МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. ЛОМОНОСОВА

ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Солодовникова Татьяна Александровна

Азабициклоалкены в синтезе новых гетероциклических соединений

1.4.3 - Органическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата химических наук

Научный руководитель:

кандидат химических наук

Гаврилова А.Ю.

Оглавление

I. ВВЕДЕНИЕ 4
II. ОБЗОР ЛИТЕРАТУРЫ
II.1. Основные методы синтеза азабицикло[2.2.1]гептенов
II.1.1. 2-Азабицикло[2.2.1]гептены
II.1.2. 7-Азабицикло[2.2.1]гептадиены 18
II. 2. Бициклические производные в реакциях циклоприсоединения 24
II.2.1. Азабициклогептены в синтезе изоксазолинов
II.2.2. Азабициклогептены в реакциях с азидами
II.2.3. Азабициклогептены в реакциях с диазометаном
II.3. Методы раскрытия азабициклического каркаса с разрывом связей С-N, С-О и N-O 37
III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
III.1. Синтез изоксазолинов и пиразолинов, конденсированных с азабициклическим каркасом
III.1.1. 2-Азабицикло[2.2.1]гептены 56
III.1.2. 7-Азабензнорборнадиены
III.1.3 7-Азабицикло[2.2.1]норборнадиены
III.1.4. 3-Аза-2-окса-бицикло[2.2.1]гептены
III.2 Синтез изоксазолов, конденсированных с азабициклическим каркасом
III.3 Синтез тетрагидропиридазинов, конденсированных с азабициклическим каркасом 89
IV. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ96
IV.2. Синтез исходных соединений
IV.2.1. Синтез непредельных субстратов
IV.2.2. Синтез производных циклопропана
IV.2.3 Синтез галогеноксимов
IV.2.4. Синтез гидразоноилхлоридов113
IV.3. Нитрозирование производных циклопропанов
IV.4. 1,3-Диполярное циклоприсоединение к 2-азанорборненам
IV.4.1. Взаимодействие с нитрилоксидами
IV.4.2. Взаимодействие с нитрилиминами
IV.5. 1,3-Диполярное циклоприсоединение к производным 7-азанорборнадиена 140
IV.5.1. Производные 7-азабензнорборнадиена
IV.5.2. Производные 7-азанорборнадиена146

IV.6. 1,3-Диполярное циклоприсоединение к производным 3-аза-2-оксабицикло[2	2.2.1]гепт-5-
ена	
IV.6.1. Взаимодействие с нитрилоксидами	
IV.6.2. Взаимодействие с нитрилиминами	
IV.7. Синтез изоксазолов, конденсированных с азабициклическим каркасом	
IV.7.1. Взаимодействие производных азанорборнена с фенилселенбромидом	
IV.8. Синтез тетрагидропиридазинов	169
IV.8.1. Синтез α-галогенгидразонов	
IV.8.2. Взаимодействие с норборненом	
IV.8.3. Взаимодействие с 2-азапроизводными	
IV.8.4. Взаимодействие с 7-азабензнорборнадиеном	176
V. ЗАКЛЮЧЕНИЕ	
VI. СПИСОК ЛИТЕРАТУРЫ	
VII. ПРИЛОЖЕНИЕ	

І. ВВЕДЕНИЕ

Актуальность темы. Одной из фундаментальных задач органической химии является разработка удобных методов синтеза новых гетероциклических систем. Особый интерес представляют соединения, содержащие гетероциклический фрагмент, который, с одной стороны, обладает потенциальной биологической активностью, а, с другой стороны, является скрытым эквивалентом функциональных групп, что позволяет использовать его в качестве полупродукта в синтезе новых соединений. Именно такими гетероциклическими фрагментами являются изоксазолины, изоксазолы, пиразолины, оксазины и тетрагидропиридазины.

В то же время, В последнее время возрос интерес к производным азабицикло[2.2.1]гептена, что факторами: связано с тремя во-первых, стерео-И региохимические особенности модификации С=С-связи в результате реакций электрофильного присоединения или циклоприсоединения легко однозначно установить исходя из данных спектроскопии ЯМР ¹Н (аналогично производным норборнена), во-вторых, введение гетероатома (в отличие от норборнена) позволяет получать продукты раскрытия бициклической структуры, и, наконец, азабициклический каркас входит в состав лекарственных средств и искусственного, и природного происхождения.

Таким образом, создание соединений, содержащих одновременно азабициклический каркас и гетероциклический фрагмент, за счёт модификации С=С-связи азабициклогептенов, является перспективным направлением как с точки зрения тонкого органического синтеза, так и медицинской химии.

<u>Степень разработанности темы.</u> Несмотря на то, что норборнен и его производные являются модельным соединениями для изучения стерео- и регионаправленности реакций 1,3диполярного присоединения, систематические исследования взаимодействия азот-содержащих аналогов норборнена - производных 2-аза- и 7-азабицикло[2.2.1]гептенов и гептадиенов с 1,3диполями не проводились.

<u>Целью работы</u> является разработка методов синтеза новых изоксазолинов, пиразолинов, изоксазолов, тетрагидропиридазинов, конденсированных с азабициклическим каркасом, а также исследование стерео- и региохимических особенностей изучаемых реакций.

Задачами исследования были: 1) изучение возможности синтеза изоксазолинов, связанных с азабициклогептеном, путём нитрозирования циклопропанов, конденсированных с азабициклическм каркасом, 2) изучение регио-, стерео- и хемоселективности реакции 1,3диполярного циклоприсоединения нитрилоксидов и нитрилиминов к производным 2азабицикло[2.2.1]гептена, 7- азабицикло[2.2.1]гептена и 3-аза-2-оксабицикло[2.2.1]гептена; 3) разработка методов синтеза производных изоксазолов, конденсированных с азабициклическим каркасом; 4) изучение реакции аза-Дильса-Альдера на примере циклоприсоединения 1,2-диаза-1,3-диенов к норборнену и 7-азабензнорборнадиену.

<u>Объекты исследования</u>: 2-азабицикло[2.2.1]гептены, 7-азабицикло[2.2.1]гептадиены, 7азабензнорборнадиены и 3-аза-2-оксабицикло[2.2.1]гептены.

Предмет исследования: методы модификации 2-азабициклоалкенов, 7азабициклоалкенов и 3-аза-2-оксабициклогептенов с использованием реакций электрофильного присоединения, 1,3-диполярного циклоприсоединения и [4+2]-циклоприсоединения.

Научная новизна работы: 1) разработан синтетический подход к синтезу азабициклических производных изоксазолинов; 2) впервые разработан подход к получению изоксазолов, конденсированных с азабициклическим каркасом; 3) впервые изучены регио- и стереохимические особенности взаимодействия 2-азанорборненов, 3-окса-2-азанорборненов и 7-азабензнорборнадиенов с нитрилиминами; 4) изучена хемоселективность взаимодействия 7аза-2,3-диметоксикарбонилнорборнадиенов с нитрилоксидами и нитрилиминами; 5) разработан получению 7-азабициклических синтетический подход к производных, содержащих шестичленный конденсированный гетероциклический фрагмент; 6) изучены факторы. влияющие на выход изоказолинов при взаимодействии циклопропанов с тетрафторборатом нитрозония; 7) найлены **VCЛОВИЯ** синтеза неперегруппированных продуктов бромселененирования 2-азанорборненов с целью синтеза изоксазолов, конденсированных с 2азабицилическим каркасом.

Теоретическая и практическая значимость работы: 1) продемонстрирована модификации 2-азабициклоалкенов, 7-азабициклоалкенов 3-аза-2возможность И оксабициклогептенов нитрилоксидами и нитрилиминами в реакциях 1,3-диполярного циклоприсоединения; 2) разработан новый который позволяет метод. получать конденсированный с азабициклическим каркасом изоксазол; 3) предложен метод введения шестичленного гетероциклического фрагмента в структуры 7-азабензнорборнадиена и норборнена по реакции [4+2]-циклоприсоединения 1,2-диаза-1,3-диенов.

<u>Методология диссертационного исследования.</u> Целевые соединения были получены с использованием реакций 1,3-диполярного циклоприсоединения и аза-Дильса-Альдера. Очистка полученных соединений проводилась методами колоночной хроматографии, перекристаллизации, экстракции. Структура, состав и чистота полученных соединений определялась методами ЯМР, в том числе с использованием двумерных корреляционных методик, масс-спектрометрии высокого разрешения, тонкослойной хроматографии (TCX).

Положения, выносимые на защиту:

1) 1,3-Диполярное циклоприсоединение нитрилоксидов и нитрилиминов к производным 2азабицикло[2.2.1]гептена и 3-аза-2-окса-бицикло[2.2.1]гептена с электроноакцепторными заместителями у атома азота протекает нерегиоселективно с образованием продуктов с *экзо*расположением изоксазолинового и пиразолинового кольца независимо от типа защитной группы у атома азота.

 1,3-Циклоприсоединение нитрилоксидов и нитрилиминов к производным 7азабензнорборнадиена протекает стереоспецифично с экзо-стороны. Образующиеся пиразолины подвержены ретро-реакции Дильса-Альдера.

3) 1,3-Циклоприсоединение нитрилоксидов и нитрилиминов к 2,3-диалкоксикарбонил-7азабицикло[2.2.1]гепт-2,5-диенам протекает преимущественно по связи, содержащей электроноакцепторные заместители. Присоединение сопровождается реакцией ретро-Дильса-Альдера, приводит к образованию моноциклических изоксазолов/пиразолов и пирролов.

4) Последовательное присоединение нитрилоксидов к непредельному бициклическому винилселениду с последующим элиминированием фенилселененовой кислоты позволяет синтезировать изоксазолы, содержащие азабициклический фрагмент.

5) Циклоприсоединение 1,2-диаза-1,3-диенов, генерируемых *in situ* из соответствующих αбромгидразонов, к производным норборнена сопровождается образованием продуктов с *экзо*расположением тетрагидропиридазинового цикла.

6) Выход изоксазолинов в реакциях электрофильного нитрозирования циклопропанов снижается при введении в молекулу объёмных заместителей, способных участвовать в превращениях образующегося на первом этапе карбокатиона.

6) Образование перегруппированных продукты и продуктов 1,2-*цис*-присоединения при бромселененировании производных 2-азанорборнена вызвано участием атома азота в стабилизации карбокатиона и зависит от нуклеофильности азота и полярности растворителя.

<u>Личный вклад автора</u> состоял в сборе и анализе литературных данных по тематике исследования. Автор принимал участие в составлении плана исследований. Автором осуществлен синтез целевых соединений, анализ и интерпретация полученных результатов, подготовка материалов исследования к публикации в научных изданиях.

Публикации. По материалам диссертационного исследования опубликовано 3 статьи в рецензируемых научных журналах, индексируемых международными базами данных (Web of Science, Scopus) и рекомендованных для защиты в диссертационном совете МГУ по специальности 1.4.3 – органическая химия.

<u>Апробация результатов.</u> Основные результаты диссертационной работы были представлены на международных и российских конференциях: XII Международная конференция молодых ученых «Менделеев 2021», «Марковниковские чтения. Органическая химия: от Марковникова до наших дней» (WSOC-2021), Всероссийский конгресс по химии гетероциклических соединений «KOST-2021», «Марковниковские чтения. Органическая химия:

от Марковникова до наших дней» (WSOC-2022), VIII Междисциплинарная конференция «Молекулярные и Биологические аспекты Химии, Фармацевтики и Фармакологии» (МОБИ-ХимФарма2023).

II. ОБЗОР ЛИТЕРАТУРЫ

Методы синтеза и модификации производных азабицикло[2.2.1]гептена

В настоящем исследовании предполагалось осуществить несколько последовательных стадий: первая - синтез производных азабициклогептена, вторая - их модификация с целью синтеза гетероциклических соединений, конденсированных с азабициклическим каркасом, и третья - дальнейшая модификация полученных гетероциклов путём раскрытия бициклического каркаса, что становится возможным за счёт присутствия атома азота (в отличие от производных норборнана). Каждая из этих стадий требовала тщательного анализа литературных данных с целью оптимизации условий проведения реакций. На данный момент существует несколько обзоров, посвященных производным 2-азабицикло[2.2.1]гептена [1,2] и 7-азабициклогептена [3]. Однако ни в одном из них нет систематизации данных по трем интересовавшим нас направлениям. Поэтому нами была изучена литература, начиная с середины прошлого века. Таким образом, литературный обзор состоит из трёх частей: первая посвящена основным методам синтеза азабициклогептенов, вторая - реакциям циклоприсоединения, в которых азанорборнены выступают диенофилами и диполярофилами, третья – реакциям раскрытия бициклического каркаса.

II.1. Основные методы синтеза азабицикло[2.2.1] гептенов

II.1.1. 2-Азабицикло[2.2.1] гептены

Производные 2-азанорборнена синтезируют реакцией гетеро-Дильса-Альдера. При этом введение иминов в реакцию [4+2]-циклоприсоединения с 1,3-диенами возможно только в том случае, если они активированы за счет наличия электроноакцепторных групп или за счет образования солей [4]. Авторами работы [5] было установлено, что N-арилимины не реагировали с диенами даже при давлении 30 кбар. Однако добавление каталитических количеств BF₃-Et₂O позволило провести в мягких условиях реакцию циклоприсоединения имина **1** с циклопентадиеном. Однако N-алкилимины с диенами не взаимодействовали даже в присутствии избытка BF₃-Et₂O.

$$BZHC = NHR + \bigcup \qquad BF_3 \cdot Et_2O \qquad MBF_3 \cdot Et_2$$

ĸ

В работах [6,7] был предложен метод синтеза 2-азабициклоалкенов, в котором использовались соли алкилиминия, образующиеся *in situ* из формальдегида и бензиламина. Было показано, что они в мягких условиях они вступали в аза-реакцию Дильса-Альдера с

диенами, а использование циклопентадиена приводило к образованию бициклического амина **4a** с почти количественным выходом.

Таблица 1. Продукты и условия реакции солей иминия с диенами

N⁰	Соединение	R	T, ℃	Время, ч	Выход, %	Ссылка
1	4 a	Bn	25	3	>80	[6]
2	4 b	CH ₃	25	3	82	[6]
3	4c	Н	25	6	44	[7], [8]

Взаимодействие иминиевых солей, полученных из гидрохлоридов аминов и производных глиоксалевой кислоты, с циклопентадиеном проходит гладко с высокими выходами и образованием смеси экзо- и эндо-продуктов 5-12 (таблица 2):

$$R^{1} \xrightarrow{O}_{H} + R^{2} - NH_{2} HC1 \xrightarrow{H}_{2}O, 25^{\circ}C \xrightarrow{N}_{R}COR^{1} + \underbrace{N}_{R}^{2}COR^{1}$$

Таблица 2. Реакция циклопентадиена с солями С-ацилиминия

Mo	Субстрат,	Амин,	Время,	Пролит	Соотношение	Выход,	
JN⊡	R^1	R^2	Ч	продукт	экзо / эндо ^а	%	ССЫЛКА
1	Ph	Н	24	Bz N H 5	1:2	84 ⁶	[9]
2	Ph	Me	22	6 CH ₃	4.2:1	82	[10]
3	Ph	Bn	20	7 Bn	3:2	88	[10]

4	Me	Н	22	N 8 H	1:2	84 ⁶	[10]
5	Me	Me	20	9 CH ₃	3.6:1	67	[10]
6	Me	Bn	18	$10 \ CoCH_3$	10:1	65	[10]
7	НО	Me	22	л соон N 11 СН ₃	1.9:1	86	[10]
8	EtO	Н	7	12 H COOEt	2:13	84	[11]

^аСоотношение *экзо:эндо* было установлено по данным спектров ЯМР¹Н. ⁶Выделен в виде гидрохлорида.

2-Азанорборнены, содержащие электроноакцепторные группы во втором положении, получают путём ацилирования соответствующих незамещённых 2-азанорборненов:

$$= \frac{1}{12} + \frac{0}{H} + \frac{1}{H} + \frac{1}{23^{\circ}C, 6^{\circ}} + \frac{1}{13} + \frac{1}{H} + \frac{1}{14, 91\%} + \frac{1}{14, 91\%}$$

$$= \frac{1}{14, 91\%} + \frac{1}{16} + \frac{1}{16$$

10

Для синтеза лактама **18** (лактама Винса) в качестве диенофилов используют тозилцианид [12] или хлорсульфонил изотиоцианат [13], затем образующиеся аддукты гидролизуют. Функционализация двойной связи и последующий гидролиз этого бициклического лактама широко используется в синтезе карбоциклических нуклеозидов.

Важными представителями 2-азанорборнена являются 2-окса-3-азабицикло[2.2.1]гептены. Эти бициклические оксазины используются в синтезе природных соединений [14–16] и биологически активных молекул [11,17–19] благодаря возможности восстановления связи NO и получения аминоспиртов с заданной конфигурацией.

