МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

На правах рукописи

Мираков Мирак Абдурасулович

Минералогия скандия, иттрия, тантала, ниобия, олова, цезия и рубидия в гранитных пегматитах Юго-Западного и Восточного Памира

Специальность 1.6.4. – Минералогия, кристаллография. Геохимия, геохимические методы поисков полезных ископаемых

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата геолого-минералогических наук

MOCKBA-2025

Работа выполнена в Минералогическом музее им. А.Е. Ферсмана Российской академии наук.

Научный руководитель:

Официальные оппоненты:

Спиридонов Эрнст Максович – доктор геолого-минералогических наук, профессор

Кривовичев Владимир Герасимович –

геолого-минералогических доктор наук, профессор, кафедра минералогии Института Наук о Земле ФГБОУ ВО «Санкт-Петербургский государственный Университет», профессор Перетяжко Игорь Сергеевич доктор геолого-минералогических наук, npodbeccop. ФГБУН Институт геохимии UM. А.П. PAH. Сибирского Виноградова отделения лаборатория физико-химической петрологии и генетической минералогии. заведующий лабораторией Белогуб Елена Витальевна – доктор геолого-

минералогических наук, доцент, ФГБУН Южно-Уральский федеральный научный центр минералогии и геоэкологии Уральского отделения РАН, заместитель директора по научной работе

Защита диссертации состоится « 30 » мая 2025 года в 16.30 на заседании диссертационного совета МГУ.016.5 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, д. 1, Главное здание МГУ, сектор «А», аудитория 415. E-mail: msu.04.02@mail.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на портале <u>https://dissovet.msu.ru/dissertation/3332</u>

Автореферат разослан « 28 » апреля 2025 года.

Ученый секретарь диссертационного совета, доктор химических наук

Lan

Белоконева Е.Л.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность

Гранитные пегматиты являются важным концентратором редких элементов – Nb, Ta, Sc, Y, *REE*, Li, Rb, Cs, Be, B. Изучение форм нахождения этих элементов дает новые знания о веществе и важно для понимания генезиса пегматитов, а в практическом отношении – способствует выявлению источников и разработке технологий извлечения этих элементов, востребованных во многих, в том числе и высокотехнологичных отраслях промышленности.

В работе рассмотрена минералогия скандия, иттрия, редких земель, ниобия, тантала, олова, рубидия и цезия в гранитных пегматитах Шахдаринского и Намангутского пегматитовых полей Юго-Западного Памира и Кукуртского пегматитового поля Восточного Памира. Эти пегматиты в течение многих лет изучались как источники пьезосырья, ограночного и коллекционного материалов. Их редкометальная минерализация практически не изучена, хотя в работах Л.Н. Россовского, С.И. Коноваленко и А.В. Волошина неоднократно отмечалась редкометальная специализация миароловых пегматитов Юго-Западного и Восточного Памира. Наиболее изучены в отношении минералогии редких элементов пегматиты Юго-Западного Памира (пегматитовые жилы Шахдаринского поля –Тусионская, Вездаринская, в некоторой степени Лесхозовская). Представляется, что продолжение детального изучения минералогии редких элементов как в этих, так и в других пегматитах Памира актуально и в теоретическом, и в практическом отношении. Пегматиты Намангутского пегматитового поля на Юго-Западном Памире выбраны нами в качестве объекта сравнения как типичное комплексное месторождение редких литофильных элементов – Li, Rb, Cs, Ta, Nb.

В настоящей работе не рассматривается минералогия легких литофильных элементов: Li, Be, В. Для определения содержаний этих элементов в минералах применяются иные инструментальнометодические подходы.

Цели исследования

1) детально изучить минералы-концентраторы Rb, Cs, Nb, Ta, Sn, Sc, *REE* в миароловых пегматитах Юго-Западного и Восточного Памира, уточнить их место в процессе формирования гранитных пегматитов;

2) комплексно исследовать вариации элементного состава, физических свойств, морфологии и анатомии индивидов минералов редких элементов в пегматитовых телах различного типа;

3) сравнить редкометальную минерализацию пегматитов Юго-Западного и Восточного Памира.

Конкретные задачи исследования

- установить минералы-носители редких элементов в пегматитах Юго-Западного Памира (жилы Лесхозовская, Шахдаринская, Вездаринская) и Восточного Памира (пегматиты Дорожный, Мика, Малыш, Амазонитовый, Топазовый);

- выявить и изучить вариации состава, свойств, морфологии собственных минералов Nb, Ta, Sc, *REE*, Cs, Rb и Sn в описываемых гранитных пегматитах Памира;

- выяснить пределы вхождения редких элементов в акцессорные минералы пегматитов.

Фактический материал и методы исследований, личный вклад автора

Автором в течение 2016-2022 гг. на пегматитовых полях Восточного и Юго-Западного Памира были проведены полевые работы, в результате которых из пегматитовых тел и вмещающих пород было отобрано более 2000 штуфных образцов и 40 шлиховых проб общей массой около 250 кг. Автором выполнены все работы по пробоподготовке, изучению оптических и других физических свойств (измерение показателей преломления, величин отражения, микротвердости, плотности и др.), получению рентгеновских порошкограмм минералов. Подготовка препаратов для микрозондовых, рентгеновских и монокристальных рентгеновских исследований выполнена автором. Определения элементного состава минералов выполнены автором, частью - совместно с коллегами.

Полуколичественный и количественный анализ химического состава минералов выполнен на сканирующих электронных микроскопах JSM-35CF и JSM 840 (JEOL), оснащенных энергодисперсионными спектрометрами (ЭДС). Количественный микрозондовый анализ выполнен на

электронно-зондовом микроанализаторе JCXA-733 (JEOL), оснащенном Si(Li)-ЭДС с ультратонким окном ATW-2 и системой анализа INCA Energy 350 (Oxford), а также с использованием волноводисперсионных спектрометров (ВДС) (Минералогический музей им. А..Е. Ферсмана РАН). Рентгеновское изучение минералов методом порошка проводилось на дифрактометрах ДРОН-2 и ДРОН-3 в лабораториях Института геологии, сейсмостойкого строительства и сейсмологии НАНТ (Душанбе) и Минералогического музея им. А.Е. Ферсмана РАН. Дебаеграммы для ряда минералов получены фотометодом на приборах УРС-55а в камерах РКУ-86, РКД-57.3, RKD-60, рентгенограммы монокристаллов - в камере Гандольфи. Монокристальные рентгеновские исследования минералов выполнены на кафедре кристаллографии Института наук о Земле СПбГУ на рентгеновском дифрактометре Bruker "Карра АРЕХ DUO" и в лаборатории кристаллографии Университета Манитобы (Канада) на монокристальном дифрактометре Xcalibur-Oxford Diffraction. В связи с большим объемом исследований, которые выполнил автор, не все методы описаны в автореферате. Детальное описание инструментальных исследований и методик дано в главе 2 диссертации.

Научная новизна

1. Впервые в пегматитах Памира установлено повышенное содержание скандия, изучены формы его нахождения. Обнаружены собственные минералы скандия: шахдараит-(Y) ScYNb₂O₈ (новый минерал, установлен в пегматитовой жиле Лесхозовская), хефтетьернит ScTaO₄ и ниобохефтетьернит ScNbO₄, (вторая и третья находки в мире; впервые найдены в пегматитах Памира). Установлен ряд Sc-содержащих минералов: бадахшанит-(Y), колумбит-(Mn), циркон, ксенотим-(Y) и др. Впервые выявлено изоморфное вхождение Sc в безводные бораты – обнаружен и изучен Sc-содержащий тусионит MnSn(BO₃)₂ (до 1.5 мас. % Sc₂O₃).

2. В тех же пегматитах изучена ниобий-танталовая минерализация. Кроме шахдараита-(Y), хефтьернита и ниобохефтьернита, в них обнаружены **ферсмит CaNb**₂**O**₆ и **висмутоколумбит BiNbO**₄. Для минералов серий колумбит-(Fe), -(Mn) – танталит-(Fe), -(Mn) и пирохлор-микролит установлены широкие вариации состава и своеобразная зональность. Выявлены повышенные содержания Ta и Nb в касситерите Намангутского пегматитового поля – до 6 мас. % Ta₂O₅, > 4 мас.% Nb₂O₅.

3. Детально изучена редкоземельная минерализация. В пегматитах Юго-Западного Памира открыт новый минерал шахдараит-(Y). В пегматите Дорожный на Восточном Памире открыты новые минералы: бадахшанит-(Y) Y₂Mn₄Al(Si₂B₇BeO₂₄) и пепроссиит-(Y) Y[Al₃O]_{2/3}B₄O₁₀. Впервые в гранитных пегматитах Памира обнаружены и охарактеризованы гадолинит-(Y) Y₂Fe²⁺Be₂O₂(SiO₄)₂, поликраз-(Y) Y(Ti,Nb)₂O₆, уранополикраз (U,Y)(Ti,Nb)₂O₆, пепроссиит-(Ce) Ce[Al₃O]_{2/3}B₄O₁₀.

4. Впервые установлено, что оловянная минерализация в пегматитах Памира, помимо касситерита, представлена **герценбергитом SnS** и **варламовитом** (Sn,Fe)(O,OH)₂; ранее известный лишь на Юго-Западном Памире **тусионит MnSn(BO**₃)₂ обнаружен так же и на Восточном Памире. Кроме того, олово входит в колумбит-танталит (1.5-2 масс. % SnO₂), ильменорутил (до 1.3 масс.% SnO₂), шахдараит-(Y) (до 1.5 масс.% SnO₂), эшинит-(Ce) (до 0.5 масс.% SnO₂), минералы группы пирохлора (до 3.5 масс.% SnO₂), титанит (до 1.4 масс.% SnO₂).

5. Выявлены потенциально новые минералы цезия: CsAl₂(Si₃AlO₁₀)F₂ (фтористый аналог наньпингита) и кубическая фаза Cs(W,Nb)₂O₆.

В результате изучения гранитных пегматитов Шахдаринского, Кукуртского и Намангутского пегматитовых полей Памира выявлена их богатая и разнообразная минерализация Sc, Y, REE, Sn, Nb, Ta, Cs. 19 минералов диагностированы в описываемых пегматитах впервые, и 9 из них являются новыми для Таджикистана (табл. 1).

Таблица 1

N⁰	Минерал	Формула								
1	Алланит-(Се)	CaCeAl ₂ Fe(SiO ₄)(Si ₂ O ₇)O(OH)								
2	Бадахшанит-(Ү) **	Y ₂ Mn ₄ Al(Si ₂ B ₇ BeO ₂₄)								
3	Бертрандит	Be ₄ Si ₂ O ₇ (OH) ₂								
4	Варламовит*	(Sn,Fe)(O,OH) ₂								

Минералы, обнаруженные автором в гранитных пегматитах Памира

5	Висмутоколумбит*	BiNbO ₄
6	Гадолинит-(Ү) *	Y ₂ Fe ²⁺ Be ₂ O ₂ (SiO ₄) ₂
7	Гельвин*	Mn ₄ [BeSiO ₄] ₃ S
8	Герценбергит*	SnS
9	Рутил (ильменорутил)	(Ti,Nb,Ta)O ₂
10	Лёллингит*	FeAs ₂
11	Микролит	(Ca,Na) ₂ Ta ₂ O ₆ (H ₂ O)
12	Молибденит	MoS ₂
13	Ниобохефтетьернит*	ScNbO ₄
14	Паризит-(Се)*	Ca(Ce,La) ₂ (CO ₃) ₃ F ₂
15	Пепроссиит-(Се)*	CeAl ₂ B ₄ O ₁₀
16	Пепроссиит-(Y)**	YAl ₂ B ₄ O ₁₀
17	Пирохлор	(Ca,Na) ₂ Nb ₂ O ₆ (H ₂ O)
18	Поликраз-(Ү)*	Y(Ti,Nb) ₂ O ₆
19	Синхизит-(Се)	Ca(Ce,La)(CO ₃) ₂ F
20	Спессартин	Mn ₃ Al ₂ (SiO ₄) ₃
21	Стибиоколумбит	SbNbO ₄
22	Титанит	CaTiOSiO ₄
23	Торианит	ThO ₂
24	Торит	ThSiO ₄
25	Триплит*	(Mn ²⁺ ,Fe ²⁺) ₂ (PO ₄)(F,OH)
26	Тусионит	MnSn(BO ₃) ₂
27	Уранинит	UO ₂
28	Уранополикраз*	(U,Y)(Ti,Nb) ₂ O ₆
29	Уранофан	$Ca(UO_2)_2SiO_3(OH)_2 \cdot 5H_2O$
30	Ферсмит*	CaNb ₂ O ₆
31	Ферберит	FeWO ₄
32	Хефтетьернит*	ScTaO ₄
33	Хризоберилл	BeAl ₂ O ₄
34	Чералит*	CaTh(PO ₄) ₂
35	Черновит-(Ү)*	YAsO ₄
36	Шахдараит-(Ү)**	ScYNb ₂ O ₈

Примечание: * - ранее неизвестные в пегматитах Памира, ** - новые минералы, открытые нами

Теоретическая и практическая значимость работы

Установлены формы нахождения редких элементов в гранитных пегматитах Восточного и Юго-Западного Памира. Редкие элементы входят в состав как собственных минералов, так и являются изоморфными примесями в целом ряде акцессорных минералов. Это позволило получить новые данные об изоморфизме Sc, Nb, Ta, REE, а также Sn в минералах гранитных пегматитов. Открытие новых минералов **бадахшанита-(Y), шахдараита-(Y) и пепроссиита-(Y)** пополнило знания о минералогии и геохимии редких элементов.

