МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Насриддинов Абулкосим Фирузджонович

Материалы для газовых сенсоров на основе нанокристаллических SnO₂ и In₂O₃, модифицированных фотосенсибилизаторами

1.4.15 – Химия твёрдого тела

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре неорганической химии химического факультета Московского государственного университета имени М.В. Ломоносова

Научный руководитель	Румянцева Марина Николаевна доктор химических наук
Официальные оппоненты	Добровольский Юрий Анатольевич доктор химических наук, профессор, ФГБУН Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, научный руководитель Центра Компетенций НТИ
	Симоненко Елизавета Петровна доктор химических наук, ФГБУН Институт общей и неорганической химии имени Н.С. Курнакова РАН, главный научный сотрудник лаборатории химии легких элементов и кластеров
	Тимошенко Виктор Юрьевич доктор физико-математических наук, профессор, физический факультет ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», профессор кафедры физики низких температур и сверхпроводимости

Защита диссертации состоится «02» декабря 2022 г. в 17:00 на заседании диссертационного совета МГУ.014.8 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, г. Москва, Ленинские горы, дом 1, строение 3, химический факультет, аудитория 446.

E-mail: a.f.nasriddinov@gmail.com (Насриддинов А.Ф., соискатель), ea_er@mail.ru, (Е.А. Еремина, ученый секретарь диссертационного совета МГУ.014.8).

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/493535423/

Автореферат разослан «28» октября 2022 г.

Ученый секретарь диссертационного совета МГУ.014.8, кандидат химических наук

Срешина Е.А. Еремина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Для системного мониторинга состояния окружающей среды актуальной задачей является детектирование и измерение концентрации загрязняющих и технологических газов. Благодаря простоте конструкции, высокой чувствительности, быстрому отклику и возможности интегрирования в современные приборы, газовые сенсоры резистивного типа представляют собой особый интерес и широко применяются на практике. В качестве чувствительного слоя применяются широкозонные полупроводниковые оксиды металлов, а аналитический сигнал формируется в результате протекания обратимых процессов при взаимодействии газа с поверхностным слоем полупроводника, которые приводят к изменению сопротивления.

Однако к существенным недостаткам таких сенсоров можно отнести недостаточную селективность и стабильность, а также высокое энергопотребление вследствие необходимости поддержания высоких рабочих температур (250-500°С), приводящих к деградации материала чувствительного слоя с течением времени и к определённым рискам, связанным с детектированием в пожароопасной и взрывоопасной атмосфере. Такая температура необходима для повышения концентрации свободных носителей заряда на поверхности полупроводниковых оксидов, активации и контроля кинетики протекающих химических процессов, а также для десорбции продуктов реакции. Поэтому разработка новых стратегий эффективного обнаружения химических компонентов в окружающей атмосфере при комнатной температуре имеет большой потенциал. В качестве одной из таких стратегий может быть использование фотоактивации как альтернативы термическому нагреву.

Активация светом может способствовать индуцированию фотогенерированных носителей заряда, стимулирующих протекание химических реакций на поверхности раздела «твёрдое тело-газ». С одной стороны, в качестве функциональной структуры могут быть использованы широкозонные полупроводниковые оксиды, что обеспечивает экономические преимущества, массовое производство и достаточно высокую чувствительность. С другой стороны, стратегия замены термической активации на световую не только реализует высокоэффективное обнаружение газов (особенно горючих и взрывоопасных) при комнатной температуре, но также способствует разработке и производству портативных, интегрированных, гибких и многофункциональных сенсорных устройств.

В качестве источников излучения определёнными преимуществами обладают маломощные миниатюрные светодиоды. При этом замена УФ-излучения на свет видимого диапазона может дополнительно уменьшить энергопотребление вследствие малой требуемой энергии питания. Более того, на видимый диапазон спектра приходится и максимум интенсивности солнечного излучения, которое может быть дополнительно использовано в качестве источника освешения. Однако широкозонные полупроводниковые оксиды металлов являются оптически прозрачными в видимом диапазоне спектра. Выходом из данной ситуации является разработка новых гибридных материалов на основе нанокристаллических полупроводниковых оксидов, чувствительных к изменению состава газовой фазы, и фотосенсибилизаторов, обеспечивающих поглощение излучения видимого диапазона спектра.

Целью работы является установление закономерностей во взаимодействии широкозонных полупроводниковых оксидов металлов, модифицированных органическими и неорганическими фотосенсибилизаторами, с газовой фазой в условиях фотоактивации при комнатной температуре, а также в темновых условиях при термическом нагреве. Для достижения поставленной цели в работе были решены следующие задачи:

- 1. Синтез органо неорганических гибридных материалов, состоящих из полупроводниковых оксидов SnO₂ и In₂O₃ и комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина, содержащих гетероциклические заместители.
- 2. Синтез нанокомпозитов $SnO_2/TiO_2@M$, где M = Pt, Au, Ag.
- 3. Исследование состава, параметров микроструктуры, оптических свойств, термической устойчивости и электрофизических свойств полученных материалов комплексом физико-химических методов.
- 4. Исследование сенсорных свойств синтезированных материалов по отношению к газамокислителям NO₂ и NO, газам-восстановителям NH₃, H₂S, CO и летучим органическим соединениям при комнатной температуре в условиях фотоактивации и при термическом нагреве в темновых условиях.
- 5. Выявление процессов, отвечающих за формирование сенсорного отклика синтезированных материалов при взаимодействии с газовой фазой, с привлечением метода in-situ.

Объектами исследования являются нанокристаллические оксиды SnO₂ и In₂O₃, модифицированные органическими и неорганическими фотосенсибилизаторами. В качестве органических фотосенсибилизаторов использованы комплексы Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина, содержащих гетероциклические заместители, неорганических – наночастицы диоксида титана и благородных металлов Pt, Au, Ag.

Научная новизна работы. Впервые получены органо-неорганические гибридные материалы, состоящие из нанокристаллических оксидов SnO₂ и In₂O₃ и комплексов Ru(II) основе производных 1H-имидазо[4,5-f][1,10] фенантролина, содержащих на Установлены гетероциклические заместители. взаимосвязи между составом, фотоэлектрическими и газочувствительными микроструктурой, характеристиками гибридных материалов. Результаты исследований методом in-situ ИК-спектроскопии в атмосфере, содержащей NO и NO₂, позволили выявить процессы, обеспечивающие низкотемпературное детектирование оксидов азота.

Впервые определены закономерности влияния модификаторов в виде наночастиц Pt, Au, Ag на состав поверхности, реакционную способность и сенсорные свойства нанокомпозитов SnO₂/TiO₂ при детектировании летучих органических соединений. С помощью метода in-situ ИК-спектроскопии был исследован процесс окисления формальдегида на поверхности нанокомпозитов, приводящий к усилению сенсорного отклика.

Практическая значимость обусловлена высокой чувствительностью полученных гибридных материалов по отношению к оксидам азота при комнатной температуре в условиях периодической подсветки синим светом. Синтезированные нанокомпозиты

SnO₂/TiO₂@Pt и SnO₂/TiO₂@Au представляют интерес для детектирования формальдегида на уровне ПДК рабочей зоны при низких рабочих температурах 100 – 200 °C.

работы обеспечена Достоверность результатов применением комплекса взаимодополняющих физико-химических методов исследования: рентгеновской дифракции. просвечивающей И сканирующей электронной микроскопии, низкотемпературной адсорбции азота, рентгенофлуоресцентного анализа, рентгеновской фотоэлектронной спектроскопии, ИК спектроскопии, спектроскопии комбинационного рассеяния, оптической спектроскопии поглощения в УФ и видимой области, измерения спектральной зависимости фотопроводимости, термогравиметрии с масс-спектральным анализом газзобразных продуктов и термопрограммируемого восстановления водородом. Достоверность полученных результатов при определении сенсорных характеристик обеспечена многократными in-situ исследованиями электрофизических свойств с использованием аттестованных газовых смесей.