Основным подходом к синтезу таких бициклических производных является нитрозореакция Дильса-Альдера: взаимодействие циклопентадиена и его производных с соединениями, содержащими нитрозо-группу, или с соединениями, в которых нитрозо-группа генерируется *in situ*.

Первые работы, посвященные взаимодействию нитрозобензола и его производных с циклопентадиеном, были опубликованы в середине 60-х годов прошлого столетия [20–22]. Отмечалось, что реакция проходит гладко при 0°С. Продукты были выделены и охарактеризованы, но отличались нестабильностью и подвергались распаду уже при комнатной температуре.

Взаимодействие циклопентадиена с 1-нитрозо-1-хлорциклогексаном приводит к устойчивому кристаллическому гидрохлориду **20**. Свободное основание **21** легко получается обработкой гидрохлорида гидрокарбонатом натрия, но должно быть использовано сразу же, так как разлагается при хранении. При ацилировании 2-окса-3-азанорборнена были получены амиды **22а-с** с хорошими выходами [23].

Однако в большинстве работ, посвященных синтезу бициклических оксазинов, синтез нитрозо-соединений осуществляется *in situ*. Так, авторы работы [24] разработали методику синтеза 3-арил-2-окса-3-азабицикло[2.2.2]октенов, основанную на синтезе производных нитрозобензола окислением анилинов перекисью водорода в присутствии комплекса молибдена. Этот способ был опробован также на примере взаимодействия циклопентадиена с *n*-хлоранилином. Продукт был зафиксирован методом спектроскопии ЯМР, но выделить хроматографически его не удалось.

HMPA - Оксопероксо(2,6-пиридиндикарбоксилато-О,N,О')(гексаметилфосфортриамид)молибден (VI)

В результате взаимодействия гидроксамовых кислот **23a-d** с циклопентадиеном в присутствии окислителей были получены оксазины **24a-d** с выходами 40-70% в зависимости от условий проведения [25] (Таблица 3). Однако было показано, что реакция циклопентадиена с пивалогидроксамовой кислотой **23d** сопровождалась образованием не только целевого продукта **24d**, но и соединения **25d** с выходом 2-10% в зависимости от окислителя. Предположительно, продукт **25d** являлся либо результатом [3,3]-сигматропной перегруппировки, либо продуктом реакции циклоприсоединения, где ацилнитрозосоединение выступало в качестве гетеродиена. Образования продуктов **25a-с** не наблюдалось.

N⁰	R	№ соединения	Условия	Выход продукта 24
1	Ph	24a	NBS, Py, CH ₂ Cl ₂	70%
2	Ph	24a	Et ₄ NIO ₄ , AcOH, NaOAc, EtOAc	50%
3	4-Br-C ₆ H ₄	24b	Ag ₂ O, Na ₂ SO ₄ , EtOH	45%
4	$4-NO_2-C_6H_4$	24c	NBS, Na ₂ SO ₄ , CH ₂ Cl ₂	65%
5	Bu ^t	24d	Ag ₂ O или PbO ₂ , Na ₂ SO ₄ , EtOAc	51%
6	Bu^t	24d	NBS, Py, CH ₂ Cl ₂	40-45%

Таблица 3. Зависимость выходов продуктов 24а-d от условий проведения реакции

В работе [26] была проведена оптимизация условий реакции гидроксамовой кислоты **26**, содержащей хиральный фрагмент, с циклопентадиеном. Высокий выход продуктов (80%) и наилучшая селективность наблюдалась при использовании оксалилхлорида, ДМСО и триэтиламина при -78°C в растворе CH₂Cl₂. Аналогичная селективность была получена в метаноле при -50°C с небольшим снижением выходов продуктов.

Таблица 4. Зависимость выхода продуктов от условий реакции.

Окнонитони	Deethonutouu	T °C	Duwon 9/	Соотношение
Окислитель	гастворитель	1, C	Быход, 70	27a:27b
NaIO ₄	EtOAc/H ₂ O	К.Т.	67	4:1
(COCl) ₂ , ДМСО,	CH2Cl2	-78°C	80	5 4.1
Et ₃ N		10 0		
Et ₄ NIO ₄	CH ₃ OH	-50°C	75	5.4:1

Синтез нитрозо-интермедиатов окислением гидроксамовой кислоты перекисью водорода, катализируемым комплексом рутения изучен авторами работы [27]. Использование в качестве

окислителей органических и неорганических соединений, таких как периодаты [28], гипохлориты [29], хлорохромат пиридиния [30], NMO [31], а также окисление по методу Сверна-Моффета [32], сопровождалось образованием побочных продуктов. В случае перекиси водорода единственным побочным продуктом процесса окисления являлась вода [33]. Наилучшие результаты были получены для гидроксамовой кислоты **28** при использовании в качестве растворителей ТГФ или смеси CH₃OH-H₂O (Таблица 5).

Ru(II)(pybox-dh)(pydic)

N⁰	Гидроксамовая кислота	Растворитель	Продукт	Выход, %
1	28a	CH ₃ OH-H ₂ O	29 a	90
2	28a	ΤΓΦ	29 a	90
3	28b	CH ₃ OH-H ₂ O	29b	91
4	28b	ΤΓΦ	29b	92
5	28c	CH ₃ OH-H ₂ O	29c	74
6	28c	ΤΓΦ	29c	76
7	28d	CH ₃ OH-H ₂ O	29d	81
8	28d	ΤΓΦ	29d	84
9	28e	CH ₃ OH-H ₂ O	29e	99
10	28e	ΤΓΦ	29e	99

Таблица 5. Зависимость выхода продуктов 29а-е от растворителя

В ходе последующих исследований были найдены каталитические системы на основе комплексов Ir (I), которые оказались эффективны для окисления гидроксамовых кислот до нитрозо-соединений [34]. Результаты обобщены в таблице 6. Металлические системы

[Ir(cod)Cl]₂ (cod=циклооктадиен) и CuI приводили к образованию продукта **31a** с умеренным выходом (Таблица 6, № 3 и 4). В присутствии каталитических или стехиометрических количеств оснований с [Ir(cod)Cl]₂ наблюдалось небольшое увеличение выхода циклоаддукта (Таблица 6, № 5–10). С другой стороны, [Ir(coe)₂Cl]₂ (сое = циклооктен) давал высокий выход без каких-либо добавок (Таблица 6, № 11). Ацилнитрозо-промежуточные соединения были получены из гидроксамовых кислот с [Ir(coe)₂Cl]₂ и перекисью водорода в ТГФ. Нитрозо-промежуточные продукты, образованные иридиевым катализатором и перекисью водорода, плавно реагировали с диеном с образованием соответствующих циклоаддуктов с высоким выходом.

$$H_2O_2$$
 (4 экв.), кат (2 моль%)
 $R = M_1$ (2 моль%)
30a, $R = C_6H_5$
30b, $R = 4$ -CH₃OC₆H₄
30c, $R = 3$, 4-*di*-CH₃OC₆H₃
30d, $R = 4$ -ClC₆H₃CH₂O
30e, $R = Bu^tO$

	• •	-	-	\sim					U	11	
	nk	TITIU	6	Птти	DITTOCIUM	VOTODIJI	nooriiiiiii	ΠΟΠΙΠΟΙΙΙΙΠ		410	• •
- 1	a	JIMMA	U .	ОШИ	мизания	VUJUBRIR	псакнии	получения	СОСЛИНСНИИ	JIA	
_						J					

	Гипрокезморая		Растворитель	Добавка (экв.)	Выход
N⁰	тидроксамовая	Катализатор			31а-е,
	кислота				%
1	30a	Co(acac) ₂	ΤΓΦ	-	18
2	30a	$[Ru(OAc)_2]_2$	ΤΓΦ	-	19
3	30a	CuI	τγφ	-	60
4	30a	$[Ir(cod)Cl]_2$	ΤΓΦ	-	51
5	30a	$[Ir(cod)Cl]_2$	ΤΓΦ	KOH (0.3)	74
6	30a	$[Ir(cod)Cl]_2$	ΤΓΦ	Et ₃ N (1.0)	70
7	30a	$[Ir(cod)Cl]_2$	τγφ	Диизопропиламин (1.0)	53
8	30a	[Ir(cod)Cl] ₂	ΤΓΦ	N-метилморфолин (1.0)	64
9	30a	$[Ir(cod)Cl]_2$	τγφ	Морфолин (1.0)	13
10	30a	$[Ir(cod)Cl]_2$	ΤΓΦ	Пиридин (1.0)	25
11	30a	$[Ir(coe)_2Cl]_2$	ΤΓΦ	-	97
12	30a	$[Ir(coe)_2Cl]_2$	CH ₃ OH	-	60
13	30a	$[Ir(coe)_2Cl]_2$	CH ₂ Cl ₂	-	86
14	30a	$[Ir(coe)_2Cl]_2$	1,4-диоксан	-	82

15	30a	$[Ir(coe)_2Cl]_2$	ДМФА	-	90
16	30a	$[Ir(coe)_2Cl]_2$	H ₂ O	-	19
17	30b	$[Ir(coe)_2Cl]_2$	ΤΓΦ	-	94
18	30c	$[Ir(coe)_2Cl]_2$	ΤΓΦ	-	80
19	30d	$[Ir(coe)_2Cl]_2$	ΤΓΦ	-	60
20	30e	$[Ir(coe)_2Cl]_2$	ΤΓΦ	-	92

Введение гидроксимочевин в реакцию с циклопентадиеном было продемонстрировано в работе Кирби [35]. Помимо NH_2 -производного метод был распространен на различные N-замещенные гидроксимочевины **32b-е**. Окисление фениламинопроизводного **32c** Et₄NIO₄ в этаноле при 0°C и его последующее взаимодействие с циклопентадиеном привело к образованию продукта **33c** с выходом 67%.

Гидроксамовая кислота **34** также окислялась в присутствии циклопентадиена с образованием соответствующих циклоаддуктов **35a** и **35b** с общим выходом 84% и соотношением диастереомеров 81:19. Реакция энантиомерной гидроксамовой кислоты **36** с циклопентадиеном давала соответствующие циклоаддукты **37a** и **37b** с общим выходом 88% и 85:15 диастереомерным соотношением [36].

В работе [37] было показано, что взаимодействие циклопентадиена с Р-нитрозофосфатом **39**, который легко генерируются из диэтилгидроксифосфорамидата **38** окислением периодатом тетра-N-бутиламмония, приводит к образованию циклоаддукта **40** с выходом 67%.

Введение в пятое положение циклопентадиена заместителей не влияет на результат реакции. Так, авторами работы [38] был предложен метод, позволяющий получить бициклическое производное, содержащее в своем составе атом серы. (*R*)-нитрозокарбонил был получен из соответствующей гидроксамовой кислоты **42** окислением nBu₄NIO₄ в присутствии замещенного циклопентадиена **41**. Циклоаддукт **43** был получен с выходом 48%.

Пример использования N-Cbz-спироциклопентадиена **45** в реакции с нитрозокарбонилом **44** был приведен в работе [39]. Циклоаддукт **46** был получен с выходом 61%.

Иной результат наблюдался авторами работы [40]. Было установлено, что введение в реакцию с гидроксамовыми кислотами **47а-с** 1,4-диметил-2,3-дифенилциклопентадиена приводило к образованию диоксазинов **49а-с** с выходами 45-70% вместо ожидаемых мостиковых оксазинов **48а-с**.

Образование побочных продуктов **52а,b** с выходами 1-7% наблюдалось в работе [31], где нитрозокарбонильные соединения были получены за счет окисления N-оксидом Nметилморфолина (NMO) нитрилоксидов, генерируемых *in situ* из соответствующих гидроксимоилхлоридов **50а,b**. Циклоаддукты **51а,b** были получены с хорошими выходами.

Некоторое снижение выхода продукта циклоприсоединения наблюдалось в случае использования хинолинового производного гидроксимоилхлорида [41]: циклоаддукт **53** был выделен с выходом 45%.

II.1.2. 7-Азабицикло[2.2.1] гептадиены

Пирролы, содержащие электроноакцепторный заместитель у атома азота, способны выступать в качестве диенов в реакции гетеро-Дильса-Альдера. Если в качестве диенофилов выступают ацетилены, то продуктами реакции являются 7-азанорборнадиены¹, если дегидробензол, то 7-азабензнорборнадиены [42].

Для синтеза 7-Вос-7-азабензнорборнадиена **54** используются различные методы генерирования дегидробензола (таблица 7).

¹ Подробный анализ реакции приведен в работе [42]

N⁰	Реагенты	Условия	Выход, %	Литература
1	F ^{Br} Mg	ΤΓΦ	35-41	[43]
2	CO_2H + i-AmONO NH_2	DME, 55°C	60	[44–46]
3	Si(CH ₃) ₃ + CsF	CH ₃ CN	50	[47]
4	ОН SiMe ₂ Ph NfF (1.2 экв.), + Cs ₂ CO ₃ (1.5 экв.), 18-краун-6 (0.6 экв.)	СН ₃ СN, 60°С	82	[48]

Таблица 7. Условия проведения реакции получения продукта 54.

В случае использовании системы *орто*-бромфторбензол – магний (таблица 7, №1) выход соединения **54** составлял около 35 %. Некоторое улучшение результатов наблюдалось при использовании систем антраниловая кислота – изоамилнитрит (таблица 7, №2) и 2триметилсилилтрифторметансульфонат - фторид цезия (таблица 7, №3). Однако существенное увеличение выхода наблюдалось в том случае, когда дегидробензол генерировали из *орто*силилфенола обработкой 1,1,2,2,3,3,4,4,4-нонафторобутан-1-сульфонилфторидом (NfF) и карбонатом цезия (таблица 7, №4).

Возможность получения дегидробензола из 2-гидроксифенилборных кислот 55а-с была продемонстрирована в работе [49]. Этот метод включал активацию in situ как бороновой кислоты, И гидроксильных образованием 2так групп с [(неопентилгликолато)борил]фенилнонафлатов, которые затем были превращены В дегидробензолы при 60 °C. Образующиеся дегидробензолы вступали в реакции с N-Вос пирролом, давая продукты циклоприсоединения 54, 56b-с с выходами 73-83% (таблица 8).

Исходное соединение	Продукт	Выход, %	
B(OH) ₂ OH 55a	54	81	
F B(OH) ₂ OH 55b	F 56b	83	
F ₃ CO OH 55 c	DCH ₃	73	

Таблица 8. Продукты реакции производных дегидробензола, полученных из 2гидроксифенилборных кислот **55а-с**.

7-Вос-7-азабензнорборнадиен **54** использовался в качестве исходного соединения для синтеза производных, содержащих у атома азота другие заместители. Удаление Вос-защиты триметилиодсиланом в присутствии триэтиламина с последующим добавлением небольшого избытка метанола и ацилирующих агентов позволило получить производные **57-59** с высокими выходами [44,46,50] (Таблица 9).

Таблица 9. Структура и выходы продуктов 57-59.

№ соединения	Структура	Выход, %
57	O'S NO	91

58	N NO2	92
59		92

Гетероарилсульфонамиды **60** и **61** были получены в работе [51] прямым циклоприсоединением дегидробензола к соответствующим N-замещенным производным пиррола с хорошими выходами (Таблица 10).

Таблица 10. Структура и выходы продуктов 60, 61.

№ соединения	Структура	Выход, %	
60		51	
61		60	

Авторами работы [52] была продемонстрирована возможность синтеза 7азабициклических производных, содержащих заместители в ароматическом кольце. Можно отметить понижение выхода в случае введения в третье и шестое положение антраниловой кислоты метильных заместителей: N-Boc-азабензонорборнадиен **54** и 5,8-диметиловый продукт **62** были получены реакцией Дильса–Альдера N-Boc-пиррола с дегидробензолами в 1,2-дихлорэтане, генерируемыми *in situ* диазотированием соответствующих антраниловых кислот изоамилнитритом с последующим нагреванием, с выходами 55% и выход 30% соответственно.

Небольшие выходы наблюдались и при взаимодействии N-Boc-пиррола с дегидробензолами, образующимися при обработке 1,2-дибромтетраметилбензола и 1,2дибром-4,5-диметилбензола н-бутиллитием: выходы 5,6,7,8-тетразамещенный продукта **63** и 6,7-дизамещенный продукта **64** составили 36% и 33% соответственно.

Введение в ароматическое кольцо заместителей, обладающих отрицательным индуктивным эффектом способствует протеканию реакции, что следует из результатов, полученных в работах [45,53,54] для синтеза бициклических аддуктов **65** и **66**.

