МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

M. Qouf

На правах рукописи

Бок Татьяна Олеговна

Влияние механизма кристаллизации цеолита структурного типа ВЕА на его физико-химические и каталитические свойства в синтезе кумола

1.4.4. – Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата химических наук

Москва - 2023

Работа выполнена в лаборатории адсорбции и катализа кафедры физической химии химического факультета МГУ имени М. В. Ломоносова и в лаборатории катализаторов нефтехимических процессов Института нефтехимического синтеза имени А. В. Топчиева Российской академии наук.

Научный руководитель	_	Иванова Ирина Игоревна доктор химических наук, профессор
Официальные оппоненты	_	Ечевский Геннадий Викторович доктор химических наук, Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук», лаборатория каталитических превращений углеводородов, главный научный сотрудник
	_	Мельников Михаил Яковлевич доктор химических наук, профессор, Московский государственный университет име- ни М.В. Ломоносова, химический факультет, кафедра химической кинетики, заведующий кафедрой
	_	Пимерзин Алексей Андреевич кандидат химических наук, доцент Общество с ограниченной ответственностью "Газпромнефть - Промышленные Инновации", центр НИОКР «Катализаторы», руководитель центра

Защита диссертации состоится 23 июня 2023 года в 17:00 часов на заседании диссертационного совета МГУ.014.3 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, г. Москва, ул. Ленинские горы, д. 1, стр. 3, Химический факультет, ауд. СХА (преп.).

E-mail: mish@kinet.chem.msu.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (адрес: г. Москва, Ломоносовский просп., д. 27) и на портале: <u>https://dissovet.msu.ru/dissertation/014.3/2555/</u>.

Автореферат разослан мая 2023 г.

Ученый секретарь диссертационного совета МГУ.014.3 кандидат химических наук, доцент

Life

Шилина М.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Ключевая роль цеолитных катализаторов в процессах нефтеперерабатывающей промышленности, газо- и нефтехимии, а также органического синтеза в значительной мере стимулировала создание новых высокоэффективных каталитических систем на их основе. Однако дальнейший прогресс в этой области существенно затруднен из-за отсутствия детальных сведений о механизме синтеза этих материалов и о влиянии механизма синтеза цеолитов на их физико-химические и каталитические свойства, а также из-за отсутствия методов направленного регулирования этих свойств в ходе синтеза. Все это в полной мере обуславливает актуальность данной работы, направленной на исследование механизма синтеза цеолита структурного типа ВЕА и поиск путей направленного регулирования его физикохимических и каталитических свойств.

Цеолит со структурой ВЕА является одним из самых востребованных цеолитных катализаторов, обладает развитой системой пор с диаметром 0,76*0,64 нм и 0,55*0,55 нм, высокой термической устойчивостью и значительной кислотностью. Благодаря этим свойствам он находит широкое применение в качестве катализатора в различных процессах, особое значение среди которых имеет процесс синтеза кумола. Несмотря на большое число работ, посвященных синтезу цеолита со структурой ВЕА, вопросы о механизме формирования его кристаллической структуры в ходе гидротермального синтеза до настоящего времени остаются предметом дискуссии. В научной литературе рассматриваются два основных альтернативных механизма: жидкофазный и твердофазный. Помимо этих двух альтернативных точек зрения, существует множество других гипотез и предположений. При этом нет информации о влиянии механизма кристаллизации цеолита структурного типа ВЕА на его текстурные, морфологические, кислотные и каталитические свойства. В настоящей работе сделана попытка ответить на поставленные вопросы.

Цели и задачи работы

Целью диссертационной работы являлся поиск рациональных путей регулирования физико-химических и каталитических свойств цеолита со структурой BEA на основе фундаментальных исследований механизма его кристаллизации, направленный на создание высокоэффективного катализатора процесса синтеза кумола.

3

Для достижения поставленной цели предполагалось решить следующие задачи:

- 1. Исследовать механизмы кристаллизации цеолита со структурой BEA, используя комплекс физико-химических методов, сочетающих подходы *in situ* и *ex situ*.
- 2. Определить влияние механизма кристаллизации на текстурные, морфологические и кислотные свойства цеолита структурного типа BEA.
- Испытать цеолиты со структурой ВЕА, полученные разными способами, в процессе алкилирования бензола пропиленом и определить физико-химические характеристики цеолита, необходимые для создания высокоэффективного катализатора синтеза кумола.
- Разработать способ синтеза, обеспечивающий высокий выход цеолитов со структурой ВЕА с заданными физико-химическими и каталитическими свойствами.
- 5. Определить оптимальный тип и содержание связующего для приготовления гранулированного катализатора алкилирования бензола пропиленом.
- 6. На основе проведенных исследований разработать способ получения высокоэффективного катализатора процесса алкилирования бензола пропиленом на основе цеолита со структурой ВЕА и определить его эксплуатационные характеристики.

Объект исследования

Объектами исследования являются кристаллические цеолиты со структурой ВЕА, полученные методами гидротермальной и парофазной кристаллизации.

Предмет исследования

Предметом исследования являются механизмы гидротермальной и парофазной кристаллизации цеолитов ВЕА и методы направленного регулирования их физико-химических и каталитических свойств в процессе синтеза кумола путем алкилирования бензола пропиленом.

Методология и методы исследования

Для изучения механизма кристаллизации цеолита со структурой BEA применяли 2 подхода: *in situ* и *ex situ*. *In situ* исследования проводили непосредственно в ходе синтеза методом спектроскопии ЯМР твердого тела на ядрах ²⁹Si, ²⁷Al, ¹³C и ²³Na в ЯМР ячейке автоклавного типа. *Ex situ* подход включал изучение структуры, текстуры и морфологии промежуточных продуктов кристаллизации, выделенных на разных этапах синтеза, комплексом физико-химических методов: рентгенофазового анализа (РФА), ИК-спектроскопии (ИКС), рентгенофлюоресцентного анализа (РФС), термогравиметрии и дифференциального термического анализа (ТГ-ДТА), сканирующей и просвечивающей электронной микроскопии (СЭМ и ПЭМ) и низкотемпературной адсорбции азота. Сочетание этих двух подходов позволило получить наиболее полную информацию о механизме синтеза.