Основные положения, выносимые на защиту

1. Воспроизводимые и масштабируемые методики синтеза органо-неорганических гибридных материалов на основе нанокристаллических оксидов SnO_2 и In_2O_3 и комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина; нанокомпозитов SnO_2/TiO_2 , $SnO_2/TiO_2@Pt$, $SnO_2/TiO_2@Au$, $SnO_2/TiO_2@Ag$ с равномерным распределением модификаторов на поверхности.

2. Установленные корреляции между составом, параметрами микроструктуры, фотоэлектрическими и газочувствительными характеристиками синтезированных материалов: модификация комплексами Ru(II) на основе производных 1H-имидазо[4,5f][1,10] фенантролина позволяет сместить диапазон оптической чувствительности широкозонных полупроводниковых оксидов в видимую область спектра, что, в свою очередь, приводит к увеличению воспроизводимого сенсорного сигнала при детектировании NO₂ и NO в условиях фотоактивации светом видимого диапазона; совместная модификация SnO₂ оксидом титана и наночастицами Au или Pt позволяет увеличить чувствительность к летучим органическим соединениям и снизить температуру, отвечающую максимальному сенсорному отклику при детектировании HCHO.

3. Установленные процессы, отвечающие за формирование сенсорного отклика синтезированных материалов, при детектировании оксидов азота (NO и NO₂) и летучих органических соединений на уровне соответствующих пороговых значений при комнатной температуре и в температурном диапазоне 25 – 200 °C, соответственно.

Личный вклад автора

В работе приведены результаты научных исследований, выполненных непосредственно автором в лаборатории химии и физики полупроводниковых и сенсорных материалов химического факультета МГУ имени М.В. Ломоносова в период 2018 - 2022 гг. Вклад автора заключается в критическом анализе литературных данных, в выполнении синтеза всех образцов (за исключением комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина), исследовании состава. фотоэлектрических и газочувствительных свойств образцов физико-химическими методами, обработке и обобщении результатов. Синтез комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина и определение энергий молекулярных

орбиталей ВЗМО и НСМО методом циклической вольтамперометрии проведены к.х.н. Токаревым С.Д. под руководством проф., д.х.н. Федоровой О.А. в лаборатории фотоактивных супрамолекулярных систем ИНЭОС РАН. Часть экспериментальных исследований выполнена при участии к.х.н. Платонова В. Б. (рентгеновская дифракция), к.х.н. Гаршева А.В., к.т.н. Абрамчука С.С. и к.ф.-м.н. Максимова С.В. (просвечивающая электронная микроскопия, центр коллективного пользования ΜΓУ имени М.В.Ломоносова), к.х.н. Герасимова Е. Ю. (просвечивающая электронная микроскопия, ИК СО РАН, г. Новосибирск), к.х.н. Баранчикова А.Е. и к.х.н. Платонова В.Б. (сканирующая электронная микроскопия, ИОНХ им. Н.С. Курнакова РАН), к.х.н. Шаталовой Т. Б. (термический анализ), к.х.н. Графова О.Ю. (рентгеновская фотоэлектронная спектроскопия, ИФХЭ РАН). Автор лично проводил обработку, анализ и интерпретацию полученных данных. Работа выполнена в рамках проектов РНФ № 19-19-00357 и РФФИ № 20-33-90083.

Апробация работы

Основные результаты работы были представлены на 11 российских И международных конференциях в виде устных и стендовых докладов: XVII Конференция молодых ученых "Актуальные проблемы неорганической химии: низкоразмерные функциональные материалы", (Звенигород, Россия, 2018 г.); 8th GOSPEL Workshop - Gas Sensors Based on Semiconducting Metal Oxides: Basic Understanding & Application Fields, (Ferrara, Италия, 2019); 5th Euchems Inorganic Chemistrty Conference (EICC-5), (Москва, Россия, 2019); Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов – 2019", "Ломоносов – 2020", "Ломоносов – 2021", (МГУ имени 2019-2021); VII Всероссийская М.В.Ломоносова, Москва, конференция по наноматериалам НАНО-2020 (ИМЕТ РАН, Москва, 2020); TCM/TOEO 2021 Conference, (Virtual meeting, Греция, 2021); XX Всероссийская конференция молодых ученых "Актуальные проблемы неорганической химии: материалы с функционально активной поверхностью", (Красновидово, Россия, 2021); XII Конференция молодых ученых по общей и неорганической химии (ИОНХ РАН, Москва, 2022); PhD GOSPEL workshop - Gas Sensors Based on Semiconducting Metal Oxides: Basic Understanding and Application Fields (Virtual event, Германия, 2022).

Публикации по теме диссертации

По результатам исследований опубликовано 17 работ, в том числе 8 статей в международных научных журналах, индексируемых Web of Science и/или Scopus, и тезисы 9 докладов в сборниках тезисов конференций.

Объём и структура диссертации

Работа состоит из введения, основной части (обзора литературы, экспериментальной части, результатов и их обсуждения), заключения, списка использованной литературы. Работа изложена на 162 страницах машинописного текста, содержит 16 таблиц, 76 рисунков и 326 ссылок на литературные источники.

СОДЕРЖАНИЕ РАБОТЫ

Введение

Во введении обосновывается актуальность темы диссертационной работы, сформулированы цель и задачи исследования, показана научная новизна и практическая значимость полученных результатов.

Обзор литературы

Обзор литературы включает в себя пять разделов. В первом разделе подробно рассматривается фазовая диаграмма систем Sn-O и In-O, кристаллическая структура SnO₂ и In₂O₃, а также описаны зонная структура и основные точечные дефекты, влияющие на электрофизические свойства этих полупроводниковых оксидов. Второй раздел посвящён процессам фотоактивации и фотопроводимости широкозонных полупроводниковых оксидов, возникающей за счёт генерации неравновесных носителей заряда под воздействием светового облучения. В третьем разделе представлен механизм формирования сенсорного отклика полупроводниковых оксидов при взаимодействии с газами-окислителями и восстановителями, в том числе в условиях фотоактивации. В четвёртом разделе описаны основные пути улучшения селективности и уменьшения энергопотребления полупроводниковых газовых использованием сенсоров с фотоактивации. Для этой цели подробно рассмотрены различные подходы, в том числе создание системы типа «металл-полупроводник», образование гетероструктур в нанокомпозитах, состоящих из полупроводниковых оксидов разной природы, а также формирование гибридных материалов на основе органических фотосенсибилизаторов и неорганической матрицы. В заключительном пятом разделе сформулированы выводы по литературному обзору и поставленные в работе задачи.

Экспериментальная часть

В разделе представлены методики синтеза органо-неорганических гибридных материалов, состоящих из нанокристаллических оксидов SnO₂ и In₂O₃ и комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина, исследования состава, фотоэлектрических и газочувствительных свойств образцов физико-химическими методами, обработка и обобщение результатов, синтеза нанокомпозитов SnO₂/TiO₂, модифицированных наночастицами Pt, Au, Ag, а также методики исследований, использованные для характеризации полученных материалов.

Синтез нанокристаллических SnO₂ и In₂O₃

Нанокристаллические оксиды SnO₂ и In₂O₃ были получены методом химического осаждения из растворов с последующей термической обработкой. α -Оловянную кислоту SnO₂·xH₂O и гидроксид индия In(OH)₃ осаждали из водных растворов хлорида олова (IV) и хлорида индия (III) раствором аммиака при интенсивном перемешивании до достижения pH~6. Образовавшиеся гелеобразные осадки отделяли центрифугированием, многократно промывали деионизованной водой, а с началом пептизации — 0.025 M раствором NH₄NO₃ до отрицательной реакции на хлорид-ионы (проверка по отсутствию опалесценции при действии 0.01 M раствора AgNO₃). Полученные осадки высушили при 80°C в течение 24 ч., затем измельчили в агатовой ступке и отожгли при 300°C на воздухе в течение 24 ч.