Тем не менее, выход соединений **68**, **70**, которые были получены в работе [47] в качестве ключевых интермедиатов в синтезе аналогов эпибатидина с конденсированным кольцом [55], не превысил 28%. В качестве источников диенофилов в данном случае выступали дегидропиридины, генерируемые из 4-триэтилсилилпиридин-3-илтрифторметансульфоната **67** и 3-триметилсилилпиридин-2-илтрифторметансульфоната **69** под действием фторида цезия в ацетонитриле.

Ведение метильных заместителей в пиррольное кольцо не понижает, а даже повышает выход продуктов циклоприсоединения. Так, взаимодействие замещенных пирролов с *о*бромфторбензолом и магнием в ТГФ позволило получить производные **71** и **72** с выходами 56% и 52% соответственно [53], что выше, чем для незамещенного пиррола.

работ [56,57] был разработан подход, позволяющий Авторами получить бициклические производные, содержащие нафталиновый фрагмент. Обработка 3-амино-2карбоксилнафталина 73 изоамилнитритом в присутствии трифторуксусной кислоты приводила к образованию соединения 74 с выходом 76% [58]. 2,3-Дегидронафталин, образующийся при термическом разложении 3-амино-2-карбоксилнафталина, реагировал с 1-бензилпирролом с образованием аддукта 75. Обработка соединения 74 третбутилпиррол-1-карбоксилатом в 1,4-диоксане приводила к образованию аддукта 76. Следует отметить резкое снижение выхода аддукта при использовании N-бензилпиррола по сравнению с N-Вос-пирролом.

а. DME, Δ, 10–15 мин. b. 1,4-диоксан, Δ, 1 час.

75, $R = CH_2Ph$, 26% **76,** R = Boc, 56%

Использование в качестве диена изоиндола было предложено в работе [59]: изоиндол **79** образовывался *in situ* в результате взаимодействия N-Boc-производного **54** и эквимольного количества тетразина **77**. В результате взаимодействия изоиндола с этинилфенилсульфоном в сухом метилене был выделен продукт **70** с выходом 77%. β-Металлирование соединения **80** с последующим добавлением бензолсульфонилфторида давало желаемый продукт **81** с выходом 60%. Образование большого количества побочного продукта **78** являлось существенным недостатком данного подхода.

II. 2. Бициклические производные в реакциях циклоприсоединения

II.2.1. Азабициклогептены в синтезе изоксазолинов

Авторами работы [60] было исследовано 1,3-диполярное циклоприсоединение бензилнитрилоксида к N-Алкилзамещенным 2-азанорборн-5-енам **82A–D**. Нитрилоксид генерировали *in situ* действием триэтиламина на бензгидроксимоилхлорид. В результате реакции циклоприсоединения были получены смеси двух региоизомерных циклоаддуктов типа **83a** и **83b** с выходами от умеренных до удовлетворительных.

Окисление региоизомеров типа 83а и 83b использованием каталитической системы RuO₂/NaIO₄ в смеси воды и этилацетата проходит по атому углерода, связанному с атомом

азота. Метиленовая группа бициклического каркаса менее реакционноспособна, поэтому бициклические N-метиллактамы **84a,b** были выделены с умеренными выходами, а преобладающими компонентами реакционных смесей были N-формилированные производные **85a,b**, полученные путем окисления экзоциклической метильной группы.

В случае окисления региоизомерных N-этил и N-изопропилзамещенных циклодуктов наряду с образованием лактамов **39а,b**, **42а,b** и амидов **40а,b** наблюдалось образование лактамов **41а,b**, не содержащих алкильный заместитель у атома азота.

Как и следовало ожидать, введение к атому азота *трет*-бутильного заместителя позволило синтезировать исключительно лактамы **90а,b** с высокими выходами [60].

1,3-Диполярное циклоприсоединение фенилнитрилоксида к N-бензилзамещенному **91** производному было исследовано в работе [17]. В результате было получено два региоизомерных циклоаддуктов **92a** и **92b** с выходами 49% и 43% соответственно.

Окисление региоизомерных циклоаддуктов **92a** и **92b** системой RuO₂/NaIO₄ в условиях H₂O/AcOEt приводит к результату, аналогичному окислению этил- и изопропилзамещенных изоксазолинов **93**:

В работах [61,62] соединения **92a** и 9**2b** были превращены в соответствующие N-оксиды **96a** и **96b** обработкой МХПБК в метилене при комнатной температуре. N-оксиды **96a** и **96b** были выделены с количественными выходами. Превращение N-оксидов в амиды **97a** и **97b** было осуществлено путем перегруппировки Полоновского с получением N-ацетильных производных.

Продукты 1,3-диполярного циклоприсоединения нитрилоксидов, содержащих этоксикарбонильную группу, были изучены в работе [63]. Синтез циклоаддуктов **98***син* и **98***анти* был осуществлен по реакции 1,3-диполярного циклоприсоединения добавлением этоксикорбонилнитрилоксида, полученного *in situ* из соответствующего гидроксимоилхлорида, к раствору диполярофила в CH_2Cl_2 при 0°C в присутствии небольшого избытка Et_3N . В результате хроматографирования были выделены два региоизомерных *экзо*-циклоаддукта **98***син* и **98***анти* с выходами 55% и 38% соответственно, а также фуроксан, полученный в результате димеризации избытка нитрилоксида. Индексы *син* и *анти* относятся к относительному расположению атомов кислорода в кольце.

Гидролиз аддукта **98***син* проходил легко под действием 1.1 экв. NaOH в метаноле и приводил к раскрытию изоксазолинового кольца с сохранением бензоильного заместителя у атома азота. Предполагается, что происходит нуклеофильная атака гидроксильной группы по более реакционноспособной этоксикарбонильной группе и образуется изоксазолин-3-анион, который фрагментируется до β-гидроксинитрила.

Это известный механизм реакций нуклеофилов с изоксазолинами, несущими PhSO₂⁻, COOEt [64], TMS- [65] и HOOC-группы в положении 3 [66].Во всех этих случаях основание способствует раскрытию кольца в сторону β-гидроксинитрила.

Расщепление циклоаддукта **98***син* происходит легко даже в более мягких условиях (Na₂CO₃, MeOH, 25°C, 12 ч), циклоаддукт **98***анти* аналогичным образом превращается в β-гидроксинитрил **100***анти*.

В результате взаимодействия аддуктов **98** с боргидридом натрия в метаноле происходит восстановление сложноэфирной группы с сохранением структуры каркаса:

Обработка спиртов **101** раствором гидроксидом натрия (1.1 экв. NaOH в метаноле) позволяет удалить бензоильную защиту, а последующий гидрогенолиз производных **102***син* и **102***анти* приводил к аминолам **103***син* и **103***анти*.

Синтетическая стратегия, основанная на восстановлении продуктов 1,3-диполярного циклоприсоединения бромонитрилоксидов, была использована в работе [67] для получения ключевых интермедиатов в синтезе нуклеозидов. Бромонитрилоксид был получен *in situ* обработкой дибромформальдоксима NaHCO₃ в EtOAc. В результате была получена смесь региоизомеров **104a**, **b**, выделенных хроматографически с выходами 45% и 44% соответственно.

Как и в случае спиртов 101, обработка изоксазолинов 104 раствором щелочи в смеси ТГФ/H₂O 1:1 не затрагивает изоксазолиновое кольцо и приводит к образованию региоизомерных гидроксиламинов 105а, b с выходами 97% и 95% соответственно. Гидрогенолиз гидроксиламинов 105а, b условиях каталитического гидрирования (Pd/C) при комнатной температуре приводило образованию смеси сложно идентифицируемых соединений. Однако известно, что связь N-O в бициклических продуктах реакции гетеро-Дильса-Альдера легко расщепляется при воздействии избытка Al(Hg) в водном растворе ТГФ при 0°C в течение несколько часов [68]. Действительно, восстановление Al(Hg) в смеси ТГФ/H₂O 10:1 в при 0 C в течение 8 ч приводило к восстановлению связи N-O, но, как оказалось, в данных условиях восстановления связь N-O в изоксазолиновом кольце также подвергается расщеплению до гидроксинитрила. В итоге были выделены соединения 106а,b с выходами 92% и 90% соответственно

Применение продуктов 1,3-диполярного циклоприсоединения бромонитрилоксида в синтезе новых нуклеозидных аналогов было описано в работе [69]. Ключевой стадией данной синтетической стратегии является нуклеофильное замещение у sp²-гибридизованного атома углерода. Оптимальные условия реакции были проанализированы в работе [70]. Наилучшие результаты достигались при использовании ДМФА в качестве растворителя, в то время как в ТГФ и CH₃CN протекания реакции не наблюдалось. Также неудовлетворительные результаты наблюдались при использовании в качестве основания NaOH и при проведении реакции в условиях микроволнового излучения.

Аддукты 2,3-диметоксикарбонил-7-азанорборнадиенов с нитрилоксидом, содержащие мотоксикарбонильную [43] или *трет*-бутоксикарбонильную группы [71] в седьмом положении, выделить не удалось, так как они подвергаются ретро-реакции Дильса-Альдера уже при комнатной температуре с образованием пирролов.

Однако, следует отметить, что аддукт **108с**, содержащий (*трет*-бутилдиметилсилил)окси – группу у атома азота, устойчив и разлагается только при нагревании до 130°C [71].

В работе [72] 7-азабензонорборнадиены вводились в реакции с нитрилоксидами, которые генерировались *in situ* из нитроалканов. Для азабициклических аддуктов **111a-f** достигнуты выходы 52–99% и полная экзостереоселективность. Реакция нитрилоксида **110a** с Pivзащищенным производным **109a** протекала с удовлетворительным выходом 88% (таблица 11, № 1). Снижение выхода до 52% наблюдалось для Тs-защищенного соединения **57** (таблица 11, №2). Однако Вос-защищенный амин **54** давал самый высокий выход 99% (таблица 11, №3). При проведении реакций с бензильным производным **110b** азабициклический субстрат **57** обеспечивал намного более высокий выход 95% (таблица 11, №5), в то время как Вос-защищенный амин **54** давал почти количественный выход как с нитрилоксидом **110a**, так и с нитрилоксидом **110b** (таблица 11, № 3 и 6).

N₂	R'	Диен	Нитроалкан	Продукт	Выход, %
1	Piv	109a	110a	111a	86
2	Ts	57	110a	111b	52
3	Boc	54	110a	111c	99
4	Piv	109a	110b	111d	62
5	Ts	57	110b	111e	95
6	Boc	54	110b	111f	97

Таблица 11. 1,3-Диполярное циклоприсоединение нитрилоксидов к 7-азабензонорборнадиенам

Попытки раскрытия N-O – связи изоксазолина **112** такими реагентами как Mo(CO)₆, Zn/AcOH, Fe/NH₄Cl, Pd-C/H₂, Ni Peнeя/AcOH/H₂ не удались. Тем не менее, взаимодействие соединения **112** с Ni Peneя/AlCl₃ в смеси метанол-вода приводит к раскрытию изоксазолинового кольца и образованию кетоспирта **113**.

II.2.2. Азабициклогептены в реакциях с азидами

На примере 2-бензил-2-азанорборненена **114** было показано, что [3+2]циклоприсоединение фенилазида проходит с *экзо*-стороны [73], а последующее облучение полученного аддукта ведет соответственно к образованию азиридина **115** с *экзо*-расположением кольца.

Авторами работы [74] было обнаружено, что при проведении реакции **116** с бензилазидом без растворителя в течение 2 дней при комнатной температуре были получены региоизомерные экзотриазолины **117a** и **117b** с количественным выходом. Экзо-специфичность реакции согласовалась с литературными данными, полученными ранее для бициклических производных [75].

Варьирование различных азидов и условий реакции было показано, что реакция одинаково хорошо протекала при кипячении в толуоле или хлороформе (Таблица 12, № 4 и №8). Однако проведение реакции в хлороформе при комнатной температуре увеличивало время проведения реакции до четырех недель (Таблица 12, № 2). Введение в структуру азида стерически затрудненного фрагмента мало влияло на региоселективность и на выход реакции. Первичные, вторичные, третичные и арилазиды давали триазолины **118** и **119** с высокими выходами (Таблица 12, № 8-12).

N⁰	R	Условия	Продукты	Выход, %
1	Bn	Без растворителя, к.т., 2 дня	118a/119a	99
2	Bn	CHCl ₃ , к.т., 4 недели	118a/119a	99
3	1-адамантил	CHCl ₃ , к.т., 4 недели	118b/119b	95
4	Bn	СНСl ₃ , Δ, 4 ч	118a/119a	88
5	н-октил	СНСl ₃ , Δ, 4 ч	118c/119c	99
6	циклопентил	СНСl ₃ , Δ, 4 ч	118d/119d	97
7	Ph	СНСl ₃ , Δ, 4 ч	118e/119e	97

Таблица 12. Условия реакции с азидами

8	Bn	РhCH ₃ , Δ, 4 ч	118a/119a	88
9	н-октил	PhCH ₃ , Δ, 4 ч	118c/119c	81
10	циклопентил	PhCH ₃ , Δ, 4 ч	118d/119d	86
11	1-адамантил	PhCH ₃ , Δ, 4 ч	118b/119b	85
12	Ph	PhCH ₃ , Δ, 4 ч	118e/119e	99

Сообщалось, что триметилсилилазид присоединяется к норборненовым системам и другим бициклическим олефинам с образованием триазолинов и/или азиридинов [75,76]. Однако при проведении реакции **116** с триметилсилилазидом в различных условиях (без растворителя, 25-80°C; PhCH₃, 25-110°C) наблюдалось только разложение алкена. Ранее также было показано, что тозилазид дает азиридины напрямую [77]. Обработка алкена **116** тозилазидом приводила к образованию азиридина **120** с хорошим выходом.

N-Вос-7-азабензнорборнадиены также вступают в реакцию с фенилазидом, но при нагревании полученного триазолина **122** был выделен продукт ретро-реакции Дильса-Альдера 1,2,3-триазол **123** [43].

При взаимодействии алкилзамещенных 7-азанорборнадиенов с фенилазидом образование триазолинов сопровождается термическим ретро-циклоприсоединением, что ведет к исходным продуктам [73].

II.2.3. Азабициклогептены в реакциях с диазометаном

В работах [78,79] при обработке алкена 124 избытком эфирного раствора диазометана, содержащего метанол, при комнатной температуре была получена смесь соединений 125а и 125b в соотношении 1:1 с выходом 69% и одновременным образованием 126 (20%). Образование соединений 125a 1,3-диполярного И 125b являлось результатом циклоприсоединения последующим сольволизом метанолом. Циклоприсоединение с

селективно происходило с *экзо*-стороны. Предположительно, образованию соединения **126** может способствовал диазометан, поскольку превращение соединения **124** в соединение **126** не происходит в метаноле в нейтральных условиях.

$$\underbrace{\underset{124 \text{ O}}{\overset{\text{N}}{\longrightarrow}}}_{\text{Boc}} \underbrace{\underset{\text{CH}_2\text{N}_2}{\overset{\text{CH}_2\text{N}_2}{\xrightarrow{\text{Et}_2\text{O}, \text{CH}_3\text{OH}}}} \underbrace{\underset{\text{N}}{\overset{\text{N}}{\longrightarrow}}}_{\text{125a}} \underbrace{\underset{\text{O}}{\overset{\text{H}}{\longrightarrow}}}_{\text{N}-\text{Boc}} + \underbrace{\underset{125b}{\overset{\text{N}}{\longrightarrow}}}_{\text{125b}} \underbrace{\underset{\text{O}}{\overset{\text{H}}{\longrightarrow}}}_{\text{N}-\text{Boc}} + \underbrace{\underset{126}{\overset{\text{H}}{\longrightarrow}}}_{\text{N}-\text{Boc}} \underbrace{\underset{126}{\overset{\text{H}}{\longrightarrow}}}_{\text{N}-\text{Boc}}$$

Взаимодействие **124** с диазометаном в отсутствие метанола приводило к смеси региоизомеров **127a** и **127b** с выходами 58 и 35% соответственно. Оба соединения легко превращались в соответствующие бициклосоединения путем метанолиза при комнатной температуре в течение 10 мин.

Соединение **124** обрабатывали раствором диазометана в эфире в присутствии PdCl₂(PhCN)₂, получая трициклическое соединение **128** с выходом 41%.

Авторами работы [80] было обнаружено, что при обработке нитрозоциклоаддукта **129а** диазометаном (8 экв.) в присутствии 5 мол. % Pd(OAc)₂ был получен исключительно продукт **130а** с выходом 96% в течение 30 мин (таблица 13, №1). Для дальнейшего изучения влияния функциональных групп на протекание реакции циклопропанирования был исследован ряд N-замещенных циклоаддуктов в тех же условиях реакции. Было показано, что все выбранные циклоаддукты, включая производные карбаматов (**129а–b**), N-ацил (**129с–e**), мочевины (**129f**) и пиридина (**129g**) субстраты быстро и эффективно реагировали с диазометаном, давая соответствующие циклопропанированные продукты **130а–** с высокими выходами (таблица 13, № 1–7).

