МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Amport

Строганова Екатерина Андреевна

Интерметаллические соединения и их производные на основе гетерометаллических фрагментов со связями *d*- или *f*-металлов с *p*-металлами

Специальность 1.4.1 – Неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2022

Работа выполнена на кафедре неорганической химии химического факультета МГУ имени М.В. Ломоносова.

Научные руководители:	Кузнецов Алексей Николаевич		
	доктор химических наук, член-корреспондент РАН,		
	ведущий научный сотрудник кафедры		
	неорганической химии химического факультета		
	МГУ имени М.В. Ломоносова		
Официальные оппоненты:	Асланов Леонид Александрович,		
	доктор химических наук, профессор,		
	профессор кафедры общей химии химического		
	факультета МГУ имени М.В. Ломоносова		
	Бритвин Сергей Николаевич		
	доктор геолого-минералогических наук, профессор		
	кафедры кристаллографии Института наук о Земле		
	СПбГУ		
	Шаповалов Сергей Сергеевич		
	кандидат химических наук, заведующий		
	лабораторией химии обменных кластеров ИОНХ		
	имени Н.С. Курнакова РАН		

Защита состоится «18» ноября 2022 года в 15 ч 00 мин на заседании диссертационного совета МГУ.014.8 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, д. 1, строение 3, аудитория 446.

E-mail: dissovetinorg@gmail.com (H.P. Хасанова, ученый секретарь диссертационного совета МГУ.014.8), stroganova@inorg.chem.msu.ru (E.A. Строганова, соискатель).

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский проспект д. 27) и на сайте ИАС «ИСТИНА» https://istina.msu.ru/dissertations/495818461/ Автореферат разослан «17» октября 2022 года

Ученый секретарь Диссертационного совета МГУ.014.8, кандидат химических наук

Н.Р. Хасанова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. На сегодняшний день одним из самых обширных и неизученных классов неорганических соединений является класс интерметаллических соединений (или интерметаллидов). Всего восемьдесят химических элементов – металлов способны образовать около трех тысяч двойных и восемьдесят тысяч тройных интерметаллических систем. Очевидно, что на данный момент изучена ничтожная часть от всех потенциально возможно существующих соединений, поэтому химия интерметаллических соединений и их производных – соединений с гетерометаллическими связями – является одной из наиболее бурно развивающихся и перспективных областей неорганической химии и химии твердого тела.

Одной из отличительных черт интерметаллических соединений является наличие нетривиальных химических связей, локальных или протяженных систем, которые охватывают весь диапазон возможных типов: от металлических до ковалентных и ионных, причем зачастую все они могут присутствовать в одном соединении одновременно. Такое разнообразие связей в интерметаллических соединениях является первопричиной проявления интересных физических свойств и, как следствие, применения этих интерметаллидов в важных технологических приложениях: от магнетизма до сверхпроводимости.

Необычная химическая связь и электронное строение, которые зачастую не удается описать в рамках классических теоретических подходов или свести к стандартным моделям, делают данные соединения интересными с фундаментальной точки зрения. До сих пор не всегда удается разработать общие принципы строения соединений даже внутри одного класса интерметаллидов, а также выявить четкую взаимосвязь между их кристаллическим и электронным строением и проявляемыми свойствами. Еще более нетривиальной становится ситуация при внедрении в трехмерную металлическую систему атомов неметалла, например, халькогена, понижающих ее размерность.

В рамках решения этой проблемы для нас наибольший интерес представляют низкоразмерные соединения, содержащие бесконечные системы связей *d*-металл-*p*-металл, *d*-металл-*f*-металл и *p*-металл-*f*-металл в виде

3

квазидвумерных (слои, блоки) фрагментов, основанных на структурах известных интерметаллидов.

Таким образом, **целью данной работы** является выявление закономерностей образования и изменения кристаллического и электронного строения избранных классов неорганических соединений с гетерометаллическими фрагментами со связями *d*- или *f*-металлов с *p*-металлами.

Для достижения данной цели были поставлены следующие задачи:

- 1. Направленный синтез халькогенидов с блочной и слоистой структурой в системах Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂ (M = Al, Ga, In, Ch = S, Se, Te) и Ni_{3-x}SbTe₂, новых четверных слоистых фаз с частичным замещением никеля на *d* и *p*-металлы в системах Ni_{3-x}GaTe₂ и Ni_{3-x}SnTe₂, направленный поиск новых бинарных интерметаллидов со структурой AuCu₃ и La₁₆Al₁₃ в системах RE-M (RE = La, Ce, Sm, Gd, Dy, M = Al, Ga, In, Sb) и тройных интерметаллидов со структурой La₁₆Al₁₃ в системах RE₁₆Al_{13-x}M_x (RE = La, Ce, M = Cu, Ag).
- 2. Определение кристаллического и электронного строения, а также анализ особенностей химической связи новых фаз.
- Установление транспортных и магнитных свойств новых фаз, относящихся к разным типам.
- 4. Выявление корреляции между геометрическими характеристиками гетерометаллических фрагментов и возможностью образования данных фаз.

Научная новизна работы. В данной работе были синтезированы и исследованы блочные халькогениды никеля-*p*-металлов 13 группы: Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂, Ni_{6.11}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂, Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂, при этом для трех последних соединений ранее даже не была предположена возможность существования. Впервые было детально охарактеризовано кристаллическое строение данных фаз, в том числе для теллуросодержащих фаз впервые было выявлено наличие ромбического искажения тетрагональной структуры. Для всех соединений были впервые установлены электронное строение и особенности химических связей. Для Ni_{6.07}AlS₂, Ni_{5.80}GaTe₂, Ni_{5.78}InTe₂ и Ni_{9.39}Ga₂S₂ были изучены магнитные свойства.

Впервые был осуществлён направленный поиск и синтез новых слоистых соединений $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}TM_xMTe_3$)

xSbTe₂. С помощью мессбауэровской спектроскопии на ядрах ⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb была изучена локальная структура фаз в системе Ni-Fe-M-Te (M = Ga, Sn) и Ni{3-x}SbTe₂. С помощью квантовохимических расчетов было охарактеризовано электронное строение фаз в системах Ni-TM-Ga-Te (TM = Fe, Cu). Для Ni_{3-x}Fe_xMTe₂ (M = Ga, Sn) были изучены магнитные свойства.