Выявление минералов-носителей редких элементов в гранитных пегматитах Памира и получение новых данных о минералах-концентраторах редких элементов позволяет рекомендовать провести переоценку данных объектов, как потенциальных источников редких металлов. Высокое

содержание Sc (стратегического металла) в минералах ряда колумбит-танталит (до 2 % мас. % Sc₂O₃) и спессартине (до 0.3 мас.% Sc₂O₃), а также присутствие собственных минералов скандия в описываемых пегматитах может повысить экономическую значимость этих объектов. Полученные сведения о минералах-концентраторах редких элементов (размеры выделений, морфология, характер срастаний, особенности состава и т.д.) позволяют прогнозировать технологические свойства руд этих объектов. В пегматитах Намангутского поля установлена и изучена богатая касситеритовая минерализация, что позволяет рекомендовать провести оценку оловоносности этих пегматитов.

Отработаны рациональные подходы и методики минералогического изучения пегматитов, начиная от полевых исследований и заканчивая лабораторными, которые можно применять для оценки редкометального оруденения других пегматитов Памира.

Защищаемые положения

1. По результатам минералогических исследований выявлена новая скандиеносная провинция. В изученных гранитных пегматитах Восточного и Юго-Западного Памира носителями скандия выступают шахдараит-(Y) ScYNb₂O₈, хефтетьернит ScTaO₄, ниобохефтетьернит ScNbO₄, а также колумбит-(Mn), циркон, ксенотим-(Y), бадахшанит-(Y), тусионит, ферсмит с устойчивым содержанием до 2 мас. % Sc₂O₃ и породообразующий в ряде пегматитовых жил спессартин, содержащий 0.2-0.3 мас. % Sc₂O₃.

Синим выделены новые минеральные виды, жирным чёрным – новые для Памира минералы, открытые и изученные при участии автора.

2. Гранитные пегматиты Юго-Западного и Восточного Памира имеют ярко выраженную иттриевую специализацию редкоземельной минерализации. В них развиты поликраз-(Y), гадолинит-(Y), бадахшанит-(Y) Y2Mn4Al(Si2B7BeO24, шахдараит-(Y) ScYNb2O8, гелландит-(Y) (Ca,REE)4YAI[](B4Si4O22(OH,F)2, ксенотим-(Y) YPO4, черновит-(Y) YAsO4, пепроссиит-(Y) Y(Al3O)2/3B4O10. Скандиевая и иттриевая специализация этих пегматитов может быть связана с сильной обогащенностью исходных расплавов бором и фтором.

3. Олово в изученных пегматитах проявляет как литофильное, так и халькофильное поведение. Первое выражается в обилии касситерита (богатого Та и Nb), развитии гидростаннатов и бората – тусионита; значительное количество Sn сосредоточено в составе колумбита-танталита, ильменорутила, микролита-пирохлора, шахдараита-(Y), эшинита-(Ce), титанита, хризоберилла. Второе выражено в образовании герценбергита SnS. Вероятные причины разнообразия минералов олова – многоэтапная история становления данных миароловых гранитных пегматитов и пёстрый состав толщ, вмещающих пегматиты. Концентрация оловосодержащих колумбита и танталита в ряде пегматитов может иметь промышленный интерес.

Достоверность результатов и апробация работы

Достоверность результатов инструментальных исследований минералов достигалась применением стандартных образцов и сопоставлением результатов с известными по базам данных.

Определение элементного состава минералов сопровождалось комплексом мер по обеспечению достоверности результатов, включающих А) регулярное измерение стандартных образцов, близких по составу к исследуемым. В качестве образцов сравнения при микрозондовом анализе использовались стандартные образцы Смитсониановского института (Вашингтон, США), стандарты фирмы Сатеса (Франция), синтетические соединения с устойчивой стехиометрией; Б) проведение регулярной калибровки ЭДС по энергии линий и разрешению на внутренних стандартах (никель, кобальт); В) определение одного и того же элемента по разным аналитическим линиям (если таковые имеются), Г) контрольный анализ одних и тех же участков с использованием как ЭДС, так и ВДС, а также анализ при разных ускоряющих напряжениях; Д) проверка однородности участка анализа путем наблюдения в режимах SEI, BSE, при необходимости – построение концентрационных профилей или рентгеновских карт распределения элементов.

Верификацией результатов является публикация статей по теме работы в ведущих журналах (Записки Российского минералогического общества, Canadian Mineralogist).

Минералы, открытые в ходе выполнения работы, прошли апробацию и утверждены как новые минеральные виды Комиссией по новым минералам, номенклатуре и Международной минералогической ассоциации.

Результаты исследований по теме диссертации докладывались и обсуждались на республиканской конференции «Геолого-геохимические особенности образования гидротермальных месторождений Таджикистана» в Научно-исследовательском институте Таджикского национального университета (Душанбе, 2017), на республиканской научно-практической конференции, посвящённой 80-летию члена-корреспондента АН РТ, профессора А.Р. Файзиева «Фундаментальные и прикладные вопросы геологии, сейсмостойкого строительства и сейсмологии» (Душанбе, 2018), на Международном минералогическом семинаре «Современные проблемы теоретической, экспериментальной и прикладной минералогии» (Юшкинские чтения -2018), (Сыктывкар, Республика Коми, Россия, 2018) и XVII Геологическом съезде Республики Коми «Геология и минеральные ресурсы европейского северовостока России» (Сыктывкар, 2019).

По теме диссертации опубликовано 8 статей в научных изданиях, рекомендованных АК МГУ, и 5 работ в иных изданиях.

Объем и структура работы

Диссертация состоит из введения, шести глав и заключения. Общий объем работы 247 страниц. Текст сопровождается 135 иллюстрациями (карты, рисунки, графики, диаграммы, фотографии минералов) и 67 таблицами. Список использованной литературы включает 305 наименования.

ОСНОВОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Литературный обзор. История геологического изучения Памира

Основные этапы геологического и минералогического изучения пегматитов Памира

История исследования геологии Памира тесно связана с изучением территории Таджикистана и всей Средней Азии. Опубликованная и фондовая литература по геологии Памира весьма обширна. В диссертации приведены только основные результаты изучения геологии Памира, прежде всего близкие тематике диссертации. Обзоры опубликованных и рукописных работ по геологической изученности регулярно публиковались в виде томов «Геологическая изученность СССР», библиография по геологии Памира отражена в капитальных изданиях «Геология СССР» (1959), в работах М.С. Дюфура, С.В. Руженцева, Э.А. Дмитриева, Б.Р. Пашкова, В.И. Буданова, Г.П. Винниченко и других геологов. Недавно О.С. Файрузшоева провела большую работу по анализу и обзору геологических исследований Горно-Бадахшанской автономной области за период с 1872 по 1991 гг.

Первое указание на нахождение в пегматитах Западного Памира минералов редких элементов, сделал А.Н. Лабунцов, проводивший геолого-минералогические исследования на Памире в 1928 г. А.Н. Матиас с соавторами (1963) открыли в пегматитах Кухи-Лала магноколумбит. В дальнейшем минералы группы колумбита и ильменорутил из этого проявления детально изучила В.А. Корнетова. Работы производственных геологических организаций показали возможность наличия редкометального оруденения в пегматитах Памира. Благодаря работам С.Н. Коноваленко, А.В. Волошина, Л.Н. Россовского, наиболее изучена минералогия редких элементов в пегматитовых жилах Юго-Западного Памира – Тусионской, Вездаринской, менее в Лесхозовской. Здесь были найдены гамбергит, W-содержащие танталониобаты, тетравикманит, поллуцит, гелландит, открыты новые минералы редких элементов – тусионит, корагоит. На Восточном Памире в пегматите Мика был открыт висмутопирохлор. Эти работы показали, что миароловые пегматиты Памира содержат богатую минерализацию редких литофильных элементов, что во многом стимулировало и определило направленность настоящей работы.

Глава 2. Материалы и методы исследований

Материалы для исследований собраны автором при полевых работах 2016-2022 гг. на пегматитах Памира. В основном изучались пегматиты Кукуртского, Шахдаринского и Намангутского пегматитовых полей. Были опробованы пегматитовые жилы Шахдаринского поля: Лесхозовская, Шахдаринская, Вез-Даринская; пегматиты Намангутского поля: жилы из участка Придорожного и участка Главного и пегматитовые жилы Кукуртского поля: Дорожная, Топазовая, Амазонитовая, Мика, Малыш. В ходе полевых работ изучались строение пегматитовых тел, текстурные особенности и зональность пегматитов, характер контактов пегматитов, наличие экзо- и эндоконтактовых изменений. Из тел пегматитов и вмещающих пород отбирались штуфные пробы – не менее 200 из каждого объекта. Для обнаружения и характеристики акцессорных минералов пегматитов были отобраны шлиховые пробы из рыхлого материала и отвалов весом 40-50 кг, а также протолочки из штуфного материала. Автор широко использовал люминесцентный метод: все образцы просмотрены в коротковолновом (254 нм) и длинноволновом (315 нм) ультрафиолетовом свете для выявления люминесцирующих минералов и в нефильтрованном свете ртутной лампы для обнаружения микрозондовые анализы с использованием ЭДС и ВДС, ионно-зондовый метод (SIMS), рентгеновские методы (дифрактометрический и с фоторегистрацией), монокристального рентгеноструктурного анализа, мокрого химического анализа с использованием спектрометрии с индуктивно-связанной плазмой, методы ИК- и рамановской спектрометрии, исследований оптических свойств в проходящем и отраженном свете, определения плотности и твердости по микровдавливанию.

Глава 3. Геологическое положение пегматитовых полей Юго-Западного и Центрального Памира

Геологическое строение районов развития редкометальных пегматитов

Исследования редкометальных пегматитов проведены на Кукуртском пегматитовом поле Восточного Памира, Шахдаринском и Намангутском пегматитовых полях Юго-Западного Памира.

Кукуртское пегматитовое поле

Расположено в восточной части Центрального Памира, и является частью Кукуртского самоцветного узла. Приурочено к Восточно-Памирскому (Музкол-Рангкульскому) антиклинорию, входящему в состав гигантской Альпийско-Гималайской покровно-складчатой системы. Большую часть поля слагают метаморфические породы музкольского PZ-MZ комплекса. Наибольшее число миароловых пегматитов связано с двуслюдяными лейкократовыми гранитами шатпутского интрузивного комплекса альпийского возраста. Некоторые тела гранит-пегматитов залегают в зорбурулюкских гнейсогранитах. Основная их часть размещена в породах музкольского комплекса. Почти все пегматиты содержат миаролы с самоцветной и редкометальной минерализацией. Автор наиболее подробно изучил пегматиты Дорожный и Амазонитовый.