N⁰	Субстрат	Продукт	Выход, %
1	^N -Boc 116	130a	96
2	129b	130b	84
3	Ph 129c	$\bigvee_{O'}^{O} \overset{O}{\downarrow}_{Ph}$	88
4	D D D D D D D D D D D D D D D D D D D	O O Bn O Bn 130d	89
5	129a	1300	73
6	$ \begin{array}{c} $	$\bigvee_{O'}^{O} NBoc_2$ 130f	80
7	Br N 129g	$ \begin{array}{c} $	78

Таблица 13. Циклопропанирование нитрозоциклоаддуктов 129а-д.

Однако условия реакции циклопропанирования 2-окса-3-азабициклического алкена **116** были модифицированы авторами работы [81]. Были уменьшены количества диазометана (с 8 экв. до 2.6 экв.) и катализатора (с 5 мол. % до 1 мол.%). Было показано, что реакция одинаково хорошо протекала как в ТГФ, так и в Et₂O, давая продукт **130a** с выходом 97%.

В работе [82] сообщалось о циклопропанировании 7-метоксикарбонил и 7-тозил-7азанорборненов **131а**, **57**.

Однако Там и Карлсон [83] не смогли выделить в аналогичных условиях продукт циклопропанирования 7-*трет*-бутоксикарбонил-7-азабензнорборнадиена **54**. Реакция Симмонса-Смита и её вариации также не привели к образованию продукта **132а**. Выделить циклопропан **132a** удалось в результате взаимодействия алкена **54** с диазометаном в тетрагидрофуране при 0°С в присутствии ацетата палладия, его выход составил 98%.

Аналогичным образом удалось синтезировать серию продуктов циклопропанирования 7азанорборнадиенов, содержащих электроноакцепторные заместители у атома азота, а также заместители в ароматическом кольце.

II.3. Методы раскрытия азабициклического каркаса с разрывом связей С-N, С-О и N-О

N-алкил-2-азабицикло[2.2.1]гепт-5-ены **147а-с** легко присоединяются к дифенилкетену [84] или дихлоркетену с образованием цвиттер-иона **148**, который подвергается перегруппировке Кляйзена [85].

Аналогично протекает присоединение 2-бензил-2-азанорборнена **4a** к изоцианатам, изотиоцианатам и карбодиимидам [86]. Выходы продуктов перегруппировки Кляйзена составили в этом случае 39-76%:

Присоединение азанорборненов по Михаэлю к эфирам ацетиленкарбоновых кислот также приводит к перегруппированным продуктам [87,88].

Таблица 14. Амино-перегруппировка Кляйзена производных 2-азанорборненов под действием эфиров ацетилендикарбоновой кислоты.

Соединение	R^1	R^2	Выход, %
151a	Me	Me	69
151b	Аллил	Me	56
151c	Bn	Me	64
151d	$CH_2C_5H_4$ -4-Cl	Me	60
151e	СН ₂ -фурил	Me	33
151f	Циклогексил	Me	55
151g	н-С ₁₂ Н ₂₅	Me	58
151h	Циклопропил	Me	41
151i	\Pr^i	Me	65
151j	Me	Et	67
151k	Bn	Et	63

1511	$CH_2C_5H_4$ -4-Cl	Et	48
151m	Me	^t Bu	42

Авторами работы [89] были изучены перегруппировки соединения **152** с целью получения производных, содержащих азабицикло[3.3.0]октановый фрагмент. Так, амин **152** последовательно обрабатывали Cu(acac)₂ и этилдиазоацетатом в кипящем толуоле. Этот метод не дал ни ожидаемого продукта, ни следов исходного алкена. Однако катализируемая медью реакция алкена **152** с диаазомалонатом в конечном итоге приводила к образованию двух продуктов **153** и **154**. Образование продукта **154** являлось результатом перегруппировки Стивенса.

Было показано, что алкилирование соединения **152** при –15 °С приводило к получению соли аммония, которую непосредственно добавляли к гидриду натрия. В этих условиях перегруппировка протекала с образованием азабициклооктена **155** в виде единственного продукта и исключительно в виде *цис,цис*-изомера с выходом 34% для двух стадий.

7-Азабицикло[2.2.1]гепт-2,5-диены с электронодонорными заместителями у атома азота присоединяются по Михаэлю к алкинам последующей перегруппировкой Кляйзена [90,91]:

Аддукт взаимодействия бис-2,5-(трифторметил)-7-азабицикло[2.2.1]гепт-2,5-диена с перфторбут-2-ином устойчив, а основным продуктом реакции является продукт присоединения **156**, хотя продукт амино-перегруппировки Кляйзена был выделен в качестве побочного [90].

Восстановление N-O связи в производных 3-аза-2-оксанорборненах обсуждалось ранее (см. раздел «Азабициклоалкены в синтезе изоксазолинов»).

Гидрирование 2-азанорборненов изучалось на примере соединения **157** [92]. Варьирование условий проведения реакции позволяет получать продукты с раскрытием или сохранением бициклического каркаса. Было найдено, что после восстановления двойной связи бициклический каркас сохраняется.

Схема 1. Реакции гидрирования производных 2-азабициклогептена 157.

При взаимодействии 3-бензоил-3-азанорборнена 162 с цинком в уксусной кислоте расщепляется связь N-C(3) с сохранением двойной связи [10] показали, что 2-

азабицикло[2.2.1]гептены легко переходят в производные циклопентена под действием цинка в уксусной кислоте:

В работах [9,11] на примере карбоксилатов **164а,b, 167, 169** было показано, что протонирование атома азота приводит к раскрытию азабициклического каркаса:

В работе [93] было исследовано расщепление циклоаддукта 171, содержащего в структуре хиральный фрагмент. Взаимодействие соединения 171 с соляной кислотой в диоксане привело к образованию единственного диастереомера с высоким выходом. Ключевой стадией предложенного механизма (схема 2) является образование тетраэдрического интермедиата 172, который впоследствии распадается до соединения 173.

Схема 2. Механизм образования 174.

Однако в результате взаимодействия кетона 175 с соляной кислотой наблюдалось образования соединения 176 с высоким выходом вместо ожидаемого структурного аналога 175. Такое направление реакции может быть объяснено резонансной стабилизацией в продукте 176 [94].

В последующих исследованиях была обнаружена возможность получения оксазолидинона 177 из соединений 171 и 174, его восстановления с высоким выходом и использования в дальнейшем алкилировании [93] [95].

Авторами работы [96] была исследована трансформация соединения **116** в гидроксамат **182**. С целью исследовать образование гидроксамата **182** была проведена оптимизация условий реакции, в рамках которой циклоаддукт **116** обрабатывали различными кислотами Брёнстеда в безводных средах. Оптимальными условиями реакции оказалось использование 2 мол.% трифторметансульфоновой кислоты в ТГФ при 0°С, которые позволяли легко получить продукт **182** с высоким выходом.

Опираясь на полученные результаты, была исследована возможность образования бициклических гидроксаматных структур, подобных гидроксамату 182, из других циклических диенов. Циклоаддукты 183 и 184 подвергали действию каталитических количеств трифторметансульфоновой кислоты в дихлорметане, но протекания реакции не наблюдалось, исходные соединения были выделены в неизмененном виде. Однако при взаимодействии

циклоаддукта **185** в тех же условиях помимо разложения наблюдали образование гидроксамата **182**.

На первой стадии предложенного механизма происходит протонирование циклоаддукта 116 с образованием соединений 186 и/или 187. Из соединения 187 возможна потеря Восзащитной группы, однако продукты, возникающие в результате этого пути, в данных исследованиях не наблюдались. Разрыв связи С-О соединения 186 приводит к образованию катионного соединения 188, которое при внутримолекулярной циклизации дает соединение 189. Потеря изобутилена из соединения 189 приводит к образованию гидроксамата 182 и регенерации кислотного катализатора. Трудность потери бензильной группы объясняет низкий 182. выхол гидроксамата наблюдаемый при обработке циклоаддукта 185 трифторметансульфоновой кислотой. Отсутствие образования гидроксамата, наблюдаемое для циклоаддуктов 183 и 183, может быть связано с меньшей величиной деформации кольца, наблюдаемой для бицикло[2.2.2]- и бицикло[2.4.2]оксазиновых систем по сравнению с бицикло[2.2.1] оксазинов, такие как соединение 116.

Опираясь на результаты работы [93], в которой было описано образование нитрона **191** из бициклического производного миндальной кислоты **190** при действии на него водным раствором соляной кислоты, авторами работы [96] была предпринята попытка получения

нитронов **193а** и **193b** из бициклических производных **192a** и **192b**. При использовании каталитических количеств трифторметансульфоновой кислоты в реакциях с соединениями **192a** и **192b** образования нитронов не наблюдалось. Однако использование одного эквивалента кислоты позволило получить нитрон **193a** из соединения **192a** с низким выходом. В этих же условиях наблюдалось разложение продукта **193b**. Вероятно, образование нитрона **193a** можно объяснить большей устойчивостью нитрона **193a** за счет резонансной стабилизации. Аналогичное рассуждение было предложено в [93] для образования нитронов из циклоаддуктов, полученных из миндальной кислоты.

Авторами работы [97] была проведено исследование раскрытия бициклических аддуктов **194**, **195** под действием кислот Льюиса. Наилучшие результаты были получены для солей с Zn(II). Обработка циклоаддукта **194** $ZnCl_2$ в метаноле при комнатной температуре в течение 2ч привела к образованию гидроксамовой кислоты **196a** с выходом 62%, а также смеси региоизомеров **196b,с** с выходом 35%. Реакция с $ZnCl_2$ не требовала избытка соли и протекала медленнее, чем реакция с солями железа (III) (таблица 15).

Nº	Субстрат	Условия	Продукты, выход (%)	R^1	R^2
1	3	FeCl ₃ , MeOH	196a (75), 196b,c (18)	Н	CH ₃
2	4	FeCl ₃ , MeOH	197a (65), 197b,c (27)	ОН	CH ₃
3	3	Fe(III)цитрат, H ₂ O, ТГФ	198a (65), 198b (26)	Н	Н
4	4	Fe(III)цитрат, H ₂ O, ΤΓΦ	199a (75), 199b,c (13)	ОН	Н

Таблица 15. Продукты раскрытия бициклических производных 194, 195.

Последующие исследования раскрытия бициклического аддукта с участием кислот Льюиса [98] показали, что регио- и стереоселективность реакции меняется при модификации стерического объема нуклеофильного растворителя. При замене метанола на изопропанол образование *анти*-1,4-продукта **201** уменьшалось (таблица 16, № 1 и 2). Эта тенденция сохранилась при переходе от изопропанола к *трет*-бутиловому спирту (таблица 16, № 2 и 3). Однако при использовании CuSO₄ с более объемными нуклеофилами (изопропанол и *трет*-бутиловый спирт) реакции протекают хуже.

200b, $R^1 = Bn$, n = 2**200c**, $R^1 = OBn$, n = 1**200d**, $R^1 = O^tBu$, n = 1

201a, $R^1 = Bn$, $R^2 = Me$, n = 1**202a**, $R^1 = Bn$, $R^2 = Me$, n = 1**201b**, $R^1 = Bn$, $R^2 = {}^iPr$, n = 1**202b**, $R^1 = Bn$, $R^2 = {}^iPr$, n = 1**201c**, $R^1 = Bn$, $R^2 = {}^tBu$, n = 1**202c**, $R^1 = Bn$, $R^2 = {}^tBu$, n = 1**201d**, $R^1 = Bn$, $R^2 = Me$, n = 2**202d**, $R^1 = Bn$, $R^2 = Me$, n = 2**201e**, $R^1 = OBn$, $R^2 = Me$, n = 1**202e**, $R^1 = OBn$, $R^2 = Me$, n = 1**201f**, $R^1 = O^tBu$, $R^2 = Me$, n = 1**202f**, $R^1 = O^tBu$, $R^2 = Me$, n = 1

203a, $R^1 = Bn$, $R^2 = Me$, n = 1**203b**, $R^1 = Bn$, $R^2 = {}^iPr$, n = 1**203c**, $R^1 = Bn$, $R^2 = {}^tBu$, n = 1**203d**, $R^1 = Bn$, $R^2 = Me$, n = 2**203e**, $R^1 = OBn$, $R^2 = Me$, n = 1**203f**, $R^1 = O^tBu$, $R^2 = Me$, n = 1

Nº	Условия	Продукты	Выход, %	Соотношение продуктов, 201:202:203	R ²
1	FeCl ₃ , MeOH	201a-203a	74	7:1.7:1	CH ₃
2	FeCl ₃ , ^{<i>i</i>} PrOH	201b-203b	62	18:6:1	CH(CH ₃) ₂
3	FeCl ₃ , ^{<i>i</i>} BuOH	201c-203c	80	12:7:1	C(CH ₃) ₃
4	CuSO ₄ ,MeOH	201a-203a	95	10:1:1	CH ₃
5	CuCl ₂ , MeOH	201a-203a	78	14:5:1	CH ₃
6	CuCl ₂ , ^{<i>i</i>} PrOH	201b-203b	88	11:8:1	CH(CH ₃) ₂
7	CuCl ₂ , ⁱ BuOH	201c-203c	75	22:77:1	C(CH ₃) ₃
8	CuCl ₂ ,MeOH, PhCH ₃	201a-203a	69	9:90:1	CH ₃
9	CuCl ₂ , ^{<i>i</i>} PrOH, PhCH ₃	201b-203b	73	1:14:следы	CH(CH ₃) ₂
10	CuCl ₂ , ^{<i>i</i>} BuOH, PhCH ₃	201c-203c	57	следы:1:следы	C(CH ₃) ₃

Таблица 16. Раскрытие бициклического аддукта **200**а солями Fe (III) и Cu(II) ($R^1 = Bn, n = 1$)

Вероятный механизм включает первоначальное раскрытие циклоаддукта с образованием тесной ионной пары (схема 3). Если реакция происходит в менее стерически затрудненном нуклеофильном растворителе, то растворитель атакует пару ионов со стороны, противоположной гидроксамату, с образованием *анти*-1,4-продукта **201** (путь А). В случае если нуклеофил стерически загружен или концентрация нуклеофила низкая, происходит внутримолекулярное высвобождение нуклеофила из металла, что приводит к син-атаке на гидроксамат с образованием *син*-1,4-продукта **202** (путь В).

Опираясь на регио- и стереоселективное раскрытие кольца при участии кислот Льюиса, были поведены дальнейшие исследования, где были изучены соединения Pd(0) для получения

син-1,4-продуктов **206** и **207** [97]. Обработка раствора **204** в ТГФ Pd(PPh₃)₄ и уксусной кислотой (4 экв.) в течение 45 мин давала *син*-1,4-гидроксамовую кислоту **206** ($\mathbb{R}^1 = \mathbb{H}, \mathbb{R}^2 = \mathbb{A}c$) в качестве единственного продукта с выходом 86% (таблица 17, № 1). Аналогичная реакция соединения **205** в ТГФ с Pd(PPh₃)₄ и уксусной кислотой (4 экв.) в течение 90 мин приводила к образованию исключительно *син*-1,4-гидроксамовой кислоты **207** ($\mathbb{R}^1 = \mathbb{O}H, \mathbb{R}^2 = \mathbb{A}c$) (таблица 17, № 2).

Таблица 17. Продукты раскрытия бициклического фрагмента.

N₂	Субстрат	Условия	Продукты, выход (%)	R^1	R^2
1	204	Pd(PPh ₃) ₄ , AcOH, ΤΓΦ	206 (86)	Н	Ac
2	205	Pd(PPh ₃) ₄ , AcOH, ΤΓΦ	207 (87)	ОН	Ac

Раскрытие бициклического каркаса с участием палладия легло в основу синтеза производных 1,4-бензодиазепинов, исследованных в работе [99].Соединения, содержащие 1,4-бензодиазепиновое ядро, обладают широким спектром биологической активности. В дополнение к их хорошо известной анксиолитической, противосудорожной, седативной и миорелаксирующей активности [100], 1,4-бензодиазепины также проявляют активность в качестве антибиотиков [101] [102], противоязвенных средств [103], средств против ВИЧ [104–106].

Обработка циклоаддукта 208 комплексами палладия не приводила к образованию желаемого бензодиазепина 209. Вместо этого наблюдалось образование сложной смеси продуктов. Предполагалось, что происходила конкурентная атака гидроксаматного атома кислорода. В результате происходило образование нитрона 210, который в присутствии различных олефинов в реакционной смеси вступал в дальнейшую реакцию с образованием наблюдаемой смеси. Для преодоления конкуренции нуклеофилов, предполагалось снизить рКа NH, чтобы облегчить перенос протона от амина к π -аллильному комплексу и повысить

нуклеофильность антранилатного. Обработка N-тозилциклоаддуктов **213** и **216** комплексами палладия привела к образованию целевых бензодиазепинов **214** и **217** с выходами 20% и 38% соответственно. Повышение выхода целевого бензодиазепина **219** до 68% наблюдалось при введении двух нитро-групп в структуру молекулы.