В системах RE-M (RE = La, Ce, Dy, Gd, Sm; M = Al, Ga, In, Si, Sb) была усовершенствована синтетическая методика, впервые описано и уточнено электронное строение и описание химических связей бинарных интерметаллидов со структурой AuCu₃ и La₁₆Al₁₃. Впервые был осуществлен поиск и синтез тройных фаз RE₁₆M_{13-x}TM_x со структурой La₁₆Al₁₃ в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag), охарактеризовано их кристаллическое и электронное строение, а также магнитные свойства.

Для блочных фаз на основе литературных и собственных данных впервые была проанализирована корреляция между геометрическими характеристиками квазидвумерных фрагментов, возможностью образования и типом структур Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂.

Практическая и теоретическая значимость работы. Полученные в работе результаты расширяют представления о химии интерметаллических соединений со *d*-металл-*p*-металл, *d*-металл-*f*-металл И *р*-металл-*f*-металл связями с квазидвумерными фрагментами, основанными на структурах бинарных интерметаллидов таких, как Ni₂In/NiAs, AuCu₃ И $La_{16}Al_{13}$. Данные 0 кристаллическом И электронном строении описанных В работе интерметаллических соединений могут быть использованы для разработки основ предсказания существования, дизайна и направленного синтеза других фаз с квазидвумерными фрагментами, в том числе, с анизотропными физическими свойствами: электропроводящими и магнитными. Кроме этого, данные о кристаллическом строении новых интерметаллических соединений включены в международные базы данных PDF (ICDD) и ICSD (Gmelin Institute, Karlsruhe) и вместе с данными о электронном строении могут быть использованы в качестве справочных материалов. Работа выполнена в рамках проектов РФФИ (РФФИ №20-33-90209 и РФФИ и Немецкого научно-исследовательского общества (грант 21-53-12015 ННИО а).

Положения, выносимые на защиту: 1. Синтез, кристаллическое, электронное строение, магнитные свойства $Ni_{7-x}MCh_2$ и $Ni_{10-x}M_2Ch_2$ (M = Al, Ga, In, Ch = S, Se, Te).

2. Выявленная взаимосвязь между геометрическими характеристиками квазидвумерных фрагментов, возможностью образования и типом структур Ni_{7-x}MCh₂ и Ni_{10-x}M₂Ch₂.

3. Синтез, кристаллическое, локальное и электронное строение, магнитные свойства $Ni_{3-x}TM_xMTe_2$ (TM = Fe, Cu, Zn, M = Ga, Sn), $Ni_3Ga_xSn_{1-x}Te_2$ и $Ni_{3-x}SbTe_2$.

4. Выявленная взаимосвязь между содержанием Fe и типом магнитного упорядочения в Ni_{3-x}Fe_xMTe₂ (M = Ga, Sn).

5. Результаты поиска бинарных интерметаллидов со структурой AuCu₃ и La₁₆Al₁₃ на основе РЗЭ. Синтез, кристаллическое, электронное строение, магнитные свойства фаз со структурой La₁₆Al₁₃ в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag).

6. Выявленная взаимосвязь между кристаллическим и электронным строением и возможностью существования фаз в системах RE-M-TM (RE = La, Ce, M = Al, Ga; TM = Cu, Ag).

Достоверность результатов работы обеспечена большим комплексом современных надежных физико-химических методов анализа таких, как рентгеновская дифракция, в том числе, с использованием синхротронного излечения, порошковая in situ peнтгеновская дифракция при разной температуре и под давлением газа, мессбауэровская спектроскопия на ядрах ⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb, квантовохимические расчеты и измерение магнитных свойств.

Публикация и апробация работы. По теме диссертационной работы опубликовано 5 научных статей в международных журналах, индексируемых Web of Science и Scopus. Результаты работы были представлены на 8 всероссийских и 14 международных конференциях в виде устных и стендовых докладов: Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов» (Москва, Россия, 2019-2022 гг.), конференции молодых ученых «Актуальные проблемы неорганической химии» (Звенигород, 2014-2020 гг.), Х Национальная кристаллохимическая конференция (Приэльбрусье, 2021 г.), V

6

конференция по неорганической химии Европейского химического общества (Москва, 2019 г.).

Личный вклад автора. В качестве основы диссертационной работы были использованы результаты научных исследований, выполненных лично автором или при его непосредственном участии во время обучения на кафедре неорганической химии в период 2012 – 2022 гг. Личный вклад Строгановой Е.А. заключается в постановке цели и задач исследования, анализе литературных данных, синтезе объектов исследования, планировании экспериментальной работы, обработке и интерпретации полученных результатов, подготовке публикаций по теме диссертационной работы и представлении устных и стендовых докладов на научных конференциях. Во всех опубликованных работах вклад автора был определяющим.

Часть инструментальных исследований была выполнена д.х.н. Кузнецовым А.Н. (проведение квантовохимических расчетов и уточнение структур), к.х.н. Казаковым С.М. (проведение серии порошковых дифракционных экспериментов и уточнение структур), д.х.н. Лысенко К.А. (проведение монокристальных дифракционных экспериментов и уточнение структур), д.х.н. Хрусталевым В.Н. (проведение дифракционных экспериментов с использованием синхротронного излучения), к.х.н. Соболевым А.В. и д.ф.-м.н. Пресняковым И.А. (проведение экспериментов по ⁵⁷Fe, ¹¹⁹Sn мессбауэровской спектроскопии), д.х.н. Фабричным П.Б. (проведение экспериментов по ¹²¹Sb мессбауэровской спектроскопии), к.х.н. Ефимовым H.H. (измерение магнитных свойств). Автор принимал непосредственное участие в обработке, анализе и интерпретации всех полученных данных. Эксперименты по ДСК и in situ рентгеновской дифракции проводились автором в рамках командировки в ун-т Лейпцига (Германия) для выполнения совместных исследований.

Объем и структура работы. Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов и их обсуждения, заключения, выводов и списка литературы. Работа изложена на 179 страницах, содержит 87 рисунков, 73 таблицы и 103 ссылки на литературные источники.