Пегматит Дорожный расположен в левом борту долины реки Кукурт. Это будинированная жила в мраморах замковой части Кукуртской антиклинали. Длина жилы 100 м, мощность в раздуве до 10-15 м. В этом пегматите нами выявлено большое разнообразие минералов: Sc-содержащий спессартин, фторапатит, флюорит, Sn- и Sc-содержащий титанит, герценбергит, магнетит, рутил, поликраз-(Y), уранополикраз, обогащённый бором гадолинит-(Y), иксиолит, уранинит, торит, торианит, манганоколумбит, пирохлор, черновит-(Y), касситерит, циркон, монацит-(Ce), ксенотим-(Y), бадахшанит-(Y) (новый минерал), Sc-содержащий тусионит (первая находка для пегматитов Восточного Памира), хефтетьернит (2-я находка в мире) (Мираков и др., 2018;2018а; Мираков и др., 2019; Mirakov et al., 2020).

Пегматит Амазонитовый расположен на правом борту сая Пегматитового, правого притока реки Кукурт. Относится к топазовому минеральному типу миароловых пегматитов, Вмещающие породы – скаполит-амфибол-флогопитовые сланцы, нефелинизированные габбро кукуртского комплекса, лейкократовые граниты шатпутского комплекса. Весьма характерный минерал этого пегматита – топаз, нередко образующий кристаллы чайного цвета до 10 см в поперечнике. В этом пегматите автор обнаружил: колумбит-(Mn), триплит, фторапатит, Sc-содержащий богатый гафнием циркон, ксенотим-(Y), монацит-(Ce), касситерит и ильменит (Мираков, Файзиев, 2019).

Шахдаринское пегматитовое поле

Первые сведения о гранитных пегматитах Юго-Западного Памира получил А.Н. Лабунцов в ходе работ Таджикско-Памирской экспедиции в 1928 г. За прошедшие годы на Юго-Западном Памире открыты многочисленные жилы гранитных пегматитов: наиболее известные в долине реки Шахдара – Вездаринская, Тусионская, Шахдаринская, Бадомдаринская, Лесхозовская. Перечисленные пегматиты залегают в метаморфических породах шахдаринской серии докембрийского возраста. Образование

гранитных пегматитов по косвенным признакам связывают со становлением крупного Памиро-Шугнанского массива высокоглиноземистых гранитов.

Пегматитовая жила Лесхозовская расположена на юго-западном склоне Шугнанского хребта на правом борту реки Шахдара напротив кишлака Шивоз. Это – крутопадающая жила, мощностью 0.5-3.5 м, секущая гранат-биотитовые гнейсы шахдаринской серии. Контакты пегматита с вмещающими породами резкие, в жиле содержатся ксенолиты гнейсов. Жила сложена неравномерно зернистым агрегатом кварца, К-Na полевого шпата и олигоклаза с подчиненными турмалином и слюдами. Вблизи зальбандов пегматит мелко-среднезернистый существенно олигоклазовый с биотитом и шерлом. В осевой части жилы пегматит более крупнозернистый до блокового, двуполевошпатовый, с более редким шерлом и желто-зелеными тсилаизитом и эльбаитом. Крупные миаролы развиты в раздувах жилы (Pautov, Mirakov et al., 2022). Миароловые полости инкрустированы кристаллами кварца, микроклина, альбита и полихромного турмалина, розетками литийсодержащего мусковита. В мелких полостях обычен столбчатый до игольчатого светло-розовый до бесцветного эльбаит. Акцессорные – циркон, ксенотим-(Y), монацит-(Се), альмандин-спессартин, рутил, ильменит, магнетит, уранинит, касситерит, ферсмит, фторапатит, Sc-содержащие минералы серии колумбит-(Fe)-колумбит-(Mn)танталит-(Fe), вольфрамит, минералы надгруппы пирохлора (Мираков и др., 2023,2023а).

Вез-Даринская жила – это трубообразное не зональное тело пегматита олигоклазмикроклинового состава, падающее на ССВ под углом 55°, длиной ~70 м, мощностью до 9 м, с обилием занорышей с поперечником до 30-50 см с кристаллами ортоклаза, дымчатого кварца, полихромного турмалина, данбурита, лепидолита. Второстепенные минералы – биотит, шерл как в одиночных кристаллах, так и образующий графические срастания с кварцем, спессартин-альмандин. Более поздние образования: альбит и лёллингит (Шодибеков и др., 2020), флюорит, полилитионит, боромусковит, берилл, топаз, фторапатит, галит, циркон, торит, манганоколумбит, стибиоколумбит, микролит, иксиолит, касситерит, W-содержащий пирохлор, гюбнерит, корагоит, гамбергит, еремеевит, поллуцит, тетравикманит, виитаньемиит, арсенопирит, галенит, антимонит, графит, анатаз, ксенотим-(Y).

Намангутское пегматитовое поле

Расположено на крайнем Юго-Западе Памира между посёлками Ишкашим и Намангути-боло. Здесь верхнетриасовая толща филлитовидных сланцев и кварцитов, смятая в синклинальную складку, пересечена двумя массивами двуслюдяных гранитов, крупной дайкой микродиоритов и жильными дериватами гранитов – пегматитовыми и кварцевыми жилами. В Намангутском поле наибольшее количество пегматитовых тел развито на участках «Главный» и «Придорожный». Автор в 2017-2019 гг. посещал пегматиты данного объекта и более подробно изучил пегматитовые тела участка «Главный» (Мираков и др., 2018). Эти пегматиты – мелко-среднезернистые породы, сложенные кварцем (5-10%), мусковитом (10-15%) и сдвойникованными лейстами альбит-олигоклаза. Границы между их кристаллами – индукционные поверхности совместного роста. Эти пегматиты обогащены касситеритом, содержат колумбит-танталит, циркон, фторапатит, уранинит (Мираков и др., 2018; Мираков и др., 2020).

Глава 4. Минералогия рубидия и цезия в пегматитах Памира

Основными концентраторами Rb и Cs в пегматитах Памира являются слюды. Данные по распределения рубидия (и цезия) в пегматитах Памира различной формационной принадлежности приведены в работах С.И. Коноваленко, Е.Н. Соколовой, М. Мамадвафоева. Геохимия рубидия в пегматитах Памира изучена довольно хорошо, потому приведём только собственные наблюдения по распределению Rb в слюдах. Высокое содержание Cs, иногда отмечаемые в слюдах пегматитов Памира, не всегда связано с изоморфным замещением калия цезием (слишком большая разница в ионных радиусах K и Cs делает такой изоморфизм ограниченным). В качестве примера приведем карты распределения элементов в кристалле полилитионита из пегматита Шахдаринской жилы, который содержит 0.01-0.4 масс. % Cs₂O и 0.44-1.2 масс. % Rb₂O (рис. 1). В этом кристалле ярко выражена ростовая зональность, его внешняя зона обогащена Rb и Cs; отчётливо проявлен изоморфизм Rb и K, отчасти – Rb и Cs.

Рис .1. Кристалл полилитионита 35 мм из полости в Шахдаринской жиле. Сканированное изображение и рентгеновские карты распределения Si, AI, K, Mn, Fe, Rb, Cs, Ti по данным микро-РФА.

В пегматитах Памира развит поллуцит (в пегматите Вездара), а также фтористый аналог наньпингита и вольфрамат цезия – Cs(W,Nb)₂O₆. Кроме того, в пегматитовой жиле Шахдаринская автором обнаружен Cs-содержащий берилл (Cs₂O до 3.4 мас %).

Глава 5. Минералогия скандия и редких земель в пегматитах Памира

5.1. Скандиевая минерализация в пегматитах Памира

Впервые во многих минералах гранитных пегматитов Памира установлено наличие скандия (Мираков и др., 2018а; Pautov et al., 2020; Паутов и др., 20206; Мираков, Файзиев, 2019). В пегматите Дорожный скандий содержат тусионит, спессартин, бадахшанит-(Y) (Мираков и др., 2018, 2018а; Pautov et al., 2020); в пегматитовой жиле Амазонитовая – колумбит-танталит и богатый гафнием циркон (Мираков, Файзиев, 2019); в пегматитовой жиле Лесхозовская – циркон, ксенотим-Y, колумбит-(Mn) и ферсмит (Мираков, 2023; Мираков и др., 2023). В этом же пегматите были обнаружены и изучены минералы скандия: шахдараит-(Y) (ScYNb₂O₈) (Pautov et al., 2022) (новый минерал), хефтетьернит (ScTaO₄), ниобохефтетьернит (ScNbO₄) (вторые-третьи находки в мире) (табл. 2).

Шахдараит-(Y) ScYNb₂O₈ (моноклинной сингонии, пространственная группа *P2/c*) – новый минерал, открытым нами в Лесхозовской пегматитовой жиле на Юго-Западном Памире и названый по месту находки (р. Шахдара) (Pautov et al., 2022). Шахдараит-(Y) образует зерна размером 10-150 мкм в около миароловой части пегматита в ассоциации с кварцем, альбитом, пирохлор-микролитом, скандийсодержащим ферсмитом и ниобохефтетьернитом. Лишь один полногранный кристалл шахдараита-Y длиной 200 мкм обнаружен в небольшой полости с кварцем, альбитом, пирохлором,

Таблица 2

			Ю	го - За	падн	ыЙ	Boc	точн	ый
		Cononwouluo		Пам	ир		Π	ами	p
Минерал	Формула	Sc ₂ O ₃ (масс.%)	Bea	Лсх	μхШ	HMr	Држ	Амаз	Тпз
Ниобохефтетьернит	ScNbO ₄	21.1 - 21.7		+					
Шахдараит-(Ү)	ScYNb ₂ O ₈	11.3 - 11.5		+					
Хефтетьернит	ScTaO ₄	10.5 - 12.7					+		
Бадахшанит-(Ү)	Y ₂ Mn ₄ Al(Si ₂ B ₇ BeO ₂₄)	1.5 - 2.3					+		
Ксенотим-(Ү)	YPO ₄	1.3 – 2.3	+	+	+		+		
Циркон	ZrSiO ₄	0.4 – 2.3		+			+	+	
Манганоколумбит	MnNb ₂ O ₆	0.3 -2.0	+	+		+		+	+
Тусионит	MnSn(BO ₃) ₂	0.6 - 1.5					+		
Ферсмит	CaNb ₂ O ₆	0.2 - 0.6		+					
Спессартин	Mn ₃ Al ₂ (SiO ₄) ₃	0.2 - 0.3					+		

Основные минералы, содержащие скандий в гранитных пегматитах Памира

Примечание: * — сокращения названия пегматитов: Вез — Вездаринская, Лсх — Лесхоховская, Шхд — Шахдаринская, Нмг – Намангут, Држ – Дорожный Амаз – Амазонитовый, Тпз – Топазовый

бертрандитом и ярозитом (рис. 2). Шахдараит-(Y) относится к структурному семейству «двойного вольфрамита». Имеются три катионные позиции: две октаэдрические M(1), заселенная Nb, M(2) – Sc и одна 8-ми координированная M(3), занятая крупным катионом Y. Октаэдры M(1) и M(2) формируют «брукитовые» цепочки, вытянутые вдоль оси c. Восьмивершинники M(3) образуют изогнутые брукитоподобные цепочки. Каждый Y-доминантный полиэдр M(3) одной цепочки делит два ребра с двумя полиэдрами M(3) из соседней цепочки, образуя слой [Y₂O₈]⁻¹⁰. В структуре шахдараита-(Y) «брукитовые» цепочки из октаэдров M(1) и M(2) и слой восьмивершинников M(3) чередуются вдоль оси а. Схематическое изображение кристаллической структуры минерала приведено на рис. 3. Шахдараита-(Y) ScYNb₂O₈ является скандиевым аналогом самарскита-(Y) YFe⁺³Nb₂O₈. Цвет шахдараита-(Y) от темно-коричневого до черного. Спайность не наблюдалась. VHN₁₀₀ = 440, по шкале Мооса – 5. Измеренная плотность выше 4.24 г/см³ (зерна тонут в жидкости Клеричи). Расчетная плотность – 5.602 г/см³. Минерал не люминесцирует; немагнитен. В отраженном свете светло-серый с умеренно низким

Рис. 2. Шахдараит-(Y) (черный) с пирохлором (красный), бертрандитом (белый) и ярозитом (желтый); серое поле в нижней части – кварц. Ширина поля зрения 2.5 мм

Рис. 3. Кристаллическая структура шахдараита-(Y): (a) – «брукитовые» цепочки октаэдров M(1A) с преобладанием Nb при x ~ 0,75 и (б) - Sc-доминантные октаэдры M(2) при x = 0; (c) - слой [8]-координированных Y-доминантных полиэдров M(3A) при x = 0,5; (d) – чередование брукитовых цепочек октаэдров M(1A) и M(2) и слоя [8]-координированных полиэдров M(3A) вдоль а. Nb – доминантный и Sc-доминантные октаэдры оранжевого и розового цвета соответственно; Y-доминантные полиэдры M(3A) окрашены в синий цвет; вакансии доминантной позиции M(1B) и M(3B) не показаны (Pautov et al., 2022).