Eщë один способ раскрытия азабициклического каркаса – взаимодействие с нуклеофилами – реактивами Гриньяра [107,108]. Было отмечено, что атаки по карбонильной группе не происходит. С целью оптимизировать условия реакцию проводили с добавлением каталитических количеств хлорида меди (II). В результате выход реакции увеличился до 89%. Однако в предыдущих работах [98] было показано, что ацилнитрозоциклоаддукты Дильса-Альдера склонны к раскрытию цикла хлоридом меди(II). Возможная роль меди заключалась в реакции винилмагнийбромидом с образованием медьорганического с соединения. Действительно, обработка N-ацетилциклоаддукта 220a винилмагнийбромидом и хлоридом

меди(I) (10 мол. %) давала продукты гидроксамовой кислоты с хорошим выходом (77 %) (Таблица 18, № 5).

Раскрытие N-фенилацетилциклоаддукта 220b обработке происходило при дибутилгомокупратом. Было обнаружено, что реактивы Гриньяра, содержащие фенильный обладают меньшей селективностью заместитель, по продукту по сравнению с винилмагнийбромидом. При реакции циклоаддукта 220b с PhMgBr в отсутствие каких-либо солей меди продукты гидроксамовой кислоты не образовывались (таблица 18, №7). При добавлении каталитических количеств хлорида меди (II) выход составил 96% и соотношение *анти*-1,2-:*анти*-1,4:*син*-1,4-гидроксамовых кислот 1.9:1.6:1 (**221с**:**222с**:**223с**) (таблица 18, № 8).

Предыдущие исследования показали, что раскрытие N-карбаматных производных при использовании кислот Льюиса обладает повышенной селективностью по сравнению с Nацетильными циклоаддуктами (таблица 19, № 4 и 5) [98]. Было обнаружено, что реакция циклоаддукта N-Boc 220c с винилмагнийбромидом в присутствии хлорида меди(II) дает выход 71% и обладает большей селективностью по сравнению с реакцией N-ацетилциклоаддукта в тех же условиях. Повышение селективности может быть связано со сниженной способностью уходящей группы N-гидроксикарбамата по сравнению с гидроксаматом. При использовании циклоаддуктов N-карбаматов применение каталитических количеств меди не всегда требовалось. Кроме того, на реакции циклоаддуктов N-карбаматов часто больше влияет кислотность по Льюису реакционной среды, присутствие солей меди (II). Было показано, что реакция N-Boc циклоаддукта 220c с арилмагниевыми реагентами приводила к снижению селективности.

Таблица 18	 Раскрытие 	реактивами Г	ринья	ра
------------	-------------------------------	--------------	-------	----

NC-	D ¹	N I	\mathbf{D}^2	М	Π	Выход,	Соотношение
JNO	K	Nu	K	IVI	продукты	%	221:222:223
1	CH ₃	MgBr	CH ₂ CH	-	221a-223a	11	1:1:следы
2	CH ₃	MgBr	CH ₂ CH	CuCl ₂	221a-223a	89	7:3:1

3	CH ₃	MgBr	CH ₂ CH	FeCl ₃	221a-223a	-	Сложная смесь
4	CH ₃	MgBr	CH ₂ CH	Ga(acac) ₃	221a-223a	-	Сложная смесь
5	CH ₃	MgBr	CH ₂ CH	CuCl	221a-223a	77	3:3:1
6	PhCH ₂	Bu ₂ CuLi	CH ₃ (CH ₂) ₃	-	221b- 223b	73	2:1:0
7	PhCH ₂	PhMgBr	C ₆ H ₅	-	221c-223c	-	Нет продуктов гидроксамовой кислоты
8	PhCH ₂	PhMgBr	C ₆ H ₅	CuCl ₂	221c-223c	96	1.9:1.6:1
9	Bu ^t O	MgBr	CH ₂ CH	CuCl ₂	221d- 223d	71	8.4:3:1
10	Bu ^t O	EtMgBr	CH ₃ CH ₂	CuCl ₂	221e-223e	93	18:2:1
11	Bu ^t O	EtMgBr	CH ₃ CH ₂	-	221e-223e	87	38:2:1
12	Bu ^t O	PhMgBr	C ₆ H ₅	CuCl ₂	221f-223f	50	3.5:1:0
13	Bu ^t O	EtMgBr	CH ₃ CH ₂	MgBr ₂ ·OEt ₂	221e-223e	89	5.7:2:1

Таблица 19. Раскрытие кислотами Льюиса.

	\mathbf{R}^1	Nu	\mathbf{R}^2	Кислота	Προπλατι	Выход,	Соотношение
	K	INU	K	Льюиса	продукты	%	221:222: 223
1	PhCH ₂	MeOH	OCH ₃	CuCl ₂	221g-223g	78	1:14:5
2	PhCH ₂	MeOH	OCH ₃	FeCl ₃	221g-223g	74	1:7:1.7
3	PhCH ₂	MeOH	OCH ₃	Ga(acac) ₃	221g-223g	-	Нет реакции
4	Bu ^t O	MeOH	OCH ₃	CuCl ₂	221g-223g	41	1:2.4:1.4
5	Bu ^t O	MeOH	OCH ₃	FeCl ₃	221g-223g	72	1:1.8:1.2

Авторами работы [51] было исследовано раскрытие бициклического фрагмента реактивами Гриньяра. Как показано в таблице 22, результат реакции раскрытия цикла соединений 54, 57, 224-226 метилмагнийбромидом в присутствии 10 мол.% CuCl зависел от природы заместителя при атоме азота. Так, в случае карбамата 54 через 24 часа протекания реакции не наблюдалось, исходное соединение было веделено без изменений (таблица 20, №1). Сульфаниламиды 57 и 224 давали продукты раскрытия цикла, однако реакционная способность

и стереоселективность были низкими (таблица 20, № 2 и 3). Реакция с N-*n*-нозилпроизводным **226** приводила к образованию продуктов разложения (таблица 20, № 5). Наилучшие результаты были получены с (2-пиридил)сульфонильным производным **225** (таблица 20, № 4). Реакция протекала с высокой степенью конверсии и с образованием преимущественно *анти*-продукта.

Таблица 20. Продукт реакции раскрытия цикла соединений **54**, **57**, **224-226** метилмагнийбромидом.

N⁰	R	№ соединения	Конверсия	Продукт	Анти / син
1	Boc	54	0	227a	-
2	Ts	57	20	228a	71:29
3	(2-тиофен)сульфонил	224	20	229a	62:38
4	(2-пиридил)сульфонил	225	85	230a	90:10
5	Ns	226	Продукты	231a	-
			разложения		

Таким образом, как следует из обзора литературы, существуют удобные методы синтеза азабициклогептенов, что позволяет использовать эти соединения в качестве исходных субстратов в органическом синтезе. С другой стороны, имеются сведения о возможности раскрытия азабициклического каркаса, что делает азабициклоалканы перспективными полупродуктами в органическом синтезе. Тем не менее, возможность модификации двойной связи азабициклогептенов путём реакций циклоприсоединения изучена мало: в то время, как присоединению нитрилоксида к 2-азапроизводным с электронно-донорными заместителями у атома азота посвящены работы Квадрелли и сотр., а присоединение фенилнитрилоксида, полученного из нитроалкана, к 7-азабензнорборнадиену, упоминается в работе Тама, взаимодействие азанорборненов с нитрилиминами или 1,2-диаза-1,3-диенами не изучено вовсе. Поэтому исследование поведения азабициклогептенов в реакциях с 1,3-диполями и азадиенами является актуальной задачей.

III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ²

Мостиковый азабициклический мотив - основной структурный фрагмент ряда природных и биологически активных соединений. Так, например, эпибатидин I - производное 7-азанорборнана – проявляет высокую аффинность к никотиновому ацетилхолиновому рецептору (nAChR) и обладает обезболивающим эффектом [109]. Высокая селективность связывания с nAChR была выявлена и у структурных аналогов эпибатидина II, содержащих атом азота во втором положении [109]. Производные 2-азанорборнана могут быть использованы и как эффективные лиганды для пептидил-пролил изомеразы FKBP1 [110]. Ледипасвир - препарат для лечения гепатита С - содержит 2-азабицикло[2.2.1]гептановый каркас, введение которого позволило улучшить фармакологические свойства соединения по сравнению с пиперидиновым аналогом [111]. Среди производных 7-азабицикло[2.2.1]гептана было обнаружено соединение III, проявляющее свойства ингибитора малярийных протеаз [112].

С другой стороны, интерес к различным производным азабициклических соединений связан с возможностью раскрытия бициклического каркаса в мягких условиях, что приводит к образованию пяти- и шестичленных циклических структур (в том числе пирролидинов и пиперидинов) с заданной конфигурацией хиральных центров. Лактам Винса (2-азабицикло[2.2.1]гепт-5-ен-3-он) **IV** служит коммерчески доступным реагентом для синтеза ряда карбоциклических нуклеозидов, таких как карбовир и аристеромицин [113]. Создание азабициклического каркаса и его дальнейшая функционализация легли в основу синтеза нафтиридиномицина и хинокарцина – биологически активных алкалоидов, проявляющих противоопухолевую активность [114].

Реакция 1,3-диполярного циклоприсоединения в синтезе производных азабициклоалканов является эффективным методом модификации ненасыщенного фрагмента, входящего в состав бициклической молекулы. Так, циклоприсоединение нитрилоксидов и

² Нумерация соединений, таблиц, рисунков и схем в этом разделе и экспериментальной части не соответствует нумерации в литературном обзоре.

нитрилиминов, генерируемых *in situ*, позволяет получить иззоксазолиновые и пиразолиновые производные, которые обладают широким спектром биологической активности. Кроме того, [4+2] циклоприсоединение 1,2-диаза-1,3-диенов является эффективным методом модификации ненасыщенного фрагмента в синтезе тетрагидропиридазиновых производных. Однако проведенный анализ литературных данных показал, что реакции циклоприсоединения к азабицикло[2.2.n]алкенам, где n=1,2 исследованы мало. Поэтому актуальной задачей является разработка новых методов модификации азабициклических производных за счет введения их в реакции циклоприсоединения.

В качестве модельных соединений в работе изучались производные 2-аза-, 3-аза-2-оксаи 7-азабицикло[2.2.1]гептена. Синтез бициклического алкена **1** осуществлялся по описанным методикам. Так, 2-метил- и 2-бензил-2-азанорборнены получали методом, предложенным Грико и Ларсеном [6]: протонированная форма алкилимина, образующаяся *in situ* из соответствующего гидрохлорида амина и формальдегида, вводилась в реакцию Дильса-Альдера со свежеперегнанным циклопентадиеном.

+ Bn-NH₂·HCl +
$$H$$
 H H_{2O} H_{2O} H_{2O} $H_{1, 74\%}$ Br

2-Азанорборнены **2а-d**, **3**, содержащие электроноакцепторный заместитель во втором положении, синтезировали в две стадии: на первой в результате взаимодействия циклопентадиена с имином (образующимся *in situ* из хлорида аммония и формальдегида (или этилглиоксалата)) выделяют незамещенный по атому азота азанорборнен, который на второй стадии ацилируют [10]. Выделение продуктов проводили методом колоночной хроматографии; в случае соединения **2b** образуется преимущественно эндо-изомер.

2-Тозил-2-азабицикло[2.2.1]гепт-5-ен **2с** и этил 2-метоксикарбонил-2азабицикло[2.2.1]гепт-5-ен-3-карбоксилат **3** получены впервые, их строение установлено методом спектроскопии ЯМР ¹Н и ¹³С, состав подтвержден данными элементного анализа.

2-Аза-3-оксабицикло[2.2.1]гептены **5а,b** образуются в результате циклоприсоединения нитрозо-соединений, получаемых *in situ* окислением N-замещённых гидроксиламинов, к циклопентадиену [115].

Алкены **6**, **8**, **9** были синтезированы реакцией Дильса-Альдера, где в качестве диена выступали производные пиррола с электроноакцепторными заместителями у атома азота. Использование пятикратного избытка хлорида алюминия в синтезе диена **6a** позволяет избежать преимущественного образования продуктов присоединения по Михаэлю **7** [116].

В ходе синтеза азабензнорборнадиенов **9** использовали два метода синтеза дегидробензола: из орто-бром-фторбензола и из антраниловой кислоты. Выходы в обоих случаях составляли 30-40%.

Ш.1. Синтез изоксазолинов и пиразолинов, конденсированных с азабициклическим каркасом

III.1.1. 2-Азабицикло[2.2.1] гептены

Синтез изоксазолинов³

2-Азабицикло[2.2.1]гептаны пиперидина, являются аналогами пирролидина И циклопентиламина с жестко зафиксированной конформацией. Поэтому изучение этих соединений ведётся в двух направлениях: синтез новых биологически активных соединений, содержащих 2-азанорборнановый фрагмент, и использование азабициклического фрагмента в синтезе моноциклических соединений с заданной конфигурацией заместителей [2]. Перспективным методом модификации азабицикло[2.2.1] гептанов является синтез на их основе изоксазолинов, которые, с одной стороны, проявляют биологическую активность, а, с другой изоксазолиновое стороны, являюется некоторых кольцо скрытым эквивалентом функциональных групп, что может быть использовано на соответствующей стадии синтеза [117].

Существует два основных подхода к синтезу изоксазолинов: нитрозирование производных циклопропанов и 1,3-диполярное присоединение нитрилоксидов к алкенам (схема 1).

56

³ При подготовке данного раздела диссертации использована следующая публикация, выполненная автором в соавторстве, в которой, согласно Положению о присуждении ученых степеней в МГУ, отражены основные результаты, положения и выводы исследования: Гаврилова А.Ю., Бондаренко О.Б., Тиханушкина В.Н., Солодовникова Т.А., Зык Н.В. Изучение особенностей взаимодействия арилциклопропанов с этилсульфатом нитрозония и тетрафторборатом нитрозония //Журнал органической химии. 2020. Т.56. № 5. С. 693-704. (30%)

Схема 1.

На первом этапе работы мы предполагали реализовать первый подход – раскрытие циклопропанов. Разработанные ранее в нашей лаборатории системы NOCl – SOn (n = 2,3) и EtONO – SO₃ в некоторых случаях приводят к образованию побочных продуктов, что связано с образованием сильной кислоты на стадии выделения изоксазолинов [118]. Так как производные азанорборненов часто оказываются чувствительными к действию кислот, мы предварительно изучили особенности нитрозирования легко доступных фенилциклопропана и 1-алкил-2-фенилциклопропанов таким реагентом как тетрафторборат нитрозония.

Было найдено, что при взаимодействии фенилциклопропана **10a** с NOBF₄ в нитрометане образуется единственный продукт: изоксазолин **11a** с выходом 94%, при этом коричный альдегид не был зафиксирован даже в следовых количествах.

Однако следует отметить, что, если в случае взаимодействия тетрафторбората нитрозония с 1,2-диарилциклопропанами были выделены изоксазолины с высокими выходами [119], то при взаимодействии с 1-алкил-2-фенилциклопропанами в ацетонитриле в ряде случаев в значительных количествах образовывались побочные продукты [118]. Использование нитрометана (полярного, но ненуклеофильного растворителя) должно было увеличить общий выход изоксазолинов и позволить избежать образование продуктов с участием внешнего нуклеофила.

Ранее [120] было найдено, что при взаимодействии 1-алкил-2-арилциклопропанов с нирозирующими реагентами атака катиона нитрозония по положениям С-1 (путь **A**) и С-3 (путь **B**) (схема 2) приводит к образованию бензильного карбокатиона, который стабилизируется за счет нуклеофильного участия кислорода нитрозо-группы. В результате образуются изоксазолины **11** и **12**.

Схема 2.

Атака катиона нитрозония по положению C-2 осуществляется благодаря лабильности связи C-1-C-2 (несмотря на то, что образование бензильного карбокатиона в данном случае невозможно), но в результате этого кроме изоксазолинов **13** могут образоваться продукты без участия кислорода нитрозогруппы (путь **C**, схема 2).

Действительно, нами найдено, что при взаимодействии 1-метил-2-фенилциклопропана 10b с тетрафторборатом нитрозония в нитрометане реализуются все три пути реакции, но преимущественно образуется изоксазолин 11b, то есть доминирующим является путь A. Выход изоксазолина 12b почти в два раза меньше, чем соединения 11b, а изоксазолин 13b был выделен в следовых количествах. Следует отметить, что проведение реакции в ацетонитриле и хлористом метилене⁴ приводит к единственному продукту 11b.

