаждение 2 °C/ч до 560 °C.			
Ni ₉ Ga ₂ S ₂		Ni _{10-x} Ga ₂ S ₂ , Ni _{6.1} GaS ₂ , Ni ₃ Ga		
Ni _{5.2} Fe _{0.5} GaS ₂		F ₁ *, Ni _{6.1} GaS ₂ (мало), Ni ₃ S ₂ (мало)		
Ni _{5.7} Fe _{0.3} GaS ₂		F ₁ , Ni _{6.1} GaS ₂ , Ni ₃ S ₂ (мало)		
Ni ₈ Fe _{0.5} Ga ₂ S ₂	1 отжиг: T = 750 °C, t = 240 ч.;	F ₁ , Ni _{6.1} GaS ₂ (мало), Ni ₃ S ₂ (мало)		
Ni ₆ GaTe ₂	2 отжиг для C103: T = 1000 °C, t = 180 ч.	После 1 отжига: Ni_{7-x}GaTe2 , Ni ₃ Ga, Ni ₃ Te2 После 2 отжига:		
Ni _{6.2} GaTe ₂		Ni_{7-x}GaTe2 , Ni ₃ Ga (много), Ni ₃ Te ₂		
Ni _{6.1} GaTe ₂	Флюс: LiCl + KCl (1:1), T = 550 °C, t = 240 ч.	Ga		
Ni _{6.1} GaTe ₂	I _{2,}	Ni _{7-x} GaTe ₂		
Ni ₉ Ga ₂ S ₂	1 отжиг: T = 550 °C, t = 240 ч.; 2 отжиг: T = 750 °C, t = 360 ч.	Ni _{10-x} Ga ₂ Te ₂		
Ni ₉ Ga ₂ S ₂	T = 750 °C. t = 300 ч., закалка	Ni _{10-x} Ga ₂ S ₂ , Ni _{6.10} GaS ₂ (много), Ni ₃ Ga, Ni ₃ S ₂		
$\frac{\text{N1}_{5.2}\text{Fe}_{0.5}\text{GaS}_2}{\text{N1}_8\text{Fe}_{0.5}\text{Ga}_2\text{S}_2}$				
Ni _{5.75} GaTe ₂		Ni_{7-x}GaTe ₂ , Ni ₃ Te ₂ (мало)		
Ni _{5.8} GaTe ₂	1 отжиг: 1=650 °С, t = 180 ч.;	Ni_{7-x}GaTe ₂ , Ni ₃ Te ₂ (мало)		
Ni _{5.85} GaTe ₂	2 отжит: 1=0.00 °C, t = 1.00 ч.	Ni7-xGaTe2 , Ni3Te2 (мало)		
Ni9Ga2Te2	I ₂ , 1 отжиг: T = 550 °C, t = 240 ч.; 2 отжиг: T = 750 °C, t = 360 ч.	Ni₁-xGaTe₂ , Ni₃Ga		

 $*F_1$ — фаза со структурой типа Ni_{10-x}Ga₂S₂.

Таблица ПЗ. Условия отжига образцов и результаты рентгенофазового анализа в системе Ni-In-Ch.

Ni ₆ InS ₂		$Ni_3In_2S_2$, Ni_3S_2 , Ni
Ni ₆ InTe ₂	I _{2,}	Ni _{7-x} InTe ₂
Ni ₁₀ In ₂ S ₂	T = 550 °С, t = 240 ч.	Ni ₃ In ₂ S ₂ , Ni ₃ S ₂ , Ni
Ni ₁₀ In ₂ Se ₂		Ni ₃ In ₂ Se ₂ , Ni ₃ Se ₂ , Ni
Ni ₁₀ In ₂ Te ₂		Ni _{7-x} InTe ₂ , Ni ₃ In, Ni ₃ Te ₂

Таблица П4. Индицирование Ni_{2.8}Fe_{0.2}GaTe₂.

P63/n	<i>1mc, a</i> = 3	.93	94(17)	, c = 15.8	20(5), V=	= 212.6	61(16), F	(20) = 29.2
N	2Th[obs]	Η	K	L	2Th[cal	lc] obs-ca	alc Int	t. d[obs]	d[calc]
1	11.163	0	0	2	11.177	-0.0140	11.3	7.9198	7.9098
2	22.451	0	0	4	22.463	-0.0115	10.3	3.9569	3.9549
3	26.101	1	0	0	26.098	0.0023	5.1	3.4113	3.4116
4	26.721	1	0	1	26.709	0.0113	20.6	3.3336	3.3349
5	28.472	1	0	2	28.469	0.0025	5.8	3.1324	3.1326
6	31.202	1	0	3	31.200	0.0014	100.0	2.8643	2.8644
7	33.965	0	0	6	33.974	-0.0088	21.3	2.6373	2.6366
8	43.332	1	0	6	43.337	-0.0050	69.1	2.0864	2.0862
9	46.062	1	1	0	46.043	0.0196	54.5	1.9689	1.9697
10	48.269	1	0	7	48.265	0.0039	12.2	1.8839	1.8841
11	51.789	1	1	4	51.812	-0.0223	5.5	1.7638	1.7631
12	56.698	2	0	3	56.668	0.0297	13.5	1.6222	1.6230
13	58.458	1	1	6	58.439	0.0197	14.7	1.5775	1.5780
14	59.064	1	0	9	59.073	-0.0091	19.2	1.5628	1.5625
15	65.087	2	0	6	65.074	0.0132	15.9	1.4319	1.4322
16	68.954	2	0	7	68.912	0.0426	5.3	1.3608	1.3615
17	71.491	0	0	12	71.508	-0.0177	9.0	1.3186	1.3183
18	73.565	2	1	1	73.648	-0.0829	3.7	1.2864	1.2852
19	75.910	2	1	3	75.901	0.0088	11.2	1.2524	1.2526
20	78.008	2	0	9	77.991	0.0166	8.1	1.2239	1.2241

Таблица П5. Индицирование Ni_{2.6}Fe_{0.4}GaTe₂.

P6 3/	(<i>mmc</i> , <i>a</i> =	3.9	426	6(8)	, c = 15.8	75(2), V=	= 213.7	71(8), F(2	20) = 52.3	
Ν	2Th[obs]	Η	K	L	2Th[ca	lc] obs-ca	alc In	t. d[obs]	d[calc]	
1	11.134	0	0	2	11.138	-0.0040	14.4	7.9408	7.9379	
2	22.379	0	0	4	22.382	-0.0030	11.5	3.9695	3.9690	
3	26.685	1	0	1	26.684	0.0010	22.9	3.3379	3.3380	
4	31.146	1	0	3	31.149	-0.0027	100.0	2.8693	2.8690	
5	33.854	0	0	6	33.850	0.0044	22.8	2.6457	2.6460	
6	43.235	1	0	6	43.222	0.0130	73.6	2.0909	2.0915	
7	46.012	1	1	0	46.004	0.0078	53.6	1.9710	1.9713	
8	48.136	1	0	7	48.126	0.0103	13.4	1.8888	1.8892	
9	51.709	1	1	4	51.737	-0.0282	6.1	1.7664	1.7655	
10	53.344	1	0	8	53.354	-0.0106	4.6	1.7160	1.7157	
11	56.608	2	0	3	56.603	0.0049	15.1	1.6246	1.6247	
12	58.331	1	1	6	58.324	0.0064	12.8	1.5806	1.5808	
13	58.893	1	0	9	58.881	0.0126	20.5	1.5669	1.5672	
14	64.944	2	0	6	64.956	-0.0124	14.3	1.4348	1.4345	
15	71.211	0	0	12	71.217	-0.0056	9.8	1.3231	1.3230	