Комплексы Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина

Синтез комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина и расчет их значений энергий молекулярных орбиталей B3MO и HCMO методом циклической вольтамперометрии были проведены к.х.н. Токаревым С.Д. под руководством проф., д.х.н. Федоровой О.А. в лаборатории фотоактивных супрамолекулярных систем ИНЭОС РАН. Информация о полученных органических комплексах представлена в таблице 1.

Таблица 1. Структурная формула, энергия ВЗМО и НСМО, маркировка и название комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина.

Синтез наночастиц Аи и Ад

Золь наночастиц золота (HЧ Au) был получен по методу Туркевича. В кипящий раствор 1 мМ HAuCl₄·3H₂O объемом 20 мл быстро добавили 2.0 мл 0.04 М раствора Na₃C₆H₅O₇. Раствор кипятили до появления рубиново-красной окраски. Золь наночастиц серебра (HЧ Ag) был синтезирован по следующей методике: 10 мл 1мМ раствора AgNO₃ по каплям добавляли в 30 мл свежеприготовленного 2мМ раствора NaBH₄ в ледяной бане при перемешивании. После того как раствор приобрел светло-жёлтый цвет, по каплям добавили 2 мл 0.04 М раствора Na₃C₆H₅O₇.

Синтез нанокомпозитов $SnO_2/TiO_2@M$, где M = Pt, Au, Ag

В качестве матрицы использовали нанокристаллический SnO₂, полученный методом химического осаждения из раствора. К водной суспензии SnO₂ при интенсивном перемешивании добавили раствор H_2TiCl_6 , затем по каплям добавили раствор аммиака. Осадок промывали, сушили и отжигали на воздухе при 300°C в течение 24 ч. Полученный порошок разделили на 4 части, три из которых пропитывали раствором Pt(acac)₂ в этаноле (1,5 мМ) или предварительно сформированными золями наночастиц Au и Ag (1 мМ), затем промывали и отжигали при 300 °C в течение 24 ч. Количество вводимых модификаторов подбирали таким образом, чтобы содержание [Ti], [Pt], [Au], [Ag] по отношению к [Sn] составляло по 1.0 масс.%. Температура отжига образцов (300°C) была

выбрана исходя из данных, полученных методом термического анализа с массспектральным определением газообразных продуктов.

Сенсибилизация нанокристаллических оксидов

Для исследования фотоэлектрических и сенсорных свойств гибридных материалов и нанокомпозитов образцы наносили в виде толстых пленок на микроэлектронные чипы. Для этого порошки полупроводниковых оксидов и нанокомпозитов перемешивали в ступке с органическим связующим α-терпинеолом. Полученную пасту наносили на диэлектрическую подложку чипа, затем сушили в шкафу при 50°C в течение 24 ч и

отжигали на воздухе при 300°С в течение 3 ч.

Толщина пленок, оцененная метолом сканирующей электронной микроскопии, составила 110 ± 10 мкм (рис. Полученные 1). пленки имеют пористую структуру состоят И ИЗ агломерированных И спекшихся зёрен, размером около 50-80 нм. В случае гибридных материалов сформированные плёнки нанокристаллических SnO₂ и пропитывали In_2O_3 растворами

гетероциклических комплексов RuTT и RuITP в метаноле.

Методы исследования

Рис. 1. Измерительный чип (а) до и (б) после нанесения на подложку толстой пленки полупроводника; (в) после сенсибилизации органическим комплексом Ru(II); изображение СЭМ толстой плёнки, нанесенной на подложку, (г) вид сбоку и (д) вид сверху.

Для характеризации полученных материалов в работе был использован комплекс взаимодополняющих физико-химических методов исследования:

- рентгеновская дифракция (РД), просвечивающая и сканирующая электронная микроскопия (ПЭМ и СЭМ), низкотемпературная адсорбция азота и спектроскопия комбинационного рассеяния (КР) для определения фазового состава, размера частиц, морфологии и параметров микроструктуры;
- рентгенофлуоресцентный анализ (РФлА), рентгеноспектральный микроанализ (РСМА) для определения элементного состава;
- термогравиметрия с масс-спектральным анализом газообразных продуктов (ТГ-МС) для определения оптимальной температуры отжига образцов и оценки диапазона термической стабильности гибридных материалов;
- рентгеновская фотоэлектронная спектроскопия (РФЭС), спектроскопия электронного парамагнитного резонанса (ЭПР), ИК спектроскопия, термопрограммируемое восстановление водородом (ТПВ-H₂) для анализа состава поверхности;

- спектроскопия поглощения в УФ и видимой области, спектральная зависимость фотопроводимости для исследования оптических и фотоэлектрических свойств;
- *in-situ* измерения электропроводности при взаимодействии с газами для исследования сенсорных свойств материалов;
- *in-situ* ИК спектроскопия диффузного отражения (DRIFTS) для исследования процессов, протекающих на поверхности образцов при взаимодействии с газовой фазой.

Результаты и обсуждение

Органо-неорганические гибридные материалы

Фазовый состав и параметры микроструктуры нанокристаллических оксидов металлов

По данным рентгеновской дифракции синтезированные порошки нанокристаллических оксидов металлов являются однофазными. Дифрактограмма SnO₂ отвечает фазе с тетрагональной структурой рутила (ICDD № 41-1445), а дифрактограмма In₂O₃ – фазе с кубической структурой биксбиита (ICDD № 6-416) (рис. 2 а, б).

Рис.2. Дифрактограммы (а, б) и спектры комбинационного рассеяния (в, г) нанокристаллических SnO₂ (а, в) и In₂O₃ (б, г).

Ha рис. 2 (в, г) (KP) представлены спектры комбинационного рассеяния нанокристаллических SnO_2 и In_2O_3 . В спектре образца SnO_2 наблюдаются три характерные моды, которые соответствуют колебаниям анионов кислорода (Eg), симметричным (Alg) и асимметричным (B_{2g}) растяжениям связи Sn–O относительно оси с. Мода колебаний B_{1g} (137 см⁻¹) и широкая полоса при 563.2 см⁻¹ соответствуют поверхностным модам и проявляются только в спектрах нанокристаллического SnO₂. Характерные моды колебаний КР, соответствующие объемно-центрированной кубической ячейке In₂O₃, относятся к колебаниям связи In-O в структурных единицах [InO₆], а также к валентным колебаниям связей In-O-In. Широкий пик при 458 см⁻¹, имеет ту же природу, что и широкая полоса SnO_2 при 563 см⁻¹, соответствующая локальным структурным дефектам из-за малого размера частиц нанокристаллического In₂O₃.

На рис. 3 (а, б) представлены изображения ПЭМ и распределение частиц по размерам для нанокристаллических оксидов SnO_2 и In_2O_3 . Полученные средние размеры ($d_{\Pi ЭM}$) частиц, имеющих близкую к сферической форму, хорошо согласуются со средними

размерами кристаллитов (d_{OKP}), оценёнными по формуле Шеррера (табл. 2). На рис. 3 (в, г) показаны изображения СЭМ толстых пленок на основе SnO₂ и In₂O₃, сенсибилизированных комплексами Ru(II). Все образцы гибридных материалов обладают похожей морфологией. Распределение органического комплекса Ru (II) по поверхности плёнок SnO₂ и In₂O₃ изучали методом EDX-картирования по распределению катионов (рис. 3 д. е). Для гибридных материалов обнаружены протяженные области С распределением молекул фотосенсибилизатора равномерным по поверхности полупроводникового оксида. Результаты анализа элементного состава поверхности гибридных композитов показали, что содержание рутения по отношению к катиону (Sn или In) полупроводникового оксида составляет примерно 0.5 % масс.

Рис.3. Изображения наночастиц SnO₂ (a) и In₂O₃ (б), полученные методом ПЭМ высокого разрешения; изображения толстых плёнок SnO₂ (в) и In₂O₃ (г), полученные методом СЭМ; карты распределения элементов на поверхности гибридных толстых пленок SnO₂+RuTT (д) и In₂O₃+RuTT (е), полученные методом энергодисперсионной рентгеновской спектроскопии (EDX).