7

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение. Во введении обсуждается актуальность темы диссертационной работы, ее цели, а также научная новизна и практическая значимость.

Обзор литературы. Обзор литературы разделён на семь основных разделов. Первый раздел посвящен бинарным интерметаллидам никеля-*р*-металлов 13-15 групп, второй – смешанным халькогенидам никеля-*р*-металлов 13-15 групп с блочной структурой, третий – смешанным теллуридам никеля-*p*-металлов 13-15 групп со слоистой структурой, четвертый – смешанным халькогенидам со структурой паркерита, шандита и ульманита, пятый – бинарным интерметаллидам редкоземельных металлов-*р*-металлов co структурой $AuCu_{3}$ шестой интерметаллидам со структурой La₁₆Al₁₃, в седьмом разделе указываются выводы, которые можно сделать на основе анализа обзора литература, и ставятся задачи. В 1-6 разделах обзора литературы указываются известные на данный момент представители перечисленных ранее классов соединений, рассматриваются особенности их кристаллического и электронного строения, а также физические свойства.

Экспериментальная часть. В экспериментальной части описаны методы синтеза исследуемых соединений и их методы анализа. Кристаллическая структура соединений была изучена по данным порошковой и монокристальной рентгеновской дифракции, полученным с использованием дифрактометров: Bruker Smart Apex II (монокристалльный, $\lambda = 0.71073$ Å), PANalytical Aeris и Bruker D8 Advance (порошковые, CuK_{α 1,2}, $\lambda = 1.5406$ Å), а также источника синхротронного излучения НИЦ «Курчатовский институт» на канале «Белок» ($\lambda = 0.80246$ Å). In situ дифрактограммы были получены с использованием Rigaku SmartLab (порошковый, $Cu_{K\alpha}$, $\lambda = 1.5406$ Å), in situ дифференциальную сканирующую калориметрию проводили под давлением водорода на приборе Q1000 (TA Instruments), оборудованном газовой барокамерой. Локальная структура соединения была изучена с помощью мессбауэровской спектроскопии на ядрах ⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb. Регистрацию мессбауэровских спектров проводили при помощи спектрометра Ms-1104Em. Химический анализ монокристаллов был подтверждён с рентгеноспектрального помощью локального анализа на сканирующем электронном микроскопе JSM JEOL 6490 LV. Магнитные измерения на объемных

образцах проводились при помощи комплекса для измерений физических свойств Quantum Design PPMS-9. Электронная структура соединений была рассчитана в рамках теории функционала электронной плотности (DFT) и зонной модели преимущественно с использованием программы VASP (Vienna Ab initio Simulation Package).

Обсуждение результатов. Раздел 4.1. Блочные фазы в системах Ni-M-Ch (M = Al, Ga, In, Ch = S, Se, Te). В данных системах с помощью стандартного высокотемпературного ампульного синтеза из простых веществ получены Ni_{6.10}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂, однако данный метод синтеза не приводил к получению однофазных образцов других соединений данного семейства. Только с помощью нетривиального метода твердофазного синтеза, с использованием малых количеств иода в качестве «минерализирующего» агента, впервые удалось получить однофазные образцы соединений состава Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂. При этом два последних соединения не могут быть получены при помощи стандартного твердофазного синтеза даже в следовых количествах. Кроме этого, с помощью синтеза из простых веществ в расплаве флюса LiCl + KCl впервые удалось получить однофазный образец Ni_{6.01}AlS₂, а также значительно улучшить фазовый состав Ni_{5.61}AlSe₂ и Ni_{5.70}AlTe₂.

По данным рентгеноструктурного анализа все соединения кристаллизуются в тетрагональной сингонии с пр. гр. I4/mmm, Z = 2 (Таблицы 1 и 2). Структуры Ni_{6.07}AlS₂ и Ni_{6.10}GaS₂ построены на основе бесконечных фрагментов [Ni₁₂M], имеющих структуру AuCu₃. Фрагмент [Ni₁₂M] чередуется вдоль оси *с* с двумя типами никель-сульфидных блоков [Ni_{4-x}S₂], один из которых имеет структуру Li₂O, а другой — структуру дефектного Cu₂Sb/NaCl. Структуры Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂ и Ni_{5.63}GaSe₂ имеют схожий мотив с единственным отличием, заключающемся в том, что фрагменты [Ni₁₂M] чередуются только с одним типом никель-халькогенидного блока – с Cu₂Sb/NaCl.

Структуры Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂, в отличие от структур других представителей данного семейства, претерпевают небольшое ромбическое искажение (пр. гр. *Pnnm*), которое по данным in situ порошковой рентгеновской дифракции не исчезает как при нагревании, так и под давлением водорода. Структуры Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂ в целом схожи со структурами других

9

соединений типа Ni_{7-x}MCh₂, в которых наблюдается чередование только одного типа никель-теллуридного блока.

Структуры двухслойных халькогенидов $Ni_{8.54}Ga_2Se_2$ и $Ni_{9.39}Ga_2S_2$ имеют удвоенный по высоте кубооктаэдрический фрагмент 2·[Ni₁₂Ga], чередующийся вдоль оси *с* с никель-халькогенидным блоком [Ni_{4-x}Ch₂] со структурой Cu₂Sb/NaCl. Таким образом все охарактеризованные соединения кристаллизуются в трех из четырех возможных типов блочных структур (Рисунок 1).

Рисунок 1. Кристаллические структуры тройных халькогенидов никеля-*р*металлов, установленные по данным монокристальной и порошковой рентгеновской дифракции.

Таблица 1. Основные параметры порошкового рентгеноструктурного эксперимента и уточнения структур методом Ритвельда Ni_{6.07}AlS₂, Ni_{5.61}AlSe₂, Ni_{5.70}AlTe₂, Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂.