16	75.824	2	1	3	75.815	0.0088	11.1	1.2536	1.2538
17	77.791	2	0	9	77.794	-0.0025	8.1	1.2268	1.2267
	Tat	блиг	ta I	I6.	Индици	ование М	Vi2.4Fe	_{0.6} GaTe ₂ .	
P6 ₃ /n	nmc, a = 3	3.94	91(11)	, c = 15.8	95(4), V=	= 214.6	68(12), F	(20) = 49.6
N	2Th[obs]	Н	K	L	2Th[cal	c] obs-ca	alc Int	d[obs]	d[calc]
1	11.099	0	0	2	11.124	-0.0254	12.6	7.9655	7.9474
2	22.352	0	0	4	22.355	-0.0030	12.2	3.9742	3.9737
3	26.635	1	0	1	26.640	-0.0041	22.3	3.3440	3.3435
4	31.100	1	0	3	31.100	0.0001	100.0	2.8734	2.8734
5	33.807	0	0	6	33.809	-0.0021	20.6	2.6493	2.6491
6	43.163	1	0	6	43.160	0.0028	68.2	2.0942	2.0943
7	45.923	1	1	0	45.923	0.0006	53.7	1.9745	1.9746
8	48.051	1	0	7	48.058	-0.0066	10.6	1.8919	1.8917
9	51.695	1	1	4	51.650	0.0451	4.8	1.7668	1.7683
10	53.311	1	0	8	53.279	0.0320	5.7	1.7170	1.7180
11	53.894	2	0	1	53.881	0.0135	4.4	1.6998	1.7002
12	56.504	2	0	3	56.503	0.0012	16.1	1.6273	1.6274
13	58.222	1	1	6	58.229	-0.0067	12.7	1.5833	1.5832
14	58.802	1	0	9	58.797	0.0043	16.2	1.5691	1.5692
15	64.839	2	0	6	64.845	-0.0058	15.0	1.4368	1.4367
16	68.655	2	0	7	68.654	0.0011	5.9	1.3660	1.3660
17	71.106	0	0	12	71.119	-0.0138	8.0	1.3248	1.3246
18	73.407	2	1	1	73.435	-0.0286	5.3	1.2888	1.2884
19	75.667	2	1	3	75.669	-0.0020	12.6	1.2558	1.2558
20	77.659	2	0	9	77.661	-0.0027	8.0	1.2285	1.2285
	Tat	блиі	ia I	17.	Индици	ование М	Vi2.2Fe	.8GaTe ₂ .	
P63/n	1mc, a = 3	3.96	06(15)	c = 15.8	49(4), V=	= 215.3	80(15) , F	(14) = 40.3
N	2Th[obs]	Н	K	Ĺ	2Th[cal	c] obs-ca	alc Int	d[obs]	d[calc]
1	11.156	0	0	2	11.157	-0.0004	10.7	7.9247	7.9244
2	26.563	1	0	1	26.568	-0.0045	26.3	3.3529	3.3524
3	31.059	1	0	3	31.062	-0.0034	100.0	2.8771	2.8768
4	33.902	0	0	6	33.910	-0.0077	16.9	2.6420	2.6415
5	43.191	1	0	6	43.194	-0.0030	70.1	2.0929	2.0928
6	45.777	0	0	8	45.763	0.0144	60.3	1.9805	1.9811
	1	1 ()	45.	782 -0.0	050		1.9803	
7	48.144	1	0	7	48.116	0.0283	13.7	1.8885	1.8896
8	56.380	2	0	3	56.358	0.0216	18.0	1.6306	1.6312
9	58.172	0	0	10	58.160	0.0118	14.4	1.5846	1.5849
	1	1 (5	58.	176 -0.0	046		1.5845	
10	58.887	1	0	9	58.906	-0.0192	18.4	1.5670	1.5666
11	64.737	1	0	10	64.743	-0.0059	20.8	1.4388	1.4387
	2	0 0	5	64.	759 -0.0	212		1.4384	
12	68.571	2	0	7	68.592	-0.0201	7.1	1.3674	1.3671
13	71.367	0	0	12	71.357	0.0100	10.0	1.3206	1.3207
14	75.439	2	1	3	75.441	-0.0016	11.5	1.2591	1.2591

P6 ₃ /	/mmc, a =	3.9	617	7(8)	c = 15.8	$\frac{1}{62(2), V}$	= 215.6	51(8), F(1	4) = 54.5
N	2Th[obs]	Η	K	L	2Th[ca]	c] obs-ca	alc Int	t. d[obs]	d[calc]
1	11.154	0	0	2	11.147	0.0070	11.0	7.9264	7.9314
2	22.390	0	0	4	22.401	-0.0104	10.4	3.9675	3.9657
3	26.554	1	0	1	26.560	-0.0060	23.7	3.3541	3.3534
4	31.038	1	0	3	31.048	-0.0095	100.0	2.8790	2.8781
5	33.899	0	0	6	33.879	0.0202	23.3	2.6423	2.6438
6	43.159	1	0	6	43.164	-0.0044	66.1	2.0944	2.0942
7	45.776	1	1	0	45.769	0.0072	56.8	1.9805	1.9808
8	48.083	1	0	7	48.080	0.0035	14.7	1.8908	1.8909
9	56.332	2	0	3	56.338	-0.0063	15.1	1.6319	1.6317
10	58.133	0	0	10	58.103	0.0299	14.6	1.5855	1.5863
	1	1 (6	58.	145 -0.0	116		1.5853	
11	58.853	1	0	9	58.857	-0.0044	18.0	1.5679	1.5678
12	64.728	2	0	6	64.726	0.0022	17.3	1.4390	1.4391
13	71.281	0	0	12	71.284	-0.0031	12.5	1.3220	1.3219
14	75.418	2	1	3	75.413	0.0040	11.8	1.2594	1.2594
	Таб	лиі	ia l	П9.	Индициј	ование 1	Ni _{1.8} Fe	1.2GaTe ₂ .	
P63/n	nmc, a = 3	.97	16(10)	, <i>c</i> = 15.9	18(3), V=	= 217. 4	4(10), F((14) = 46.7
N	2Th[obs]	Η	K	C L	2Th[cal	c] obs-ca	alc Int	t. d[obs]	d[calc]
1	11.116	0	0	2	11.108	0.0082	17.0	7.9532	7.9591
2	22.317	0	0	4	22.322	-0.0047	12.4	3.9804	3.9795
3	26.477	1	0	1	26.491	-0.0145	28.8	3.3637	3.3619
4	30.943	1	0	3	30.959	-0.0158	100.0	2.8876	2.8862
5	33.766	0	0	6	33.758	0.0081	20.4	2.6524	2.6530
6	43.026	1	0	6	43.023	0.0033	77.1	2.1005	2.1007
7	45.647	1	1	0	45.649	-0.0020	64.3	1.9859	1.9858
8	47.937	1	0	7	47.918	0.0193	16.5	1.8962	1.8969
9	56.182	2	0	3	56.180	0.0020	17.2	1.6359	1.6360
10	57.981	1	1	6	57.964	0.0175	13.9	1.5893	1.5898
11	58.641	1	0	9	58.646	-0.0046	19.0	1.5730	1.5729
12	64.520	2	0	6	64.524	-0.0039	17.3	1.4432	1.4431
13	70.987	0	0	12	70.999	-0.0118	10.5	1.3267	1.3265
14	75.187	2	1	3	75.188	-0.0012	13.3	1.2627	1.2627
	Табл	иц	a I	I10 .	Индици	рование	Ni _{2.4} Fe	e0.4GaTe2.	
P63/n	nmc, a = 3	.94	17(12)	, c = 15.9	06(4), V	= 214.()2(12), F((20) = 40.0
Ν	2Th[obs]	Η	K	ΚL	2Th[cal	lc] obs-ca	alc Int	t. d[obs]	d[calc]
1	11.107	0	0	2	11.117	-0.0099	25.0	7.9599	7.9528
2	22.343	0	0	4	22.340	0.0031	12.3	3.9759	3.9764
3	26.683	1	0	1	26.687	-0.0041	23.5	3.3382	3.3376
4	31.139	1	0	3	31.136	0.0034	100.0	2.8699	2.8702
5	33.796	0	0	6	33.785	0.0112	22.6	2.6501	2.6509
6	43.186	1	0	6	43.173	0.0134	61.0	2.0931	2.0938
7	46.015	1	1	0	46.014	0.0010	50.2	1.9708	1.9709
8	48.092	1	0	7	48.063	0.0290	12.6	1.8904	1.8915
9	51.694	1	1	4	51.725	-0.0309	8.1	1.7669	1.7659
10	53.244	1	0	8	53.277	-0.0327	6.7	1.7190	1.7180
11	53.992	2	0	1	53.988	0.0042	5.6	1.6970	1.6971

Таблица П8. Индицирование Ni₂FeGaTe₂.