Физико-химические свойства конечных продуктов кристаллизации изучали методами РФА, РФС, ИКС, ТГ-ДТА, СЭМ, ПЭМ, низкотемпературной адсорбции азота, а также методами термопрограммированной десорбции аммиака (ТПД NH₃), ИКС адсорбированных молекул – зондов (пиридина, 2,6–дитретбутил-4-метилпиридина), рентгеновской фотоэлектронной спектроскопии (РФЭС) и ртутной порометрии. Каталитические свойства цеолитов со структурой ВЕА исследовали в процессе алкилирования бензола пропиленом на каталитической установке проточного типа с неподвижным слоем катализатора.

Научная новизна

Впервые для исследования механизма синтеза цеолита со структурой ВЕА применен метод спектроскопии ЯМР твердого тела *in situ*. Показано, что метод дает уникальную информацию о динамике атомных ядер, входящих в состав реагентов, продуктов и интермедиатов, непосредственно в ходе гидротермального синтеза и открывает новые возможности для установления молекулярного механизма всех стадий синтеза, включая стадии гелеобразования, зарождения и роста цеолитных кристаллов. Применение этого метода наряду с традиционным *ex situ* подходом позволило получить детальную информацию о кристаллизации цеолита со структурой ВЕА по жидкофазному и твердофазному механизмам, установить влияние механизма синтеза на физико-химические и каталитические свойства продукта и заключить, что для получения высокоэффективных катализаторов синтеза кумола на основе цеолита со структурой ВЕА предпочтителен твердофазный механизм кристаллизации.

Предложен новый способ парофазной кристаллизации в отсутствие кристаллической затравки, позволяющий получать иерархические цеолиты структурного

5

типа ВЕА с большим вкладом транспортных мезопор, равномерным распределением алюминия по кристаллу и высокой кислотностью. Полученный цеолит проявил высокую каталитическую активность и стабильность в процессе алкилирования бензола пропиленом. Найден оптимальный тип и содержание связующего компонента для приготовления гранулированного катализатора. На основании полученных данных разработан высокоэффективный катализатор синтеза кумола на основе иерархического цеолита со структурой ВЕА, гранулированного с гидроксидом алюминия в качестве связующего.

Теоретическая и практическая значимость результатов

Теоретическая значимость работы обусловлена тем, что полученные экспериментальные данные о механизмах формирования цеолита со структурой ВЕА в ходе гидротермальной и парофазной кристаллизации могут быть использованы для создания научных основ получения цеолита структурного типа ВЕА с необходимыми свойствами.

Практическая значимость полученных результатов обусловлена тем, что в работе предложена методика приготовления высокоэффективного катализатора на основе цеолита со структурой ВЕА, обеспечивающего выход продуктов алкилирования 99,4 мас.% и селективность по кумолу 91,2 мас.% при конверсии пропилена 100 %.

Основные положения, выносимые на защиту:

- Кристаллизация цеолита со структурой ВЕА по жидкофазному механизму сопровождается образованием поликристаллов с неоднородным распределением Al и сравнительно низкой кислотностью.
- Кристаллизация цеолита со структурой ВЕА по твердофазному механизму приводит к образованию агрегатов нанокристаллитов с иерархической пористой структурой и равномерным распределением Al.
- В процессе алкилирования бензола пропиленом наиболее эффективны иерархические цеолиты со структурой ВЕА с равномерным распределением алюминия по кристаллу и высокой кислотностью.
- Катализатор синтеза кумола на основе иерархического цеолита со структурой ВЕА обеспечивает выход продуктов алкилирования 99 мас.% при стабильной работе в течение 30 часов.

Степень достоверности

Достоверность результатов работы обусловлена тщательной подготовкой экспериментов и отработкой методик их проведения, применением комплекса современных физико-химических методов исследования, а также сравнением полученных результатов с литературными данными. Результаты работы выносились на открытое обсуждение в научном сообществе и опубликованы в рецензируемых российских и международных периодических изданиях.

Публикации и сведения об апробации результатов исследований

Основное содержание работы в полной мере изложено в 9 печатных изданиях (общим объёмом 18 печатных листов), из них в 8 статьях в рецензируемых журналах, индексируемых в базах данных Web of Science, Scopus, РИНЦ и рекомендованных для защиты в диссертационном совете МГУ имени М.В. Ломоносова по специальности 1.4.4 – «физическая химия» (химические науки) и 1 патенте РФ. Основные результаты работы докладывались на российских и международных научных конференциях: Международные молодежные научные форумы «ЛОМО-НОСОВ» (Россия, Москва, 2016, 2017, 2019, 2020); VII, VIII и IX Всероссийские цеолитные конференции «Цеолиты и мезопористые материалы: достижения и перспективы» (Россия, Звенигород, 2015), (Россия, Уфа, 2018), (Россия, Грозный, 2021); XII Международная конференция молодых ученых по нефтехимии (Россия, Звенигород, 2018); Юбилейная научная конференция ИНХС РАН - 85 лет (Россия, Москва, 2019); III Школа молодых ученых «Глубокая переработка углеводородного сырья: теоретические и прикладные аспекты» (Россия, Москва, 2019).

Личный вклад автора

Личный вклад автора заключался в сборе, систематизации и анализе научной литературы по тематике диссертационной работы, планировании и проведении синтетических исследований, изучении механизмов синтеза цеолита со структурой ВЕА, исследовании физико-химических и каталитических свойств конечных продуктов. Автором обобщены полученные результаты исследований, сформулированы выводы и подготовлены публикации по теме работы, проведена апробация результатов на российских и международных конференциях. В статьях, написанных с соавторами, вклад соискателя был определяющим.