Формула	Ni5.612(2)AlSe2	Ni5.702(3)AlTe ₂	Ni5.80(1)GaTe2	Ni9.39(1)Ga2S2	Ni5.78(1)InTe ₂	
Наличие примесей	6.56% Ni ₃ Se ₂	7.23% Ni ₃ Al, 23.81% Ni ₃ Te ₂	однофазные			
Вид излучения	CuK_{λ} ($\lambda = 1.54178$ Å)					
Пр. гр.	<i>I</i> 4/ <i>mmm</i> (№ 139)		Pnnm (№.58)	<i>I4/mmm</i> (№ 139)	Pnnm (№ 58)	
Z	2					
a, Å	3.5886(5)	3.6804(1)	3.70884(4)	3.5685(5)	3.77147(6)	
<i>b</i> , Å			3.69960(4)		3.76317(7)	
<i>c</i> , Å ³	18.555(3)	19.2114(6)	19.11544(15)	25.1838(4)	19.5150(3)	
<i>V</i> , Å ³	238.96(8)	260.22(2)	262.288(4)	320.702(1)	276.970(8)	
R_p/R_{wp}	0.053 / 0.069	0.038 / 0.051	0.030 / 0.038	0.030 / 0.041	0.033/0.046	
R _{Bragg}	0.014	0.064	0.010	0.015	0.0073	
GoF	1.64	1.54	1.16	1.44	2.44	

Таблица 2. Основные параметры монокристального рентгеноструктурного эксперимента и уточнения структур Ni_{6.10}GaS₂, Ni_{5.63}GaSe₂, Ni_{8.54}Ga₂Se₂.

Формула	Ni6.07(1)AlS ₂	Ni6.111(6)GaS2	Ni5.634(4)GaSe2	Ni8.542(4)Ga2Se2	
Вид	Синхротронное	$M_{0}K_{x}(\lambda = 0.71073 \text{ Å})$			
излучения	$\lambda = 0.80246 \text{ Å}$				
Пр. гр.		<i>I</i> 4/ <i>mmm</i> (№ 139)			
Z		2	2		
<i>a</i> , Å	3.5350(5)	3.5420(5)	3.5995(3)	3.5810(5)	
<i>c</i> , Å	18.006(4)	18.026(4)	18.517(3)	25.506(5)	
V, A^3	225.01(8)	226.15(8)	239.91(5)	327.08(11)	
Всего рефл. /	667 / 103	1581 / 126	1032 / 149	1894 / 184	
незав. рефл.					
Рефлексы I>2σ(I)	103	125	138	178	
Число уточняемых параметров	20	20	17	22	
$R_1(I \ge 2\sigma(I)) / R_{all}$	0.047 / 0.047	0.039 / 0.039	0.018 / 0.019	0.022 / 0.023	
$\frac{\mathrm{wR_{1}}^{2}(\mathrm{I}>2\sigma}{\mathrm{(I)})/\mathrm{wR_{all}}^{2}}$	0.105 / 0.105	0.069 / 0.069	0.041 / 0.042	0.042 / 0.042	

По данным квантовохимических расчетов картины общей плотности состояний очень близки для всех соединений, при этом основной вклад в плотность состояний обусловлен почти заполненными *3d*-состояниями никеля, при этом картины DOS для всех соединений показывают ненулевую плотность состояний на уровне Ферми и указывают на металлический тип проводимости (Рисунок 3).

Рисунок 3. Общая плотность состояний и вклады атомных орбиталей вблизи уровня Ферми на примере Ni₃Al и Ni₆AlCh₂ (Ch = S, Se, Te). Черная линия – TDOS, зеленая – Ni PDOS, синяя – Al PDOS, оранжевая – Ch (S, Se, Te) PDOS.

Рассчитанные бейдеровские заряды на атомах для всех соединений демонстрируют то, что степень перераспределения электронов между *р*-металлом и никелем в позиции Ni(2) в тройных фазах схожа с соответствующими интерметаллидами, в то время как халькоген, заряженный отрицательно, в большей степени оттягивает на себя электронную плотность из позиции Ni(3)/Ni(4), значительно меньше влияет на заряд атома в позиции Ni(1) и практически не влияет на атом в позиции Ni(2). Анализ электронного строения соединений данного типа показывает, что, несмотря на формальное название «халькогениды», исходя из распределения зарядовой плотности и картины химических связей соединения данного типа являются по природе скорее интерметаллическими, особенно для Ch=Se, Te. Анализ топологии ELI-D и ELF во всех случаях показал четырехцентровых связей 3Ni+M. Расчеты термодинамической наличие устойчивости образования двухслойных фаз на основе однослойных дают результаты, хорошо коррелирующие с результатами эксперимента. В частности, они показывают низкую вероятность существования двухслойных теллуридов, что подтверждается экспериментально (Рисунок 4).

Рисунок 4. Изоповерхности функции электронной локализации (ELF) на примере Ni₃Ga (a), Ni₆GaTe₂ (b), Ni₉Ga₂S₂ (c) иNi₆InTe₂ (d). Светло-голубой – η=0.36, синий – η=0.83 (только на рисунке b), темно синий – η=0.85.

Магнитные измерения Ni_{6.01}AlS₂, Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂ в целом показывают температурно-независимый парамагнетизм в диапазоне 50-300 K, а Ni_{5.63}GaSe₂ – антиферромагнетизм ниже 11 K и парамагнетизм, подчиняющийся

закону Кюри-Вейса в интервале температур 160–300 К. Для Ni_{5.80}GaTe₂, Ni_{9.39}Ga₂S₂ и Ni_{5.78}InTe₂ удалось выявить закономерности в магнитном поведении от степени искажения блоков.

Раздел 4.2. Слоистые фазы с частичным замещением *d*- и *p*-металлов и Ni_{3-x}SbTe₂. Данная глава посвящена изучению влияния других 3*d*- и непереходных металлов на тип структуры и мотив упорядочения, а также на магнитные свойства слоистых фаз типа Ni_{3-x}MTe₂ (M = Ga, Sn, Sb, пр. гр. *P*6₃/*mmc*). В системах Ni-Fe-M-Te (M = Ga, Sn) получены однофазные порошкообразные образцы состава Ni_{3-x}Fe_xGaTe₂ (0.2 \leq x \leq 1.0, шаг 0.2) и Ni_{3-x}Fe_xSnTe₂ (0.2 \leq x \leq 0.6, шаг 0.2).