12	56.594	2	0	3	56.604	-0.0097	15.7	1.6250	1.6247
13	58.296	1	1	6	58.290	0.0061	14.6	1.5815	1.5816
14	58.802	1	0	9	58.788	0.0137	13.8	1.5691	1.5694
	2	0 4	1	58.8	829 -0.0	274		1.5684	
15	64.916	2	0	6	64.927	-0.0108	14.5	1.4353	1.4351
16	68.763	2	0	7	68.728	0.0356	5.1	1.3641	1.3647
17	71.064	0	0	12	71.063	0.0014	9.3	1.3255	1.3255
18	73.604	2	1	1	73.594	0.0095	5.3	1.2859	1.2860
19	75.827	2	1	3	75.823	0.0034	9.7	1.2536	1.2536
20	77.696	2	0	9	77.720	-0.0233	7.4	1.2280	1.2277
	Таб.	лиц	aП	[11.	Индици	рование	Ni _{2.6} Fe	e0.2GaTe2	
P63/n	nmc, a = 3	3.93	53(13),	c = 15.8		= 213.0	D2(12), F	(21) = 47.3
N	2Th[obs]	Н	K	T	2Th[cal	c] obs-ca	alc Int	d[obs]	d[calc]
1	11 135	0	0	2	<u>11 132</u>	0.0024	17.6	7 9399	7 9415
2	22 350	0	0	<u>-</u>	22 372	-0 0214	10.7	3 9745	3 9708
2	26.132	1	0	0	26 126	0.0214	7 3	3 4073	3 4081
<u> </u>	26.132	1	0	1	26.120	0.0036	22.5	3 3 3 1 2	3 3377
- + -5	20.740	1	0	2	20.731	0.0000	6.8	3 1311	3 1310
6	20.404	1	0	2	20.4//	0.0073	100.0	2 8651	2 8657
7	33.207	1	0	5	33,824	0.0034	18.2	2.0034	2.0037
/ 0	12 240	1	0	6	<u> </u>	0.0075	50.4	2.0400	2.0472
0	45.249	1	1	0	45.241	0.0085	52.0	2.0902	2.0900
9	40.102	1	1	7	40.095	0.0090	33.0	1.90/5	1.90//
10	48.14/	1	1	/	48.139	0.0083	12.2	1.8884	1.888/
11	51./55	1	1	4	52.2(1	-0.0588	5.9	1.7159	1.7155
12	53.352	1	0	8	54.092	-0.0093	4.4	1./158	1./100
13	54.095	2	0	1	54.083	0.0118	5.2	1.6940	1.6943
14	50.700	2	1	3	50.703	-0.0033	14.8	1.6222	1.6221
15	58.395	1	1	6	58.390	0.0053	12.1	1.5/91	1.5/92
16	58.898	1	0	9	58.883	0.0152	14.2	1.5668	1.56/1
17	2	$\frac{0}{2}$	+	<u> 58.5</u>	932 -0.0	347	10.7	1.5659	1 4220
17	65.051	2	0	6	65.041	0.0096	12.7	1.4327	1.4328
18	68.840	2	0	10	68.850	-0.0103	3.8	1.3628	1.3626
19	/1.186	0	0	12	71.179	0.0069	6.7	1.3235	1.3236
20	75.976	2	1	3	75.968	0.0084	9.4	1.2515	1.2516
21	77.873	2	0	9	·//.861	0.0120	6.9	1.2257	1.2259
	2	1 4	+	77.9	905 -0.0	317		1.2253	
D4	1 80.	ЛИЦ - 2 О	a 11	$\frac{112}{2}$		POBAHUE	-212	$\frac{1}{3}$ $E(1)$	$\frac{1}{4} = 25.1$
I U3	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	- 3.9	·JJ 	(4),	$\frac{13.00}{200}$	J 1	- 213.	1(J), F(I	-23.1
IN 1	$2 \ln[obs]$	H	K	<u> </u>	$\frac{11122}{11121}$	$\frac{ c }{0}$ obs-ca	$\frac{100}{20}$	$\frac{1}{70005}$	
1	11.191	0	0	2	11.131	0.0592	29.6	/.9005	/.9424
2	22.363	0	0	4	22.369	-0.0060	14.6	3.9722	3.9712
3	26.700	1	0	1	26.728	-0.0280	25.4	3.3361	3.3327
4	31.172	1	0	3	31.182	-0.0101	100.0	2.8670	2.8661
5	33.805	0	0	6	33.831	-0.0258	21.5	2.6494	2.6475
6	43.224	1	0	6	43.235	-0.0118	60.3	2.0914	2.0909
7	46.067	1	1	0	46.086	-0.0196	43.6	1.9687	1.9679
8	48.146	1	0	7	48.133	0.0129	10.9	1.8885	1.8889
9	51.801	1	1	4	51.806	-0.0047	7.0	1.7635	1.7633
10	56.701	2	0	3	56.694	0.0065	14.6	1.6221	1.6223

	11	58.387	7 1	1	6	58.381	0.0055	15.6	1.5793	1.5794
	12	58.880) 1	0	9	58.875	0.0044	18.4	1.5672	1.5673
		2	0 4	4	58.9	923 -0.0	439		1.5662	
	13	65.042	2 2	0	6	65.032	0.0101	12.8	1.4328	1.4330
	14	75.967	7 2	1	3	75.955	0.0120	12.5	1.2516	1.2518
Га	бли	ца П13.	Инд	ици	іроі	вание Ni	_{1.8} Fe _{1.2} Ga	$Te_2 \pi o$	сле трети	ьего отжига
ŀ	P63/n	nmc, a =	3.96	94(17),	, c = 15.9	16(5), V	= 217.1	18(17), F	(23) = 28.5
	Ν	2Th[obs	5] H	K	L	2Th[cal	lc] obs-c	alc In	t. d[obs]] d[calc]
	1	11.122	0	0	2	11.109	0.0128	17.0	7.9490	7.9581
	2	22.323	0	0	4	22.325	-0.0015	12.4	3.9793	3.9791
	3	25.883	1	0	0	25.898	-0.0152	7.6	3.4396	3.4376
	4	26.483	1	0	1	26.506	-0.0230	28.8	3.3630	3.3601
	5	28.253	1	0	2	28.257	-0.0033	9.0	3.1561	3.1557
	6	30.949	1	0	3	30.973	-0.0234	100.0	2.8871	2.8849
	7	33.772	0	0	6	33.762	0.0098	20.4	2.6520	2.6527
	8	38.541	1	0	5	38.514	0.0272	5.8	2.3340	2.3356
	9	43.032	1	0	6	43.036	-0.0035	77.1	2.1003	2.1001
	10	45.653		1	0	45.675	-0.0227	64.3	1.9856	1.9847
	11	47.943	$\frac{3}{4}$ 1	0	7	47.931	0.0124	16.5	1.8960	1.8964
-	12	51.454	$\frac{4}{2}$ 1	1	4	51.408	0.0458	6.5	1.7/45	1.7760
	13	53.19	9 1	0	$\frac{8}{52}$	$\frac{53.14}{252}$	0.0521	5.3	1.7100	1./219
	1 /	<u> </u>	$\frac{0}{2}$		33.2	$\frac{252}{52}$ -0.0	0.0159	5 5	1./188	1 7090
	14	55.00	$\frac{2}{2}$	0	1	55.580	0.0158	5.5	1./084	1.7089
	15	57.082	<u>) 2</u> 7 1	1	5	57.090	-0.0233	17.2	1.0337	1.0331
	10	59 647	<u> </u>	1	0	58 650	-0.0019	13.9	1.3892	1.5691
	17	64 526		0	9	64 461	-0.0122	19.0	1.3729	1.3720
	10	2		6	64	<u>554</u> -0 0	0.00+3 087	17.5	1 4425	1.773
	19	68 42	$\frac{0}{2}$	0	7	<u>68 361</u>	0.0610	57	1 3700	1 3711
	20	70 993	$\frac{2}{0}$	0	12	71 009	-0.0157	$\frac{105}{105}$	1.3766	1 3264
	20	73.029	9 2	1	12	73.002	0.0271	6.2	1.2946	1.2950
	22	75.193	$\frac{2}{3}$ 2	1	3	75.235	-0.0419	13.3	1.2626	1.2620
	23	77.33	5 2	0	9	77.359	-0.0239	7.8	1.2329	1.2326
1		Ta	 блиц	a I	<u></u>	Индици	рование	Ni _{2.8} Fe	$e_{0.2}SnTe_2$	•
	P	63/mmc, a	n = 3.9	974	6(11), $c = 15.'$	788(4), V	= 216.0	0(7), F(10)) = 36.6
	1	N 2Th[o	bs]	Н	<u>K</u>	L 2Th[ca	lc] obs-ca	lc Int.	d[obs]	d[calc]
		1 11.17	74 () ()	2	11.200	-0.0257	13.1	7.9122	7.8941
		2 22.53	32 () ()	4	22.508	0.0246	13.0 3	3.9428	3.9471
		3 31.01	9 1	0	3	31.019	-0.0000	100.0	2.8807	2.8807
		4 34.04	16 () ()	6	34.044	0.0022	44.5 2	2.6312 2	2.6314
		5 43.24	16 I		6	43.243	0.0028	67.8 2	2.0904 2	2.0905
<u> </u>		<u>6 45.62</u>	$\frac{12}{15}$	$\frac{1}{2}$	0	45.611	0.0101	36.8	1.9869 1	.9873
_		/ 56.19	<i>i i i</i>	2 0	5	50.185	0.0105	19.3	1.0333	.0338
<u> </u>		<u>8 58.10</u>			6	50.055	-0.0211	15.8	1.5864	5620
-		<u>y 59.03</u>	55	$\frac{1}{2}$	<u>y</u>	59.055	0.0024	28.0	1.3029	1 4402
		10 04.6	33	2 (10	04.001	-0.0036	13.1	1.4403	1.4403