Реагенты и условия: *a*, NOBF₄ (1 экв), CH₃NO₂, 20°C *b*, NOBF₄ (2 экв), CH₃CN, 0-20°C *c**, NOBF₄ (1 экв), CH₂Cl₂, 20°C

Принципиально иная региоселективность реакции проявляется при использовании в качестве субстрата 1-фенил-2-циклогексилциклопропана **10с**: в реакции с тетрафторборатом нитрозония в нитрометане изоксазолина **13с** выделено в два раза больше, чем суммарно изоксазолинов **11с** и **12с**.

⁴ Здесь и далее «*» означает, что данные взяты из работы [118]

Реагенты и условия: *a*, NOBF₄ (1 экв), CH₃NO₂, 20°C; *b**, NOBF₄ (2 экв), CH₃CN, 0-20°C.

Очевидно, что изменение региоселективности нитрозирования циклопропана **10с** по сравнению с циклопропаном **10b** вызвано стерическим фактором.

При проведении реакции в ацетонитриле [118] основным направлением реакции также является путь **C**, но образуется не изоксазолин, а кетон **14c** – продукт стабилизации образующегося в ходе реакции вторичного карбокатиона не за счет внутримолекулярной гетероциклизации, а за счет атаки внешнего нуклеофила (растворителя).

Можно предположить, что раскрытие стерически затрудненных 1-изопропил- и 1третбутил-2-фенилциклопропанов **10d,е** также будет проходить с преимущественной атакой электрофильной частицы по бензильному положению (путь C, схема 2). Тем не менее, доля продуктов, образующихся по пути C, в случае 1-изопропил-2-фенилциклопропана **10d** ощутима, но не превышает 39% (строки 1-3 таблицы 1).

Реагенты и условия: *a*, NOBF₄ (1 экв), CH₃NO₂, 20°C *b**, NOBF₄ (2 экв), CH₃CN, 0-20°C *c**, NOBF₄ (1 экв), CH₂Cl₂, 20°C

59

Таблица 1. Соотношение продуктов нитрозирования циклопропанов **10d,е,** образующихся по путям **A**, **B** и **C** (схема 2)

No	Циклопроцан	Растворитель	Соотноше	ение продуг		
512	циклопропан	тастворитель	Путь А	Путь В	Путь С	Оощий выход, 70
1	10d	CH ₃ NO ₂	34	32	34	47
2	10d	CH ₃ CN	43	18	39	28
3	10d	CH ₂ Cl ₂	32	39	29	31
4	10e	CH ₃ NO ₂	0	5	95	66

Принципиально иная картина складывается в случае 1-*трет*-бутил-2-фенилциклопропана 10е: путь A не реализуется, изоксазолин образуется только по пути B в следовых количествах, основным является путь C (суммарный выход продуктов 15е, 16е, 18, 19 составил 63%) (схема 2, таблица 1).

Кето-группа в соединениях 14, 15, 17 и 18 может образовываться в результате гидролиза оксимов или нитрозооксимов [121] (схема 3).

Отметим также, что нитрозирование циклопропана **10d** в ацетонитриле или хлористом метилене проходило без образования перегруппированных продуктов. При нитрозировании циклопропанов **10d,e** в нитрометане при реализации пути **C** в большинстве случаев циклизации предшествовала миграция водорода или метильной группы с образованием карбокатионов **21** и **22** соответственно (схема 4). Карбокатионы **20-22** стабилизируются в основном за счет

внутримолекулярного алкилирования ароматического кольца (соединения **17,18**) и гетероциклизации с участием кислорода или азота нитрозо-группы (соединения **16d,e**, **19**). Образование гидроксикетонов **15d,e** можно объяснить гидратацией двойной связи оксима **23** на стадии гидролиза реакционных смесей.

Схема 4.

Строение полученных соединений устанавливали на основании данных спектроскопии ЯМР ¹Н. Так, в ПМР-спектрах 3-алкил-5-арилизоксазолинов **11** и 5-алкил-3-арилизоксазолинов **13** имеются сигналы AB-системы в области 2.8 – 3.4 м.д., принадлежащие CH₂-группе и представляющие собой дублет дублетов дублетов с КССВ $J_{4,4} \approx 16.5$ Гц и $J_{4,5} \approx 11$ и 8 Гц. Сигналы протонов НСО изомеров **11** и **13** сильно отличаются как по химическому сдвигу, так и по мультиплетности. Сигнал протона НСО соединений **11** лежит в области 5.4-5.6 м.д., и проявляется в виде дублета дублетов с КССВ $J_{5,4} \approx 11$ и 8 Гц. Сигнал протона НСО изомеров **13** находится в более сильном поле ($\delta \approx 4.5$ м.д.) и представляет собой дублет дублетов дублетов с КССВ $J_{3,4} \approx 10.5$ и 8.5 Гц, $J_{3,алкил} \approx 6$ Гц.

В ПМР-спектрах 4-алкил-5-арилизоксазолинов **12** в области 3.0-3.3 м.д имеется сигнал с интегральной интенсивностью 1H и относится к протону H(4). Протон в 3-м положении имеет химический сдвиг ~ 7.1 м.д. (аналогично 5-арилциклопропанам) и проявляется в виде узкого дублета или уширенного синглета. Химический сдвиг сигнала HCO в этих соединениях

занимает промежуточное значение между химическими сдвигами сигналов HCO изоксазолинов **11** и **13** и имеет вид дублета с КССВ порядка 6 Гц.

Таким образом, тетрафторборат нитрозония является эффективным нитрозирующим реагентом, и был выбран для раскрытия циклопропанового фрагмента соединения 24. Мы предполагали, что атака нитрозоний катиона 6-азатрицикло[3.2.1.0^{2,4}]октана пройдёт по атому образованием карбокатиона в положении С-4, который углерода C-3 c может стабилизироваться: во-первых, за счет внутримолекулярной гетероциклизации, где нуклеофилом выступает атом кислорода нитрозо-группы (25), во-вторых, возможно участие кислорода бутоксикарбонильной группы (26), в-третьих, возможно участие атома азота в положении 2 азанорборнана (27), в-четвертых, за счет участия внешнего нуклеофила (28). В первом случае ожидалось образование изоксазолина, во всех остальных – кето-группы (схема 5).

Были использованы следующие условия: тетрафторборат нитрозония (1 эквивалент, нитрометан), тетрафторборат нитрозония (2 эквивалента, ацетонитрил). В обоих случаях была получена сложная неразделяемая смесь продуктов. Целевой изоксазолин **25** выделить не удалось.

В связи с этим был осуществлён второй подход к синтезу изоксазолинов: 1,3-диполярное циклоприсоединение нитрилоксидов к азабициклоалкенам⁵. Незамещенный карбоциклический

⁵ При подготовке данного раздела диссертации использована следующая публикация, выполненная автором в соавторстве, в которой, согласно Положению о присуждении ученых степеней в МГУ, отражены основные результаты, положения и выводы исследования: Solodovnikova T. A., Zyk N. V., Gavrilova A. Yu. Reaction of 2-azabicyclo[2.2.1]heptenes with nitrile oxides //Mendeleev Communications. 2022. V. 32. P. 549-550. (45%)

аналог 2-азабицикло[2.2.1]гептена - норборнен -широко использовался в качестве модельного субстрата при изучении реакций 1,3-диполярного циклоприсоединения нитрилоксидов [122]. Независимо от природы и способа генерирования диполя присоединение протекает исключительно с *экзо*-стороны. Для производных бицикло[2.2.1]гептена, содержащих заместитель во втором положении, реакция является региоспецифичной [123–125], но для производных, содержащих заместители в пятом положении, наблюдается лишь незначительное преобладание одного из региоизомеров [125] (схема 6).

Схема 6.

Ранее на примере взаимодействия 2-азабицикло[2.2.1]гепт-5-ен-3-она с бром- и алкилнитрилоксидами и N-алкил- и N-бензилазанорборненов с фенилнитрилоксидом было показано, что, как и в случае 5-замещенных норборненов, образуются два региоизомера с *экзо*расположением изоксазолинового кольца. При этом отмечалась меньшая реакционная способность азанорборена по сравнению с норборненом в случае 1,3-циклоприсоединения фенилнитрилоксида [61].

Нами было изучено влияние на регио- и стереохимические особенности протекания реакции заместителей как в ароматическом кольце 1,3-диполей **29а-с**, так и защитной группы у атома азота в 2-азабицикло[2.2.1]гепт-5-ене. Существуют несколько способов, позволяющих генерировать нитрилоксиды *in situ* (схема 7) [126]. Нами во всех случаях использовалось элиминирование гидрохлорида из гидроксамоилхлоридов под действием триэтиламина.

Присоединение арилнитрилоксидов к N-замещенным-2-азанорборненам **1**, **2а-d**, протекает при комнатной температуре с образованием двух региоизомеров с *экзо*-расположением изоксазолинового цикла (таблица 2).

Преобладание одного из региоизомеров (как и в реакциях с алкил-замещёнными 2азанорборненами [61]) несущественно и может незначительно меняться в зависимости от используемого растворителя. Полная конверсия алкена наблюдалась при соотношении нитрилоксид : алкен = 1 : 1 только для 4-метоксифенилнитрилоксида, для всех других нитрилоксидов наилучшие результаты были получены при соотношении реагентов нитрилоксид : алкен = 3 : 2. Выходы реакций составляли 29-87 % и зависели как от строения диполярофила, так и 1,3-диполя. Низкие выходы в ряде случаев можно объяснить двумя причинами. Во-первых, образованием фуроксанов в качестве побочных продуктов (схема 8) [127].

Схема 8

Во-вторых, существенное снижение выхода происходит при хроматографическом разделении смеси изомеров. Так, например, после хроматографического разделения суммарный выход изомеров **30f** и **31f** (№6) или **30k** и **31k** (№11) (таблица 2) не превысил 25%, однако, согласно данным спектроскопии ЯМР ¹Н реакционных смесей, выход продуктов в обоих случаях количественный.

N⁰	Алкен	Гидроксамоил- хлорид	R^1	R^2	Продукт	Выход ^а , %	Соотношение ⁶ 30:31
1	1	29a	Bn	Ph	30a+31a	63	41:59
2	2a	29a	CO ₂ Me	Ph	30b+31b	41	49:51
3	2b	29a	Boc	Ph	30c+31c	87	52:48
4	2c	29a	Ts	Ph	30d+31d	71	48:52
5	2d	29a	Bz	Ph	30e+31e	45	40:60
6	1	29b	Bn	4-MeOC ₆ H ₄	30f+31f	24	63:37
7	2a	29b	CO ₂ Me	4-MeOC ₆ H ₄	30g+31g	54	49:51
8	2b	29b	Boc	4-MeOC ₆ H ₄	30h+31h	57	35:65
9	2c	29b	Ts	4-MeOC ₆ H ₄	30i+31i	55	45:55
10	2d	29b	Bz	4-MeOC ₆ H ₄	30j+31j	37	42:58
11	1	29c	Bn	$4-NO_2C_6H_4$	30k+31k	24	71:29
12	2a	29c	CO ₂ Me	$4-NO_2C_6H_4$	301+311	29	49:51
13	2b	29c	Boc	$4-NO_2C_6H_4$	30m+31m	33	33:67
14	2c	29c	Ts	$4-NO_2C_6H_4$	30n+31n	46	46:54
15	2d	29c	Bz	$4-NO_2C_6H_4$	300+310	54	34:66

Таблица 2. Выходы продуктов взаимодействия нитрилоксидов 29а-с с 2-азанорборненами 1, 2

Примечание: ^а Выходы указаны после хроматографического разделения. ⁶Соотношение изомеров определяли по данным спектроскопии ЯМР ¹Н реакционных смесей.

Выделить региоизомеры в индивидуальном виде удавалось не во всех случаях, но преимущественное преобладание одного из изомеров в фракциях, полученных при хроматографическом разделении реакционных смесей, позволяло установить строение изоксазолинов методом ЯМР-спектроскопии. Экзо-расположение изоксазолинового кольца и, соответственно, эндо-расположение протонов во втором и шестом положениях следует из значения константы их спин-спинового взаимодействия 8 Гц, что характерно для КССВ *цис-ди-эндо*-расположение в норборнановом каркасе [128]. Строение изомера **31n** было установлено с использованием эксперимента NOESY: наблюдалась корреляция сигнала протона HC⁷ (δ 4.39 м.д.) с сигналами пространственно близких с ним протонов HCC=N (δ 4.20 м.д.) и *орто*-расположенными протонами 4-нитро-C₆H₄ (δ 7.92 м.д.) и тозильной (δ 7.70 м.д.) групп, и корреляция сигнала протона HCO (δ 5.01 м.д.) с сигналами протонов эндо-HC⁹ (δ 2.93 м.д.), HC¹ (δ 3.09 м.д.) и HC⁶ (δ 4.18 м.д.). Сигналы протонов HCC=N и HCO изомера **30n** имеют химические сдвиги 3.79 м.д. и 5.07 м.д. (соответственно).

Рисунок 1. Результаты эксперимента NOESY для соединения 31n

Таким образом, сигнал протона HCO изомера **30n** сдвинут в более слабое поле по сравнению с протоном HCO изомера **31n**. Напротив, сигнал протона HCC=N изомера **30n** сдвинут в более сильное поле по сравнению с сигналом протона HCC=N изомера **31n** (рис. 2). Аналогичная картина наблюдается для изомеров **30a** и **31a** [61]. На основании этих данных были установлены структуры всех изомеров, содержащих у атома азота тозильную и бензильную группы.

Рисунок 2. Фрагменты спектров ПМР соединений 31n (верхний) и 30n (нижний)

В спектрах ЯМР ¹Н и ¹³С соединений, содержащих CO_2Me , Вос и Вz - группы, присутствует два набора сигналов, что является результатом заторможенного вращения вокруг связи N-CO. Учитывая эту особенность амидов и карбаматов мы предположили, что протон HCO изомера **30** проявляется в спектре в виде двух сигналов, а протон HCCAr в виде одного, для изомера **31** картина меняется на противоположную.

Рисунок 3. Фрагменты спектров ¹Н ЯМР изомеров **30m** (верхний) и **31m** (нижний)

Наше предположение подтвердилось на примере изомера **31m**: его строение следует наличия кросс-пиков между сигналами протона HC^7 (δ 4.36 м.д и 4.47 м.д.) и сигналами пространственно близких с ним протонов HCC=N (δ 3.87 м.д. и 3.98 м.д.) и *орто*-расположенными протонами ароматического кольца (δ 7.95 м.д. и 7.99 м.д.), а также кросспиков между сигналами протона HCO (два близко расположенных дублета δ 4.96 м.д. и 4.97 м.д.) и сигналами протонов *эндо*-HC⁹ (δ 2.93 м.д.), HC¹ (δ 2.99 м.д.) и HC⁶ (δ 3.87 м.д. и 3.98 м.д.) в эксперименте NOESY (рисунок 4).

Рисунок 4. Результаты эксперимента NOESY для соединения 31m

Введение в реакцию 1,3-диполярного циклоприсоединения к алкенам бром- **29d** и этоксикарбонил- **29e** замещённых нитрилоксидов позволяет получать изоксазолины с легко модифицируемыми группами [63, 67-70]:

Таблица 3. Выходы продуктов взаимодействия нитрилоксидов 29d, е с 2-азанорборненами

N⁰	Алкен	Гидроксамоил-	R^1	R^2	Продукт	Выход ^а ,	Соотношение
		галогенид				%	30:31
1	1	29d	Bn	Br	30p+31p	20	53:47
2	2a	29d	CO ₂ Me	Br	30q+31q	20	53:47
3	2b	29d	Boc	Br	30r+31r	29	50:50
4	1	29e	Bn	CO ₂ Et	30s+31s	66	55:45
5	2c	29e	Ts	CO ₂ Et	30t+31t	74	49:51

Примечание: ^а Выходы указаны после хроматографического разделения. ⁶Соотношение изомеров определяли по данным спектроскопии ЯМР ¹Н реакционных смесей.

Бромнитрилоксид генерировали *in situ* взаимодействием дибромформальдоксима с гидрокарбонатом натрия. Мы предполагаем, что низкий выход целевых бромизоксазолинов связан с плохой растворимостью использовавшегося основания.

Наилучшие результаты в реакции циклоприсоединения были получены при соотношении реагентов нитрилоксид:алкен = 2:1. В качестве растворителей использовали этилацетат, тетрагидрофуран и диэтиловый эфир. Было найдено, что количество побочных продуктов снижается при переходе от этилацетата к эфиру, при этом отличалось незначительное влияние природы растворителей на соотношение региоизомеров: оно несущественно возрастало при переходе от ТГФ (**30p:31p** = 52:48) к этилацетату (**30p:31p** = 64:36).