отражением и нормальной дисперсией. Анизотропия отчетливая без цветовых эффектов. Химический состав шахдараита-(Y) определен методом микрозондового анализа с помошью WDS. (среднее. масс.%): Nb₂O₅ 50.70, Ta₂O₅ 4.52, TiO₂ 0.08, WO₃ 0.79, SnO₂ 1.54, CaO 1.01, Sc₂O₃ 11.35, MnO 1.38, FeO 0.01, Y₂O₃ 12.00, Ce₂O₃ 0.21, Pr₂O₃ 0.04, Nd₂O₃ 0.27, Sm₂O₃ 0.32, Eu₂O₃ 0.07, Gd₂O₃ 0.86, Tb₂O₃ 0.22, Dy₂O₃ 2.07, Ho₂O₃ 0.29, Er₂O₃ 1.33, Tm₂O₃ 0.35, Yb₂O₃ 2.80, Lu₂O₃ 0.32, PbO 0.24, ThO₂ 1.90, UO₂ 3.30, 97.97. Эмипирическая формула шахдараита-(Ү) расчете сумма В на 8 0 $(Nb_{1.91}Sc_{0.83}Y_{0.53}Ta_{0.10}Mn_{0.10}Ca_{0.09}Yb_{0.07}U^{4+}0.06Dy_{0.06}Sn_{0.05}Th_{0.04}Er_{0.03}Gd_{0.02}W^{6+}0.02Pb_{0.01}Ce_{0.01}Nd_{0.01}Sm_{0.01}Tb_{0.01}Sm_{0.01}Tb_{0.01}Sm_{0.01$ 01Ho0.01Tm0.01Lu0.01Ti0.01) Σ4.00 O8. Из лантаноидов преобладает Yb. Идеальная формула минерала -ScYNb₂O₈ с составом Sc₂O₃ 15.40, Y₂O₃ 25.22, Nb₂O₅ 59.38, сумма 100 мас.%.

Хефтетьернит ScTaO₄ обнаружен нами в пегматитовой жиле Дорожная Кукуртского пегматитового поля. Это первая находка хефтетьернита в Таджикистане и, по-видимому, – вторая находка в мире. Хефтетьернит встречен в околомиароловом комплексе в виде вростков 10-50 мкм в шерле в ассоциации со Sc-содержащими спессартином (Mn_{2.49}Fe_{0.35}Ca_{0.16})_{3.00}(Al_{1.97}Ti_{0.02}Sc_{0.01})_{2.00} [Si_{3.00}O₁₂], тусионитом и бадахшанитом Y₂Mn₄Al(Si₂B₇BeO₂₄) (рис. 4 а, б). Формула хефтетьернита в расчете на O=4 (среднее по 9 анализам): (Sc_{0.49}Mn⁺²_{0.28}Sn_{0.08}Ti_{0.04}Y_{0.03}Fe⁺²_{0.04}Yb_{0.01}Sb_{0.01})_{0.99}(Ta_{0.67}Nb_{0.32}W_{0.07})_{1.06}O₄.

Ниобохефтетьернит ScNbO₄. установлен нами в пегматитовой жиле Лесхозовская Шахдаринского пегматитового поля. В пегматитах Памира найден впервые и, судя по доступным опубликованным работам и базе <u>www.mindat.org</u>, является третьей находкой в мире. Слагает мелкие изометричные кристаллы в ассоциации с альбитом, эльбаитом, пирохлором-микролитом, а также включения до 0.6x0.2 мм в кварце. Минерал темно-красного цвета, в отраженном свете белый, с красными внутренними рефлексами. Диагностирован по составу, рентгенограммам, физическим и оптическим свойствам. Структуру минерала и параметры элеметарной ячейки ниобохефтетьернита уточнил О.И.

Сийдра. Химический состав минерала приведен в таблице 3. Формула ниобохефтетьернита в расчете на O=4 (среднее по 6 анализам): (Sc_{0.70}Mn_{0.15}Sn_{0.09}Ti_{0.02}Fe_{0.02})_{0.98}(Nb_{0.86}Ta_{0.15}W_{0.01})_{1.02}O₄.

Рис. 4. а) хефтетьернит (Hef) (белое) в турмалине (Tur) в ассоциации со Sc-содержащим тусионитом (Tus) (светло-серое) и спессартином (Sps) (серое); б) продольный срез кристалла хефтетьернита. В отражённых электронах.

Таблица	3
---------	---

		<u>Х Х</u>	ефтетьерн	ит			Ниобохео	, ртетрерни.	г		
16	Пе	егматит Дор	ожный, Вос	точный Пам	ир	Пегматит Лесхозный, Юго-Западный					
компонент					Памир						
	1	2	3	4	5	6	7	8	9		
Nb ₂ O ₅	15.16	15.82	15.55	15.29	15.08	50.85	50.12	50.93	51.23		
Ta₂O₅	55.12	51.05	52.3	50.91	55.72	14.71	15.06	14.07	15.5		
WO ₃	5.07	6.46	5.04	5.46	3.97	0.94	0.93	1.74	0.79		
TiO ₂	1.17	1.06	0.85	0.8	1.17	0.65	0.68	0.67	0.85		
SnO ₂	3.00	4.3	4.25	3.87	3.57	5.81	6.22	6.02	5.81		
Sb ₂ O ₃	0.26	НПО	нпо	0.26	НПО	нпо	нпо	нпо	НПО		
Sc ₂ O ₃	10.5	12.7	11.33	11.69	10.61	21.18	21.41	21.38	21.14		
Y ₂ O ₃	1.04	0.99	1.18	0.94	0.53	нпо	нпо	нпо	нпо		
Yb ₂ O ₃	0.57	нпо	нпо	0.52	нпо	нпо	нпо	нпо	нпо		
MnO	8.43	7.95	7.32	8.43	8.5	4.88	4.6	4.79	4.69		
FeO	0.81	0.73	0.54	0.82	1.17	0.49	0.51	0.58	0.67		
Сумма	101.12	101.04	98.36	98.99	100.31	99.51	99.96	100.18	100.68		

Химический состав хефтетьернита и ниобохефтетьернита (мас. %)

Примечание: н.п.о.- ниже предела определения электронно-зондовым анализом.

5.2. Минералы иттрия и редких земель в описываемых гранитных пегматитах Памира

В описываемых пегматитах установлены уранполикраз, поликраз-(Y) (Паутов и др., 20186), гадолинит-(Y), эшинит-(Ce), алланит-(Ce), пепроссиит-(Ce), синхизит-(Ce), паризит-(Ce), ферсмит (Мираков и др., 2023), гелландит-(Y), монацит-(Ce), ксенотим-(Y), шахдараит-(Y), бадахшанит-(Y) **Y**₂**Mn**₄**AI**(**Si**₂**B**₇**BeO**₂₄)₈ (Pautov et al., 2020, 2022) и пепроссиит-(Y) - **Y**(**AI**₃**O**)_{2/3}**B**₄**O**₁₀ (Mirakov et al., 2024).

Уранполикраз (U,Y)(Ti,Nb)₂O₆ обнаружен в миароловых гранитных пегматитах Юго-Западного и Восточного Памира. На Юго-Западном Памире минерал найден в пегматитовой жиле Вез-Дара (Шахдаринское пегматитовое поле) и пегматите Музейный в контурах знаменитого месторождения благородной шпинели Кухилал (Паутов и др., 2018б). Минерал развит в блоковом кварце около миаролового комплекса пегматита. Минерал слагает таблитчатые удлиненные зерна и реже – кристаллы до 4х0.6 мм. Уранполикраз черного цвета, на сколе – с сильным смолистым блеском. В отраженном свете светло-серый, изотропный, отражение умеренное. VHN₁₀₀ = 600. Химический состав

уранполикраза из жилы Музейной приведен в таблице 4. По 5 анализам усредненная формула минерала: (U_{0.54}Y_{0.26}Th_{0.05}Dy_{0.03}Er_{0.03}Yb_{0.03} Ca_{0.02}Ho_{0.01}Nd_{0.01}Fe_{0.01}Mn_{0.01})_{1.00}(Ti_{1.63}Nb_{0.34}Ta_{0.02}W_{0.02})_{2.01}O₆. Как видно из пересчета анализов, в изученном минерале в А-позиции U>Y, а в В-позиции Ti>> Nb, что и определяет отнесение изученного минерала к уранполикразу. Не все изученные зерна из пегматита Музейный по составу отвечают уранополикразу, некоторые представлены поликразом-(Y).

На Восточном Памире поликраз Y(Ti,Nb)₂O₆ и уранополикраз (U,Y)(Ti,Nb)₂O₆ обнаружены в пегматите Дорожном. Поликраз-(Y) образует хорошо образованные кристаллы длиной до 15 мм, по составу не зональные. Средней состав (по 5 анализам, мас.%): TiO₂ 26.87, FeO 0.99, Y₂O₃ 15.50, SnO₂ 0.45, Nb₂O₅ 22.80, Sm₂O₃ 0.26, Eu₂O₃ 0.07, Gd₂O₃ 1.23, Tb₂O₃ 0.35, Dy₂O₃ 2.54, Ho₂O₃ 0.46, Er₂O₃ - 1.66, Tm₂O₃ 0.38, Yb₂O₃ 2.27, Ta₂O₅ 2.80, WO₃ 0.47, ThO₂ 3.24, UO₂ 3.24, сумма 98.47.