D	I u 0011	2 0755()	1) - 15			20(7) E(10) 25.2
P63/	$\frac{a}{a}$	<u>3.9/55(</u>	(1), c = 15.	. <u>796(4), /</u>	= 216.	<u>20(7), F(</u>	10) = 35.2
N	21h[obs]		$\frac{L}{21}$ $\frac{11}{104}$	$\frac{100}{0}$ obs-c	$\frac{12}{125}$	$\frac{t}{7} \frac{d[obs]}{2}$	
1	11.213	0 0 .	2 11.194	0.0206	12.5	7.8833	7.8978
2	22.470	$\frac{0}{1}$	+ 22.497	-0.0276	12.0	3.9537	3.9489
3	31.003	$\frac{10}{00}$	31.010	-0.0066	100.0	2.8821	2.8815
4	34.030	$\frac{0}{1}$	5 34.028	0.0025	44.5	2.6324	2.0320
5	43.230	1 0	43.226	0.0038	6/.8	2.0911	2.0913
6	45.606	$\frac{1}{2}$	$\frac{3}{2}$ 45.601	0.0049	36.8	1.9876	1.9878
/	56.180	20	<u> </u>	0.0096	19.2	1.6360	1.6362
8	58.084		<u>58.101</u>	-0.0174	13.8	1.5868	1.5863
9	59.042	$\frac{1}{2}$ 0	$\frac{9}{6}$ 59.028	0.0132	28.7	1.5633	1.5636
10	64.63/	2 0	$\frac{6}{6}$ 64.640	-0.0031	13.1	1.4408	1.4408
	Таоли	<u>ица III</u>	6. Индиц	ирование	12.41	$e_{0.6}$ SnTe	e ₂ .
P63	$\frac{mmc, a}{mmc, a}$	<u>3.9847(</u>	10), c = 15	<u>.818 (2), J</u>	V = 217	7.52(7), F	(7) = 47.7
N	2Th[obs]	HK	L 2Th[ca	<u>ilc] obs-c</u>	alc In	t. d[obs]	d[calc]
<u> </u>	11.172	0 0 2	2 11.178	-0.0060	24.1	7.9136	7.9093
2	22.461	0 0 4	22.464	-0.0032	16.5	3.9552	3.9547
3	30.950	1 0	3 30.945	0.0059	47.7	2.8869	2.8875
4	33.980	0 0 6	33.976	0.0039	100.0	2.6362	2.6364
5	43.157	1 0	<u>5 43.146</u>	0.0117	33.3	2.0945	2.0950
6	45.485	1 1 () 45.489	-0.0047	17.3	1.9926	1.9924
7	58.914	1 0 9	9 58.922	-0.0075	23.6	1.5664	1.5662
	Табли	ща П1'	7. Индиці	ирование	$e \operatorname{Ni}_{2.8}$	Cu _{0.2} GaT	e _{2.}
P6 ₃	/mmc, a =	3.945(2), $c = 15.7'$	71(5), V =	212.65	5(13), F(1	(1) = 27.8
N	2Th[obs]	ΗK	L 2Th[ca	ulc] obs-c	alc In	t. d[obs]	d[calc]
1	11.234	0 0 2	2 11.212	0.0218	20.7	7.8700	7.8853
2	22.509	0 0 4	4 22.534	-0.0241	31.3	3.9468	3.9426
3	26.674	1 0	1 26.670	0.0041	22.3	3.3392	3.3397
4	31.193	1 0	3 31.193	0.0002	86.3	2.8651	2.8651
5	34.069	0 0	5 34.083	-0.0142	78.8	2.6295	2.6284
6	43.387	106	43,398	-0.0106	100.0	2.0839	2.0834
7	15.507	1 1) 15.063	0.0132	/1 0	1 0724	1 0720
/	43.970	$\frac{1}{0}$	<u> </u>	0.0132	41.9	1.9724	1.9729
0	49.271	$\frac{084}{104}$	$\frac{0.003}{7}$ -0.0	0270	21.0	1.9/13	1 0000
8	48.3/1	1 0	48.351	0.0208	21.8	1.8802	1.8809
9	56.616	2 0	3 56.595	0.0209	18.5	1.6244	1.6249
10	58.400	1 1	6 58.443	-0.0424	21.2	1.5789	1.5779
11	59.234	1 0	9 59.211	0.0235	33.3	1.5587	1.5592
	1	0 10 6	5.088 O.	0036		1.4319	
	Табли	ца П1	8. Индици	ирование	e Ni _{2.6} 0	Cu _{0.4} GaT	e _{2.}
P63/1	mmc, a = 3	3.9523(1	7), c = 15.	702(5), V	= 212.4	41(11), F((12) = 21.7
N	2Th[obs]	ΗK	L 2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]
1	11.289	0 0	2 11.261	0.0276	39.9	7.8319	7.8510
$\frac{1}{2}$	22 643	0.0	4 22 633	0.0104	42.8	3,9237	3 9255
2	22.013	1 0	1 26.621	0.0109	24.5	3 3/10	3 3443
	20.032	1 0	20.034	0.0100	24.J	2.2417	2.9646
4	31.160	1 0 .	51.198	-0.03/4	92.1	2.8080	2.8040
5	34.210	006	34.236	-0.0266	100.0	2.6190	2.6170
6	43.461	1 0	6 43.496	-0.0350	95.1	2.0806	2.0790
7	45.896	1 1	0 45.884	0.0122	43.1	1.9756	1.9761

Таблица П15. Индицирование Ni_{2.6}Fe_{0.4}SnTe₂.

8	48.483	1	0	7	48.482	0.0009	27.0	1.8761	1.8761
9	56.502	2	0	3	56.530	-0.0284	22.7	1.6274	1.6266
10	58.507	1	1	6	58.477	0.0301	24.4	1.5763	1.5770
11	59.433	1	0	9	59.414	0.0190	30.6	1.5539	1.5544
12	65.076	2	0	6	65.068	0.0084	22.2	1.4321	1.4323
	T . 6		П1	10	17		NI: C		-

Таблица П19. Индицирование Ni_{2.6}Cu_{0.4}GaTe_{2.}

P6 ₃ /1	$P6_{3}/mmc$, $a = 3.9595(10)$, $c = 15.751(4)$, $V = 213.86(7)$, $F(14) = 34.8$													
N	2Th[obs]	Η	k	C I	2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]					
1	11.231	0	0	2	11.226	0.0047	13.9	7.8724	7.8757					
2	22.542	0	0	4	22.561	-0.0198	15.3	3.9412	3.9378					
3	26.590	1	0	1	26.583	0.0071	27.1	3.3496	3.3505					
4	31.147	1	0	3	31.127	0.0201	100.0	2.8692	2.8710					
5	34.117	0	0	6	34.126	-0.0090	23.8	2.6259	2.6252					
6	43.375	1	0	6	43.375	0.0007	74.8	2.0844	2.0845					
7	45.812	1	1	0	45.796	0.0158	61.3	1.9791	1.9797					
8	48.357	1	0	7	48.341	0.0159	16.6	1.8807	1.8813					
9	51.612	1	1	4	51.634	-0.0220	10.3	1.7695	1.7688					
10	53.703	2	0	1	53.736	-0.0330	12.2	1.7054	1.7044					
11	56.403	2	0	3	56.411	-0.0077	19.5	1.6300	1.6298					
12	58.353	1	1	6	58.330	0.0230	21.0	1.5801	1.5807					
13	59.214	1	0	9	59.227	-0.0129	20.9	1.5592	1.5588					
14	64.924	2	0	6	64.907	0.0171	21.4	1.4351	1.4355					

Таблица П20. Индицирование Ni_{2.6}Cu_{0.4}GaTe_{2.}

								-		
P63/m	amc, a = 3.	956	59(7	7), a	e = 15.76	19(23), V	= 213.'	72(5), F(12) = 57.0	
Ν	2Th[obs]	Н	ŀ	C I	L 2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]	
1	11.227	0	0	2	11.218	0.0082	15.7	7.8752	7.8809	
2	22.544	0	0	4	22.546	-0.0022	18.8	3.9409	3.9405	
3	26.605	1	0	1	26.599	0.0059	28.0	3.3478	3.3486	
4	31.137	1	0	3	31.135	0.0021	100.0	2.8701	2.8702	
5	34.088	0	0	6	34.102	-0.0144	26.6	2.6281	2.6270	
6	43.375	1	0	6	43.366	0.0087	79.8	2.0845	2.0849	
7	45.825	1	1	0	45.827	-0.0020	62.4	1.9785	1.9785	
8	48.318	1	0	7	48.327	-0.0087	18.7	1.8821	1.8818	
9	56.424	2	0	3	56.443	-0.0187	21.1	1.6295	1.6290	
10	58.339	1	1	6	58.341	-0.0023	20.2	1.5804	1.5804	
11	59.206	1	0	9	59.201	0.0051	24.7	1.5593	1.5595	
12	64.944	2	0	6	64.925	0.0187	22.6	1.4347	1.4351	
	Тоблиц		пγ	1 1	A		Ni. C	L. CoTo		

Таблица І	[[2]. Инд	ицирование	$N_{12.4}Cu_{0.6}GaTe_2.$	
/ 20	(0(2)		A1 + A(3) = E(13)	-