полупроводников SnO_2 и In_2O_3 .						
Образец	Фазовый состав	d _{окр} , нм	d _{ПЭМ} , нм	S _{уд} , м ² /г	Средний размер пор, нм	
SnO ₂	SnO ₂	4.1 (110) 4.3 (101)	4 ± 1	115 ± 5	3-5; 70-80	
I O	I O	7.3 (222)	7	04 + 4	2.4	

 In_2O_3

 In_2O_3

Таблица 2. Фазовый состав и параметры микроструктуры нанокристаллических полупроводников SnO₂ и In₂O₃.

Оптические свойства комплексов Ru(II) на основе производных 1H-имидазо[4,5f][1,10] фенантролина и сенсибилизированных композитов

7.0 (440)

 7 ± 2

 84 ± 4

Спектры оптического поглощения органических комплексов Ru(II) приведены на рис. 4. Электронные переходы в этих соединениях наблюдаются как в видимой, так и в ближней УФ-области. Широкая полоса в видимой области соответствует MLCT переходу $d(Ru) \rightarrow \pi^*$ (ligand). Эта полоса поглощения в спектре комплекса RuITP смещена в

3-4

красную область относительно полосы RuTT из-за увеличения длины π -сопряженной системы. Максимум поглощения приходится в синюю область спектра, поэтому в данной работе в качестве источника возбуждения был использован синий светодиод ($\lambda_{\text{макс}} = 470$ нм). Выше по энергии также наблюдается полоса при 375 нм, которая соответствует процессу внутрилигандного $\pi \rightarrow \pi^*$ переноса заряда (LC - ligand-centered). Интенсивная полоса поглощения при 287 нм соответствует полосам переходов фрагментов 1,10-фенантролина и пиридина из разных лигандов.

Оптические спектры поглощения немодифицированных и сенсибилизированных

 SnO_2 нанокристаллических И In_2O_3 приведены на рис. 5. Чистые оксиды SnO₂ In_2O_3 характеризуются И оптической прозрачностью в видимой области спектра. В спектрах гибридных образцов широкая полоса в диапазоне 400 - 650 нм связана с поглощением комплексов Ru(II) в составе материала и соответствует MLCT переходу. Форма спектральных зависимостей

фотопроводимости гибридов согласуется с их спектрами оптического поглощения. Это позволяет утверждать, что фотовозбуждение органического красителя сопровождается инжекцией электронов

Рис.4. Спектры поглощения комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина (c=5×10⁻⁵ M) в метаноле и спектр эмиссии светодиода (λ_{makc} =470 нм).

органического комплекса в полупроводниковые матрицы SnO2 и In2O3.

Рис.5. Спектральные зависимости фотопроводимости, спектры поглощения комплекса Ru(II), немодифицированных полупроводников и сенсибилизированных образцов на основе нанокристаллического SnO_2 (a) и In_2O_3 (б).

Сенсорные свойства гибридных материалов при комнатной температуре в условиях периодической подсветки

Сенсорные свойства органо-неорганических гибридных материалов были исследованы по отношению к оксидам азота NO и NO₂ при комнатной температуре в

условиях периодической подсветки чувствительного слоя сенсора маломощным светодиодом синего ($\lambda_{\text{макс}} = 470$ нм) света. Подсветку сенсора осуществляли в импульсном режиме с периодами включения и выключения светодиода 2 минуты, соответственно (рис. 6). Повторяющиеся циклы включения и выключения светодиода приводят к периодическому изменению сопротивления сенсора во времени, представляющему собой чередование кривых спада и нарастания фотопроводимости. В таком стационарном режиме минимальное сопротивление R_{light} достигается при освещении сенсора, а максимальное сопротивление R_{dark} — в темноте. Соотношение (1) меняется в зависимости от состава атмосферы и используется в качестве сенсорного сигнала для данного метода измерения. Кроме того, влияние подсветки на сопротивление сенсора характеризуется изменением так называемого эффективного фотоотклика в атмосфере чистого воздуха (2) либо исследуемого газа (3):

$$S = \frac{R_{dark}(gas)}{R_{dark}(air)} \quad (1) \qquad S_{ph} = \frac{R_{dark}(air)}{R_{light}(air)} \quad (2) \qquad S_{ph} = \frac{R_{dark}(gas)}{R_{light}(gas)} \quad (3)$$

Из рисунка 6 можно заметить, что сопротивление сенсора при подсветке падает. В атмосфере чистого воздуха уменьшение сопротивления материала при освещении и его увеличение при выключении подсветки определяются динамическим равновесием между адсорбцией и фотодесорбцией кислорода:

$$O_{2(gas)} + e^{-} \leftrightarrow O_{2(ads)}^{-} \tag{4} \qquad O_{2(ads)} + h^{+} \leftrightarrow O_{2(gas)} \tag{5}$$

где $O_{2(gas)}$ - молекула кислорода в газовой фазе, $O_{2(ads)}^-$ - молекулярная форма

хемосорбированного кислорода, e^{-} электрофильной молекуле кислорода, h^+ - фотогенерированная дырка. В атмосфере диоксида азота в процесс динамического равновесия также включаются молекулы NO_2 , В И результате амплитуда изменения сопротивления (величина фотоотклика) возрастает.

На рис. 7 показано изменение сопротивления сенсоров немодифицированных образцов SnO₂ и In₂O₃, а также гибридных материалов на примере образцов SnO₂+RuTT и In₂O₃+RuTT в присутствии диоксида азота. Исследование сенсорных свойств по отношению к NO₂ проведено при ступенчатом изменении концентрации

электрон, способный локализоваться

Рис.6. Схема изменения сопротивления полупроводниковых материалов при периодической подсветке синим светодиодом (λ_{max} = 470 нм) на чистом воздухе и в присутствии NO₂.

диоксида азота в диапазоне 0.1 - 1.0 ppm, сначала в направлении возрастания концентрации, а затем при ее убывании. С увеличением концентрации NO₂ базовое сопротивление всех сенсоров также возрастает, что является характерным поведением

на

полупроводников *n*-типа проводимости в атмосфере газов-окислителей. Для исследуемых образцов для каждого значения концентрации NO₂, полученного при ступенчатом увеличении и уменьшении содержания аналита в воздухе, величины сопротивления сенсоров достигают близких значений. После окончания каждого цикла измерений сопротивление сенсоров на воздухе достигает первоначальное стационарное значение.

*Рис.7. Изменение сопротивления сенсоров при периодической подсветке в присутствии различных концентраций NO*₂.

В условиях измерений немодифицированный SnO_2 проявляет крайне низкую фоточувствительность, в то время как In_2O_3 демонстрирует небольшой фотоотклик, который возрастает с увеличением концентрации NO₂. Как и ожидалось, модификация поверхности нанокристаллических оксидов фотосенсибилизаторами приводит к существенному усилению фоточувствительности в видимом диапазоне спектра и увеличению воспроизводимого сенсорного сигнала и фотоотклика при детектировании NO₂ (рис.8).

Рис.8. Зависимости фотоотклика (а) и сенсорного сигнала (б) гибридов на основе SnO₂ и In₂O₃ от концентрации NO_{2.}

В случае объёмных широкозонных полупроводниковых оксидов фотодесорбция кислорода, обусловленная взаимодействием отрицательно заряженных ионов хемосорбированного кислорода с фотогенерированными дырками, происходит только при

УФ-освещении. Однако для нанокристаллических материалов этот процесс становится возможным даже при облучении видимым светом благодаря наличию дефектных уровней. Кроме того, экспериментально рассчитанная величина ширины запрещённой зоны In_2O_3 составляет порядка 2.95 эВ, что частично может быть перекрыто спектром эмиссии синего светодиода. Поэтому фотоотклик немодифицированного In_2O_3 под действием использованного в работе источника света превышает таковой для SnO₂.