По данным мессбауэровской спектроскопии на ядрах ⁵⁷Fe установлено, что в Ni_{3-x}Fe_xGaTe₂ при низких концентрациях железо распределяется по позициям статистически, но по мере увеличения содержания железа в позициях Ni(2) и особенно в Ni(3) возрастают, тогда как относительная заселенность железом позиции Ni(1) падает, что также хорошо согласуется с результатами уточнения по данным порошковой дифракции для Ni_{2.4}Fe_{0.6}GaTe₂. При максимальном количестве железа в структуре (x = 1.0) железо преимущественно заселяет две из трех возможных позиций никеля (Рисунок 5, 6).

Рисунок 5. Мессбауэровские спектры на ядрах 57 Fe для Ni_{3-x}Fe_xGaTe₂ (0.2 \leq x \leq 1), измеренные при T = 295K.

Рисунок 6. Заселение позиций никеля атомами железа в $Ni_{3-x}Fe_xMTe_2$ (M = Ga, Sn).

Данные магнитных измерений Ni_{3-x}Fe_xGaTe₂ показывают переход от парамагнетизма Паули к парамагнетизму Кюри-Вейса, а при дальнейшем увеличении концентрации железа (x>0.2) — к ферромагнитному упорядочению (Рисунок 7).

Рисунок 7. Температурные зависимости обратной магнитной восприимчивости 1/χ для Ni_{3-x}Fe_xGaTe₂ (0.2≤x≤1).

Квантовохимические расчеты для Ni_{3-x}Fe_xGaTe₂ показали, что вклад в общую плотность состояний на уровне Ферми преимущественно вносят *3d*-состояния никеля. Картины плотности состояний для всех соединений показывают отличную

от нуля плотность состояний на уровне Ферми, следовательно, соединения должны проявлять металлический тип проводимости.

Данные мессбауэровской спектроскопии на ядрах ⁵⁷Fe показывают, что в Ni₃₋ _xFe_xSnTe₂ (0.2≤x≤0.6) заселение железом происходит преимущественно в двух из трех возможных позиций никеля, в отличие от Ni_{3-x}Fe_xGaTe₂ (0.2≤x<1) (Рисунок 6, 8).

Рисунок 8. Мессбауэровские спектры ⁵⁷Fe для $Ni_{3-x}Fe_xSnTe_2$ ($0.2 \le x \le 0.6$), измеренные при T = 300 K.

Мессбауэровские спектры на ядрах ¹¹⁹Sn для Ni_{3-x}Fe_xSnTe₂ ($0.2 \le x \le 0.6$) описываются тремя дублетами, что отвечает трем возможным вариантам окружения олова в гетерометаллическом слое: без дополнительной позиции никеля (тригональная призма только из атомов только в позиции Ni(1)) и с дополнительными позициями (одно- и двухшапочная тригональная призма из атомов в позициях Ni(1) и Ni(2)) (Рисунок 9).

Рисунок 9. Мессбауэровские спектры ¹¹⁹Sn образцов Ni_{2.8}Fe_{0.2}SnTe₂, Ni_{2.6}Fe_{0.4}SnTe₂, Ni_{2.4}Fe_{0.6}SnTe₂, измеренные при T = 300 K (слева); возможные варианты окружения олова в структуре (справа).

Данные магнитных измерений для Ni_{3-x}Fe_xSnTe₂ указывают на антиферромагнитный преход при ~ 120 К, что отражает отличный от галлийсодержащих фаз характер упорядочения заполняемых вакансий в Ni_{3-x}Fe_xSnTe₂. Таким образом, варьируя вид исходной матрицы (Ni_{3-x}GaTe₂ или Ni_{3-x}SnTe₂), можно влиять на степень заселения железом вакансий никеля, на предпочтительный тип заселения и, как следствие, на магнитные свойства.

В системах Ni-TM-M-Te (TM = Cu, Zn, M = Ga, Sn) удалось получить только соединения замещения состава Ni_{3-x}Cu_xSnTe₂ (x = 0.2, 0.4, 0.6), содержащие незначительное количество примеси. Для Ni_{3-x}TM_xMTe₂ (при TM = Zn, M = Ga, Sn; при TM = Cu, M = Ga) показано отсутствие какого-либо замещения никеля на *d*-металл.

В системе Ni-Sb-Te получены однофазные образцы состава Ni_{3-x}SbTe₂ (x = 0, 0.15, 0.25, 0.5, 0.75, 0.9, 1.0). Данные рентгеновской дифракции показали, что наблюдение сверхструктурных рефлексов на малых углах, обуславливающих утроение ячейки по *с* относительно простого типа NiAs, наблюдается только при содержании никеля в диапазоне $0.9 < x \le 1.0$. Данные in situ рентгеновской

дифракции показали, что на упорядочение также влияет температура, но только в случае Ni₂SbTe₂. Сверхструктура в Ni₂SbTe₂ исчезает при T ~ 600 °C (Рисунок 10).

Рисунок 10. 3D и 2D дифрактограммы in situ эксперимента Ni₂SbTe₂ (сверху) и Ni_{2.75}SbTe₂ (снизу).

Кристаллические структуры Ni_{3-x}SbTe₂ (x =1.0, 0.5, 0.25) были уточнены полнопрофильным методом Ритвельда (пр. гр. *P*6₃/*mmc*). В случае Ni_{2.44}SbTe₂ и Ni_{2.75}SbTe₂ наименьших значений R-факторов удалось достичь при двухфазном уточнении, где одна фаза имеет структуру Ni₂Sb, а другая – NiAs.

На мессбауэровских спектрах на ядрах ¹²¹Sb для всех образцов Ni_{3-x}SbTe₂ (x = 0.25; 0.5; 0.75; 1.0) наблюдается один синглет (Рисунок 11). Для Ni₂SbTe₂ это означает наличие только одной позиции никеля – Ni(1), при этом позиции Ni(2) и Ni(3) остаются незаполненными, для остальных фаз это означает, что позиции Ni(1) и Ni(2) становятся одной, и ее заселенность в целом не меняет координацию сурьмы, что также согласуется с рентгеноструктурным анализом.

Рисунок 11. Мессбауэровские спектры ¹²¹Sb образцов Ni₂SbTe₂ (справа) и Ni_{2.75}SbTe₂ (слева), измеренные при T = 100 K.