	P6	6₃/ <i>mmc</i> , a =	= 3.	968	8(3)	, c = 15.7	765(9), V	= 214.9	9(3), F(13	(3) = 28.5
]	Ν	2Th[obs]	Н	ŀ	ΚI	2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]
	1	11.163	0	0	2	11.216	-0.0533	13.6	7.9199	7.8823
	2	22.567	0	0	4	22.542	0.0249	15.8	3.9369	3.9412
	3	26.531	1	0	1	26.528	0.0025	32.2	3.3570	3.3573
	4	31.091	1	0	3	31.073	0.0182	100.0	2.8742	2.8759
	5	34.130	0	0	6	34.096	0.0335	21.0	2.6249	2.6274
	6	43.326	1	0	6	43.316	0.0100	75.3	2.0867	2.0872
	7	45.683	1	1	0	45.696	-0.0126	72.5	1.9844	1.9838

8	48.279	1	0	7	48.279	-0.0000	16.7	1.8836	1.8836				
9	51.549	1	1	4	51.533	0.0164	12.5	1.7715	1.7720				
10	56.297	2	0	3	56.291	0.0058	23.1	1.6328	1.6330				
11	58.205	1	1	6	58.226	-0.0212	22.0	1.5838	1.5832				
12	59.129	1	0	9	59.156	-0.0269	22.3	1.5612	1.5606				
13	64.786	2	0	6	64.783	0.0028	22.5	1.4379	1.4379				
	Табли	ца	П2	22.]	Индици	рование	Ni _{2.4} C	Cu _{0.6} GaT	e ₂ .				
P6 ₃ /n	nmc, a = 3	.97	92(18),	<i>c</i> = 15.7	68(6), V:	= 216.2	22(11), F((12) = 26.7				
N	2Th[obs]	Η	K	L	2Th[cal	c] obs-ca	alc Int	. d[obs]	d[calc]				
1	11.227	0	0	2	11.214	0.0135	15.6	7.8746	7.8841				
2	22.508	0	0	4	22.537	-0.0293	20.5	3.9471	3.9420				
3	26.452	1	0	1	26.454	-0.0013	34.8	3.3668	3.3666				
4	31.017	1	0	3	31.006	0.0104	100.0	2.8809	2.8819				
5	34.093	0	0	6	34.088	0.0047	28.1	2.6277	2.6280				
6	43.262	1	0	6	43.261	0.0014	83.0	2.0896	2.0897				
7	45.530	1	1	0	45.557	-0.0269	62.5	1.9907	1.9896				
8	48.226	1	0	7	48.226	0.0002	23.0	1.8855	1.8855				
9	56.186	2	0	3	56.130	0.0562	23.5	1.6358	1.6373				
10	58.095	1	1	6	58.104	-0.0086	21.9	1.5865	1.5863				
11	59.123	1	0	9	59.106	0.0173	25.0	1.5613	1.5618				
12	64.593	2	0	6	64.631	-0.0377	24.2	1.4417	1.4409				
Таблица П23. Индицирование Ni _{2.8} Cu _{0.2} SnTe ₂ .													
$P6_{3}/mmc, a = 4.0000(3), c = 15.8233(6), V = 219.25(2), F(25) = 62.5$													
N	2Th[obs]	Η	K	L	2Th[cal	c] obs-ca	alc Int	. d[obs]	d[calc]				
1	11.174	0	0	2	11.175	-0.0004	48.6	7.9120	7.9117				
1 2	11.174 22.458	0	0	2 4	11.175 22.457	-0.0004 0.0006	48.6	7.9120 3.9557	7.9117 3.9558				
$ \begin{array}{r} 1\\ 2\\ 3\end{array} $	11.17422.45830.863	0 0 1	0 0 0	2 4 3	11.175 22.457 30.857	-0.0004 0.0006 0.0057	48.6 15.1 100.0	7.9120 3.9557 2.8949	7.9117 3.9558 2.8955				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ \end{array} $	11.17422.45830.86333.964	0 0 1 0	0 0 0	2 4 3 6	11.17522.45730.85733.966	-0.0004 0.0006 0.0057 -0.0017	48.6 15.1 100.0 81.0	7.9120 3.9557 2.8949 2.6374	7.9117 3.9558 2.8955 2.6372				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $	11.17422.45830.86333.96443.070	0 0 1 0 1	0 0 0 0	2 4 3 6 6	11.17522.45730.85733.96643.074	-0.0004 0.0006 0.0057 -0.0017 -0.0041	48.6 15.1 100.0 81.0 68.5	7.9120 3.9557 2.8949 2.6374 2.0985	7.9117 3.9558 2.8955 2.6372 2.0983				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302	0 0 1 0 1 1	0 0 0 0 1	2 4 3 6 6 0	11.175 22.457 30.857 33.966 43.074 45.306	-0.0004 0.0006 0.0057 -0.0017 -0.0041 -0.0039	48.6 15.1 100.0 81.0 68.5 28.4	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002	7.9117 3.9558 2.8955 2.6372 2.0983 2.0000				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7 \end{array} $	11.17422.45830.86333.96443.07045.30245.842	0 0 1 0 1 1 0	0 0 0 0 1 0	2 4 3 6 6 0 8	11.175 22.457 30.857 33.966 43.074 45.306 45.841	-0.0004 0.0006 0.0057 -0.0017 -0.0041 -0.0039 0.0014	48.6 15.1 100.0 81.0 68.5 28.4 4.3	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779	7.9117 3.9558 2.8955 2.6372 2.0983 2.0000 1.9779				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 8 \\ 7 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \\ 7 7 \\ 7 7 \\ 7 7 7 7 7 $	11.17422.45830.86333.96443.07045.30245.84248.003	0 1 0 1 1 0 1 1 0	0 0 0 1 0 0	2 4 3 6 6 0 8 7	11.17522.45730.85733.96643.07445.30645.84148.021	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938	7.9117 3.9558 2.8955 2.6372 2.0983 2.0000 1.9779 1.8931				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.293	0 1 0 1 1 0 1 1 1 1	0 0 0 0 1 0 0 0 0	2 4 3 6 0 8 7 8	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176	7.9117 3.9558 2.8955 2.6372 2.0983 2.0000 1.9779 1.8931 1.7176				
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.833	0 0 1 0 1 1 0 1 1 1 2	0 0 0 0 1 0 0 0 0 0	2 4 3 6 6 6 0 8 7 8 3	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.6456				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.83357.813	0 0 1 0 1 1 0 1 1 1 2 1	0 0 0 1 0 0 0 0 0 0 1	2 4 3 6 6 0 8 7 8 7 8 3 3 6	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.5936				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854	0 0 1 0 1 1 1 1 1 2 1 1 1	0 0 0 0 1 0 0 0 0 0 1 0 0	2 4 3 6 6 0 8 7 8 3 6 9	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856	-0.0004 0.0057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.5678				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288	0 1 1 1 1 1 1 1 1 1 1 2 1 1 2	0 0 0 1 0 0 0 0 0 1 0 0 0 0	2 4 3 6 6 0 8 7 8 3 6 9 6	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.4477				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288 64.729	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0 1 0 0 0 0 0 0	2 4 3 6 0 8 7 8 8 3 6 9 6 10	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478 1.4390	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.4393				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288 64.729 70.868	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2 4 3 6 6 0 8 7 8 3 6 9 6 10 11	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478 1.4390 1.3286	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.3285				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288 64.288 64.729 70.868 71.500	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2 4 3 6 6 0 8 7 8 3 6 9 6 10 11 12	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489	-0.0004 0.0057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5936 1.5678 1.4478 1.4390 1.3286 1.3184	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.3186				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.83357.81358.85464.28864.72970.86871.50074.634	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\$	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 2 \\ 4 \\ 3 \\ 6 \\ 6 \\ 0 \\ 8 \\ 7 \\ 8 \\ 3 \\ 6 \\ 9 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \end{array} $	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0052	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478 1.4390 1.3286 1.3184 1.2707	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.2707				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.83357.81358.85464.28864.72970.86871.50074.63477.264	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 2\\ 4\\ 3\\ 6\\ 0\\ 8\\ 7\\ 8\\ 3\\ 6\\ 9\\ 6\\ 10\\ 11\\ 12\\ 3\\ 9\\ 9 \end{array} $	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628 77.261	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0052 0.0025	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2 8.8	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5936 1.5936 1.4478 1.4390 1.3286 1.3184 1.2707 1.2338	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.27071.2339				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 19 \\ 11 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.83357.81358.85464.28864.72970.86871.50074.63477.26482.116	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{r} 2 \\ 4 \\ 3 \\ 6 \\ 6 \\ 0 \\ 8 \\ 7 \\ 8 \\ 3 \\ 6 \\ 9 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 6 \\ 10$	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628 77.261 82.119	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0109 0.0052 0.0026 -0.0034	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2 8.8 6.8	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478 1.4390 1.3286 1.3184 1.2707 1.2338 1.1728	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.27071.23391.1727				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288 64.729 70.868 71.500 74.634 77.264 82.116 83.682	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 2\\ 4\\ 3\\ 6\\ 0\\ 8\\ 7\\ 8\\ 3\\ 6\\ 9\\ 6\\ 10\\ 11\\ 12\\ 3\\ 9\\ 6\\ 0\\ 0\\ \end{array} $	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628 77.261 82.119 83.688	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0052 0.0026 -0.0034 -0.0057	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2 8.8 6.8 3.1	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.4478 1.4390 1.3286 1.3184 1.2707 1.2338 1.1728 1.1548	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.27071.23391.17271.1547				
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array} $	11.17422.45830.86333.96443.07045.30245.84248.00353.29355.83357.81358.85464.28864.72970.86871.50074.63477.26483.68284.260	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 2 \\ 4 \\ 3 \\ 6 \\ 6 \\ 0 \\ 8 \\ 7 \\ 8 \\ 3 \\ 6 \\ 9 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 0 \\ 13 \\ \end{array}$	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628 77.261 82.119 83.688 84.255	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0109 0.0052 0.0026 -0.0034 -0.0057 0.0046	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2 8.8 6.8 3.1 2.8	7.91203.95572.89492.63742.09852.00021.97791.89381.71761.64531.59361.56781.44781.43901.32861.31841.27071.23381.17281.15481.1483	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.27071.23391.17271.15471.1484				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.174 22.458 30.863 33.964 43.070 45.302 45.842 48.003 53.293 55.833 57.813 58.854 64.288 64.729 70.868 71.500 74.634 77.264 82.116 83.682 84.260 88.819	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2$	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 2 \\ 4 \\ 3 \\ 6 \\ 6 \\ 0 \\ 8 \\ 7 \\ 8 \\ 3 \\ 6 \\ 9 \\ 6 \\ 10 \\ 11 \\ 12 \\ 3 \\ 9 \\ 6 \\ 0 \\ 13 \\ 12 \\ \end{array}$	11.175 22.457 30.857 33.966 43.074 45.306 45.841 48.021 53.290 55.822 57.813 58.856 64.292 64.714 70.877 71.489 74.628 77.261 82.119 83.688 84.255 88.808	-0.0004 0.00057 -0.0017 -0.0041 -0.0039 0.0014 -0.0182 0.0027 0.0111 0.0004 -0.0020 -0.0036 0.0148 -0.0090 0.0109 0.0052 0.0026 -0.0034 -0.0037 0.0046 0.0111	48.6 15.1 100.0 81.0 68.5 28.4 4.3 5.6 2.6 11.1 7.7 38.9 8.4 2.1 3.2 57.2 7.2 8.8 6.8 3.1 2.8 11.3	7.9120 3.9557 2.8949 2.6374 2.0985 2.0002 1.9779 1.8938 1.7176 1.6453 1.5936 1.5678 1.5678 1.4478 1.4390 1.3286 1.3184 1.2707 1.2338 1.1728 1.1548 1.1548 1.1483 1.1008	7.91173.95582.89552.63722.09832.00001.97791.89311.71761.64561.59361.56781.44771.43931.32851.31861.27071.23391.17271.15471.14841.1009				