Таблица 4

)				
Компонент	1	2	3	4	5	6
Nb ₂ O ₅	13.27	13.06	11.52	9.87	8.75	9.92
Ta₂O₅	0.83	1.59	1.36	1.33	0.63	0.99
WO ₃	0.98	1.97	1.67	1.11	0.95	0.82
TiO ₂	31.00	32.04	32.95	33.95	34.39	33.15
UO ₂	36.89	31.59	34.34	39.74	41.41	38.44
ThO₂	5.20	3.19	2.78	2.45	3.74	3.08
Y ₂ O ₃	5.95	9.85	8.15	7.10	6.20	6.68
Ce ₂ O ₃	0.19	0.77	нпо	нпо	нпо	0.29
Nd ₂ O ₃	0.34	0.11	нпо	0.38	0.22	0.21
Dy ₂ O ₃	0.99	2.12	1.68	0.99	1.28	1.21
Ho ₂ O ₃	0.30	0.96	0.63	нпо	0.61	0.54
Er ₂ O ₃	0.91	1.87	0.84	1.24	0.85	0.88
Yb ₂ O ₃	0.99	1.97	1.68	1.78	0.73	0.81
FeO	0.28	0.04	0.32	0.17	нпо	нпо
MnO	0.51	нпо	0.12	нпо	нпо	нпо
CaO	0.69	0.29	0.12	нпо	нпо	нпо
Сумма	99.32	101.42	98.16	100.11	99.76	97.02
		Число атом	иов в форм	уле в расче	те на О = 6	-
U	0.55	0.45	0.51	0.59	0.62	0.58
Y	0.21	0.34	0.29	0.25	0.22	0.24
Th	0.08	0.05	0.04	0.04	0.06	0.05
Ca	0.05	0.02	0.01			
Mn	0.03		0.01			
Fe	0.02		0.02	0.01		
Ce		0.02				0.01
Nd	0.01			0.01	0.01	0.01
Dy	0.02	0.04	0.04	0.02	0.03	0.03
Но	0.01	0.02	0.01		0.01	0.01
Er	0.02	0.04	0.02	0.03	0.02	0.02
Yb	0.02	0.04	0.03	0.04	0.01	0.02
∑A	1.02	1.02	0.98	0.99	0.98	0.97
Ti	1.56	1.55	1.64	1.69	1.73	1.70
Nb	0.40	0.38	0.34	0.30	0.26	0.31
Та	0.02	0.03	0.02	0.02	0.01	0.02
W	0.02	0.03	0.03	0.02	0.02	0.01
∑B	2.00	1.99	2.03	2.03	2.02	2.04

Химический состав (мас. %) уранполикраза

Примечание: н.п.о. – здесь и далее - ниже предела определения электронно-зондовым анализом.

Гадолинит-(Y) обнаружен в гранитном пегматите Дорожный на Восточном Памире. В Таджикистане ранее гадолинит описал Е.И. Семёнов с соавторами в пегматитах Могова (южный склон Гиссарского хребта). На Памире акцессорный гадолинит указывал М.Б. Акрамов в лейкогранитах Раумидского массива. Других сведений о гадолините с Памира в доступной литературе обнаружить не удалось. Отсутствуют образцы памирского гадолинита и в крупнейших музеях. Вероятно, находка гадолинита-(Y) в пегматите Дорожный – первая охарактеризованная находка в пегматитах Памира.

Гадолинит-(Y) в средне-крупнозернистой неясно графической олигоклаз-кварцевой породе с акцессорными магнетитом и поликразом-(Y) слагает кристаллы размером 0.5-5 мм, изредка до 30 мм. Минерал дает четкую рентгеновскую порошкограмму. VHN₁₀₀ = 1130. Памирский гадолинит обогащён бором. Формула гадолинита-(Y), рассчитанная на 10 анионов: $(Y_{1.08}Ca_{0.56}Dy_{0.06}Gd_{0.05}Er_{0.05}Yb_{0.05}Nd_{0.03}Sm_{0.03}Ho_{0.02}Ce_{0.01}Pr_{0.01}Tb_{0.01}Lu_{0.01}Na_{0.01})_{\Sigma_{1.99}}$ (Fe²⁺0.54Mg_0.10Mn_0.03)_{\screw 0.67} (Be_{1.24}B_{0.72}Li_{0.01})_{\Sigma_{1.97}}Si_{1.99}O8 (OH_{1.43}O_{0.57})_2

Бадахшанит-(Y) Y₂Mn₄Al(Si₂B₇BeO₂₄ (ромбической сингонии, пространственная группа *Pnma*) обнаружен нами в миароловом пегматите Дорожный в Кукуртском пегматитовом поле (Pautov et al., 2020). Бадахшанит-(Y) развит в средне-крупнозернистом неграфическом альбит-микроклин-кварцевом пегматите в ассоциации с шерлом, Sc-содержащим спессартином, Sc-содержащим тусионитом. Бадахшанит-(Y) слагает одиночные столбчатые кристаллы длиной от 50 до 400 мкм (рис.5, 6), реже развит в мелких пустотах по границам граната с турмалином и кварцем. Для кристаллов бадахшанита-(Y) характерны ростовая зональность и секториальность (рис. 6).

Бадахшанит-(Y) желто-коричневого цвета, черта белая, блеск стеклянный. Твердость по шкале Мооса 6.5-7. VHN₁₀₀= 950. Измеренная плотность более 4.27(2) г/см³ (тонет в жидкости Клеричи). Рассчитанная плотность – 4.49 г/см³. Минерал не люминесцирует. В шлифах бледно-желтый, прозрачный. Оптически двуосный, отрицательный. n_p = 1.805(2), n_mвыч = 1.827, n_g = 1.835(3) (λ= 590 нм); 2V (изм.) –60° (10). Дисперсия слабая, *r* > *v*. Погасание прямое, удлинение отрицательное.

Рис. 5. Кристалл бадахшанита-(Y): а) под бинокулярным микроскопом, ширина поля 0.8 мм; б) в отражённых электронах.

Химический состав бадахшанита-(Y) определен методом микрозондового анализа с помощью WDS (B* измерен методами SIMS и ICP-OES, Be** измерен методом SIMS) (среднее, мас.%): SiO₂ 11.96, ThO₂ 0.12, Sm₂O₃ 0.17, Gd₂O₃ 0.30, Tb₂O₃ 0.10, Dy₂O₃ 0.73, Ho₂O₃ 0.19, Er₂O₃ 1.34, Tm₂O₃ 0.54, Yb₂O₃ 8.82, Lu₂O₃ 2.32, Y₂O₃ 16.60, Sc₂O₃ 1.57, Al₂O₃ 3.06, B₂O₃* 22.06, FeO 0.94, MnO 23.33, CaO 0.58, BeO** 2.84, сумма 97.59. Эмпирическая формула бадахшанита-(Y), в расчете на 24 атома O:

 $(Y_{1.62}Yb_{0.49}Lu_{0.12}Er_{0.08}Dy_{0.06}Tm_{0.03} Ho_{0.02}Gd_{0.01}Sm_{0.01}Tb_{0.013}Th_{0.01})_{2.46}(Mn_{3.13}Ca_{0.10}Fe^{2+}_{0.09}Mg_{0.02})_{3.34}$ $(Al_{0.73}Sc_{0.30})_{1.03}[(Si_{2.13}B_{6.68}Be_{1.20})_{10.01}O_{24}]$. Идеальная формула минерала – $Y_2Mn_4Al(Si_2B_7BeO_{24})$. Кристаллическая структура бадахшанита-(Y) уточнена до $R_1 = 0.0431$. В структуре минерала можно выделить слои тетраэдров, параллельных (010). Эти слои состоят из 3-х различных типов тетраэдров: SiO₄, BO₄ и TO₄ состава (BeB). Тетраэдры образуют 4-х, 5-ти и 8-членные кольца, общий состав слоя $(Si_2B_7BeO_{24})$. Между слоями из тетраэдров размещаются слои трех типов катионных полиэдров: восьмивершинники M(1) заселенные Y, M(2) – Mn (Y,Ca,Fe) и октаэдры, заселенные Al(Sc). Схематическое изображение кристаллической структуры бадахшанита-(Y) приведено на рис. 7. Бадахшанит-(Y) является AI- и Ве аналогом перетиита-(Y) Y₂Mn₄Fe²⁺(Si₂B₈O₂₄).

Puc.6. Поперечный срез кристалла бадахшанита в проходящем свете при 1 николе, в николях X, в режиме BSE и характеристическом рентгеновском излучении AI, Si, Sc, Mn, Fe, Y, Yb, Er, Th.

Пепроссиит-(Y) Y(Al₃O)_{2/3}B₄O₁₀ - новый минерал, обнаружен в пегматите Дорожный в ассоциации со спессартином, бадахшанитом-(Y), кварцем, альбитом (Mirakov et al., 2024). Минерал образует бесцветные пластинчатые зерна, часто – веерообразные сростки (рис. 8). Блеск стеклянный, на спайных выколках – перламутровый. Минерал оптически одноосный, положительный. n_o = 1.695(3), n_e = 1.717(3). VHN₁₀₀ = 830 на разрезе, близком к плоскости {001}, хрупкий. Химический состав (среднее из 12 анализов, мас. %): SiO₂ 7.08, Al₂O₃ 27.20, Y₂O₃ 15.84, La₂O₃ 0.42, Ce₂O₃ 1.77, Pr₂O₃ 0.24, Nd₂O₃ $1.38,\ Sm_2O_3\ 0.57,\ Eu_2O_3\ 0.04,\ Gd_2O_3\ 0.87,\ Tb_2O_3\ 0.12,\ Dy_2O_3\ 1.20,\ Ho_2O_3\ 0.24,\ Er_2O_3\ 0.98,\ Tm_2O_3\ 0.25,\ Name transformation (Marcine Constraints))$ Yb₂O₃ 1.91, Lu₂O₃ 0.10, Sc₂O₃ 0.03, Bi₂O₃ 1.59, ThO₂ 1.16, UO₂ 0.23, MnO 0.84, CaO 2.68, B₂O₃ 33.01, сумма 99.77. Эмпирическая формула минерала В расчете на два атома AI: (Y0.53Ca0.18Mn0.04Yb0.04Ce0.04Nd0.03Bi0.03Gd0.02Dy0.02Er0.02Th0.02 La0.01Pr0.01Sm0.01)1.00 Al2 (B3.55Si0.44)3.99 O10.63.

Рис. 8. Срастание пластин пепроссиита-(Y) (pepr) и бадахшанита-(Y) (Bdsh); справа – в отраженных электронах.

Кристаллическая структура пепроссиита-(Y) схожа с кристаллической структурой пепроссиита-Се (Callegari et al., 2000) с пространственной группой *P*-62*m* (рис. 9). Нами предпринята попытка уточнения структуры пепроссиита-Y в этой пространственной группе, что привело к высокому значению R1 = 5.8% и нереалистичным параметрам тепловых смещений для нескольких позиций: Al1, B/Si, O1 и O3. В нашем описании нового минерального вида и уточнении структуры использована пространственная группа P-31m. Октаэдрическая координация атомов в позиции *M* (с преобладанием Y) наблюдается в пепроссиите-(Y), тогда как для структуры пепроссиита-(Ce) описано тригональнопризматическое окружение позиции *M*. По другим структурно-топологическим аспектам структуры обоих минералов идентичны. Из-за ограниченного количества зерен пепроссиита-(Y) не удалось выполнить дополнительные исследования по регистрации сигнала генерации второй гармоники.

Структура пепроссиита-(Y) состоит из слоёв трех типов: первый состоит из искаженных пятикоординированных полиэдров AI; второй – из шестичленных колец тетраэдров (B/Si)O₄,

соединенных с полиэдрами, центрированными AI, через апикальные вершины; третий – из октаэдров *М*О₆. Атомы AI статистически разупорядочены с заселенностью 1/3, уточненное – 0.311(3).

Рис.9. Кристаллические структуры пепроссиита-(Y) (слева, наши данные) и пепроссиита-(Ce) – (справа) (по данным Callegari et al., 2000).

Глава 6. Минералогия олова, ниобия и тантала в пегматитах Памира

6.1. Оловянная минерализация в гранитных пегматитах Памира

Оловянная минерализация в пегматитах Памира, помимо касситерита (Мираков и др., 20186), представлена герценбергитом (Паутов и др., 2018а; Мираков и др., 2019), гидростаннатом варламовитом и боратом тусионитом (Мираков и др., 2018; Паутов и др., 2018а).

Касситерит – наиболее распространенный рудный минерал в Намангутском пегматитовом поле (Мираков и др., 20186). Слагает в основном отдельные зерна и сростки 5-20-30 мм, реже – дипирамидальные кристаллы темно-бурого и темно-коричневого цвета. В Шахдаринском пегматитовом поле касситерит обнаружен в жилах Лесхозовская, Шахдаринская и Вездаринская, где образует полупрозрачные дипирамидальные кристаллы черного цвета 0.1–0.5 мм, реже 2-3 мм. Состав касситерита пегматитов Шахдаринского поля очень изменчив (табл. 5), особенность состава – наличие скандия (до 0.6 мас % Sc₂O₃), постоянные примеси – ниобий, тантал и вольфрам (табл. 5). Формула касситерита в расчете на O=2: (пегматит Лесхозный, ср. по 5 анализам): (Sn_{0.94}Ta_{0.02}Ti_{0.01}Sc_{0.01})_{1.00}O₂, (пегматиты Намангута, среднее по 5 анализам) (Sn_{0.93}Ta_{0.02}Nb_{0.02}Fe_{0.01}Mn_{0.01})_{1.00}O₂.