Раздел 4.3. Бинарные интерметаллиды RE₃M (RE= Dy, Gd, Sm; M= In, Ga). В системах RE-M (Dy, Gd) показано отсутствие образования фаз со структурой AuCu₃ в условиях синтеза и преимущественное образование фаз со структурой антиперовскита. Единственной синтезированной фазой типа AuCu₃ являлся Sm₃In.

По данным квантовохимических расчетов существующих и гипотетических RE₃M типа AuCu₃ показано, что картины плотности состояния вблизи уровня Ферми для всех интерметаллидов схожи. Наибольший вклад в плотность состояний

Рисунок 12. Топология ELF для интерметаллидов RE_3In ($\eta = 0.38 - 0.46$).

вносят *f*-электроны РЗЭ, все соединения имеют металлическую проводимость. Расчет бейдеровских зарядов на атомах показывает, что во всех случаях наблюдается перенос заряда с атома РЗЭ на атом индия, при этом заряд РЗЭ сильно отличается от двух- или трехзарядных ионов, что не позволяет рассматривать ЭТИ интерметаллиды как ионные И указывает на высокую вероятность наличия ковалентной составляющей в связях. Анализ топологии ELF для RE₃M (Рисунок 12) показал наличие

многоцентровых частично локализованных взаимодействий RE-In (1-3), дополненных парными связями RE-RE (4) и In-In (5), последние 2 типа взаимодействий нехарактерны для интерметаллидов типа Ni₃M.

Раздел 4.4. Интерметаллиды со структурой La₁₆Al₁₃. В системах RE-Al-TM (RE = La, Ce, TM = Cu, Ag) были получены монокристаллы фаз со структурой La₁₆Al₁₃, при этом в системах RE-M (RE = La, Ce, M = Ga, Si, Sb) и La-Ga-Cu фазы с данным структурным типом в условиях синтеза не образуются.

Кристаллические структуры $RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag) были установлены по данным монокристальной рентгеновской дифракции, и одной из их особенностей является то, что все позиции лантана или церия занятые

исключительно редкоземельным металлом (Таблица 3). В случае лантансодержащих фаз три из четырех позиций алюминия частично заселены переходным металлом и образуют 11-атомный аналог [3.3.3]-барреляна, в то время как четвертая позиция алюминия, находящаяся в гетерометаллическом слое, заселена только алюминием. В случае Ce₁₆Al_{8.64}Cu_{4.36} две из четырех позиций (Al(3) и Al(4)) в слое барреляна заселены медью (Рисунок 13).

Рисунок 13. Кристаллические структуры La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} соединений со структурой La₁₆Al₁₃.

Таблица 3. Параметры рентгеноструктурного эксперимента и анализа для
$RE_{16}Al_{13-x}M_x$ (RE = La, Ce, M = Cu, Ag).

Формула	$La_{16}A_{10} = 27(12)Cu_{261(12)}$	$La_{16}A_{11,06(8)}A_{91,94(8)}$	$Ce_{16}Al_{8,64(12)}Cu_{4,36(12)}$	$La_{16}A_{18} = 38(4)Cu_{0} = 97(4)Ag_{1} = 66(4)$		
Вид	$MoK_{\alpha} (\lambda = 0.71073 \text{ Å})$					
излучения						
Пр. гр.	<i>P</i> -62 <i>m</i> (№ 189)					
Z	1					
<i>a</i> , Å	9.0737(4)	9.1046(4)	8.8932(3)	9.1036(14)		
<i>c</i> , Å	10.9864(10)	11.1123(5)	10.6854(5)	11.130(2)		
<i>V</i> , Å ³	783.35(10)	797.73(8)	731.88(6)	798.8(3)		
Всего рефл.	7694 / 811	6196 / 827	7285 / 755	4420 / 824		
Рефлексы I>2σ(I)	791	775	753	809		
Число уточняемых параметров	39	38	36	38		
$\frac{R_{1}(I>2\sigma\left(I\right))}{R_{all}}$	0.0149 / 0.0156	0.0219 / 0.0247	0.0159 / 0.0159	0.0236 / 0.0245		
$ \begin{array}{c} wR_{l}{}^{2}\left(I{>}2\sigma \right. \\ \left(I\right)\right) / wR_{all}{}^{2} \end{array} $	0.0314 / 0.0316	0.0447 / 0.0455	0.0343 / 0.0343	0.0455 / 0.0459		
GoF	1.072	0.993	1.169	1.165		

По данным квантовохимических расчетов La₁₆Al₁₃ и La₁₆Al₁₂M (M = Cu, Ag) имеют металлический тип проводимости, основной вклад в общую плотность состояний вблизи уровня Ферми вносят *d*-состояния атомов лантана, при этом для тройных соединений наблюдается сильно локализованные состояния *d*-металлов, которые слабо перекрываются с состояниями алюминия (Рисунок 14).

Рисунок 14. Общая плотность состояний, вклады атомных орбиталей вблизи уровня Ферми для La₁₆Al_{13 и} La₁₆Al₁₂M (M = Cu, Ag). Уровень Ферми находится в точке E = 0.

Расчет бейдеровских зарядов на атомах как для трехмерных ячеек La₁₆Al₁₃ и La₁₆Al₁₂M (M = Cu, Ag), так и для ионных кластеров Al₁₁¹¹⁻ и Al_{11-x}TM_x¹¹⁻ (TM = Cu, Ag, x = 0, 1, 2) показал, что происходит перенос электронов с атомов лантана на алюминий. При этом атомы алюминия вне слоя барреляна имеют более отрицательный заряд, чем атом алюминия в барреляне, поскольку окружены большим количеством атомов лантана. В тройных фазах атомы меди и серебра, замещающие Al в слое барреляна, несут значительный отрицательный заряд.

Анализ топологии ELF, рассчитанный как для трехмерной структуры $La_{16}Al_{13}$, так и для ионного кластера Al_{11}^{11-} , показал, в $La_{16}Al_{13}$ присутствуют три типа не ядерно-центрированных аттракторов: связи Al-Al (Рисунок 15, 1), неподеленные электронные пары на атомах алюминия в баррелянах (Рисунок 15, 2), неподеленные пары на атомах алюминия, находящихся в гетерометаллическом слое вне слоя баррелянов (Рисунок 15, 3).