24	94.369	2	1	9	94.369	-0.0005	6.8	1.0501	1.0501
25	99.526	1	0	15	99.516	0.0095	7.4	1.0091	1.0091
	Табли	ца	П2	24.]	Индици	рование	Ni _{2.6} C	Cu _{0.4} SnT	e ₂ .
P63/m	mc, a = 4	.01()5(4), <i>a</i>	c = 15.84	20(10), <i>V</i>	= 220	.66(4), F	(28) = 63.0
N 2	2Th[obs]	Η	Κ	L	2Th[cal	c] obs-ca	alc In	t. d[obs]	d[calc]
1	11.159	0	0	2	11.161	-0.0026	53.0	7.9228	7.9210
2	22.434	0	0	4	22.431	0.0036	11.8	3.9599	3.9605
3	30.794	1	0	3	30.788	0.0055	97.6	2.9013	2.9018
4	33.927	0	0	6	33.925	0.0019	94.1	2.6402	2.6403
5	42.998	1	0	6	42.997	0.0016	100.0	2.1018	2.1019
6	45.196	1	1	0	45.181	0.0149	24.1	2.0046	2.0052
7	45.771	0	0	8	45.784	-0.0120	5.4	1.9807	1.9802
8	47.933	1	0	7	47.939	-0.0064	4.2	1.8964	1.8961
9	53.191	1	0	8	53.202	-0.0111	2.3	1.7206	1.7203
10	55.679	2	0	3	55.672	0.0072	7.6	1.6495	1.6497
11	57.677	1	1	6	57.681	-0.0039	10.2	1.5970	1.5969
12	58.761	1	0	9	58.761	0.0003	46.0	1.5701	1.5701
13	64.125	2	0	6	64.134	-0.0091	13.9	1.4511	1.4509
14	64.606	1	0	10	64.611	-0.0046	4.1	1.4414	1.4413
15	70.765	1	0	11	70.764	0.0015	2.4	1.3303	1.3303
16	71.400	0	0	12	71.392	0.0081	18.0	1.3200	1.3202
17	74.407	2	1	3	74.407	-0.0003	5.5	1.2740	1.2740
18	77.092	2	0	9	77.087	0.0050	5.4	1.2362	1.2362
19	77.237	1	0	12	77.249	-0.0125	2.2	1.2342	1.2340
20	81.890	2	1	6	81.887	0.0028	6.0	1.1754	1.1755
21	83.430	3	0	0	83.419	0.0110	3.4	1.1576	1.1577
22	84.124	1	0	13	84.117	0.0064	3.7	1.1498	1.1499
23	88.635	1	1	12	88.628	0.0080	34.3	1.1026	1.1027
24	91.449	1	0	14	91.443	0.0058	1.6	1.0759	1.0759
25	93.175	3	0	6	93.189	-0.0144	1.7	1.0604	1.0603
26	94.111	2	1	9	94.109	0.0015	4.7	1.0523	1.0523
27	94.246	2	0	12	94.268	-0.0223	1.2	1.0511	1.0510
28	99.354	1	0	15	99.341	0.0133	20.7	1.0103	1.0104
	Табли	ца	П2	25.]	Индици	рование	Ni _{2.4} C	Cu _{0.6} SnT	e ₂ .
P63/m	amc, a=4	.006	67(.	3), a	c = 15.85	61(11), V	r = 220	.44(2), F	(24) = 78.3
N 2	2Th[obs]	Н	Κ	L	2Th[cal	c] obs-ca	alc In	t. d[obs]	d[calc]
1	11.153	0	0	2	11.151	0.0013	2.1	7.9272	7.9281
2	22.414	0	0	4	22.410	0.0039	0.4	3.9634	3.9640
3	25.662	1	0	0	25.652	0.0093	0.8	3.4687	3.4699
4	26.273	1	0	1	26.270	0.0027	0.9	3.3894	3.3897
5	30.796	1	0	3	30.800	-0.0044	100.0	2.9011	2.9007
6	33.883	0	0	6	33.894	-0.0101	2.7	2.6435	2.6427
7	42.994	1	0	6	42.987	0.0070	22.1	2.1021	2.1024
8	45.226	1	1	0	45.226	0.0004	34.9	2.0033	2.0034
9	46.735	1	1	2	46.730	0.0049	0.7	1.9421	1.9423
10	47.923	1	0	7	47.921	0.0021	0.7	1.8967	1.8968
11	51.024	1	1	4	51.039	-0.0147	1.1	1.7885	1.7880