7

Структура и объём диссертации

Диссертационная работа состоит из введения, обзора литературы (глава 1), экспериментальной части (глава 2), результатов и их обсуждения (глава 3), заключения, списка использованных в работе сокращений и условных обозначений, а также списка цитируемой литературы. Работа изложена на 169 страницах машинописного текста, содержит 75 рисунков, 42 таблицы. Список цитируемой литературы включает 172 работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность работы, сформулированы основные цели и задачи исследования, отражена научная новизна и практическая значимость, а также апробация материалов диссертации.

В главе 1 представлен обзор научной литературы, состоящий из двух основных разделов. В первом разделе рассмотрены свойства цеолитов структурного типа ВЕА, основные синтетические подходы для получения цеолитов со структурой ВЕА (цеолитов ВЕА), а также применение цеолитов структурного типа ВЕА в различных процессах. Во втором разделе рассмотрены основные точки зрения на механизмы кристаллизации цеолитов и различные методы их исследования, в том числе применение спектроскопии ЯМР *in situ* для изучения синтеза цеолитов.

В **главе 2** описаны методики гидротермальной и парофазной кристаллизации цеолитов со структурой ВЕА, методики пост-синтетической обработки образцов, методики физико-химического и каталитического исследования полученных материалов, а также методика проведения ЯМР *in situ* экспериментов.

В главе 3 представлены и обсуждены результаты исследований.

1. Гидротермальная кристаллизация цеолита ВЕА

1.1. Исследование механизмов гидротермальной кристаллизации

В литературе описано большое количество методик гидротермального синтеза цеолитов BEA, отличающихся исходными реагентами, составом реакционных смесей, а также порядком смешения реагентов. При этом в большинстве работ получение цеолитов BEA методом гидротермальной кристаллизации (ГТК) описывают, главным образом, как процесс, протекающий по жидкофазному механизму. Однако имеются сведения о возможности формирования цеолита BEA по твердофазному механизму. Для исследования механизма кристаллизации цеолита ВЕА и определения его влияния на физико-химические и каталитические свойства цеолитов были выбраны две методики, характеризующиеся близкими условиями синтеза (135-150 °C, 48 ч) и составами реакционных смесей (PC) (Состав РС в оксидах: 1,0 SiO₂ * 0,02 Al₂O₃ * (0,04-0,06) Na₂O * 0,4 TEAOH * (17-21) H₂O). Главное отличие методик заключалось в порядке смешения реагентов (рисунок 1).

Рисунок 1 – Схема приготовления реакционных смесей РС-І и РС-ІІ

На первом этапе были изучены процессы приготовления реакционных смесей PC-I и PC-II. Методом ЯМР ВМУ на ядрах ²⁹Si, ²⁷Al, ¹³C и ²³Na было установлено, что изменение порядка смешения реагентов приводит к формированию разных гелей (рисунок 2). Добавление источника Si на начальном этапе смешения реагентов (Методика I) способствует образованию обогащенного алюминием и натрием аморфного алюмосиликата Na⁺/AlSi_xO_v, на что указывают интенсивный сигнал с δ=57,9 м.д. в спектрах ²⁷Al ЯМР ВМУ и широкий сигнал с δ=0,6 м.д. в спектрах ²³Na ЯМР ВМУ. При этом катионы тетраэтиламмония (TEA⁺), играющие роль структурообразующего темплата, находятся в растворе, о чем свидетельствует узкий сигнал с δ =7,5 м.д. в спектре ¹³С-СР ЯМР ВМУ. Добавление источника Si на последних этапах смешения реагентов (Методика II) приводит к формированию алюмосиликатных частиц с окклюдированными катионами TEA⁺ (TEA⁺/AlSi_xO_y), что подтверждается появлением широкого сигнала с б=8,8 м.д. в спектре ¹³С-СР ЯМР ВМУ, интенсивных сигналов с δ = -98 и -108 м.д. спектре ²⁹Si-CP ЯМР ВМУ, а также смещением сигнала в спектре ²⁷АІ ЯМР ВМУ. Образование таких разных алюмосиликатных гелей предопределяет их дальнейшее превращение.

Рисунок 2 – Сравнение спектров ²⁷Al, ¹³C-CP, ²³Na, ²⁹Si и ²⁹Si-CP ЯМР ВМУ для исходных PC-I и PC-II. Для приготовления PC использовали следующие меченные реагенты: ²⁹SiO₂ и (¹³CH₃-CH₂)₄NOH (TEAOH)

Механизмы кристаллизации PC-I и PC-II были изучены с помощью подходов *in situ* и *ex situ*. На рисунке 3 представлены спектры ЯМР ВМУ на ядрах ²⁹Si, ²⁷Al и 13 C, полученные *in situ* непосредственно в ходе кристаллизации PC-I и PC-II.

Спектры ЯМР ВМУ на ядрах кремния (рисунок 3a) указывают на то, что в случае PC-I кристаллизация цеолита BEA протекает из раствора, о чем свидетельствуют узкие сигналы, соответствующие мобильным полисиликатным фрагментам PC (Q₁ - Si(OSi)(OH)₃ (-80,5 м.д.), Q₂ - Si(OSi)₂(OH)₂ (-88,5 м.д.), Q₃ - Si(OSi)₃(OH) (-97,0 м.д.) и Q₄ - Si(OSi)₄ (-104,5 м.д.)). В ходе кристаллизации интенсивность этих сигналов падает, что можно объяснить переходом мобильных силикатных фрагментов в более конденсированное состояние. В конце процесса кристаллизации в спектре ²⁹Si ЯМР ВМУ появляется ярко выраженный сигнал с δ =-109,4 м.д., который соответствует атомам кремния в окружении Q₄ в цеолите BEA. Спектры ²⁷Al ЯМР ВМУ (рисунок 36) и ¹³C-CP ЯМР ВМУ (рисунок 3в) согласуются со спектрами ²⁹Si ЯМР ВМУ и указывают на то, что в ходе кристаллизации происходит растворение аморфной алюмосиликатной фазы Na⁺/AlSi_xO_y (δ_{Al} =60 м.д.) и рост цеолитной фазы (δ_{Al} =54,4 м.д., δ_C =7,1 м.д.) из раствора через промежуточное образование TEA⁺/алюмосиликатных частиц (δ_C =8,1 м.д.) – прекурсоров цеолита BEA.