Konnouout		пегма	тит Лесхо	озный		пегматиты Намангута					
KOMITOHEHT	1	2	3	4	5	6	7	8	9	10	
SnO ₂	91.37	93.30	92.31	92.84	98.61	93.72	92.84	94.71	91.57	90.40	
Ta ₂ O ₅	3.82	3.58	4.14	4.03	1.02	3.65	2.51	2.73	5.22	3.60	
Nb ₂ O ₅	нпо	0.30	0.42	0.55	нпо	0.98	1.80	1.96	1.35	1.61	
WO ₃	1.17	0.65	0.66	1.01	нпо	0.46	1.35	нпо	НПО	2.01	
TiO ₂	0.93	0.97	1.20	нпо	0.40	нпо	нпо	нпо	нпо	нпо	
Sc ₂ O ₃	0.60	нпо	0.41	нпо	0.32	нпо	нпо	нпо	нпо	нпо	
FeO	нпо	нпо	нпо	0.06	нпо	0.57	0.60	нпо	1.10	1.53	
MnO	0.40	0.28	нпо	нпо	нпо	0.25	нпо	нпо	0.85	нпо	
Сумма	98.29	99.08	99.14	98.49	100.35	99.62	99.10	99.40	100.10	99.16	

Химический состав (масс. %) касситерита

Таблица 5

Герценбергит SnS обнаружен в пегматитовой жиле Вез-дара и пегматите Полихромный на Юго-Западном Памире, а также в пегматите Дорожный на Восточном Памире (Паутов и др., 2018а; Мираков и др., 2019). В Вездаринской жиле герценбергит слагает агрегаты неправильной формы с поперечником до 5 мм в калишпат-кварцевой породе из около миаролового комплекса На Восточном Памире герценбергит обнаружен в пегматите Дорожный в образце, выполненном в основном кварцем, калиевым полевым шпатом, альбитом и турмалином, с примесью спессартина, фторапатита, флюорита, Sn-содержащего титанита, магнетита, поликраза-(Y), кристаллического высокоборного гадолинита, иксиолита, манганоколумбита, пирохлора, черновита-(Y), касситерита, богатого гафнием циркона (Мираков и др., 2020). По-видимому, эта находка является первой на Восточном Памире.

*Тусионит MnSn(BO₃)*² открыл С.И. Коноваленко в 1983 году в гранитных пегматитах долины р. Тусион, Юго-Западный Памир. Автор обнаружил скандийсодержащую разновидность тусионита в 270 км к ВСВ от места первой находки в пегматитах Кукуртского поля (Мираков и др., 2018; Mirakov et al., 2019). Минерал диагностирован в около миароловом комплексе (кварц, калиевый полевой шпат, альбит, касситерит, турмалин, спессартин). Тусионит слагает тонкие пластины размером 0.05–0.25 мм, изредка – веерообразные сростки размером 1-5 мм (рис. 10). Химический состав (среднее из 14 анализов, мас.%): SnO₂ 50.28, Ta₂O₅ 0.06, TiO₂ 0.02, Sc₂O₃ 1.02, MnO 24.06, FeO 0.21, CaO 0.03, B₂O₃ 24.51, сумма 99.62. Эмпирическая формула минерала в расчете на шесть атомов кислорода: (Mn_{0.99}Fe_{0.01}Sc_{0.01})_{1.01} (Sn_{0.97}Sc_{0.03})_{1.00} B_{2.00}O₆.

Рис. 10. а) тусионит с касситеритом в кварц-полевошпатовом агрегате, ширина поля 6,5 мм; б) – пластинчатый тусионита (Tus) в турмалине (Tur). Sps – спессартин, YMnSi – бадахшанит-(Y)). BSE image.

Тусионит желтый, прозрачный, с сильным стеклянным блеском. Не люминесцирует. Плотность больше 4.20 г/см³ (тонет в жидкости Клеричи). В проходящем свете бесцветный. Плеохроизм слабый, по No – оранжево-желтый, по Ne – светло-желтый. Оптически одноосный отрицательный. Оптическая ось перпендикулярна плоскости уплощения зерен. n_o = 1.870(5), n_e = 1.760(3). В отраженном свете серый, отражение низкое, близкое к спессартину, и заметно выше, чем у турмалина. Внутренние рефлексы сильные белые, светло-коричневые. Двуотражение слабое. Анизотропия на поперечных разрезах пластинчатых зерен сильная с цветными эффектами от желтого до темно-коричневого цвета, Минерал хрупкий. На поперечных разрезах VHN₂₀ = 325 (270 – 390).

6.2. Минералогия ниобия и тантала в гранитных пегматитах Памира

Главными носителями Nb и Ta в пегматитах Памира являются колумбит-танталит и пирохлормикролит (Мираков и др., 20186; Мираков, 2023). Наиболее распространены колумбит-(Fe) и колумбит-(Mn). Установлены и другие минералы Nb и Ta: ферсмит CaNb₂O₆, висмутоколумбит BiNbO₄, хефтетьернит ScTaO₄, ниобохефтетьернит ScNbO₄ и шахдараит-(Y) ScYNb₂O₈ (табл. 6) (Паутов и др., 2020а; Pautov et al., 2022; Мираков, 2023). Минералы надгруппы пирохлора в гранитных пегматитах Памира разнообразны по составу заселения как позиции *A*, так и *B*. В образцах из пегматита Мика на Восточном Памире H.В. Чуканов установил висмутопирохлор. Нами в этом же пегматите встречен пирохлор, богатый Sn, в пегматитовой жиле Лесхозовская – минерал W с пирохлоровым типом структуры Cs(W,Nb)₂O₆. Ниже приведены первые результаты изучение этой группы минералов. Существенно реже, чем в других пегматитах, минералы ряда колумбит-танталит встречаются в Намангутском пегматитовом поле. Здесь они часто образуют вростки в касситерите или наросли на его кристаллы. Содержание Nb₂O₅ в них 15.9-65.8%, среднее 37.1 мас. %; Ta₂O₅ - 15.8-67.3 %; среднее 44.5 мас.% (табл. 6). Во всех изученных кристаллах колумбита-танталита проявлена сложная ростовая зональность и секториальность. Зоны различаются вариациями соотношений Ta/Nb и Mn/Fe, обычно в поздних зонах Mn > Fe (рис. 11) (Мираков, Файзиев, 2018; Мираков и др., 2018б).

Таблица 6

				Юго-	Запад	ный П	амир	Восто	очный Г	Тамир	
		Содержание компонента в						гматиты*			
Минералы	Формулы	Содержание компонента в мас.%		93	x	хд	ИΓ	ж	иаз	13	
	_	Nb ₂ O ₅	Ta₂O₅	Å	Ц	Ξ	エ	đ	Ā	ц	
Ферсмит	CaNb ₂ O ₆	67.5 – 71.9	8.1 – 8.4		+						
Фероколумбит	FeNb ₂ O ₆	66.7 – 73.0	2.8 – 7.6	2	2	1	3	2	3	1	
Ниобохефтетьернит	ScNbO ₄	50.1 – 51.2	15.0 -15.5		+						
Шахдараит	ScYNb ₂ O ₈	49.7 – 52.1	4.3 – 5.6		1						
Пирохлор	CaNb ₂ O ₆	38.8 – 46.6	18.1 – 29.1	2	3	2		1		2	
Висмутоколумбит	BiNbO ₄	25.2 – 35.6	2.0 - 14.4					+			
Манганотанталит	MnTa ₂ O ₆	18.9 - 29.6	52.5 - 67.3		1	1	3				
Хефтетьернит	ScTaO ₄	12.4 – 16.3	50.9 – 58.5					+			
Микролит	CaTa ₂ O ₆	9.3 – 33.2	35.0 - 62.8		3	3		+			
Ильменорутил	(Ti,Nb)O ₂	6.1 -12.4	0.4 - 3.0		+					+	
Касситерит	SnO ₂	0.0 - 4.1	0.0 - 5.2	+	+	+	+	+		+	
			a: Paa Paad	201110			Ποοι			Iva	

Основные минералы-концентраторы ниобия и тантала в пегматитах Памира

Примечание: сокращения названия пегматитов: Вез — Вездаринская, Лсх — Лесхоховская, Шхд — Шахдаринская, Нмг — Намангут, Држ — Дорожный Амаз — Амазонитовый, Тпз — Топазовый

В гранитном миароловом пегматите Амазонитовый Nb-Ta минерализация в основном представлена колумбитом-танталитом. Колумбит слагает удлиненно-тонкотаблитчатые кристаллы темно-бурого цвета размером 0.5-10x1-3 мм. Иногда встречаются игольчатые кристаллы. Обычно колумбит образует вростки в кварце, альбите и микроклине. Реже многочисленные игольчатые кристаллы колумбита развиты в мелких пустотах в ассоциации с гранатом, магнетитом, апатитом и триплитом. В пегматитовой жиле Лесхозовская длиннопризматические, тонкопластинчатые кристаллы колумбита размером 0,1-0,5 мм ассоциируют с гранатом, калиевым полевым шпатом, иногда в мелких пустотах – с розовым эльбаитом, слагают вростки в прозрачном кварце. Редкий богатый марганцем колумбит красного или коричневато-красного цвета, изредка прозрачный по составу соответствует колумбиту-(Mn) (табл. 7) (Мираков, 2023).

Рис. 11. Вариации состава колумбита и танталита пегматитов Намангутского поля.

Удивительная особенность пегматитов Памира – повышенная марганцовистость колумбита и относительно низкая марганцовистость танталита, в ходе эволюции марганцовистость этих минералов изменялась слабо (рис. 11).

Таблица 7

	Пегм	иатит Ам	азонито	вый	Π	егматит Ј	Тесхознь	ій	Пе	гматить	і Намані	гута
Компонент	1	2	3	4	5	6	7	8	9	10	11	12
Ta₂O₅	7.21	7.71	7.26	7.47	20.72	26.75	23.50	23.04	29.78	53.87	65.65	19.80
Nb ₂ O ₅	66.04	65.66	66.62	66.13	57.50	49.33	54.68	55.15	50.03	27.49	17.69	60.32
WO ₃	1.39	1.47	1.29	1.48	2.00	3.29	1.98	2.51	нпо	нпо	нпо	нпо
TiO ₂	4.10	3.88	4.38	4.05	2.06	3.20	2.86	2.59	0.64	0.95	0.75	0.34
Sc ₂ O ₃	1.78	1.61	1.49	1.57	1.31	1.39	1.44	1.40	нпо	нпо	нпо	нпо
SnO ₂	0.60	0.32	нпо	0.22	нпо	нпо	нпо	нпо	нпо	нпо	нпо	нпо
UO2	0.40	НПО	0.32	0.39	нпо	нпо	нпо	нпо	нпо	нпо	нпо	нпо
MnO	13.33	13.42	13.06	13.12	17.23	16.39	16.76	17.31	10.37	7.18	9.55	9.73
FeO	5.31	5.63	5.51	5.71	0.26	0.09	0.25	0.10	8.06	9.22	6.03	10.12
Сумма	100.16	99.70	99.93	100.14	101.08	100.44	101.47	102.10	98.88	98.71	99.67	100.30
			Чи	исло атомо	в в форм	уле в рас	чете на С) = 6				
Mn⁺²	0.64	0.65	0.63	0.63	0.87	0.86	0.85	0.88	0.56	0.44	0.62	0.50
Fe ⁺²	0.25	0.27	0.26	0.27	0.01	0	0.01	0.00	0.43	0.56	0.38	0.51
Sc ⁺³	0.09	0.08	0.07	0.08	0.07	0.07	0.08	0.07				
U ⁺⁴	0.01											
∑A	0.99	1.00	0.96	0.98	0.95	0.93	0.94	0.95	0.99	1.00	1.00	1.01
Nb ⁺⁵	1.70	1.70	1.71	1.70	1.56	1.38	1.48	1.49	1.45	0.90	0.61	1.66
Ti⁺4	0.18	0.17	0.19	0.17	0.09	0.15	0.13	0.12	0.03	0.05	0.04	0.02
Ta⁺⁵	0.11	0.12	0.11	0.12	0.34	0.45	0.38	0.37	0.52	1.06	1.36	0.33
W +6	0.02	0.02	0.02	0.02	0.03	0.05	0.03	0.04				
Sn⁺4	0.01	0.01		0.01								
∑ B	2.02	2.02	2.03	2.02	2.02	2.03	2.02	2.02	2.00	2.01	2.01	2.01