Освещение гибридных материалов синим светом приводит к возбуждению органической части и генерации неравновесных носителей заряда посредством MLCT перехода (6).

$$hv \xrightarrow{MLCT} e^{-} + h^{+} \tag{6}$$

Фотовозбужденные электроны могут переноситься в зону проводимости SnO_2 либо In_2O_3 , расположенную ниже по энергии, чем НСМО фотосенсибилизатора, тем самым приводя к увеличению проводимости полупроводникового оксида (рис. 9а). Поэтому при освещении уровень ВЗМО органического комплекса обедняется электронами. Для регенерации красителя необходимо обеспечить переход электрона от любой восстановительной частицы на уровень ВЗМО. Эту функцию могут выполнить электроны, локализованные хемосорбированным кислородом на поверхности полупроводникового оксида.

Рис.9. (а) Диаграмма взаимного расположения энергетических уровней объемных SnO₂, In₂O₃, B3MO и HCMO комплексов Ru-TT и Ru-ITP. (б) Схематическое изображение основных процессов, протекающих на поверхности гибридных материалов после облучения светом.

Сродство к электрону для молекулы NO_2 (2.27 эВ) намного превышает аналогичную величину для молекулы кислорода (0.44 эВ), что делает её более сильным акцептором электронов. Поэтому адсорбционные равновесия будут сильнее смещены в сторону хемосорбированной формы NO_2 по сравнению с хемосорбированной формой O_2 :

$$NO_{2(gas)} + e^{-} \leftrightarrow NO_{2(ads)}^{-} \tag{7}; \qquad NO_{2(gas)} + O_{2(ads)}^{-} \leftrightarrow NO_{2(ads)}^{-} + O_{2(gas)} \tag{8}$$

$$NO_{2(ads)}^{-} + \frac{1}{2}O_{2(gas)} \leftrightarrow NO_{3(ads)}^{-} \quad (9); \qquad 2NO_{2(gas)} + \frac{1}{2}O_{2(gas)} + 2e^{-} \leftrightarrow NO_{2(ads)}^{-} + NO_{3(ads)}^{-} \quad (10)$$

В темновых условиях при комнатной температуре адсорбция молекулы NO₂ на поверхности полупроводниковых оксидов протекает необратимо, т.е. его десорбции с -15-

поверхности полупроводникового оксида не происходит. Однако процесс десорбции является необходимым условием восстановления исходного состояния поверхности и электрических свойств чувствительного слоя. обеспечивая формирование воспроизводимого сенсорного сигнала. данном случае, как и в случае с В адсорбированным кислородом (уравнения 4-5), превращение хемосорбированных частиц в физически сорбированные возможно за счёт взаимодействия с фотогенерированными дырками, в результате чего адсорбаты легко десорбируются с поверхности оксида полупроводника даже при комнатной температуре из-за тепловых флуктуаций:

$$NO_{2(ads)}^{-} + h^{+} \rightarrow NO_{2(ads)} \tag{11}$$

Сенсорные свойства полученных гибридных материалов также были исследованы по отношению к NO при ступенчатом изменении концентрации монооксида азота в диапазоне 0.5 - 4.0 ppm. Концентрационные зависимости сенсорного сигнала и фотоотклика гибридов на основе SnO₂ и In₂O₃ приведены на рис. 10. При детектировании NO, также как и в случае с NO₂, (рис. 8) наблюдается увеличение сенсорного сигнала и величины фотоотклика гибридных материалов по сравнению с немодифицированными оксидами SnO₂ и In₂O₃. При детектировании NO наблюдается увеличение сопротивления различных полупроводниковых оксидов *n*-типа, т.е. монооксид азота проявляет свойства акцептора электронов, а формирование сенсорного отклика при детектировании NO полупроводниковыми оксидами определяется следующей реакцией:

Рис.10. Зависимости фотоотклика (а) и сенсорного сигнала (б) гибридов на основе SnO₂ и In₂O₃ от концентрации NO_.

Из рис. 8 и 10 можно заметить, что природа гетероциклического заместителя в комплексе Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина значительно влияет на величину фотоотклика и сенсорного сигнала по отношению к оксидам азота NO и NO₂. Результаты исследований толстых плёнок гибридных материалов методом разрешённой во времени люминесценции показали наличие двух составляющих в кривых затухания люминесценции: быстрозатухающая «синяя» компонента и долгоживущая «красная» компонента с максимумом при 670 нм.

Схема процессов, протекающих на поверхности гибридных материалов после облучения светом, приведена на рис. 96. При фотовозбуждении в комплексах Ru(II) происходит генерация носителей заряда и переход электрона с синглетного на триплетное возбуждённое состояние. Благодаря относительно длинным временам жизни, что обусловлено квантово-механическим запретом синглет-триплетного перехода, происходит излучательная эмиссия с триплетного состояния (³MLCT), которое относится к фосфоресценции (процесс 1 на рис. 96, «синяя» компонента люминесценции). Релаксация с переносом электрона в зону проводимости полупроводникового оксида является конкурирующим с фосфоресценцией процессом (процесс 2 на рис. 9б). Так как второй безызлучательным, вероятность протекания процесс является то одного ИЗ конкурирующих процессов можно рассчитать по времени жизни «синей» компоненты люминесценции – чем меньше это время, тем больше вероятность переноса заряда в полупроводник. Для комплекса RuTT это время было наименьшим среди других органических комплексов и составило 0.7 и 0.9 нс в гибридных материалах на основе SnO₂ и In₂O₃, соответственно. Электрон, перенесённый в зону проводимости полупроводника, может постепенно релаксировать и локализоваться на акцепторных уровнях (процесс 3). Поэтому «красная» компонента люминесценции относится к переносам электрона между различными дефектами, локализованными в пределах запрещённой зоны. Выраженная донорная способность тиофеновых заместителей в структуре комплекса RuTT приводит к увеличению эффективности переноса электрона. В то же время, увеличение длины π – сопряженной системы и введение двойной связи в структуре комплекса RuITP может привести к образованию дополнительного пути релаксаии возбужденного состояния за счет фотоизомеризации, помимо быстрой флуоресценции из $(\pi-\pi^*)$ возбужденного состояния, что может привести к уменьшению эффективности переноса заряда в полупроводник.

Исследование процессов, протекающих на поверхности гибридных материалов при взаимодействии с NO и NO₂

Процессы, протекающие на поверхности полупроводниковых оксидов и гибридных материалов, при взаимодействии с NO и NO₂, были исследованы in-situ методом ИК спектроскопии диффузного отражения (DRIFTS). На рис. 11 (а, б) показаны спектры DRIFT, зарегистрированные при комнатной температуре после 60 мин. выдержки в воздухе, содержащем NO (50 ppm) или NO₂ (5 ppm), соответственно. Полученные данные позволяют определить процессы, обеспечивающие низкотемпературное детектирование оксидов азота гибридными материалами. Сравнивая рис. 11 (а, б), можно заметить, что при адсорбции NO и NO₂ преимущественно образуются одни и те же адсорбированные формы NO_x. Наиболее интенсивные полосы соответствуют бидентатным нитритным группам - NO₂⁻, которые при взаимодействии с диоксидом азота возникают при непосредственном захвате электронов из зоны проводимости полупроводника (реакция 7). Образование групп NO₂⁻ при взаимодействии материалов с NO может быть связано с окислением молекул монооксида азота кислородом, хемосорбированным на поверхности полупроводниковых оксидов (реакция 12).

Поскольку образцы предварительного нагревали только до 50°С, адсорбированная на поверхности вода не десорбировалась и внесла свой вклад при взаимодействии с NO и NO₂. Частоты колебаний в диапазоне 3226 – 3535 см⁻¹ обусловлены наличием OH-групп,

связанных посредством водородных связей. Пик при частоте 1630 см⁻¹ обусловлен деформационными модами колебаний H₂O, а острые полосы между 3580 и 3700 см⁻¹ относятся к колебаниям «свободных» гидроксильных групп, несвязанных водородными связями. Образование этих полос с отрицательной интенсивностью обусловлено уменьшением концентрации таких гидроксильных групп вследствие взаимодействия и/или их замещения молекулами NO и NO₂.