Совершенно иная картина наблюдается в случае кристаллизации РС-II (рисунок 3г,д,е). Спектры ²⁹Si ЯМР ВМУ показывают, что нагревание РС-II приводит к образованию твердого аморфного гидрогеля, имеющего широкий сигнал в диапазоне -70 - -110 м.д., который превращается в цеолит ВЕА путем реорганизации твердой фазы. Спектры ²⁷Al ЯМР ВМУ (рисунок 3д) подтверждают этот вывод, демонстрируя постепенный переход сигнала с δ_{Al} =52,8 м.д. в спектре исходного геля в сигнал с δ_{Al} = 54,4 м.д., соответствующий цеолиту ВЕА. Спектры ¹³C-CP ЯМР ВМУ (рисунок 3е) свидетельствуют в пользу того, что катионы TEA⁺ присутствуют в твердом аморфном гидрогеле уже на начальных этапах кристаллизации, что подтверждается наличием сигнала с δ_C =8,6 м.д. в исходном спектре PC-II. В ходе индукционного периода сигнал с δ_C =8,6 м.д. переходит в сигнал δ_C =8,1 м.д., соответствующий прекурсору цеолита BEA, а затем в сигнал с δ_C =7,1 м.д., соответствующий катионам TEA⁺ в цеолите BEA.

Рисунок 3 – Спектры ЯМР ВМУ in situ на ядрах ²⁹Si (a, г), ²⁷Al (б, д) и ¹³C (в, е), полученные в ходе гидротермальной кристаллизации PC-I (a, δ, e) и PC-II (c, d, e)

На основе полученных спектральных данных были построены кинетические кривые кристаллизации цеолитов BEA из PC-I и PC-II (рисунок 4а), имеющие классическую S-образную форму с характерным индукционным периодом и периодом быстрой кристаллизации. Сравнение этих кривых с кинетическими кривыми, построенными методом PФA *ex situ* (рисунок 4б), указывает на полное соответствие результатов, полученных с помощью двух подходов *in situ* и *ex situ*.

Рисунок 4 – Кинетические кривые кристаллизации РС-I и РС-II, построенные на основе спектральных данных ²⁹Si-CP ЯМР ВМУ in situ (a) и данных РФА ex situ (б)

Анализ *ex situ* данных по изменению состава твердой фазы в ходе кристаллизации (рисунок 5) показывает, что в случае кристаллизации PC-I рост кристаллической фазы сопровождался интенсивным увеличением отношения Si/Al в твердом продукте, обогащением продукта темплатом и одновременным снижением концентрации катионов Na⁺. Напротив, в случае кристаллизации PC-II уже на начальных этапах синтеза образовывался аморфный алюмосиликат, близкий по составу к конечному продукту, в ходе синтеза состав твердого продукта менялся незначительно.

Рисунок 5 – Изменения состава твердой фазы в ходе кристаллизации PC-I и PC-II: Si/Al (a), TEA⁺/Al (b), Na⁺/Al (b)

Анализ совокупности данных, полученных с помощью двух подходов, указывает на различные механизмы кристаллизации PC-I и PC-II (рисунок 6).

Добавление источника кремния на начальных этапах смешения реагентов при приготовлении PC-I приводит к образованию обогащенного алюминием и натрием аморфного алюмосиликата Na⁺/AlSi_xO_y, при этом катионы TEA⁺ преиму-

щественно находятся в растворе. Нагревание PC-I сопровождается растворением аморфного алюмосиликата Na⁺/AlSi_xO_y, взаимодействием продуктов растворения с катионами TEA⁺ и образованием TEA⁺/ Na⁺ /алюмосиликатных частиц - прекурсоров цеолита BEA. Дальнейшее нагревание способствует зародышеобразованию и росту кристаллов цеолита BEA из раствора.

Рисунок 6 – Схема процесса формирования кристаллической структуры BEA в ходе ГТК

Добавление источника кремния на заключительных этапах приготовления PC-II приводит к образованию аморфного алюмосиликатного гидрогеля с окклюдированными катионами TEA⁺ (TEA⁺/AlSi_xO_y), при этом химический состав геля близок к составу конечного цеолита. Катионы TEA⁺ отвечают за дальнейшую перестройку твердой фазы в прекурсор цеолита BEA и образование зародышей в объеме аморфной фазы, где и происходит последующий рост кристаллов и образование цеолита BEA. Таким образом, детальное исследование механизма гидротермального синтеза с помощью традиционного *ex situ* подхода и нового метода *in situ* ЯМР ВМУ показывает, что механизмом кристаллизации цеолита ВЕА можно управлять путем изменения порядка смешения реагентов в ходе приготовления РС: введение источника кремния на начальных этапах приготовления реакционной смеси приводит к жидкофазному механизму, а на заключительных этапах - к твердофазному механизму. Применение нового *in situ* подхода позволяет проследить за динамикой ядер на всех этапах кристаллизации, включая самые ранние, и способствует более глубокому пониманию начальных стадий синтеза и причин реализации разных механизмов.