Химический состав (масс. %) колумбита-Mn (1-9), танталита – Fe (10, 12), танталита-Mn (11)

Висмутоколумбит BiNbO₄. На Восточном Памире установлен в нескольких пегматитовых телах. В пегматите Малыш слагает кристаллы в миароловых полостях и мелкие вростки в колумбите-(Mn) из околомиаролового комплекса. Из этого пегматита нами изучены два кристалла размером 20x10 и 18x12 мм. В пегматите Мика встречен фрагмент кристалла 10x10 мм и кристалл 2x2x3 мм, наросший на лепидолит. В пегматите Дорожный единичное выделение висмутоколумбита 20x30 мкм включено в зональный кристалл колумбита-(Mn) в срастании с эшинитом-(Y) из около миролового комплекса (Паутов и др., 2020а). Цвет висмутоколумбита темно-бурый, почти черный. Минерал оптически двуосный положительный, 2V ~70° (10); дисперсия осей сильная, r>v; n_p = 2.42(1), n_m = 2.45(1); n_g = 2.50(2) (пегматит Мика). В отраженном свете имеет слабый голубоватый оттенок, отражение среднее. VHN₁₀₀ 360 (пегматит Малыш), VHN₁₀₀ 353 (пегматит Мика). Измеренная и рассчётная плотность висмутоколумбита пегматита Малыш - 7.36(1) и 7.29 г/см³, пегматита Мика – 7.61(1) и 7.62 г/см³. Химический состав минерала в пегматите Малыш – Bi0.97Sb0.02Nb0.97Ta0.03O4 (n = 2); в пегматите Мика Bi0.88-0.98Sb0.02-0.14Nb0.74-0.92Ta0.08-0.25O4, средний – Bi0.94Sb0.06Nb0.82Ta0.18O4 (n = 3).

Ферсмит CaNb₂**O**₆ обнаружен в пегматитовой жиле Лесхозовская (Мираков и др., 2023). Слагает длиннопризматические кристаллы 1-3 мм с четко выраженными гранями ромбической дипирамиды, от светло- до темно-коричневого цвета. Просвечивающий до прозрачного; в отраженном свете светло-серый, отражение низкое; двуотражение заметное, анизотропия сильная с цветными желто-коричневыми эффектами. VHN₁₀₀ 570. Химический состав ферсмита приведен в таблице 8.

Таблица 8

Химический состав (масс.%) ферсмита пегматитовой жиле Лесхозовская, Юго-Западный Памир

Компонент	1	2	3	4	5	6	7					
Nb ₂ O ₅	67.71	71.87	71.19	68.58	68.04	67.52	71.37					
Ta₂O₅	7.92	8.09	8.43	8.25	7.78	8.16	8.05					
WO ₃	0.13	нпо	0.08	0.07	0.92	1.18	1.00					
TiO ₂	3.18	1.64	1.66	2.69	2.73	3.08	1.87					
Sc ₂ O ₃	0.52	0.22	0.26	0.45	0.48	0.58	0.46					
Y ₂ O ₃	2.56	1.29	1.21	2.20	2.95	3.25	2.49					
	0.63	0.30	0.30	0.54	0.33	0.80	0.44					
Nd ₂ O ₃	0.74	0.37	0.46	0.63	0.77	0.30	0.37					
Dy ₂ O ₃	0.47	0.36	0.15	0.44	нпо	0.53	нпо					
Ho ₂ O ₃	0.19	0.07	0.14	0.19	нпо	0.33	нпо					
Yb ₂ O ₃	0.70	0.12	0.28	0.45	0.60	0.56	нпо					
ThO ₂	0.50	0.09	0.03	0.35	0.78	0.51	0.30					
UO ₂	0.47	0.11	0.14	0.46	0.00	0.16	нпо					
MnO	0.68	0.12	0.14	0.72	0.61	0.58	нпо					
FeO	0.01	0.03	0.02	нпо	0.10	нпо	нпо					
CaO	13.27	15.15	15.16	13.65	13.80	13.38	15.21					
Na ₂ O	0.03	0.07	0.05	0.03	нпо	нпо	нпо					
Сумма	99.70	99.87	99.72	99.69	99.89	100.92	101.56					
	Число атомов в формуле при расчете на О = 6											
Ca ⁺²	0.80	0.90	0.91	0.83	0.83	0.80	0.90					
Sc+3	0.03	0.01	0.01	0.02	0.02	0.03	0.02					
Y+3	0.08	0.04	0.04	0.07	0.09	0.10	0.07					
Yb ⁺³	0.01		0.01	0.01	0.01	0.01						
Dy ⁺³	0.01	0.01		0.01		0.01						
Ho ⁺³						0.01						
Ce ⁺³	0.01	0.01	0.01	0.01	0.01	0.02	0.01					
Nd ⁺³	0.02	0.01	0.01	0.01	0.02	0.01	0.01					
Mn ⁺²	0.03	0.01	0.01	0.03	0.03	0.03						
Th⁺4	0.01			0.01	0.01	0.01						
U ⁺⁴	0.01			0.01								
∑A	1.00	0.99	0.99	1.01	1.02	1.03	1.01					
Nb ⁺⁵	1.73	1.81	1.80	1.75	1.73	1.71	1.77					
Ta ⁺⁵	0.12	0.12	0.13	0.13	0.12	0.12	0.12					
Ti ⁺⁴	0.14	0.07	0.07	0.11	0.12	0.13	0.08					
W+6					0.01	0.02	0.01					
∑B	1.99	2.00	2.00	1.99	1.98	1.98	1.98					

Пирохлор и микролит. Минералы группы пирохлора-микролита обильны в пегматитовой жиле Лесхозовская в мелких полостях из центре пегматита. Это – октаэдрические кристаллы 0.3-3 мм темно-

красного цвета в ассоциации с ферсмитом, колумбитом, шахдараитом -(Y). Микролит и пирохлор дают хорошие рентгенограммы без прокаливания материала (Мираков, 2023). В кристаллах часто проявлена резкая зональность: их центральные зоны слагает микролит (фторнатромикролит и реже фторкациомикролит), чётко отграниченные внешние зоны – пирохлор (фторнатропирохлор) (рис. 12, табл. 9). От центра к внешним зонам содержание ниобия растет, содержание тантала интенсивно снижается (рис. 12, табл. 9). Формулы фторкальциомикролита (табл. 9, ан. 3) и фторнатропирохлора (табл. 9, ан. 6) в расчете на B=2: (Ca_{0.93}Na_{0.91}U_{0.06}Th_{0.01})_{1.91}(Ta_{1.32}Nb_{0.53}Ti_{0.12}Sn_{0.03})_{2.00}O₆F_{0.96} и (Na1.17Ca0.77U0.13)2.07 (Nb1.35Ta0.61Ti0.02Sn0.02)2.00 O6F0.91.

Рис. 12. Зональный кристалл: микролит с оторочкой пирохлора в отраженных электронах и рентгеновские карты распределения фтора, кальция, натрия, тантала, ниобия, урана, титана и вольфрама в нем.

пица 9

Konsonanz	(Фторнатро	микролит			Фторнатро	пирохлор)
KOMIIOHEHI	1	2	3	4	5	6	7	8
Ta₂O₅	62.8	60.41	59.24	57.67	36.82	29.12	24.84	19.87
Nb ₂ O ₅	9.36	11.17	14.2	15.06	31.52	38.8	42.87	46.6
TiO ₂	1.77	2.19	2.00	1.93	0.67	0.42	0.37	0.42
SnO ₂	1.15	0.99	1.00	1.49	0.37	0.74	0.79	0.27
Ce ₂ O ₃	нпо	нпо	нпо	нпо	нпо	0.16	0.18	0.17
ThO₂	0.44	0.38	0.35	0.50	нпо	0.16	нпо	нпо
UO ₂	5.27	5.52	3.56	5.39	8.44	7.44	4.98	3.00
CaO	9.87	10.36	10.64	10.17	9.04	9.42	10.8	11.64
Na ₂ O	5.88	6.06	5.75	6.39	7.55	7.87	8.05	8.31
F	2.81	3.31	3.71	3.42	2.59	3.76	4.13	4.13
Сумма	99.35	100.39	100.45	102.02	97.00	97.89	97.01	94.41
Сумма-О=F ₂	98.17	99.00	98.89	100.58	95.91	96.31	95.27	92.67

В стандартных гранитных пегматитах чистой линии в ходе их развития происходит накопление Та, микролит сменяет пирохлор или развивается все более богатый Та микролит. В изученных пегматитах Памира – картина иная (рис. 12). Вероятное объяснение – такое. Основной объём гранитных пегматитов слагают полевые шпаты и кварц, поэтому в ходе кристаллизации пегматитового расплава увеличивалось флюидное давление, которое в ряде случаев возрастало до величин, превышающих литостатическое и прочность пород рамы. Обычно это – переход к пневматогидротермальному этапу, который фиксирован α-β инверсией кварца (Ферсман, 1940) с большим объёмным эффектом. При этом пегматитовый «автоклав» приоткрывался, и флюиды мигрировали в около пегматитовое пространство. Богатые фтором кислотные флюиды, выброшенные из пегматитов во вмещающую среду, активно с ней реагировали, флюиды разбавлялись, их кислотность снижалась. Часть вещества, заимствованного из вмещающих пород, мигрировала в пегматитовые полости. В результате в гранитных пегматитах, залегающих среди магнезитовых мраморов (Кухи-Лал), появились богатые Mg-кордиерит, дравит, магноколумбит; в гранитных пегматитах среди гранитов возник чайного цвета топаз вместо голубого в пегматитах чистой линии и пирохлор – вместо микролита в пегматитах чистой линии, поскольку во вмещающих пегматитовые жилы породах Nb >> Та.

Ильменорутил установлен в Шахдаринском и Кукуртском пегматитовых полях. Более крупные кристаллы 0,5-3 мм найдены в около миароловом комплекса пегматитовой жилы Топазовой. Минерал с осцилляционной зональностью, обусловленной вариациями содержаний Nb и Ti, менее – Fe. Формула ильменорутила (среднее по 8 анализам): **(Ti**_{0.89}Nb_{0.06} Fe_{0.05}Ta_{0.01} Sn_{0.01})_{1.00}O₂.

ЗАКЛЮЧЕНИЕ

В результате изучения гранитных пегматитов Юго-Западного и Восточного Памира установлено их принципиальное сходство: уникальная скандиеносность и бороносность, иттриевая специализация, обилие олова, повышенная марганценосность колумбита. Выявлена новая Памирская скандиеносная провинция. Открыты и детально исследованы три новых редкоземельно-иттриевых минерала: бадахшанит-(Y) Y₂Mn₄Al(Si₂B₇BeO₂₄) и пепроссиит-(Y) Y(Al₃O)_{2/3}B₄O₁₀ из пегматита Дорожный (Восточный Памир), шахдараит-(Y) ScYNb₂O₈ из пегматита Лесхозовский (Юго-Западный Памир) (Pautov et al., 2020,2022; Mirakov et al., 2024). Обнаружена и изучена новая скандийсодержащая разновидность тусионита из пегматита Дорожный на Восточном Памире (первый случай вхождения Sc в безводные бораты) (Мираков и др., 2018; Mirakov et al., 2029). Получены новые данные по минералогии цезия: в пегматите Шахдаринском найден и изучен цезий-содежащий берилл, в пегматите Лесхозовском – вольфрамат цезия, в пегматите Дорожный – фтористый аналог наньпингита.