Рис. 11. Спектры DRIFT немодифицированных оксидов SnO_2 и In_2O_3 и гибридов после 60 минут выдержки в атмосфере (а) NO (50 ppm) и (б) NO₂ (5 ppm) при комнатной температуре.

Неорганические нанокомпозиты $SnO_2/TiO_2@M$, где M = Pt, Au, Ag

Фазовый состав и параметры микроструктуры нанокомпозитов

Фазовый состав полученных нанокомпозитов $SnO_2/TiO_2@M$ (M = Pt, Au, Ag) (рис. 12) был охарактеризован с использованием дифракционных данных ICDD PDF-2 для SnO_2 (41–1445), TiO₂ (анатаз, 21–1272), Au (4-784), Ag (4-783) и PtO (43–1100). На рентгенограммах отчетливо видны рефлексы, соответствующие фазе SnO_2 с тетрагональной структурой касситерита. Другие возможные кристаллические фазы не обнаружены, так как их концентрация мала, а их дифракционные максимумы перекрываются с интенсивными и широкими рефлексами фазы SnO_2 .

Рис. 12. Рентгенограммы синтезированных образцов

Согласно изображениям ПЭМ (рис. 13) и анализу межплоскостных расстояний, образцы хорошо закристаллизованы и состоят из сферических кристаллитов SnO_2 со средним размером 4.5 ± 1 нм, что соответствует размерам кристаллических зерен (d_{OKP}), рассчитанным по уравнению Шеррера (Таблица 3). После отжига нанокомпозитов НЧ Au и Ag сохраняют свою сферическую форму и начальные размеры. Маленькие черные точки, различимые по контрасту на рис. 13г, вероятно, соответствуют наночастицам платины (НЧ Pt).

Рис. 13. Изображения ПЭМ SnO₂ (a) и нанокомпозитов SnO₂/TiO₂@Au (б), SnO₂/TiO₂@Ag (в) и SnO₂/TiO₂@Pt (г). Наночастицы платины обозначены красными стрелками.

Таблица 3. Параметры микроструктуры и состав синтезированных образцов.

Образец	d _{OKP} , нм	d _{ПЭМ} , нм	[M]*/([Ti]+[Sn]+[M]*), macc.%	[Ti]/([Ti]+[Sn]+[M]*), масс.%	S _{уд} , м ² /г
НЧ Аи	16 (111)	17 ± 4	_	_	-
НЧ Ag	13 (111)	13 ± 3			
SnO ₂ /TiO ₂			-	1.4 ± 0.1	97 ± 4
SnO ₂ /TiO ₂ @Pt	4.3 (110)	4.5 ± 1	1.0 ± 0.1	1.2 ± 0.1	90 ± 4
SnO ₂ /TiO ₂ @Au	(SnO_2)	(SnO ₂)	1.2 ± 0.1	1.3 ± 0.1	85 ± 4
SnO ₂ /TiO ₂ @Ag			0.9 ± 0.1	1.2 ± 0.1	88 ± 4

[M]* — Pt, Au или Ag соответственно.

Электронное состояние элементов и состав поверхности нанокомпозитов

Состав поверхности и химическое состояние элементов были исследованы методом РФЭС. На рис. 14 приведены спектры по регионам O1s, Ag3d, Au4f и Pt4f в нанокомпозитах SnO₂/ TiO₂@M (M = Pt, Au, Ag). Две компоненты в спектрах O1s, расположенные при 531.1 эВ и 532.4 эВ, относятся к решёточному кислороду (O_{lat}) и хемосорбированным (O_{surf}) частицам кислорода или гидроксильным ионам (O⁻, O²⁻ и OH⁻), соответственно. Можно заметить, что доля поверхностного кислорода, выраженная через соотношение площадей пиков O_{surf}/O_{lat}, для композита SnO₂/TiO₂ более чем в 2.5 раза

превышает аналогичную величину для чистого SnO₂, а для нанокомпозитов SnO₂/TiO₂@M (M = Pt, Au, Ag), напротив, наблюдается уменьшение доли поверхностного кислорода. Соотношение величин работы выхода электрона для TiO₂ и SnO₂ при образовании *n*-*n*-гетероконтакта на границе SnO₂(касситерит)/TiO₂(анатаз) может привести к переносу электронов из зоны проводимости TiO₂ в зону проводимости SnO₂. Высокая концентрация электронов, в свою очередь, может приводить к усилению адсорбции молекул кислорода на поверхности нанокомпозита. Различия величин работы выхода электрона для TiO₂, SnO₂ и наночастиц металлов приводит к образованию барьеров Шоттки на границе металл/полупроводник, вследствие чего происходит перераспределение электронов и изменение в соотношении O_{surf}/O_{lat} для нанокомпозитов SnO₂/TiO₂@M (рис. 15). В спектре Pt4f пики при 73.1 эВ (Pt 4f7/2) и 76.4 эВ (Pt 4f5/2) могут быть обусловлены Pt(II). РФЭ-спектры Ag3d и Au4f указывают на присутствие HU Ag и Au в металлической форме.

Puc. 14. РФЭ-спектры нанокомпозитов SnO₂/TiO₂@M по регионам O1s (a), Ag3d (б), Au4f (в) и Pt4f (г).

Исследование сенсорных свойств

Сенсорные свойства синтезированных нанокомпозитов были исследованы по отношению к 1 ppm формальдегида в диапазоне температур 300–25 °C с целью определения оптимальной рабочей температуры. На рис. 16а показано динамическое изменение сопротивления нанокомпозитов при циклическом изменении состава газовой фазы с чередованием запуска чистого воздуха (15 мин) и воздуха, содержащего 1 ppm формальдегида (15 мин). Сопротивление сенсоров обратимо уменьшается в атмосфере НСНО и увеличивается в чистом воздухе, что характерно для полупроводников *n*-типа при детектировании газов-восстановителей (реакция 13).

$$2HCHO_{(ads)} + 2O_{2(ads)}^{-} \rightarrow 2CO_2 + 2H_2O + 2e^{-}$$
(13)

Сенсорный отклик образцов по отношению к НСНО рассчитывали по формуле (14):

$$S = \frac{R(air)}{R(gas)} \tag{14}$$

где *R(air)* – сопротивление в чистом воздухе, *R(gas)* – сопротивление в присутствии детектируемого газа. Характерные графики зависимости сенсорных сигналов от температуры показаны на рис. 16б. Модификация SnO₂ диоксидом титана приводит к смещению температуры, отвечающей

Рис. 15. Схематическое изображение расположения энергетических уровней объемных SnO₂, TiO₂ и работ выхода металлов Ag, Au, Pt.

максимальному сенсорному сигналу от 150 до 100°С. Модификация нанокомпозитов SnO_2/TiO_2 НЧ Au увеличивает сенсорный сигнал при T = 100°С, а модификация НЧ Pt приводит к появлению сенсорного отклика при T = 25°С и 50°С.

Рис. 16. Изменение сопротивления образцов при периодическом изменении состава газовой фазы в интервале температур 300–25 °С (а); температурная зависимость сенсорного сигнала нанокомпозитов при детектировании 1 ррт НСНО (б).

Чувствительность образцов была исследована при детектировании различных летучих органических соединений (ЛОС): формальдегида, бензола, ацетона и метанола при 200°С (рис. 17). Концентрация ЛОС была выбрана на основе соответствующих значений ПДК в рабочей зоне внутри помещения. Величина сигнала сенсоров на основе SnO_2/TiO_2 и $SnO_2/TiO_2@Ag$ при детектировании более 0.5 ppm HCHO и C_6H_6 практически одинакова, в то время как образцы $SnO_2/TiO_2@Au$ и $SnO_2/TiO_2@Pt$, проявляют более высокий сенсорный отклик на HCHO по сравнению с другими ЛОС.