1.2. Влияние механизма кристаллизации цеолита ВЕА на его физикохимические свойства

Свойства конечных продуктов кристаллизации РС-I и РС-II – цеолитов ВЕА/ГТК(I) и ВЕА/ГТК(II) - были изучены с использованием комплекса физикохимических методов (таблица 1). Несмотря на одинаковый химический состав (SiO₂/Al₂O₃=24) полученных образцов, их свойства существенно отличались.

Таблица 1– Характеристики образцов, полученных методом ГТК по различным механизмам

образец	SiO ₂ /Al ₂ O ₃ , моль/моль		$V_{\text{Me30}},$	V _{микро} ,	Размер кри-	БКЦ/ ЛКЦ	a ₀ (NH ₃),
	РФС*	РФЭС**	CM [*] /Г	CM [*] /Г	сталлов, нм	***	МКМОЛЬ/Г
BEA/ΓΤΚ(I)	24	32	0,08	0,23	300-700	0,83	1120
BEA/ΓΤΚ(II)	24	27	0,14	0,21	400-800	1,34	1350

*- отношение SiO₂/Al₂O₃ в объеме образца по данным $P\Phi C$

**- отношение SiO₂/Al₂O₃ на поверхности кристаллов по данным $P\Phi \ni C$

***- отношение БКЦ к ЛКЦ по данным ИКС адсорбции пиридина

По данным СЭМ и ПЭМ синтезированные образцы имели близкий размер частиц (300-800 нм), но различались по морфологии кристаллов и текстурным свойствам (рисунок 7). Частицы BEA/ГТК(I) имели сферическую форму и представляли собой поликристаллы, состоящие из плотно срощенных нанокристаллитов размером 5-30 нм, ориентированных в одном направлении вдоль всей частицы (рисунок 7а,в). Напротив, образец BEA/ГТК(II) характеризовался эллипсоидными частицами неправильной формы, представляющими собой агрегаты неупорядоченнно сросщихся нанокристаллитов размером 5-20 нм (рисунок 76,г).

Рисунок 7 – СЭМ (а,б) и ПЭМ (в,г) изображения образцов, синтезированных методом ГТК по различным механизмам: BEA/ГТК(I) (а,в), BEA/ГТК(II) (б,г)

Адсорбционные данные подтверждали результаты ПЭМ и СЭМ (рисунок 8а). Образец ВЕА/ГТК(I) имел изотерму адсорбции азота I типа, характеризующуюся значительным поглощением при низком давлении (P/P₀<0,1) и почти горизонтальной областью в диапазоне P/P₀=0,1-0,9, что типично для микропористых цеолитов со сравнительно крупными кристаллами или поликристаллами. Напротив, изотерма образца BEA/ГТК(II) соответствовала иерархическим материалам, содержащим как микро-, так и мезопоры. Эти мезопоры могут быть отнесены к межкристаллическим порам, расположенным между нанокристаллитами, сросшимися в агрегаты. Сравнение объемов пор (таблица 1) показало, что синтезированные образцы обладают схожим объемом микропор (0,21–0,23 см³/г), в то время как объем мезопор для образца BEA/ГТК(II) (0,08 см³/г).

Различия в морфологических и текстурных свойствах синтезированных цеолитов ВЕА можно объяснить особенностями механизмов их кристаллизации (рисунок 6): упорядоченным ростом кристаллов из раствора в случае BEA/ГТК(I) и хаотичным зарождением и ростом кристаллов в твердой фазе в случае BEA/ГТК(II).

Синтезированные образцы также обладали различными кислотными свойствами. По данным ТПД NH₃, общая концентрация кислотных центров в образцах BEA/ГТК(I) и BEA/ГТК(II) составила 1120 и 1350 мкмоль/г, соответственно (таблица 1). При этом образец BEA/ГТК(II), полученный по твердофазному механизму, характеризовался более высокой концентрацией как слабых, так и сильных кислотных центров (рисунок 8б), что может быть связано с более полным включением Al в каркас цеолита. Эта гипотеза дополнительно подтверждается данными ИКС адсорбированного пиридина, указывающими на более высокую концентрацию Бренстедовских кислотных центров (БКЦ) (1545 см⁻¹) в цеолите BEA/ГТК(II) (рисунок 8в).

Для определения распределения алюминия по кристаллу цеолита BEA, было проведено исследование методом ПЭМ в сочетании с энергодисперсионным анализом. Было установлено, что кристаллы BEA/ГТК(II) обладают равномерным рас-

пределением Al вдоль BEA частицы. В случае же образца BEA/ГТК(I) наблюдается обогащение ядра алюминием и уменьшение концентрации Al по мере роста кри-

сталла (рисунок 9). Данное наблюдение также подтверждается сравнением соотношений SiO₂/Al₂O₃, полученных методами РФС и РФЭС, указывающими на обогащение кремнием поверхности кристаллов в случае ВЕА/ГТК(I) (таблица 1). Различия в кислотных свойствах и распределении Al по кристаллу в синтезированных цеолитах ВЕА объясняются

Рисунок 9 – Распределение Al по кристаллу для образцов BEA/ГТК(I) и BEA/ГТК(II)

особенностями встраивания алюминия и формирования кислотных центров в ходе кристаллизации (рисунок 6), а именно, ростом кри-

сталлов из раствора с переменной концентрацией Al в случае BEA/ГТК(I) и реорганизацией твердой аморфной фазы с равномерным распределением Al в кристаллическую в случае BEA/ГТК(II).

Таким образом, результаты показывают, что кристаллизация цеолита ВЕА по твердофазному механизму приводит к образованию иерархических цеолитов ВЕА в виде агрегатов нанокристаллитов с равномерным распределением Al по кристаллу, способствует более полному включению Al в каркас цеолита и более высокой кислотности. Напротив, жидкофазный механизм характеризуется образованием поликристаллов, состоящих из плотно срощенных нанокристаллитов, неполным встраиванием алюминия и обогащением поверхности частиц кремнием.