Заселенность дисинаптического бассейна в Al₁₁¹¹⁻ между атомами Al(3) и Al(4), составляет 2.09 е, что является практически 2с,2е-ковалентной связью. Заселенность дисинаптических бассейнов между атомами Al(2) и соседними атомами Al(4) равна 1.61 е, что также очень близко к 2с,2е-связи.

Рисунок 15. Изоповерхности функции электронной локализации (ELF) для La₁₆Al₁₃ (η =0.73) и ионного кластера Al₁₁¹¹⁻ в La₁₆Al₁₃ (η =0.83).

Анализ топологии функции электронной локализации как для трехмерных структур, так и для изолированных ионных кластеров тройных фаз показал, что при замещении одного атома алюминия на медь или серебро в слое барреляна происходит ослабление парных взаимодействия Al-d-металл, что хорошо коррелирует с зонной структурой данных фаз (Рисунок 16). Анализ топологии функции электронной локализации во всех случаях замещения алюминия медью в Al_{11-x}Cu_x¹¹⁻ показал, что при сохранении парных связей Al-Al происходит образование связей Al-Cu со значительно меньшей степенью локализации. Во всех случаях замещения алюминия серебром в $Al_{11-x}Ag_x^{11-}$ образование дисинаптических бассейнов, заселенность которых близка к 2е, отвечающих парным связям, наблюдается только между атомами Al, при этом между атомами серебра и соседними атомами локализованных взаимодействий не наблюдается. Такую картину можно связать с уменьшением степени перекрывания *d-p*-орбиталей и увеличением диффузности *d*-орбиталей, что в свою очередь связанно с увеличением главного квантового числа.

Рисунок 16. Изоповерхности функции электронной локализации (ELF) для Al₁₀TM¹¹⁻ в La₁₆Al₁₂TM (TM = Cu, Ag) с разными вариантами заселения *d*-металла позиций алюминия (η=0.82-0.83 (темно-желтый), η=0.64-0.73 (светло-желтый)).

По данным магнитных измерений образцы La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} проявляют сверхпроводимость с $T_c \sim 6$ K, что видно по появлению сильного диамагнитного сигнала на кривых ZFC-FC в магнитном поле 100 Э (Рисунок 17, сверху), а также по характерным для сверхпроводников II рода петлям гистерезиса M(H) при 2 K (Рисунок 17, снизу). На кривых ZFC-FC для La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94}, измеренных в магнитном поле 100 Э, наблюдается ферромагнитный сигнал (Рисунок 17, сверху), который ниже 6 K становится существенно меньше по абсолютным значениям диамагнитного вклад обусловленного сверхпроводимостью (Рисунок 17, сверху).

Рисунок 17. Кривая ZFC-FC для La₁₆Al_{10.37}Cu_{2.61} в 100 Э (слева) и увеличенная часть тех же зависимостей с только положительными значениями магнитной восприимчивости (справа). Петли гистерезиса М(Н) образцов La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} при 2 К (слева) и 10 К (справа).

Для $Ce_{16}Al_{8.64}Cu_{4.36}$ зависимость магнитной восприимчивости от температуры в магнитном поле 5000 Э можно описать законом Кюри-Вейса (Рисунок 17) с константой Кюри, близкой по значению к характерным величинам для невзаимодействующих ионов Ce^{3+} , и константой Вейса 62.9 К, что указывает на преобладание антиферромагнитных взаимодействий в образце.

Рисунок 18. Зависимости обратной магнитной восприимчивости (слева) и χT (справа) от температуры образца Се₁₆Al_{8.64}Си_{4.36} в магнитном поле 5000 Э.

Значения χT при понижении температуры до 35 К заметно уменьшаются (Рисунок 18, справа), что указывает на преобладание антиферромагнитных взаимодействий в Ce₁₆Al_{8.64}Cu_{4.36}. При дальнейшем охлаждении до 7 К наблюдается резкое увеличение значений χT , указывающее на присутствие в образце ферромагнитных взаимодействий.

выводы

охарактеризованы порошкообразные 1. Синтезированы И образцы И монокристаллы девяти блочных тройных фаз $Ni_{7-x}MCh_2$ (Ch = S, Se, Te, M = Al, Ga, In) и $Ni_{10-x}Ga_2Ch_2$ (Ch = S, Se), относящихся к структурному типу Ni_{7-1} $_{\rm x}$ MCh₂/Ni_{10-x}M₂Ch₂. Впервые установлено ромбическое искажение для Ni_{5.80}GaTe₂ и Ni_{5.78}InTe₂. тетрагональной структуры По данным квантовохимических расчетов зонная структура для всех соединений является близкой и имеет значительное сходство с таковой для прототипов их структур, для всех фаз предсказана металлическая проводимость. Анализ химической связи показал наличие четырехцентровых взаимодействий 3Ni+M (где M = Al, Ga, In) как для исходных интерметаллидов Ni₃M, так и для тройных соединений. По данным магнитных измерений установлено, ЧТО все соединения, кроме Ni_{5.63}GaSe₂, проявляют температурно-независимый

парамагнетизм, а Ni_{5.63}GaSe₂ – антиферромагнетизм ниже 11 К и парамагнетизм, подчиняющийся закону Кюри-Вейса в интервале температур 160–300 К.