Рис. 17. Зависимость сенсорного сигнала нанокомпозитов SnO_2/TiO_2 , $SnO_2/TiO_2@Ag$ (a) и $SnO_2/TiO_2@Pt$, $SnO_2/TiO_2@Au$ (б) от концентрации HCHO, $C_6H_{6,1}$, $(CH_3)_2C(O)$, CH₃OH.

Сенсорные свойства также были исследованы под действием подсветки маломошными светодиодами с разной длиной волны при детектировании формальдегида с концентрацией 1 ррт. Максимальный сенсорный сигнал, также как и в измерениях при темновых условиях, достигнут при температуре был измерений 100°C. Зависимость сенсорного сигнала от длины волны возбуждающего излучения приведена на рис.18. Для всех образцов с уменьшением длины волны подсветки уменьшается и величина сенсорного отклика.

Меньшей длине волны возбуждающего излучения соответствует большая энергия фотонов. Эта энергия оказывается достаточной для активации фотодесорбции с поверхности полупроводниковых оксидов кислородных частиц, играющих ключевую роль в окислении газов-восстановителей, в том числе и формальдегида. Подсветка значительно влияет на сенсорный сигнал в низкотемпературной области измерений, выше 150°C существенного изменения сигнала не наблюдается. В этом случае увеличение скорости термодесорбции кислорода с поверхности может приводить к уменьшению вклада фотодесорбции.

Исследование процессов, протекающих на поверхности нанокомпозитов $SnO_2/TiO_2@M$ (M = Ag, Au, Pt) при детектировании формальдегида

На рис. 19а показано изменение *in-situ* DRIFT-спектров образца SnO₂/TiO₂@Pt в присутствии 20 ppm формальдегида при T = 100 °C. При воздействии НСНО наблюдается увеличение интенсивности полос, относящихся к колебаниям v(CH) и $v_s(OCO)$ в частицах HCOO⁻, а также $\tau(CH_2)$, что указывает на появление диоксиметиленового (DOM, H₂COO⁻) интермедиата. Полное окисление формиатов на поверхности нанокомпозита определяется

по появлению полосы при 2340 см⁻¹, характеризующей адсорбированные молекулы CO₂. О накоплении поверхностных молекул H₂O свидетельствует увеличение интенсивности пика при 1620 см⁻¹. Другой группой активных центров, которые могут влиять на окислительную активность материалов, являются поверхностные гидроксильные группы. Пики с отрицательной интенсивностью, связанные с частотами колебаний свободных поверхностных гидроксилов на оксидах, наблюдались при частотах 3598 см⁻¹, 3670 см⁻¹ и 3724 см⁻¹. При запуске в ячейку очищенного сухого воздуха при T = 100°C десорбция формиатных групп происходит не полностью, что, по-видимому, вызывает дрейф базовой линии, возникающий при детектировании формальдегида (рис. 16а). Только нагрев до 300°C приводит к полной десорбции этих групп (рис. 19б). Уменьшение величины сенсорного отклика с повышением температуры измерения до 250–300 °C обусловлено вкладом термодесорбции хемосорбированных форм кислорода, играющих ключевую роль в окислении формальдегида, а также уменьшением адсорбции молекул формальдегида.

Puc. 19. In-situ DRIFT-спектры образца SnO_2/TiO_2 @Pt при адсорбции HCHO при T = 100 °C (а) и при нагревании в атмосфере воздуха после адсорбции HCHO (б).

Профиль и пики спектров DRIFT нанокомпозитов при взаимодействии с формальдегидом при 100 °C свидетельствуют об образовании одних и тех же промежуточных продуктов реакции при окислении HCHO на поверхности всех нанокомпозитов. В то же время при $T = 25^{\circ}$ C появление максимумов поглощения, отвечающих формиатным и диоксиметиленовым группам, наблюдается только в спектре SnO₂/TiO₂@Pt и со слабой интенсивностью в спектре SnO₂/TiO₂@Ag. Это свидетельствует о том, что при комнатной температуре только наночастицы PtO_x могут катализировать окислительное разложение молекул HCHO.

Исходя из результатов, полученных методом DRIFTS, можно сделать вывод о том, что частицы формиата и DOM являются основными интермедиатами окисления HCHO, и предложить следующую последовательность процессов, ответственных за низкотемпературное детектирование HCHO нанокомпозитами. Формальдегид в основном адсорбируется на бренстедовских кислотных центрах — гидроксильных группах за счёт водородной связи (уравнение 15). Это следует из монотонного снижения интенсивности колебаний OH-групп и увеличения интенсивности колебаний формиата со временем воздействия формальдегида (рис. 19а). На следующей стадии адсорбированные молекулы формальдегида окисляются хемосорбированными ионами кислорода с образованием промежуточного соединения DOM (уравнение 16) и затем формиата (уравнение 17). Кроме того, усиление сенсорного отклика при детектировании HCHO будет определяться каталитической активностью модификатора. В частности, наночастицы Pt, Ag и Au могут ускорять процесс окисления промежуточных продуктов до CO₂ и H₂O (уравнение 18).

$$HCHO_{(gas)} \rightarrow HCHO_{(ads)}$$
 (15)

$$\beta \cdot HCHO_{(ads)} + O_{\beta(ads)}^{\alpha-} \to \beta \cdot H_2COO_{(ads)}^- + (\alpha - 1) \cdot e^-$$
(16)

$$\beta \cdot H_2 COO^-_{(ads)} + O^{\alpha-}_{\beta(ads)} \to \beta \cdot H COO^{2-}_{(ads)} + \beta \cdot OH^{(\alpha-1)-}_{(ads)}$$
(17)

$$2\beta \cdot HCOO_{(ads)}^{2-} + O_{\beta(ads)}^{\alpha-} \to 2\beta \cdot CO_2 + \beta \cdot H_2O + (4\beta + \alpha) \cdot e^-$$
(18)

Влияние титансодержащей фазы на увеличение сенсорного сигнала по отношению к HCHO и другим ЛОС основано на образовании n-n-гетероконтакта на границе SnO₂/TiO₂, приводящему к переносу электронов из TiO₂ в SnO₂, что, в свою очередь, стимулирует адсорбцию на поверхности нанокомпозитов кислорода, необходимого для окисления ЛОС. Эффект сенсибилизации нанокомпозитов наночастицами Au, Ag и Pt имеет различный характер. Так, в случае SnO₂/TiO₂@Pt при низких рабочих температурах реализуется механизм электронной сенсибилизации, связанный с восстановлением PtO_x до Pt⁰ в присутствии ЛОС. При повышенных температурах происходит термическое разложение PtO_x с образованием металлической Pt, обеспечивающей механизм химической сенсибилизации. Это подтверждается появлением сигналов от интермедиатов формиата и DOM в спектре DRIFT при экспозиции SnO₂/TiO₂@Pt в атмосфере, содержащей НСНО, при комнатной температуре, что свидетельствует об окислительном распаде молекул HCHO, тогда как при 100 °C такие же сигналы интермедиатов появляются в спектрах всех образцов. Для нанокомпозитов SnO₂/TiO₂@Au и SnO₂/TiO₂@Ag за усиление сенсорного отклика во всем диапазоне температур отвечает механизм химической сенсибилизации.

Выводы

1. Разработаны методики воспроизводимого синтеза и определены условия получения:

(i) нанокристаллических полупроводниковых оксидов SnO_2 и In_2O_3 с размерами кристаллических зерен 4-5 и 7-8 нм и величиной удельной площади поверхности 115 и 84 м²/г, соответственно;

(ii) нанокомпозитов SnO_2/TiO_2 , содержащих 3 – 12 мол. % TiO_2 , в которых TiO_2 распределен в виде сегрегации на поверхности кристаллических зерен SnO_2 размером 4-5 нм.

2. Разработаны методики и определены условия для модификации:

(i) поверхности полупроводниковых оксидов SnO_2 и In_2O_3 в форме порошков и толстых пленок комплексами Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина, содержащих гетероциклические заместители;

(ii) нанокомпозитов SnO₂/TiO₂ в форме порошков наночастицами Ag, Au, Pt.