12 53.180 1 0 8 53.177 0.0032 0.5 1.7209 1.7210													
13 55.713 2 0 3 55.718 -0.0044 23.1 1.6485 1.6484													
14 57.692 1 1 6 57.697 -0.0057 6.0 1.5966 1.5965													
15 58.721 1 0 9 58.728 -0.0064 4.4 1.5711 1.5709													
16 64.166 2 0 6 64.162 0.0044 6.4 1.4502 1.4503													
17 66.275 1 1 8 66.283 -0.0081 0.3 1.4091 1.4090													
18 68.013 2 0 7 68.009 0.0040 0.5 1.3773 1.3774													
19 70.709 1 0 11 70.713 -0.0037 0.3 1.3312 1.3312													
20 71.310 0 0 12 71.319 -0.0087 1.3 1.3215 1.3213													
21 74.474 2 1 3 74.479 -0.0051 14.0 1.2730 1.2729													
22 77.124 2 0 9 77.090 0.0336 1.9 1.2357 1.2362													
23 81.949 2 1 6 81.944 0.0049 5.9 1.1747 1.1748													
24 83.505 3 0 0 83.515 -0.0104 9.3 1.1568 1.1566													
Таблица П26. Индицирование Ni ₃ Ga _{0.25} Sn _{0.75} Te ₂ .													
$P_{6_3/mmc, a} = 3.974(3), c = 15.756(8), V = 215.5(3), F(8) = 39.7$													
N 2Th[obs] H K L 2Th[calc] obs-calc Int. d[obs] d[calc]													
1 31.045 1 0 3 31.043 0.0017 100.0 2.8784 2.8785													
2 34.132 0 0 6 34.116 0.0153 23.3 2.6248 2.6259													
3 43.291 1 0 6 43.306 -0.0147 50.7 2.0883 2.0876													
4 45.619 1 1 0 45.620 -0.0018 38.0 1.9870 1.9870													
5 56.199 2 0 3 56.207 -0.0083 19.3 1.6354 1.6352													
6 58.170 1 1 6 58.176 -0.0057 15.0 1.5846 1.5845													
7 59.156 1 0 9 59.164 -0.0081 22.0 1.5605 1.5604													
8 64.737 2 0 6 64.715 0.0213 13.2 1.4388 1.4393													
Таблица П27. Индицирование Ni ₃ Ga _{0.5} Sn _{0.5} Te ₂ .													
$P6_{3}/mmc$, $a = 3.9592(17)$, $c = 15.769(5)$, $V = 214.06(17)$, $F(13) = 44.8$													
N 2Th[obs] H K L 2Th[calc] obs-calc Int. d[obs] d[calc]													
1 11.208 0 0 2 11.214 -0.0050 4.7 7.8878 7.8843													
2 22.546 0 0 4 22.536 0.0102 6.7 3.9404 3.9421													
3 26.603 1 0 1 26.584 0.0194 7.5 3.3480 3.3504													
4 31.094 1 0 3 31.118 -0.0247 100.0 2.8740 2.8717													
5 34.093 0 0 6 34.087 0.0058 11.7 2.6277 2.6281													
6 43.336 1 0 6 43.345 -0.0085 59.0 2.0862 2.0858													
7 45.785 1 1 0 45.800 -0.0146 46.4 1.9802 1.9796													
8 48.300 1 0 7 48.303 -0.0028 3.8 1.8828 1.8827													
9 51.634 1 1 4 51.625 0.0084 2.9 1.7688 1.7691													
10 53.613 1 0 8 53.587 0.0260 3.9 1.7081 1.7088													
11 56.412 2 0 3 56.409 0.0038 20.8 1.6298 1.6299													
12 58.302 1 1 6 58.308 -0.0058 16.4 1.5813 1.5812													
13 59.149 1 0 9 59.172 -0.0226 19.5 1.5607 1.5602													
14 64.897 2 0 6 64.887 0.0104 16.3 1.4357 1.4359													
Таблица П28. Индицирование Ni ₃ Ga _{0.6} Sn _{0.4} Te ₂ .													
$P_{6,mmc}$, $a = 3.9482(12)$, $c = 15.742(4)$, $V = 212.51(12)$, $F(12) = 54.1$													

P63/	P_{03}/mmc , $a = 3.9482(12)$, $c = 15.742(4)$, $v = 212.51(12)$, $F(12) = 54.1$													
Ν	2Th[obs]	Η	Κ	L 2Th[ca	lc] obs-ca	alc Int. d[obs] d[calc]							
1	11.229	0	0 2	11.232	-0.0038	13.5 7.8738	7.8711							
2	22.566	0	0 4	22.575	-0.0086	14.3 3.9370	3.9355							
3	26.667	1	0 1	26.658	0.0096	16.8 3.3401	3.3413							

4	31.19	5 1	0	3	31.197	-0.0022	100.0	2.8649	2.8647	
5	34.15	7 0	0	6	34.146	0.0107	28.1	2.6229	2.6237	
6	43.44	8 1	0	6	43.440	0.0084	71.8	2.0811	2.0815	
7	45.93	2 1	1	0	45.935	-0.0032	48.1	1.9742	1.9741	
8	48.40	4 1	0	7	48.406	-0.0022	13.1	1.8790	1.8789	
9	56.55	6 2	0	3	56.573	-0.0177	20.3	1.6260	1.6255	
10	58.4	74 1	l 1	6	58.461	0.0130	17.5	1.5771	1.5774	
11	59.2	32 1	. 0	9	59.296	-0.0134	22.3	1.5575	1.5572	
12	65.0	75 2	2 0	6	65.066	0.0095	17.9	1.4322	1.4324	

Таблица П29. Индицирование Ni₃Ga_{0.7}Sn_{0.3}Te₂.

		,			/ / /		5	017 015		
Рб у	/ <i>mmc</i> , a =	3.9	435	5(9)	c = 15.7	/55(2), V	= 212.1	9(6), F(1	2) = 49.8	
Ν	2Th[obs]	Н	ŀ	ΚI	L 2Th[ca	lc] obs-ca	alc Int	t. d[obs]	d[calc]	
1	11.213	0	0	2	11.223	-0.0097	29.0	7.8847	7.8779	
2	22.569	0	0	4	22.555	0.0137	29.1	3.9366	3.9389	
3	26.694	1	0	1	26.687	0.0068	17.1	3.3368	3.3376	
4	31.206	1	0	3	31.215	-0.0095	100.0	2.8639	2.8630	
5	34.113	0	0	6	34.116	-0.0031	74.7	2.6262	2.6260	
6	43.437	1	0	6	43.435	0.0014	87.1	2.0816	2.0817	
7	45.991	1	1	0	45.993	-0.0018	47.1	1.9718	1.9717	
8	48.398	1	0	7	48.394	0.0045	15.5	1.8792	1.8794	
9	56.651	2	0	3	56.635	0.0159	20.0	1.6235	1.6239	
10	58.467	1	1	6	58.490	-0.0222	19.2	1.5773	1.5767	
11	59.271	1	0	9	59.267	0.0040	31.9	1.5578	1.5579	
12	65.134	2	0	6	65.108	0.0255	20.1	1.4310	1.4315	
	1 (0 1	0	65	.153 -0.0	0187		1.4307		

Таблица ПЗО. Индицирование Ni₃Ga_{0.75}Sn_{0.25}Te_{2.}

P63/n	nmc, a = 3.	941	l 0(4	4), c	e = 15.74	93(12), V	= 211.	84(2), F(12) = 111.6
Ν	2Th[obs]	Η	K	C I	2Th[ca	lc] obs-ca	alc Int	t. d[obs]	d[calc]
1	11.227	0	0	2	11.227	-0.0000	28.7	7.8747	7.8746
2	22.566	0	0	4	22.564	0.0017	29.8	3.9370	3.9373
3	26.693	1	0	1	26.704	-0.0109	19.5	3.3369	3.3356
4	31.240	1	0	3	31.233	0.0066	100.0	2.8609	2.8615
5	34.128	0	0	6	34.131	-0.0025	73.5	2.6251	2.6249
6	43.463	1	0	6	43.457	0.0054	88.8	2.0805	2.0807
7	46.022	1	1	0	46.022	-0.0007	45.8	1.9706	1.9705
8	48.420	1	0	7	48.418	0.0023	17.7	1.8784	1.8785
9	56.676	2	0	3	56.671	0.0053	22.0	1.6228	1.6229
10	58.528	1	1	6	58.524	0.0035	20.6	1.5758	1.5759
11	59.293	1	0	9	59.297	-0.0040	30.0	1.5573	1.5572
12	65.142	2	0	6	65.149	-0.0067	20.9	1.4309	1.4307

Таблица П31. Индицирование Ni₃SbTe₂.

		1		
ŀ	P6₃/mmc, a	a = 3.960(6), c = 5	.251(6), V = 71.32(2), F(8)	= 41.6
N	2Th[obs]	H K L 2Th[c	calc] obs-calc Int. d[obs]] d[calc]
1	31.133	1 0 1 31.122	0.0109 100.0 2.8704	2.8714
2	34.137	0 0 2 34.12	3 0.0135 9.4 2.6244	2.6254
3	43.378	1 0 2 43.369	0.0081 51.5 2.0843	2.0847
4	45.759	1 1 0 45.787	7 -0.0284 39.6 1.9813	1.9801
5	56.396	2 0 1 56.400	0 -0.0043 26.6 1.6302	1.6301

6	58.293	1	1	2	58.321	-0.0276	11.8	1.5816	1.5809
7	59.196	1	0	3	59.221	-0.0251	24.6	1.5596	1.5590
8	64.949	2	0	2	64.896	0.0529	15.0	1.4347	1.4357
	Табл	и	(a l	П3	2. Индиі	цировани	ie Ni _{2.}	75SbTe _{2.}	
P6 ₃ /n	mc, a = 3.	952	29(8	8),	c = 5.258	3(10), V=	= 71.15	7(18), F(8) = 103.3
N	2Th[obs]	H	Η	Χ	L 2Th[ca	lc] obs-c	alc In	t. d[obs]] d[calc]
1	31.161	1	0	1	31.150	0.0116	100.0	2.8679	2.8689
2	34.062	0	0	2	34.073	-0.0112	13.4	2.6300	2.6292
3	43.365	1	0	2	43.360	0.0059	46.1	2.0849	2.0852
4	45.875	1	1	0	45.876	-0.0013	34.4	1.9765	1.9765
5	56.474	2	0	1	56.493	-0.0190	16.5	1.6281	1.6276
6	58.369	1	1	2	2 58.363	0.0064	7.7	1.5797	1.5798
7	59.169	1	0	3	59.172	-0.0029	17.4	1.5602	1.5602
8	64.969	2	0	2	64.959	0.0105	9.4	1.4343	1.4345
	T . 6			П1	•• • •			C1. T.	