Установлено, что на Юго-Западном Памире пегматит Лесхозовский содержит минералы скандия: шахдараит-(Y), хефтетьернит, ниобохефтетьернит (первые находки в Таджикистане), в нём выявлено повышенные содержание скандия в тантало-ниобатах. В пегматите Шахдаринском ферберит содержит до 1.5 масс. % Sc₂O₃. На Восточном Памире в пегматите Амазонитовый колумбит и танталит содержат 0.2-1.5 масс. Sc₂O₃, циркон – до 2.3 %. В пегматите Дорожный спессартин содержит до 0.3 масс.% Sc₂O₃, бадахшанит-(Y) до 2.3 масс.%, тусионит до 1.5 масс.% (Мираков и др., 2018,2018а; Mirakov et al., 2019; Мираков, Файзиев, 2019; Pautov et al., 2022; Мираков, 2023).

Получены новые данные о минералогии олова в пегматитах Памира. Охарактеризованы особенности состава, морфология, характер срастаний, анатомия индивидов касситерита из пегматитов Намангутского поля, которые могут иметь практическое значение для технологии обогащения редкометальных руд (Мираков и др., 2018б). Изученные пегматиты содержат герценбергит, тусионит, обильные оловосодержащие минералы групп колумбита и пирохлора.

В пегматитах Мика, Малыш, Дорожный Восточного Памира установлен и детально изучен висмутоколумбит BiNbO₄ (вторая подтвержденная находка в мире). Охарактеризованы состав, кристалломорфология, физические свойства, причины редкости минерала (Паутов и др., 2020а).

Выявлены минералы REE и Y, ранее неизвестные в изученных пегматитах: бадахшанит-(Y), шахдараит-(Y), поликраз-(Y), уранполикраз, синхизит, паризит, ферсмит, богатый бором гадолинит-(Y), пепроссиит-(Ce) (2 находка в мире) (Паутов и др., 2018б; Pautov et al., 2020,2022; Мираков и др., 2023); пепроссиит-(Y) в пегматите Дорожный на Восточном Памире (Mirakov et al., 2024).

Полученные фактические данные по минералогии редких элементов в изученных пегматитах Памира могут иметь практическое значение. Выявление в миароловых пегматитах Памира Nb-Ta-Sc*REE* минерализации значительно улучшает экономические показатели этих объектов при их комплексной отработке (Мираков и др., 2018 а, б; Pautov et al., 2020, 2022; Мираков, 2023). Эти данные, в отличие от валовой оценки содержания редких элементов, позволяют прогнозировать извлекаемость полезных компонентов и технологические особенности руд. Так, предварительные данные по пегматиту Амазонитовый показали, что из пегматита может быть получен гравитационный концентрат колумбита, богатого скандием, – 1300 г/т. В Лесхозовской жиле на Юго-Западном Памире, одними из главных концентраторов редких металлов, могущими иметь промышленное значение, является пирохлор-микролит. Размеры выделений и характер срастаний этих минералов позволяют предполагать хорошее вскрытие сростков и выделение в гравитационные концентраты при дроблении отбитой горной массы до фракции -0.1 мм. В Лесхозовской жиле минералы группы пирохлорамикролита имеют необычную зональность: ядра кристаллов слагает микролит, внешние зоны – пирохлор. Можно предположить, что при дроблении наибольшему воздействию будут подвержены внешние зоны кристаллов и, соответственно, можно ожидать повышения ценности концентрата – при росте соотношения Та/Nb по сравнению с исходной рудой.

Список работ, опубликованных в рецензируемых научных изданиях, рекомендованных Ученым советом МГУ для защиты по специальности:

1. Мираков М.А., Паутов Л.А., Шодибеков М.А., Плечов П.Ю., Карпенко В.Ю. Новая скандийсодержащая разновидность тусионита с Восточного Памира // Записки Российского минералогического общества. 2018. № 4. С. 84-96. doi: 10.30695/zrmo/2018.1474.07. [РИНЦ 0,647]. Печатных листов 0.5. Доля участия – 0.4. Переводная версия: Mirakov M.A., Pautov L.A., Shodibekov M.A., Plechov P.Yu., Karpenko V.Yu. A new Scandium-Bearing Variety of Tusionite from the Eastern Pamirs (Tajikistan) // Geology of Ore Deposits. 2019. Vol. 61. No. 8. P. 809-817. doi:10.1134/S1075701519080087. [SJR 0.8]. Печатных листов 0.4. Доля участия – 0.4.

2. Паутов Л.А., Мираков М.А., Шодибеков М.А., Хворов П.В. Находка герценбергита в гранитном миароловом пегматите Вез-Дара на Юго-Западном Памире (Таджикистан) // Новые данные о минералах. 2018а. № 52. Вып 1. С. 1-10. doi: 110.25993/FM.2018.52.23563. [РИНЦ 0,117]. Печатных листов 0.4. Доля участия – 0.3.

3. Паутов Л.А., Шодибеков М.А., Мираков М.А., Файзиев А.Р., Хворов П.В. Уранополикраз (U,Y)(Ti,Nb)₂O₆ из миаролового пегматита Музейный в районе месторождения Кухилал (Юго-Западный Памир, Таджикистан) // Новые данные о минералах. 2018б. № 52. Вып 2. С. 1-6. doi: 10.25993/FM.2018.52.23615. [РИНЦ 0,117]. Печатных листов 0.2. Доля участия – 0.2

4. Pautov L.A., **Mirakov M.A.**, Cámara Artigas F., Sokolova E., Hawthorne F.C., Schodibekov M.A. and Karpenko V.Y. Badakhshanite-(Y), Y₂Mn₄Al(Si₂B₇BeO₂₄), a new mineral species of the perettiite group from a granite miarolic pegmatite in Eeastern Pamir, the Gorno Badakhshan autonomous oblast, Tajikistan // Canadian Mineralogist. 2020. Vol. 58. P. 381-394. doi: 10.3749/canmin.2000003. [SJR 1.1]. Печатных листов 0.6. Доля участия – 0.3.

5. Паутов Л.А., Карпенко В.Ю., **Мираков М.А**., Алиназаров У.С., Шодибеков М.А., Искандаров Ф.Ш. О висмутоколумбите из миароловых гранитных пегматитов на Восточном Памире // Новые данные о минералах. 2020а. Т. 54. Вып.1. С. 26–37. doi: 10.25993/FM.2020.54.1.003. [РИНЦ 0,117]. Печатных листов 0.5. Доля участия – 0.3

6. Паутов Л.А., Мираков М.А., Шодибеков М.А., Махмадшариф С., Хворов П.В., Артемьев Д.А., Файзиев А.Р. Фосфорсодержащий гельвин Шахдаринской пегматитовой жилы (Юго-Западный Памир, Таджикистан) // Новые данные о минералах. 2020б. Т. 54. Вып. 2. С. 61-68. doi: 10.25993/FM.2020.54.2020.001. [РИНЦ 0,117]. Печатных листов 0.3. Доля участия – 0.3.

7. Pautov L.A., **Mirakov M.A.**, Sokolova E., Day M.C., Hawthorne F.C., Schodibekov M.A., Faiziev A.R. Shakhdaraite-(Y), ScYNb₂O₈, from the Leskhozovskaya granitic pegmatite, the valley of the Shakhdara River, southwestern Pamir, Gorno-Badakhshanskii Autonomous Region, Tajikistan: New mineral description and crystal structure // Canadian Mineralogist. 2022. Vol. 60. N 2. P. 369-382. doi: 10.3749/canmin.2000122 [SJR 1.1]. Печатных листов 0.6. Доля участия – 0.4.

8. Шодибеков М.А., Паутов Л.А., **Мираков М.А.**, Бахтибеков Т.Г., Артемьев Д.А., Карпенко В.Ю., Махмадшариф С., Хворов П.В. О находке хризоберилла в гранитном пегматите Придорожный на Юго-

Западном Памире. // Новые данные о минералах. 2024. Т. 58. Вып. 3. С. 56–65. doi: 10.25993/FM.2024.58.2024.011. [РИНЦ 0,117]. Печатных листов 0.2. Доля участия – 0.3.

Публикации в иных научных изданиях

1. Мираков М.А., Паутов Л.А., Шодибеков М.А., Файзиев А.Р., Хворов П.В. Скандийсодержащий спессартин из пегматитов Кукуртского пегматитового поля (Восточный Памир) // Доклады Академии наук Республики Таджикистан. 2018а. Т. 61. № 5. С. 491-495. Доля участия – 0.4. Печатных листов 0.4

2. Мираков М.А., Паутов Л.А., Шодибеков М.А., Файзиев А.Р. Герценбергит из миаролового гранитного пегматита дорожный, Кукурт, Восточный Памир. // Доклады Академии наук Республики Таджикистан. 2019. Т. 62. № 5-6. С. 340-343. Доля участия – 0.4. Печатных листов 0.3.

3. Мираков М.А., Паутов Л.А., Файзиев А.Р., Шодибеков М.А. Циркон Намангутского пегматитового поля (Юго-Западный Памир) // Доклады Академии наук Республики Таджикистан. 2020. Т. 63. № 1-2. С. 108-112. Доля участия – 0.4. Печатных листов 0.3.

4. Шодибеков М.А., **Мираков М.А.**, Паутов Л.А., Хворов П.В., Файзиев А.Р. Лёллингит из гранитного миаролового пегматита Вез-Дара (Юго-Западный Памир) // Доклады Академии наук Республики Таджикистан. 2020. Т. 63. №. 7-8. С. 515-519. Доля участия – 0.3. Печатных листов 0.2.

5. Мираков М.А. Ниобий-танталовая минерализация в пегматитовой жиле Лесхозовская из Шахдаринского пегматитового поля (Юго-Западный Памир) // Доклады Национальной Академии наук Таджикистана. 2023. Т. 66. №. 3-4. С. 241-251. Доля участия – 0.8. Печатных листов 0.4.

Благодарности

Автор выражает особую благодарность научному руководителю профессору Э.М. Спиридонову за поддержку и обсуждение работы; Л.А. Паутову (Минмузей РАН) за всестороннюю многолетнюю помощь и плодотворное обсуждение возникающих вопросов по теме диссертации, за помощь в инструментальных минералогических исследованиях, за организацию экспедиционных работ; д.г.-м.н., А.Р. Файзиеву за поддержку и консультации; к.г.-м.н., Ф.Ш. Искандарову за помощь при обработке и изучении шлиховых проб, за ценные замечания и советы при описании ряда минералов; к.г.-м.н., В.Ю. Карпенко за помощь при проведении полевых и исследовательских работ; д.г.-м.н., О.Й. Сийдра (СПбГУ), д.г.-м.н., Е.В. Соколовой и профессору Ф. Хоторну (университет Манитобы, Канада) за проведение монокристальных рентгеновских исследований минералов; профессору, д.г.-м.н., П.Ю. Плечову (Минмузей РАН) за помощь в проведении рамановских исследований. Особую благодарность выражаю местному рудознатцу Т.Г. Бахтибекову за помощь в проведении полевых работ на Юго-Западном Памире. Автор признателен сотрудникам кафедры минералогии МГУ профессору, д.г.-м.н., члену-корреспонденту РАН И.В. Пекову и доценту, к.г.-м.н., Ю.Д. Гриценко за внимание и обсуждение работы. За помощь в проведении полевых и камеральных работ автор благодарен коллегам и друзьям М.А. Шодибекову, П.В. Хворову, С. Махмадшарифу, А.О. Карпову.