- 2. Анализ всех экспериментальных данных в совокупности с литературными для блочных фаз показывает наличие корреляции между геометрическими характеристиками их фрагментов и возможностью образования, а также пространственным строением тройных соединений, что позволяет сделать заключение, что для устойчивости блочных фаз именно геометрический фактор является определяющим.
- 3. Синтезированы порошкообразные образцы состава Ni_{3-x}Fe_xGaTe₂, где 0.2≤x≤1.0 с шагом 0.2, и Ni_{3-x}Fe_xSnTe₂, где 0.2≤x≤0.6 с шагом 0.2. Установлено, что в Ni_{3-x}Fe_xGaTe₂ заселение железом происходит преимущественно для двух из трех возможных позиций никеля при максимальном количестве железа в структуре (x = 1.0). Данные магнитных измерений Ni_{3-x}Fe_xGaTe₂ показывают переход от парамагнетизма Паули к парамагнетизму Кюри-Вейса для малых количеств железа, а при дальнейшем увеличении его концентрации (x>0.2) к ферромагнитному упорядочению. Показано, что в Ni_{3-x}Fe_xSnTe₂ заселение железом происходит преимущественно для двух из трех возможных позиций никеля, а данные магнитных измерений показывают существенное отличие от поведения галлиевых фаз с аналогичной степенью замещения железа.
- 4. Синтезированы соединения состава Ni_{3-x}SbTe₂ (x = 0–1.0). По данным рентгеновской дифракции и мессбауэровской спектроскопии на ядрах ¹²¹Sb показано, что образование сверхструктуры по отношению к NiAs происходит только для Ni₂SbTe₂ и только при относительно низких (T<750°C) температурах синтеза.</p>
- Получены соединения замещения состава Ni_{3-x}Cu_xSnTe₂, где x = 0.2, 0.4, 0.6. Для Ni_{3-x}TM_xMTe₂ (при TM = Zn, M=Ga, Sn; при TM = Cu, M=Ga) показано отсутствие замещения никеля на *d*-металл.
- 6. Направленный поиск новых бинарных интерметаллидов в системах RE-M со структурой AuCu₃ (RE = Ce, Sm, Gd, Dy, M = Ga, In) и La₁₆Al₁₃ (RE = La, Ce, Dy, Gd, Sm; M = Al, Ga, In, Si, Sb) показал практическое отсутствие искомых фаз в условиях синтеза, за исключением Sm₃In.

- 7. Синтезированы и структурно охарактеризованы монокристаллы тройных интерметаллидов $RE_{16}Al_{13-x}TM_x$ (RE = La, Ce, TM = Cu, Ag). Установлено, что все соединения относятся к структурному типу La₁₆Al₁₃. Квантовохимические расчеты предсказывают для всех соединений металлический тип проводимости. Анализ химической связи показал наличие 2с,2е-связей Al-Al и отсутствие ковалентности между La и Al, а при замещении алюминия на переходный происходит уменьшение или полное исчезновение областей металл взаимодействий, локализации парных что негативно сказывается на устойчивости тройных фаз.
- По данным магнитных измерений установлено, что La₁₆Al_{10.37}Cu_{2.61} и La₁₆Al_{11.06}Ag_{1.94} являются низкотемпературными сверхпроводниками с T_c ~ 6 K, в отличие от Ce₁₆Al_{8.64}Cu_{4.36}, для которого сверхпроводящее состояние не наблюдается.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Научные статьи, опубликованные в журналах Scopus, WoS, RSCI, а также в изданиях, рекомендованных для защиты в диссертационном совете МГУ имени М.В. Ломоносова по специальности:

1. Stroganova E.A., Kazakov S.M., Khrustalev V.N., Efimov N.N., Kuznetsov A.N. First examples of nickel–aluminum mixed chalcogenides based on the AuCu₃-type fragments: Breaking a robust intermetallic bond system in Ni₃Al // *J. Solid State Chem.* 2022. V. 306. P. 122815. IF = 3.498 (WoS). Доля участия 60%.

2. **Stroganova E.A.**, Kazakov S.M., Efimov N.N., Khrustalev V.N., Keilholz S., Götze A., Kohlmann H., Kuznetsov A.N. Nickel - *p*-block Metal Mixed Chalcogenides Based on the AuCu₃-type Fragments: Iodine-assisted Synthesis as a Way of Obtaining New Structures // *Dalton Trans.* 2020. V. 49. P. 15081-15094. IF = 4.39 (WoS). Доля участия 60%.

3. Kuznetsov A.N., **Stroganova E.A.**, Zakharova E.Yu. Many Faces of a Single Cuboctahedron: Group 10 Metal-rich Ternary Compounds based on the AuCu₃ Structure Type (Review) // *Russ. J. Inorg. Chem.* 2019. V. 64. P. 1625-1640. IF = 1.312 (WoS). Доля участия 33%.

4. Kuznetsov A.N., **Stroganova E.A.**, Serov A.A., Kirdyankin D.I., Novotortsev M.V. New quasi-2D nickel-gallium mixed chalcogenides based on the Cu₃Au-type extended fragments. // *J. Alloys Compd.* 2017. V. 696. P. 413 – 422. IF = 5.316 (WoS). Доля участия 30 %.

5. Kuznetsov A.N., **Stroganova E.A.**, Zakharova E.Yu, Solopchenko A.V., Sobolev A.V., Presniakov I.A., Kirdyankin D.I., Novotortsev V.M. Mixed Nickel-Gallium Tellurides Ni_{3-x}GaTe₂ as a Matrix for Incorporating Magnetic Cations: a Ni_{3-x}Fe_xGaTe₂ Series // *J. Solid State Chem.* 2017. V. 250. P. 90 – 99. IF = 3.498 (WoS). Доля участия 50%.

БЛАГОДАРНОСТИ

Автор выражает благодарность к.х.н. Казакову С.М. за проведение порошковых дифракционных экспериментов и уточнение структур, д.х.н. Лысенко К.А. за проведение монокристальных дифракционных экспериментов и уточнение структур, д.х.н. Хрусталева В.Н. за проведение дифракционных экспериментов с использованием синхротронного излучения, к.х.н. Соболева А.В. и д.ф.-м.н. Преснякова И.А. за проведение экспериментов по ⁵⁷Fe, ¹¹⁹Sn мессбауэровской спектроскопии, д.х.н. Фабричного П.Б. за проведение экспериментов по ¹²¹Sb мессбауэровской спектроскопии, к.х.н. Ефимова Н.Н. за измерение магнитных свойств и к.х.н. Нестеренко С.Н. за проведение дуговой плавки.

Автор благодарит сотрудников лаборатории направленного неорганического синтеза за ценные советы.

Автор признателен асп. Маханевой Анастасии за проведение локального рентгеноспектрального микроанализа и к.х.н. Захаровой Елене Юрьевне за наставничество на начальных этапах данной исследовательской работы.

Автор выражает особую благодарность научному руководителю д.х.н., членкорр. РАН Кузнецову Алексею Николаевичу за проведение квантовохимических расчетов и всеохватывающую помощь, знания и поддержку на всем долгом пути выполнения данной исследовательской работы.