3. Установлено, что модификация комплексами Ru(II) на основе производных 1Hимидазо[4,5-f][1,10] фенантролина, содержащих гетероциклические заместители, позволяет сместить диапазон оптической чувствительности широкозонных полупроводниковых оксидов в видимую область спектра, что, в свою очередь, приводит к увеличению воспроизводимого сенсорного сигнала при детектировании NO_2 и NO в условиях фотоактивации светом видимого диапазона. Обнаружено, что природа гетероциклического заместителя в комплексе Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина значительно влияет на величину фотоотклика и сенсорного сигнала при детектировании оксидов азота NO и NO₂. Выраженная донорная способность тиофеновых заместителей в структуре комплекса RuTT приводит к увеличению эффективности переноса электрона в ЗП полупроводника.

4. Установлено, что модификация SnO_2 оксидом титана позволяет снизить температуру, отвечающую максимальному сенсорному отклику при детектировании HCHO, от 150 до 100°C. Модификация нанокомпозитов SnO_2/TiO_2 наночастицами Au увеличивает сенсорный отклик при T = 100 °C, тогда как модификация наночастицами Pt обеспечивает появление сигнала даже при T = 25°C и 50°C.

5. Методом in-situ ИК-спектроскопии диффузного отражения определены процессы на материалов, поверхности гибридных ответственные низкотемпературное за Величина сенсорного детектирование оксидов азота. отклика коррелирует с концентрацией бидентатных нитритных групп NO₂, которые при адсорбции диоксида азота возникают при хемосорбции с локализацией электронов из зоны проводимости полупроводника. Образование групп NO₂⁻ при взаимодействии материалов с NO результате окисления молекул монооксида азота происходит В кислородом, хемосорбированным на поверхности нанокристаллических полупроводников.

6. Методом in-situ ИК-спектроскопии диффузного отражения выявлены процессы на поверхности нанокомпозитов $SnO_2/TiO_2@M$ (M = Pt, Au, Ag),определяющие формирование сенсорного отклика при низкотемпературном детектировании НСНО. Установлено, адсорбированные молекулы НСНО окисляются ЧТО кислородом, хемосорбированным на поверхности нанокомпозитов, с образованием диоксиметиленового интермедиата и затем формиата, с последующим полным окислением до CO₂ и H₂O. Для нанокомпозита SnO₂/TiO₂@Pt при низких рабочих температурах реализуется механизм электронной сенсибилизации, с повышением температуры преобладающим измерений становится механизм химической сенсибилизации. Для нанокомпозитов SnO₂/TiO₂@Au и SnO₂/TiO₂@Ag за усиление сенсорного отклика во всем диапазоне температур отвечает механизм химической сенсибилизации.

Список работ, опубликованных по теме диссертации

Статьи, индексируемые WoS и/или Scopus:

- <u>Nasriddinov, A.</u>; Tokarev, S.; Fedorova, O.; Bozhev, I.; Rumyantseva, M. In₂O₃ Based Hybrid Materials: Interplay between Microstructure, Photoelectrical and Light Activated NO₂ Sensor Properties // Chemosensors, 2022, 10(4), p. 135. IF = 4.229 (WoS) – (80%).
- <u>Nasriddinov, A.</u>; Platonov, V.; Garshev, A.; Rumyantseva, M. Low Temperature HCHO Detection by SnO₂/TiO₂@Au and SnO₂/TiO₂@Pt: Understanding by in-situ DRIFT Spectroscopy // Nanomaterials, 2021, 11(8), p. 2049. IF = 5.719 (WoS) (90%).

- <u>Nasriddinov, A.</u>; Rumyantseva, M.; Konstantinova E., Marikutsa A., Tokarev S., Yaltseva P., Fedorova O., Gaskov A. *Effect of Humidity on Light-Activated NO and NO₂ Gas Sensing by Hybrid Materials* // Nanomaterials, 2020, 10(5), p. 915. IF = 5.719 (WoS) (80%).
- Masriddinov, A.; Rumyantseva, M.; Shatalova, T.; Tokarev, S.; Yaltseva, P.; Fedorova, O.; Khmelevsky, N.; Gaskov, A. Organic-Inorganic Hybrid Materials for Room Temperature Light-Activated Sub-ppm NO Detection // Nanomaterials, 2020, 10(1), p. 70. IF = 5.719 (WoS) (60%).
- Lee, J.H.; Mirzaei, A.; Kim, J.H.; Kim, J.Y.; <u>Nasriddinov, A.</u>; Rumyantseva, M.; Kim, H.W.; Kim S.S. *Gas-sensing behaviors of TiO₂-layer-modified SnO₂ quantum dots in self-heating mode and effects of the TiO₂ layer // Sensors and Actuators*, B: Chemical, 2020, 310, p. 127870. IF = 9.221 (WoS) (20%).
- Tokarev, S.; Rumyantseva, M.; <u>Nasriddinov, A.</u>; Gaskov, A.; Moiseeva, A.; Fedorov,Yu.; Fedorova, O.; Jonusauskas, G. *Electron injection effect in In₂O₃ and SnO₂ nanocrystals modified by ruthenium heteroleptic complexes //* Phys. Chem. Chem. Phys, 2020, 22, p. 8146. IF = 3.945 (WoS) (30%).
- Nasriddinov, A.; Rumyantseva, M.; Marikutsa, A.; Gaskov, A.; Lee, J.H.; Kim, J.H.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Sub-ppm Formaldehyde Detection by n-n TiO₂@SnO₂ Nanocomposites // Sensors, 2019, 19, № 14, p. 3182. IF = 3.847 (WoS) (70%).
- Rumyantseva, M.; <u>Nasriddinov, A.</u>; Vladimirova, S.; Tokarev, S.; Fedorova, O.; Krylov, I.; Drozdov, K.; Baranchikov, A.; Gaskov, A. *Photosensitive Organic-Inorganic Hybrid Materials* for Room Temperature Gas Sensor Applications // Nanomaterials, 2018, 8(9), p. 671. IF = 5.719 (WoS) – (50%).

Благодарности

Автор выражает глубокую благодарность научному руководителю Румянцевой Марине Николаевне за чуткое руководство, всестороннюю поддержку и постоянную помощь в обсуждении результатов работы. Также автор благодарен Гаськову Александру Михайловичу за предоставленную возможность заниматься научно-исследовательской работой, за ценные советы и поддержку на начальных этапах работы. Автор выражает признательность сотрудникам лаборатории фотоактивных супрамолекулярных систем ИНЭОС РАН к.х.н. Токареву С.Д. и проф., д.х.н. Федоровой О.А. за предоставление комплексов Ru(II) на основе производных 1H-имидазо[4,5-f][1,10] фенантролина. Автор искренне благодарит д.х.н. Васильева Р.Б. за ценные советы и замечания в обсуждении работы. Автор признателен коллективу сотрудников лаборатории химии и физики полупроводниковых и сенсорных материалов, в частности к.х.н. Марикуце А.В., к.х.н. Чижову А.С., к.х.н. Кривецкому В.В., к.х.н. Дорофееву С.Г. за поддержку и помощь в проведении отдельных экспериментов.

Автор выражает благодарность к.х.н. Платонову В.Б. за проведение исследований методом рентгеновской дифракции; к.х.н. Гаршеву А.В., к.т.н. Абрамчуку С.С., к.ф.-м.н. Максимову С.В. и к.х.н. Герасимову Е. Ю. за исследование образцов методом ПЭМ; к.х.н. Баранчикову А.Е. и к.х.н. Платонову В.Б. за характеризацию образцов методом СЭМ; к.х.н. Шаталовой Т. Б. за проведение исследований методом термического анализа; к.ф-м.н. Хмелевскому и к.х.н. Графову О.Ю. за исследование некоторых образцов методом РФЭС.

Особую благодарность автор выражает родителям, родным и близким за неоценимую помощь, веру в него и всестороннюю поддержку.