Этоксикарбонилнитрилоксид генерировали *in situ* взаимодействием этоксикарбонилхлорформальдоксима с триэтиламином. Хлороксим получали из гидрохлорида этилового эфира глицина по приведенной ниже схеме:

В результате реакции были выделены индивидуальные региоизомеры с удовлетворительными выходами в соотношении 1:1 (таблица 3). Полная конверсия алкенов достигалась при соотношении нитрилоксид:алкен = 2:1.

Экзо-расположение изоксазолинового кольца в соединениях 30p-t и 31p-t следует из данных спектроскопии ЯМР¹Н: в пользу эндо-расположения протонов в пятом и шестом положениях свидетельствует значение константы их спин-спинового взаимодействия 8Гц, что характерно для КССВ цис-ди-эндо-расположенных протонов в норборнановом каркасе [128]. Разделить региоизомеры. полученные при взаимодействии бромнитрилоксида с азабициклоалкеном 1, в индивидуальном виде не удалось, однако преимущественное преобладание одного из изомеров в фракциях, полученных при хроматографическом разделении реакционных смесей, позволило отнести сигналы протонов к двум региоизомерам. Установление структуры изомеров было сделано на основании значений химических сдвигов и по аналогии с данными, полученными для тозил-замещенных изомеров 30n и 31n. Отнесение сигналов приведено на рисунке 5.

Рисунок 5. Отнесение сигналов в изомерах 30р и 31р

Наличие связи C=N подтверждается характерным сигналом в спектре ЯМР ¹³С в области 135 м.д. К сожалению, отсутствие возможности выделениия региоизомерных бромизоксазолинов в индивидуальном виде снижает препаративную ценность данной реакции.

Введение этоксикарбонильной группы в третье положение N-метоксикарбонил-2азанорборнена эндо-За не изменяет ни направление реакции, ни соотношение региоизомеров по сравнению с незамещенным алкеном 2a. Тем не менее, повышается выход целевого продукта (см. таблицу 2).

Повышение выхода можно объяснить увеличением реакционной способности диполярофила, что приводит к увеличению скорости реакции с алкеном. В этом случае уменьшается вклад побочной реакции – димеризации нитрилоксида с образованием фуроксана.

Таким образом, 1,3-диполярное циклоприсоединение нитрилоксидов к 2азабицикло[2.2.1]гептенам с электроноакцепторными заместителями у атома азота протекает нерегиоселективно с образованием продуктов с *экзо*-расположением изоксазолинового кольца независимо от типа защитной группы у атома азота.

Синтез пиразолинов

Производные пиразолина проявляют широкий спектр биологической активности, обладая противовоспалительным, противомикробным, противоопухолевым и нейротропным действиями [129]. Один из основных методов синтеза пиразолинов – 1,3-диполярное циклоприсоединение нитрилиминов к алкенам. Нитрилимины образуются *in situ* либо в результате термолиза (или фотолиза) тетразинов, либо под действием оснований на гидразоноилхлориды (схема 9).

Cxema 9.

На раннем этапе изучения 1,3-диполярного циклоприсоединения нитрилиминов к норборнену было найдено, что способ генерирования нитрилимина не влияет на результат реакции: образуется пиразолин с высоким выходом с *экзо*-расположением гетероциклического кольца [130]. Позже было показано, что аналогичным образом к норборнену присоединяются как диарилнитрилимины, так и метиларилнитрилимины [131].

На настоящий момент взаимодействие нитрилиминов с 2-азанорборненами не изучено. Учитывая чувствительность изучаемых субстратов к высоким температурам, в качестве источника нитрилиминов использовались гидразоноилхлориды.

Было найдено, что взаимодействие 2-азанорборненов 1 и 2с с гидразоноилхлоридами 34аd в присутствии триэтиламина (соотношение алкен: гидразоноилхлорид:триэтиламин = 1:3:3) проходит гладко при комнатной температуре. В результате образуется смесь региоизомеров 35а-h и 36a-h (таблица 4).

Таблица 4. Выходы продуктов взаимодействия нитрилиминов с 2-азанорборненами 1 и 2с.

N⁰	Алкен	Гидразоно	R^1	R^2	Продукт	Выход ^а ,	Соотноше-
		илхлорид				%	ние ⁶ 35:36
1	1	34a	Bn	Ph	35a+36a	94	58:42
2	1	34b	Bn	Fur-2-yl	35b+36b	36	50:50
3	1	34c	Bn	CH ₃	35c+36c	70	53:47
4	1	34d	Bn	Cyclopropyl	35d+36d	40	50:50
5	2c	34a	Ts	Ph	35e+36e	68	56:44
6	2c	34b	Ts	Fur-2-yl	35f+36f	73	52:48
7	2c	34c	Ts	CH ₃	35g+36g	61	57:43
8	2c	34d	Ts	Cyclopropyl	35h+36h	93	55:45

Примечание: ^а Выходы указаны после хроматографического разделения. ⁶Соотношение изомеров определяли по данным спектроскопии ЯМР ¹Н реакционных смесей.

Экзо-расположение пиразолинового цикла в соединениях **35** и **36** было установлено на основании данных ЯМР спектроскопии: константа спин-спинового взаимодействия протонов во втором и шестом положениях составляет порядка 8 Гц, что характерно для КССВ *цис-ди-эндо*-расположенных протонов в норборнановом каркасе. Строение изомера **35c** было установлено с использованием эксперимента NOESY: наблюдающаяся корреляция синглета с химическим сдвигом **3.41** м.д. с сигналами протонов CH₂ бензильной группы позволяет отнести этот сигнал к протону HC⁷, а, в свою очередь, корреляция сигнала протона HC⁷ с сигналом протонов CH₃-

группы (δ 1.96 м.д.) подтверждает строение изомера **35с**. Также наблюдается корреляция сигнала *орто*-протонов фенильной группы пиразолинового кольца (δ 7.01 м.д.) с сигналами пространственно близких к ней протонов HC¹ (δ 2.81 м.д) и HC² (δ 4.04 м.д.).

Рисунок 6. Результаты эксперимента NOESY для соединения 35с

Следовательно, сигнал протона HC^2 изомера **35c** сдвинут в более сильное поле по сравнению с аналогичным сигналом изомера **36c**, а сигнал протона HC^6 изомера **35c** сдвинут в более слабое поле по сравнению с аналогичным сигналом изомера **36c** (рис. 7). На основании этих фактов были установлены структуры всех изомеров, содержащих у атома азота тозильную и бензильную группы.

Рисунок 7. Фрагменты спектров ¹Н ЯМР изомеров **35с** (верхний) и **36с** (нижний).

Таким образом, присоединение нитрилиминов **34а-d** к 2-азабициклогептенам протекает стереоспецифично с *экзо*-стороны, но не региоселективно, с образованием двух изомеров.
III.1.2. 7-Азабензнорборнадиены

Образование изоксазолинов, конденсированных с бензнорборнадиеном было изучено в работе [132]. Как и в случае норборнена были выделены исключительно продукты с *экзо*расположением изоксазолинового кольца.

Влияние заместителя у атома азота в 7-азабензнорборнадиенах на 1,3циклоприсоединение нитрилоксидов систематически не изучалось, хотя есть пример присоединения нитрилоксидов, получаемых *in situ* из первичных нитросоединений под действием трет-бутилкарбоната в присутствии диметиламинопиридина [72]. Нами найдено, что в результате взаимодействия 7-азабензнорборнадиенов **2а-с** с нитрилоксидами образуются устойчивые аддукты **39а-i** (таблица 5) с *экзо*-расположением изоксазолинового кольца, что следует из значения КССВ протонов при заместителях ($J \approx 8 \Gamma$ ц).

Как видно из таблицы 5, увеличение объема заместителя у атома азота 7азанорборнадиена не оказывает влияния на протекание реакции (сравнить, например, строки 2 и 3). Тем не менее, при введении тозильного заместителя отмечается понижение выхода (строки 4, 7, 9 таблицы 5). Необходимо отметить, что снижение выходов в данных случаях вызвано потерями на стадии выделения продуктов методом колоночной хроматографии, так как спектры ПМР реакционных смесей не содержали значительного количества побочных продуктов. Таким образом, при планировании многостадийных синтезов, где тозил-замещенные изоксазолины используются в качестве полупродуктов, следует избегать их хроматографической очистки.

N⁰	Алкен	Гидроксамоил- хлорид	R^1	R^2	Продукт	Выход ^а , %
1	9	29a	Boc	Ph	39a	95
2	9a	29b	CO ₂ Me	$4-\text{MeOC}_6\text{H}_4$	39b	80
3	9b	29b	Boc	$4-MeOC_6H_4$	39 c	85
4	9c	29b	Ts	$4-MeOC_6H_4$	39d	64
5	9a	29c	CO ₂ Me	$4-NO_2C_6H_4$	39 e	57
6	9b	29c	Boc	$4-NO_2C_6H_4$	39f	82
7	9c	29c	Ts	$4-NO_2C_6H_4$	39g	26
8	9a	29e	CO ₂ Me	CO ₂ Et	39h	55
9	9c	29e	Ts	CO ₂ Et	39i	46

Таблица 5. Выходы продуктов взаимодействия нитрилоксидов с бензнорборнадиенами.

Примечание: ^а Выходы указаны после хроматографического разделения.

Возможность синтеза пиразолинов путём 1,3-диполярного циклоприсоединения нитрилиминов к 7-азабензнорборнадиенам была изучена на примере соединения **9b**. Найдено, что реакция протекает гладко, с образованием единственного изомера с *экзо*-расположением пиразолинового кольца (таблица 6). Наилучшие выходы достигаются в случае, когда соотношение алкен : гидразоноилхлорид : триэтиламин составляет 1:2:2, а время проведения реакции – 24 часа.

Нитрилимин	R^2	Пиразолин	Выход, %	Пиразол	Выход, %
34a	Ph	40 a	52	41 a	11
34b	Fur-2-yl	40b	44	41b	15
34c	CH ₃	40c	54	41c	46
34d	Cyclopropyl	40d	70	41d	30

Таблица 6. Выходы продуктов взаимодействия нитрилиминов с 7-азабензнорборнадиеном **9b**.

Следует отметить, что, в отличие от изоксазолинов **39**, пиразолины **40а-d** подвержены ретро-реакции Дильса-Альдера: в спектрах ЯМР H^1 реакционных смесей было зафиксировано наличие пиразолов **41а-d** (~ 10 %), причем их выход растёт с увеличением времени реакции (изоиндол **42** зафиксировать не удалось). Также образование значительных количеств пиразолов **41а-d** фиксируется в образцах пиразолинов **40а-d**, выделенных в индивидуальном виде в результате хроматографического разделения реакционных смесей, уже через неделю, а спустя 2 месяца распад пиразолинов проходит полностью.

III.1.3 7-Азабицикло[2.2.1]норборнадиены

Хемоселективность присоединения нитрилоксидов **29а-с** и дифенилнитрилимина **34а** к норборнадиену **43** и 7-окса-норборнадиену **44** изучалось в работе [133]. Аддукты **45** и **46** не выделялись, так как они разлагались в условиях проведения реакций с образованием соответствующих гетероциклических соединений (схема 8).

Схема 8.

Тем не менее, на основании анализа продуктов распада были сделаны следующие выводы: арилнитрилоксиды преимущественно присоединяются по незамещённой C=C-связи норборнадиена **43**, направление присоединения нитрилиминов противоположное – по связи с электроноакцепторными заместителями. В случае оксанорборнена **44** как нитримины, так и нитрилоксиды преимущественно присоединяются по C=C-связи с электроноакцепторными заместителями.

Хемоселективность присоединения нитрилоксидов изучалась на примере производных 7азанорборнадиена **6а,b**. Было найдено, что при взаимодействии этоксикарбонилнитрилоксида и метоксифенилоксида с норборнадиенами вместо изоксазолинов **50,51** были выделены четыре продукта: два пиррола **53,55** и два изоксазола **52,54** (таблица 7). Такой набор продуктов говорит о том, что образующиеся в ходе реакции аддукты неустойчивы и быстро подвергаются ретрореакции Дильса-Альдера. Аналогичный результат был получен ранее при изучении взаимодействия фенилнитрилоксида с N-Boc-2-азанорборнадиеном [71].

Из сравнения результатов реакций для алкенов **6a** и **6b** видно, что объём заместителя у атома азота 7-азанорборнадиена не влияет на ход присоединения (таблица 7). Существенным фактором, влияющим на хемоселективность реакции, является природа нитрилоксида: при уменьшении электроноакцепторных свойств заместителя в нитрилоксиде основным направлением становится атака по двойной связи, содержащей электроноакцепторные группы. В случае этоксикарбонилнитрилоксида реализуются оба направления реакции, но доминирует взаимодействие с незамещенной С=С-связью.

N⁰	Алкен	Гидрокс амоил-	R^1	R^2	Соотношение продуктов			
		хлорид			52, %	53, %	54, %	55, %
1	6a	29b	CO ₂ Me	4-MeOC ₆ H ₄	52a , 50%	53a , 36%	54a , 7%	55a , 7%
2	6b	29b	$\rm CO_2Bu^t$	4-MeOC ₆ H ₄	52a , 45%	53a , 45%	54a , 5%	55b , 5%
3 ^a	6b	29a	CO_2Bu^t	Ph	42%	35%	11%	12%
4	6a	29e	CO ₂ Me	CO ₂ Et	52e , 26%	53e , 18%	54e , 28%	55a , 28%
5	6b	29e	$\rm CO_2Bu^t$	CO ₂ Et	52e , 20%	53e , 20%	54e , 30%	55d , 30%

Таблица 7. Выходы продуктов взаимодействия нитрилоксидов с 7-азанорборненами ба, b

Примечание: ^аДанные работы [71].

Основными продуктами взаимодействия нитрилиминов с 7-азанорборнадиенами **6а,b** являются пиразолы **58а-d** и пиррол **59**. Пиразолы **41а-с,е** и пиррол **60а,b**, которые были зафиксированы в ПМР – спектре реакционной смеси лишь в следовых количествах (таблица 8).

Состав и соотношение продуктов позволяет предположить, что образующиеся бициклические пиразолины **56a-d** и **57a-d** неустойчивы и быстро вступают в ретро-реакцию Дильса-Альдера. При этом 1,3-циклоприсоединение нитриминов к 7-азанорборнадиенам проходит преимущественно по C=C-связи, содержащей электроноакцепторные заместители.

Таблица 8. Выходы продуктов взаимодействия нитрилиминов с 7-азанорборненами **6b,8** по данным ПМР реакционных смесей

№ Алкен	Гидразо ноил-	R	R^1	\mathbf{R}^2	Конверсия алкена, %	Соотношение пиразолов		
		хлорид				алкена, %	58 , %	41, %
1	6b	34a	Boc	C_2H_5	Ph	6b , 65%	58a , 94%	41a , 6%
2	6b	34b	Boc	C_2H_5	Fur	6b , 50%	58b , 90%	41b , 10%
3	6b	34c	Boc	C_2H_5	CH ₃	6b , 79%	58c , 96%	41c , 4%
4	8	34e	CO ₂ Me	CH ₃	<i>p</i> -C ₆ H ₄ Cl	8 , 50%	58d , 95%	41e, 5%

Таким образом, бициклические пиразолины **56а-d** и **57а-d** выделить не удается, они неустойчивы и быстро вступают в ретро-реакцию Дильса-Альдера. При этом 1,3циклоприсоединение нитриминов к 7-азанорборнадиенам проходит преимущественно по C=Cсвязи, содержащей электроноакцепторные заместители независимо от электронодонорных или акцепторных свойств заместителей в нитрилиминах.

III.1.4. 3-Аза-2-окса-бицикло[2.2.1]гептены

Введение кислорода в третье положение 2-азанорборненов открывает дополнительные синтетические возможности: связь С-О легко раскрывается под действием нуклеофильных реагентов, а восстановление связи N-О приводит к образованию аминолов. Поэтому предметом наших исследований стали 3-аза-2-оксанорборнены. Как следует из литературных данных, а данный момент существуют примеры взаимодейтвия фенил-, антрацен-, бром- и этоксикарбонилнитрилоксидами с 3-бензоил-3-аза-2-оксабицикло[2.21]гептеном [61].

С целью систематизации данных по возможному влиянию заместителей как у атома азота в 3-аза-2-оксаноборненах, так и в нитрилоксидах на региоселективность реакции, было изучено взаимодействие алкенов **5а,b** с нитрилоксидами **29а-b**, **е**.