1.3. Влияние механизма кристаллизации цеолита ВЕА на его каталитические свойства в синтезе кумола

Каталитические свойства цеолитов BEA/ГТК(I) и BEA/ГТК(II) были изучены в реакции алкилирования бензола пропиленом. Для сравнения каталитической активности образцов были подобраны специальные условия, позволяющие снизить конверсию C₃H₆, которая в промышленных условиях близка к 100 %. Результаты испытаний приведены на рисунке 10. Основными продуктами реакции были кумол и полизопропилбензолы (диизопропилбензолы (ДИПБ) и триизопропилбензолы (ТИПБ)), кроме того, наблюдалось образование небольшого количества побочных продуктов реакции (н-пропилбензола, олигомеров пропилена и полиалкилбензолов).

Рисунок 10 – Каталитические свойства цеолитов ВЕА, синтезированных методом ГТК, в алкилировании бензола пропиленом (170°С, 3,0 МПа, 520 г/г*ч, Б/П= 5/1): зависимость конверсии C_3H_6 от времени реакции (а), показатели процесса (б)

Несмотря на близкий размер кристаллов и одинаковый химический состав образец BEA/ГТК(II) обладал более высокой каталитической активностью и стабильностью работы во времени по сравнению с образцом BEA/ГТК(I) (рисунок 10а). Селективность по продуктам алкилирования была одинакова для всех катализаторов и составляла 99,6–99,7 мас. %, однако для образца BEA/ГТК(II) наблюдалось некоторое снижение селективности образования кумола за счет образования продуктов полиалкилирования (ДИПБ и ТИПБ) (рисунок 10б).

Более высокая каталитическая активность и стабильность цеолита BEA/ГТК(II) связана с особенностями механизма его кристаллизации и формирования его активных центров. Твердофазный механизм кристаллизации приводит к созданию иерархической системы транспортных мезопор, способствующей снижению диффузионных ограничений. Кроме того, более полное встраивание алюминия и его равномерное распределение по кристаллу в ходе твердофазной кристаллизации сопровождается увеличением кислотности. Оба этих фактора способствуют росту каталитической активности и стабильности работы катализатора во времени. Поэтому получение цеолитов BEA по твердофазному механизму является предпочтительным для создания катализатора алкилирования бензола пропиленом.

2. Парофазная кристаллизация цеолита ВЕА

Гидротермальная кристаллизация, составляющая основу традиционной технологии получения цеолитов, имеет существенные недостатки, а именно: использование большого количества дорогостоящего темплата (TEAOH/SiO₂~0,5-0,6), низкие выходы кристаллического продукта (10-40 мас.%), низкая эффективность использования реагентов в ходе синтеза и большое количество жидких отходов производства.

Полученный выше вывод о предпочтительности твердофазного механизма кристаллизации позволяет перейти к парофазной кристаллизации (ПФК), которая также протекает по твердофазному механизму, но обладает рядом технологических преимуществ по сравнению с методом ГТК, в частности, позволяет значительно снизить содержание воды и дорогостоящего темплата. Значительное снижение содержания темплата в PC при этом требует введения кристаллической затравки.

2.1. Парофазная кристаллизация цеолита ВЕА в присутствии затравки

В качестве основы для получения цеолитов ВЕА методом ПФК была взята методика, позволяющая снизить соотношение TEAOH/SiO₂ в реакционной смеси с 0,6 до 0,1 и сохранить высокую скорость кристаллизации за счет использования кристаллической затравки (3). В литературе есть сведения о том, что оптимальное количество затравки для получения цеолитов ВЕА по данной методике составляет 1 мас.%, однако, отсутствует информация о влиянии химического состава затравки и механизма ее действия в процессе ПФК. Для исследования влияния состава кристаллической затравки были использованы цеолиты ВЕА с различным отношением $SiO_2/Al_2O_3 = 25$, 75 и 250. В качестве источника Al и Si при приготовлении PC использовали сульфат алюминия ($Al_2(SO_4)_3*18H_2O$) и пирогенный диоксид кремния (SiO₂), соответственно.

Исследование механизма действия затравки разного состава показало, что обогащенные Al затравки практически не растворяются при приготовлении геляпрекурсора и инициируют ориентированный рост плотно срощенных кристаллитов на поверхности кристаллической затравки, что сопровождается образованием

19

крупных поликристаллов (образец ВЕА/ПФК(I)-3(25)) размером 0,7-1,4 мкм, состоящих из упорядоченно сросшихся нанокристаллитов (рисунок 11).

Рисунок 11 – Схема формирования кристаллической структуры BEA в ходе ПФК в присутствии затравки различного состава

Напротив, обогащенные Si затравочные кристаллы быстро растворяются в щелочной среде, образуя большое количество диспергированных по объему реакционной смеси центров кристаллизации, что приводит к образованию иерархических цеолитов ВЕА (образец ВЕА/ПФК(I)-3(250)) с малым размером частиц 0,1-0,3 мкм, представляющих собой агрегаты неупорядоченно сросшихся нанокристаллитов с высокой межкристаллической мезопористостью, что подтверждается данными низкотемпературной адсорбции азота (рисунок 12а).

Рисунок 12 – Изотермы низкотемпературной адсорбции азота (а) и зависимость конверсии C_3H_6 от времени реакции (б) для образцов, полученных методом ПФК в присутствии затравки разного состава (170°С, 3,0 МПа, 520 г/г*ч, Б/П = 5/1)

Исследование каталитических свойств образцов с различной морфологией и размером частиц в алкилировании бензола пропиленом показало, что иерархические цеолиты BEA, полученные в присутствии затравок с высоким соотношением SiO_2/Al_2O_3 , имеют более высокую каталитическую активность и стабильность по сравнению с цеолитами BEA, синтезированными в присутствии зародышей с низким соотношением SiO_2/Al_2O_3 (рисунок 12б).