Таблица ПЗЗ. Индицирование Ni_{2.5}SbTe_{2.}

P	P63/1	mmc, a = 3	.92	80	(11), $c = 5.25$	518(13),	V = 70.	17(2), F(8	8) = 84.8
	Ν	2Th[obs]	Η	ŀ	ζ.	L 2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]
	1	31.316	1	0	1	31.304	0.0121	100.0	2.8541	2.8551
	2	34.121	0	0	2	34.117	0.0037	28.4	2.6256	2.6259
	3	43.502	1	0	2	43.503	-0.0011	60.6	2.0787	2.0786
	4	46.159	1	1	0	46.184	-0.0248	28.5	1.9650	1.9640
	5	56.854	2	0	1	56.855	-0.0006	17.3	1.6181	1.6181
	6	58.666	1	1	2	58.652	0.0144	12.2	1.5724	1.5728
	7	59.307	1	0	3	59.322	-0.0155	22.4	1.5569	1.5566
	8	65.323	2	0	2	65.311	0.0117	9.3	1.4273	1.4276

Таблица П34. Индицирование Ni_{2.25}SbTe_{2.}

	P	63/mmc, a	= 3	.91	0(.	3), $c = 5.2$	40(4), V=	= 69.37	(12), F(8)) = 69.7
N	1	2Th[obs]	Η	ŀ	Κ	L 2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]
1	1	31.435	1	0	1	31.430	0.0041	100.0	2.8436	2.8439
-	2	34.197	0	0	2	34.197	0.0001	44.0	2.6199	2.6199
,	3	43.650	1	0	2	43.647	0.0029	49.8	2.0720	2.0721
4	4	46.405	1	1	0	46.410	-0.0056	30.2	1.9552	1.9550
-	5	57.105	2	0	1	57.128	-0.0234	18.1	1.6116	1.6110
	6	58.927	1	1	2	58.896	0.0319	14.1	1.5661	1.5668
,	7	59.486	1	0	3	59.503	-0.0169	28.0	1.5527	1.5523
1	8	65.607	2	0	2	65.601	0.0069	13.0	1.4218	1.4220

Таблица П35. Индицирование Ni_{2.2}SbTe_{2.}

Р	°63/1	nmc, a = 3	.90	32	(8),	, <i>c</i> = 15.64	190(19), <i>V</i>	/= 206	.47(5), F((10) = 48.6
	Ν	2Th[obs]	Н	I	Κ	L 2Th[ca	lc] obs-c	alc In	t. d[obs]	d[calc]
	1	11.307	0	0	2	11.299	0.0076	28.9	7.8193	7.8245
	2	22.698	0	0	4	22.711	-0.0124	26.8	3.9144	3.9123
	3	31.524	1	0	3	31.512	0.0118	70.5	2.8357	2.8367
	4	34.353	0	0	6	34.356	-0.0028	100.0	2.6084	2.6082
	5	43.807	1	0	6	43.806	0.0009	43.5	2.0649	2.0649
	6	46.489	1	1	0	46.494	-0.0057	19.8	1.9518	1.9516
	7	57.248	2	0	3	57.251	-0.0030	13.2	1.6079	1.6079
	8	59.076	1	1	6	59.071	0.0046	13.6	1.5625	1.5626
	9	59.744	1	0	9	59.760	-0.0159	31.0	1.5466	1.5462

	10 65.7	/12	1	0 1	0 65.698	0.0147	11.2 1.	4198 1.4	201
		Ta	бли	ца I	136. Инди	цировани	e Gd ₃ C	θaΟ.	
	Pm-	3 <i>m</i> ,	$a = \frac{4}{3}$	5.300)6(11) Å, V	= 148.93(6	5) Å ³ , F	f(5) = 34.7	
N	2Th[obs]	Η	K	L	2Th[calc]	obs-calc	Int.	d[obs]	d[calc]
1	29.193	1	1	1	29.157	0.0361	100.0	3.0566	3.0603
2	33.810	2	0	0	33.793	0.0162	41.0	2.6491	2.6503
3	48.528	2	2	0	48.540	-0.0114	32.8	1.8745	1.8740
4	57.618	3	1	1	57.630	-0.0123	28.7	1.5985	1.5982
5	60.448	2	2	2	60.452	-0.0041	15.2	1.5302	1.5302

Γ

Таблица П37. Индицирование Dy₃InO.

	Pi	m-3n	n, a =	= 5.3(051(12) Å,	V=149.31	$(6) Å^3, 1$	F(5) = 33.4	5
N	2Th[obs]	Η	K	L	2Th[calc]	obs-calc	Int.	d[obs]	d[calc]
1	29.139	1	1	1	29.132	0.0075	100.0	3.0621	3.0629
2	33.758	2	0	0	33.763	-0.0053	33.9	2.6530	2.6526
3	48.496	2	2	0	48.496	0.0006	29.4	1.8756	1.8756
4	57.544	3	1	1	57.576	-0.0320	20.7	1.6004	1.5996
5	60.424	2	2	2	60.395	0.0292	15.3	1.5308	1.5315

Таблица ПЗ8. Параметры, полученные при аппроксимации температурной зависимости обратной магнитной восприимчивости по закону Паули-Кюри-Вейса ((1/ҳ=ҳ₀+(0.125µ²)/(Т-Θ)) и GoF для серии образцов Ni_{3-x}Fe_xGaTe₂ (0.2≤x≤1).

Состав	Параметры	Значение параметров	Стандартная ошибка	GoF
	μ, μ _B	1.199	0.018	
Ni _{2.8} Fe _{0.2} GaTe ₂	Θ, Κ	-1.7	1.5	0.9964
	χ ₀ , см ³ /моль	$1.35 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	
	μ, μ _B	1.925	0.009	
Ni2.6Fe0.4GaTe2	Θ, Κ	2.6	0.7	0.9997
	χ ₀ , см ³ /моль	$1.06 \cdot 10^{-3}$	$1.4 \cdot 10^{-5}$	
	μ, μ _B	2.414	0.009	
Ni2.4Fe0.6GaTe2	Θ, Κ	34.2	0.6	0.9999
	χ ₀ , см ³ /моль	$1.36 \cdot 10^{-3}$	$1.8 \cdot 10^{-5}$	
	μ, μ _Β	3.056	0.013	
Ni ₂ FeGaTe ₂	Θ, Κ	90.1	0.5	0.9999
	χ ₀ , см ³ /моль	$2.33 \cdot 10^{-3}$	$3.6 \cdot 10^{-5}$	

тектров ¹²¹ Sb д.	пя образцов сист	темы Ni-Sb-Te.
Состав	δ, мм/с	2Г, мм/с
Ni _{2.0} SbTe ₂	-9.56±0.05	3.3±0.2
Ni _{2.25} SbTe ₂	-9.52±0.03	3.4±0.1
Ni _{2.50} SbTe ₂	-9.62±0.03	3.1±0.1
Ni _{2.75} SbTe ₂	-9.56±0.04	3.0±0.1

Таблица П39. Основные значения сверхтонких параметров мессбауэровских спектров ¹²¹Sb для образцов системы Ni-Sb-Te.

8. Благодарности

Автор выражает благодарность к.х.н. Казакову С.М. за проведение порошковых дифракционных экспериментов и уточнение структур, д.х.н. Лысенко К.А. за проведение монокристальных дифракционных экспериментов и уточнение структур, д.х.н. Хрусталева В.Н. за проведение дифракционных экспериментов с использованием синхротронного излучения, к.х.н. Соболева А.В. и д.ф.-м.н. Преснякова И.А. за проведение экспериментов по ⁵⁷Fe, ¹¹⁹Sn мессбауэровской спектроскопии, д.х.н. П.Б. Фабричного за проведение экспериментов по ¹²¹Sb мессбауэровской спектроскопии, к.х.н. Ефимова Н.Н. за измерение магнитных свойств и к.х.н. Нестеренко С.Н. за проведение дуговой плавки.

Автор благодарит сотрудников лаборатории направленного неорганического синтеза за поддержку и ценные советы.

Автор признателен асп. Маханевой Анастасии за проведение локального рентгеноспектрального микроанализа и к.х.н. Захаровой Елене Юрьевне за наставничество на начальных этапах данной исследовательской работы.

Автор выражает особую благодарность научному руководителю д.х.н., членкорр. РАН Кузнецову Алексею Николаевичу за проведение квантовохимических расчетов и всеохватывающую помощь, знания и поддержку на всем долгом пути выполнения данной исследовательской работы.