Таким образом, было показано, что, варьируя состав затравочных кристаллов в методе ПФК, можно направленно регулировать морфологические, текстурные и каталитические свойства цеолитов со структурой BEA.

2.2. Парофазная кристаллизация цеолита ВЕА в отсутствие зародышей

Следующим этапом работы являлась оптимизация методики ПФК. Была проведена замена источников Si и Al на более реакционноспособные реагенты (силикагель и алюминат натрия), что позволило отказаться от применения затравочных кристаллов и перейти от методики парофазной кристаллизации сухого геля к кристаллизации влажного прекурсора в отсутствие свободной воды. В результате был разработан высокоэффективный и технологичный способ синтеза (ПФК(II)), позволяющий получать иерархические цеолиты со структурой BEA (рисунок 13) с выходом до 90% в широком диапазоне отношения SiO₂/Al₂O₃ от 19 до 57.

Рисунок 13 – ПЭМ изображения синтезированного образца ВЕА/ПФК(II)

Исследование полученных цеолитов ВЕА (ВЕА/ПФК(II)) показало, что они по своим текстурным и кислотным свойствам не уступают цеолитам, полученным в присутствии высококремнистой кристаллической затравки (ВЕА/ПФК(I)-3(250)).

3. Сравнение цеолитов ВЕА, полученных методами ГТК и ПФК

Для оценки влияния способа получения цеолитов ВЕА было проведено сравнение свойств образцов, полученных по твердофазному механизму методами ГТК (BEA/ГТК(II)) и ПФК (BEA/ПФК(II)).

Сравнение кинетических кривых кристаллизации показало, что метод ПФК позволяет значительно увеличить скорость кристаллизации и получить кристаллический продукт уже за 12 ч (рисунок 14). Кроме того, метод ПФК обладает рядом существенных технологических преимуществ, в частности, позволяет увеличить выход кристаллического продукта в 2 раза, снизить содержание дорогостоящего темплата в РС в 5 раз, повысить производительность кристаллизатора в 5 раз, а также исключить образование жидких отходов кристаллизации.

вых кристаллизации цеолитов ВЕА, полученных методами ГТК и ПФК

Рисунок 14— Сравнение кинетических кри- **Рисунок** 15—Зависимость конверсии C₃H₆ от времени реакции для образцов, полученных методами ПФК и ГТК (170 °C, 3,0 $M\Pi a, 520 г/г*ч, Б/\Pi = 5/1)$

Синтезированные образцы имели близкие отношения SiO₂/Al₂O₃ = 24-26, объем микропор 0,20-0,23 см³/г и концентрацию кислотных центров (таблица 2). При этом метод ПФК способствовал образованию более развитой системы мезопор.

Образец	Метод синтеза	SiO ₂ /Al ₂ O _{3,} моль/моль	V _{мезо} , см ³ /г	V _{микро} , см ³ /г	Размер кристаллов, нм	а ₀ (NH ₃), мкмоль/г
BEA/ΓΤΚ(II)	ГТК	24	0,14	0,21	400-800	1350
BEA/ΠΦK(II)	ПФК	26	0,20	0,22	200-400	1280

Таблица 2 – Физико-химические свойства цеолитов BEA, полученных разными способами

V_{микро} – объем микропор, V_{мезо} – объем мезопор

Испытания образцов в алкилировании бензола пропиленом показали, что цеолит ВЕА, полученный методом ПФК, обладает высокой каталитической активностью и более высокой стабильностью по сравнению с цеолитом BEA, полученным методом ГТК (рисунок 15). При этом селективность образования продуктов существенно не отличаются.

На основании полученных результатов образец ВЕА/ПФК(II) был выбран для дальнейшей разработки катализатора.

4. Приготовление и испытание катализатора на основе цеолита BEA в процессе синтеза кумола

Синтезированный методом ПФК иерархический цеолит ВЕА представляет собой мелкокристаллический порошок. Для дальнейшего использования его в качестве катализатора необходима грануляция со связующим веществом, в результате которой происходит формирование гранул с требуемой механической прочностью. С целью подбора связующего вещества было исследовано влияние различных типов связующего на совокупность морфологических, текстурных, кислотных и каталитических свойств катализаторов. Наилучшие показатели процесса были достигнуты для катализатора, гранулированного с использованием гидроксида алюминия. Кроме того, было установлено, что оптимальное содержание связующего вещества в катализаторе составляет около 30 мас.%.

Гранулированный с гидроксидом алюминия иерархический цеолит ВЕА, полученный разработанным методом ПФК (ВЕА/ПФК(II)/Al₂O₃(30%)), был испытан в жидкофазном алкилировании бензола пропиленом в условиях, близких к промышленным (рисунок 16).

Рисунок 16 — Алкилирование бензола пропиленом на катализаторе BEA/ПФК(II)/Al₂O₃(30%) при 3,0 МПа, 170°С, 4 г/г*ч, Б/П=5/1

Катализатор продемонстрировал стабильную работу во времени в течение 30 часов с выходом продуктов алкилирования 99,4 мас.%, селективностью по кумолу 91,2 мас.% при конверсии пропилена 100 %.

Основные результаты и выводы:

 Установлено, что механизм кристаллизации оказывает существенное влияние на текстурные, морфологические и кислотные свойства цеолитов структурного типа BEA:

 кристаллизация по жидкофазному механизму приводит к образованию поликристаллов, состоящих из плотно срощенных нанокристаллитов, с неоднородным распределением Al и сравнительно низкой кислотностью;

 кристаллизация по твердофазному механизму способствует более полному включению Al в каркас цеолита, приводит к образованию агрегатов нанокристаллитов с иерархической пористой структурой, равномерным распределением Al и более высокой кислотностью.

- Показано, что механизмом кристаллизации цеолита со структурой ВЕА можно управлять путем изменения порядка смешения реагентов в ходе приготовления реакционной смеси: введение источника кремния на начальных этапах приготовления реакционной смеси приводит к жидкофазному механизму, а на заключительных этапах - к твердофазной кристаллизации.
- 3. Установлено, что, варьируя состав затравочных кристаллов при парофазной кристаллизации, можно направленно регулировать текстурные и морфологические свойства цеолитов со структурой ВЕА: увеличение мольного отношения Si/Al в затравочных кристаллах способствует образованию агрегатов нанокристаллитов с высоким содержанием мезопор, а снижение этого отношения приводит к крупным поликристаллам, состоящим из плотно срощенных нанокристаллитов.
- 4. Предложен новый способ парофазной кристаллизации в отсутствие зародышей, позволяющий получать иерархические цеолиты со структурой ВЕА с выходом до 90 %.
- Показано, что в процессе алкилирования бензола пропиленом наиболее эффективны иерархические цеолиты со структурой ВЕА с равномерным распределением алюминия по кристаллу и высокой кислотностью.
- 6. Изучено влияние типа и содержания связующего на совокупность морфологических, текстурных, кислотных и каталитических свойств гранулированных катализа-

торов на основе цеолита структурного типа ВЕА. Показано, что наилучшие показатели процесса достигнуты для катализатора, гранулированного с использованием гидроксида алюминия. Продемонстрировано, что оптимальное содержание связующего вещества в катализаторе составляет около 30 мас.%.

7. Предложен высокоэффективный катализатор синтеза кумола на основе цеолита со структурой ВЕА, полученного методом парофазной кристаллизации в отсутствие зародышей, обеспечивающий выход продуктов алкилирования 99,4 мас.% и селективность по кумолу 91,2 мас.% при конверсии пропилена 100 %.

СПИСОК ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ РАБОТ

Публикации в рецензируемых научных журналах, индексируемых в базах данных Web of Science, Scopus, RSCI и рекомендованных для защиты в диссертационном совете МГУ по специальности:

- Bok, T.O. Nanocrystalline zeolites beta: Features of synthesis and properties / T.O.
 Bok, E.D. Onuchin, A.V. Zabil'skaya, S.V. Konnov, E.E. Knyazeva, A.V. Panov,
 A.V. Kleimenov, I.I. Ivanova // Petroleum chemistry. 2016. V. 56. № 12. P.
 1160-1167. (JIF 0.991 WoS)
- Ivanova, I.I. Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions / I.I. Ivanova, Y.G. Kolyagin, I.A. Kasyanov, A.V. Yakimov, T.O. Bok, D.N. Zarubin // Angewandte Chemie International Edition. 2017. V. 56. № 48. P. 15344-15347. (JIF 12.257 WoS)
- Bok, T.O. Influence of the Binder Type on the Properties of Nanocrystalline Zeolite Beta-Based Catalysts for Benzene Alkylation with Propylene / T.O. Bok, E.P. Andriako, E.E. Knyazeva, S.V. Konnov, I.I. Ivanova // Petroleum Chemistry. – 2018. – V. 58. – № 10. – P. 833-840. (JIF 0.991 WoS)
- Bok, T.O. Influence of Synthesis Conditions on the Crystallization Mechanism and Properties of BEA Zeolite / T.O. Bok, E.P. Andriako, E.E. Knyazeva, I.I. Ivanova // Petroleum chemistry. – 2019. – V. 59. – № 3. – P. 354-361. (JIF 0.991 WoS)
- Bok, T.O. Benzene Alkylation with Propylene in the Presence of Nanocrystalline Zeolites Beta with Different Compositions / T.O. Bok, E.P. Andriako, D.O. Bachurina, E.E. Knyazeva, I.I. Ivanova // Petroleum Chemistry. – 2019. – V. 59. – № 12. – P. 1320-1325.

(JIF 0.991 WoS)

- Bok, T.O. Engineering of Zeolite BEA Crystal Size and Morphology via Seed-directed Steam Assisted Conversion / T.O. Bok, E.P. Andriako, E.E. Knyazeva, I.I. Ivanova // RSC Advances. – 2020. – V. 10. – P. 38505-38514. (JIF 4.036 WoS)
- Bok, T.O. Effect of Binder Content on the Properties of Nanocrystalline Zeolite BEAbased Catalysts / T.O. Bok, E.P. Andriako, E.E. Knyazeva, I.I. Ivanova // Petroleum Chemistry. – 2021. – V. 61. – № 8. – P. 901-907. (JIF 1.258 WoS)
- Bok, T.O. Effect of crystallization mechanism on zeolite BEA textural and acidic properties / T.O. Bok, E.P. Andriako, E.E. Knyazeva, I.I. Ivanova // CrystEngComm. - 2022. - V. 24. - P. 3199-3207. (JIF 3.756 WoS)

Патенты РФ на изобретение:

 Патент № 2737895 РФ. Способ получения нанокристаллического цеолита ВЕА (варианты) и полученный цеолит ВЕА (варианты) / Е.П. Андриако, Т.О. Бок, Е.Е. Князева, И.И. Иванова // Бюл. – 2020. – № 34. – 22 с.

Благодарности

Автор выражает искреннюю благодарность научному руководителю д.х.н., проф. Ивановой И.И. и к.х.н. Князевой Е.Е. за интерес к работе, внимание и поддержку, помощь в обсуждении результатов, а также коллегам, помогавшим в работе над диссертацией: Андриако Е.П., к.х.н. Колягину Ю.Г., к.х.н. Коннову С.В., Бачуриной Д.О.

Автор также выражает благодарность всему коллективу лаборатории адсорбции и катализа химического факультета МГУ имени М.В. Ломоносова и лаборатории катализаторов нефтехимических процессов Института нефтехимического синтеза РАН за поддержку при работе над диссертацией.

Диссертационная работа выполнена при поддержке РНФ (грант 14-23-0094), Государственного задания ИНХС РАН