N⁰	Алкен	Гидроксамоил- хлорид	R^1	R^2	Продукт	Выход ^а , %
1	5a	29a	Boc	Ph	61a+62a	86
2	5b	29a	Bz	Ph	61b+62b	40
3	5a	29b	Boc	4-MeOC ₆ H ₄	61c+62c	87
4	5b	29b	Bz	4-MeOC ₆ H ₄	61d+62d	88
5	5a	29c	Boc	$4-NO_2C_6H_4$	61e+62e	90
6	5b	29c	Bz	$4-NO_2C_6H_4$	61f+62f	65
7	5a	29e	Boc	CO ₂ Et	61g+62g	70
8	5b	29e	Bz	CO ₂ Et	61h+62h	73

Таблица 9. Выходы продуктов взаимодействия нитрилоксидов с 3-аза-2оксабицикло[2.21]гептенами **5а,b**

Примечание: ^а Выходы указаны после хроматографического разделения. Соотношение изомеров, согласно данным ПМР реакционных смесей, составляет 1:1.

Мы предполагали, что введение дополнительного электроноакцепторного заместителя (по сравнению с 2-азабицикло[2.2.1]гептеном) может повысить реакционную способность двойной связи. Действительно, выходы изоксазолинов **61a-h**, **62a-h** (таблица 9) в среднем выше, чем в случае производных соответствующих 2-азанорборненов **2b** и **2d** (таблица 2). При этом введение кислорода в бициклический каркас, замена бензоильной группы на третбутоксикарбонильную, также как введение донорных или акцепторных заместителей в ароматическое кольцо арилнитрилоксидов не влияет на стереохимический результат реакции: образуются региоизомеры с *экзо*-расположением изоксазолинового кольца. Во всех случаях соотношение изомеров составляло приблизительно 1:1, однако их можно легко разделить методом колоночной хроматографии.

Взаимодействие 3-аза-2-оксабицикло[2.2.1]норборнена **5а** с гидразоноилхлоридами **34а-d** в присутствии триэтиламина (соотношение алкен: гидразоноилхлорид:триэтиламин = 1:3:3) проходит гладко при комнатной температуре. В результате образуется смесь региоизомеров **63а-d** и **64а-d** (таблица 10).

Таблица 10. Выходы продуктов взаимодействия нитрилиминов с 2-азанорборненом 5а

Ma	Гидразоноил-	\mathbf{D}^2		$\mathbf{D}_{\mathbf{r}} = \mathbf{r}^{\mathbf{a}} 0$	Соотношение
JNG	хлорид	K	продукт	Выход, %	63:64
1	34a	Ph	63a+64a	78	50:50
2	34b	Fur-2-yl	63b+64b	54	50:50
3	34c	CH ₃	63c+64c	74	50:50
4	34d	Cyclopropyl	63d+64d	50	50:50

Примечание: ^а Выходы указаны после хроматографического разделения. Соотношение изомеров приведено на основании данных ПМР реакционных смесей.

Экзо-расположение изоксазолинового и пиразолинового колец в соединениях **61-64** следует из значения КССВ протонов при заместителях: оно составляет 8-9 Гц для *цис-ди-эндо* протонов, в то время как КССВ *цис-ди-экзо*-протонов имеет значение порядка 10-12 Гц. Кроме того, отсутствует константа спин-спинового взаимодействия со значением 4-5 Гц, характерная для *экзо*-расположенных протонов при заместителях с протонами в голове моста (константа спин-спинового взаимодействия с протонами в голове моста не превышает 2 Гц). К сожалению, однозначно соотнести данные ЯМР-спектроскопии со строением регио-изомеров нам не удалось.

Отметим, что полученные изоксазолы и пиразолины устойчивы и не подвергаются ретрореакции Дильса-Альдера в нормальных условиях.

III.2 Синтез изоксазолов, конденсированных с азабициклическим каркасом

Основными методами синтеза изоксазолов из изоксазолинов являются окисление изоксазолинов и элиминирование подвижных заместителей, входящих в состав изоксазолинов, например, дегидробромирование, удаление PhSeOH, десульфонилирование и т.д. [134]. В нашей работе мы рассматривали три возможных пути синтеза изоксазолов, конденсированных с

7-азанорборнадиенами и 7-азабензнорборнадиенами: окисление, дегидробромирование и деселененирование (схема 10).

Ранее для окисления изоксазолинов применялись DDQ и хлоранил, O₂, γ-MnO₂, H₂CrO₄, KMnO₄ и нитрозилсерная кислота [134]. Нами были выбраны мягкие окислители, не проявляющие «кислых» свойств: активированный диоксид марганца [135,136] и 2,3-дихлор-5,6дициано-1,4-бензохинон (DDQ) [137]. В качестве субстрата использовали изоксазолин **39a**. В результате был выделен исходный изоксазолин и зафиксировано образование 3фенилизоксазола в следовых количествах:

Так как изоксазолин **39a** оказался устойчивым к окислению, нами была изучена возможность реализации двух других направлений синтеза изоксазола. Ранее в нашей лаборатории было показано, что взаимодействие фенилселенбромида с 7-азанорборнадиенами проходит с высокими выходами с образованием продуктов 1,2-*транс*-присоединения [138]. Действительно, в результате селененирования диена **6b** был выделен продукт **65**, который использовался далее без дополнительной очистки.

Так как ранее нами было найдено, что изоксазолины, образующиеся в результате присоединения к азабензнорборнадиенам легко подвергаются ретро-реакции Дильса-Альдера с образованием устойчивых ароматических изоксазолов и пирролов, а также исходя из

предположения, что реакция 1,3-диполярного циклоприсоединения к диену **66** будет не хемоселективной, двойная C=C связь в соединении **65** была восстановлена. Последующее элиминирование PhSeOH должно было привести к образованию соединения **68**.

Действительно, в ПМР-спектре реакционной смеси присутствуют сигналы, характерные для винилбромида: сигнал в области 6.35 м.д. (соответствующий сигналу протона HC=CBr) и мультиплет в области 4.75-5.00 м.д. с интегральной интенсивностью 2H, соответствующий сигналам протонов в голове моста. Тем не менее, наиболее интенсивными сигналами в ПМР-спектре реакционной смеси являются сигналы N-бутоксикарбонил-3-бромпиррола **69** и сигналы метилового эфира фумаровой кислоты **70** (соотношение **69**:**70** = 1:1). В результате хроматографического разделения реакционной смеси были выделены только соединения **69** и **70**.

Образование диметилфумарата позволило предположить, что при восстановлении C=Cсвязи образуется преимущественно продукт с *транс*-расположением метоксикарбонильных групп. При этом существенный сдвиг сигнала протона HCSe в соединении **67** по сравнению с исходным селенидом **65** в слабое поле связан с *эндо*-расположением метоксикарбонильной группы у атома углерода во втором положении (в соединении **67**). Наряду с основным изомером, которому мы приписываем строение **7**-*трет*-бутоксикарбонил-2-*эндо*-3-*экзо*-ди(метоксикарбонил)-*эндо*-5-бром-*экзо*-6-фенилселено-7-азабицикло[2.2.1]гептана, в ЯМР-спектре было зафиксировано образование второго изомера. Так как интенсивность его сигналов в 4 раза меньше основного изомера, однозначно установить его структуру не удалось.

Введение соединения **68** без дополнительной очистки в реакцию с фенилнитрилоксидом привело к образованию бромпиррола **69** и изоксазолина **71** (продукта взаимодействия фенилнитрилоксида с диметилфумаратом). Ожидаемый бромизоксазолин **72** не был выделен, что свидетельствует о том, что в используемых условиях разложение бромалкена **68** протекает быстрее реакции циклоприсоединения нитрилоксида.

Подход, апробированный на примере 7-Вос-азанорборнадиена 6b, был реализован для азабензнорборнадиена 9b. Бромселененирование азабензнорборнадиена 9b с последующей обработкой перекисью водорода приводит к устойчивому алкену 74. Его образование подтверждается данными спектроскопии ЯМР ¹Н: вместо сигналов протонов HCSe и HCBr, присутствовавших в селенбромиде 73 появляется сигнал протона HC=CBr в области 6.9 м.д. с 1H. При взаимодействии винилбромида интегральной интенсивностью 74 с фенилнитрилоксидом этот сигнал исчезает и появляется узкий синглет в области 4 м.д., соответствующий сигналу протона изоксазолинового кольца. Отсутствие КССВ этого протона с протоном в голове моста свидетельствует об экзо-расположении изоксазолинового кольца (рисунок 8).

Таким образом, циклоприсоединение фенилнитрилоксида к бром-замещённой С=С-связи проходит регио- и стереоселективно с образованием изоксазолина **75**.

Рисунок 8. Фрагменты спектров Спектр ЯМР ¹Н продукта 74 (слева) и 75 (справа).

Полученный бромизоксазолин **75** устойчив к дегидробромированию, что легко объясняется предпочтительностью *анти*-элиминирования в случае дегидрогалогенирования, а в случае конформационно-жесткого изоксазолина **75** должно проходить *син*-элиминирование. Именно такой процесс реализуется при элиминировании PhSeOH. Поэтому была изучена возможность синтеза изоксазолинов и, впоследствии, изоксазолов, конденсированных с азабициклическим каркасом, из селеновых производных. На первой стадии обработка соединения **73** ДБУ приводила к образованию алкена **76**, который вводили в реакцию с фенилнитрилоксидом.

В результате был выделен единственный региоизомер с *экзо*-расположением гетероциклического фрагмента - изоксазолин 77. Отметим, что аддукт достаточно устойчив: он не подвергается деструкции в результате хроматографической очистки. Строение соединений 76 и 77 устанавливали аналогично бром-производным 74 и 75: так, согласно данными спектроскопии ЯМР ¹Н вместо сигналов протонов НСSe и HCBr, присутствовавших в селенбромиде 73, в ПМР-спектре соединения 76 появляется сигнал протона HC=CSe в виде синглета с химическим сдвигом 6.87 м.д. и интегральной интенсивностью 1Н. После введения винилселенида 76 в реакцию с фенилнитрилоксидом этот сигнал исчезает и появляется синглет

84

с химическим сдвигом 3.73 м.д., соответствующий сигналу протона изоксазолинового кольца. Отсутствие КССВ этого протона с протоном в голове моста ($J \approx 4-5\Gamma \mu$) свидетельствует об экзорасположении изоксазолинового цикла.

На последнем этапе обработка изоксазолина 77 перекисью водорода привела к образованию единственного продукта – изоксазола 78. В спектре ЯМР ¹Н соединения 78 присутствуют только два сигнала в области 5.8-6.0 м.д., соответствующие сигналам протонов в голове моста, а также сигналы протонов бутоксикарбонильной группы и сигналы ароматических протонов, что подтверждает образование изоксазола. Состав продуктов 73-78 был подтвержден данными масс-спектрометрии высокого разрешения.

Предложенная последовательность превращения алкена в изоксазол не требует выделения промежуточно образующихся продуктов и может рассматриваться как one-pot синтез новых изоксазолов, содержащих азабициклический фрагмент.

Для распространения предложенного нами однореакторного метода синтеза изоксазолов из 7-азабензнорборнадиена на 2-азанорборнены были изучены стерео- и регио-химические особенности реакции бромселененирования 2-азанорборненов.⁶ Ранее было найдено, что присоединении фенилселенбромида к 3-экзо-этоксикарбонил-2-ацетилазабицикло[2.2.1]гепт-5ену протекает с образованием одного продукта перегруппировки Вагнера-Меейрвейна [11]. Иная картина наблюдалась при бромселененировании N-замещённых производных 3-оксо-2азабицикло[2.2.1]гепт-5-ена (лактама Винса): были выделены только неперегруппированные продукты [139]. При этом при присоединение фенилселенбромида к норборнену образуется 1,2-*транс*-присоединения [140]. Нами только продукт найдено, что в результате N-Вос-2-азанорборнена **2b** взаимодействия с фенилселенбромидом образуется перегруппированный селенид 79 и продукт 1,2-иис-присоединения 80.

⁶ При подготовке данного раздела диссертации использована следующая публикация, выполненная автором в соавторстве, в которой, согласно Положению о присуждении ученых степеней в МГУ, отражены основные результаты, положения и выводы исследования: А. Ю. Гаврилова, А. В. Кукушкина, М. А. Нечаев, Т. А. Солодовникова, Е. Ю. Худякова, Р. Л. Антипин, Н. В. Зык. Регио- и стереохимические закономерности электрофильного галогенирования и халькогенирования изомеров этил-2-азабицикло[2.2.1]гепт-5-ен-3-карбоксилата // Известия Академии наук. Серия химическая. 2024. Т. 73. № 3. С. 588-605. (30%)

Образование перегруппированных продуктов **81а,b** становится единственным направлением реакции, если в третьем положении 2-азанорборнена имеется *эндо*-этоксикарбонильная группа (таблица 11).

В случае *экзо*-изомеров **3а-с** наряду с продуктами перегруппировки **82а,b** были выделены продукты *цис-диэкзо*-присоединения **83а-с** и *транс*-присоединения **84а,с**, **85а-с** (таблица 11).

Таблица 11 Выхолы і	THOTYKTOR (ульфенили	рования и селенени	пования апкенов За-с
таолица 11. Быходы	продуктов с	ymperimin	pobalitin il concliciti	pobalinin alicentob Sa-c

			Общий	Общий Соотношение изомеров, % (изомер)					
	Алкен	R	выход,	Перегруп-	1,2-	1,2-	1,2-		
			%	пировка	цис	транс	транс		
1	<i>эндо</i> -За ^а	CO ₂ Me	39	100 (81a)	-	-	-		
2	<i>эндо</i> -3b ^a	CO_2Bu^t	42	100 (81b)	-	-	-		
3	<i>эндо</i> -3с ^а	Ac ⁶	60	100 (81c)	-	-	-		

86

			Общий	Общий Соотношение изомеров, % (изомер)				
	Алкен	R	выход,	Перегруп-	1,2-	1,2-	1,2-	
			%	пировка	цис	транс	транс	
4	<i>экзо-</i> За ^а	CO ₂ Me	54	$5 (82a)^{B}$	17 (83a)	50 (84a)	28 (85a)	
5	<i>экзо-</i> 3b ^a	CO_2Bu^t	51	27 (82b)	57 (83b)	-	16 (85b)	
6	<i>экзо-</i> 3с ^а	Ac ^Γ	71	-	8 (83c)	75 (84c)	17 (85c)	
7	<i>экзо-</i> 3с ^д	Ac	86	-	40 (83c)	44 (84c)	16 (85c)	

Таблица 11 (продолжение).

Примечание: ^а Растворитель – хлороформ или хлористый метилен. ⁶ Данные работы [11]

^в Зафиксировано в спектре ЯМР ¹Н реакционной смеси, в индивидуальном виде выделить не удалось. ^г Данные работы [42]. ^дРастворитель – нитрометан.

Строение полученных соединений устанавливали методом ЯМР-спектроскопии. Следует заметить, что в ЯМР-спектрах всех полученных амидов и карбаматов присутствует два набора сигналов, соответствующих *E*,*Z*-конформерам

В спектрах ЯМР ¹Н перегруппированных продуктов имеются характерные сигналы протонов CH₂ - группы, которые представляют собой дублет триплетов (*экзо*-HC⁵) и дублет дублетов (*эндо*-HC⁵) с большой общей геминальной КССВ ~ 14.5Гц , а также с константами спин-спинового взаимодействия $J_{5 > \kappa 30.6} \approx J_{5 > \kappa 30.4} \approx 4.5 \Gamma$ ц и $J_{5 > n d 0.6} \approx 8.0 \Gamma$ ц. Сигнал протона HC¹ проявляется в виде синглета, а сигнал протона HC⁴ в виде дублета ($J \sim 4.0 \Gamma$ ц) (в продукте реакции с *эндо*-азанорборненом **3**, когда карбэтоксильная группа оказывается в *экзо*-положении) или триплета⁷ ($J \sim 3.0 \Gamma$ ц) (в продукте реакции с *экзо*-азанорборненом **3**, когда карбэтоксильная группа оказывается в *эндо*-положении). Это свидетельствует об образовании продукта с заместителем в шестом, а не пятом положении.

Транс-расположение заместителей в соединениях **84а,с**, **85а-с** следует из значений констант спин-спинового взаимодействия при заместителях $J_{5,6}$ ~2.7-4.0 Гц. Геминальная КССВ протонов CH₂-группы не превышает 11 Гц, что говорит о неперегруппированном характере соединений (т.е. CH₂-группа находится в 7 положении азанорборнана).

Таким образом, при селененировании производных 2-азанорборнана велика доля перегруппированных продуктов, а также продуктов 1,2-*цис*-присоединения., которые образуются из-за участия атома азота в стабилизации карбокатиона (схема 11).

⁷ В ряде случаев сигнал плохо разрешен и вырождается в уширенный синглет, имеющий "триплетообразную" форму.

Схема 11.

Образование карбкатиона азиридиниевого типа (за счёт участия атома азота в стабилизации карбокатиона) зависит, во-первых, от полярности растворителя (её увеличение приводит к образованию сольватно-разделённых ионных пар, что способствует участию азота в стабилизации карбкатиона (сравнить строки 6 и 7 таблицы 11), во-вторых, от увеличения нуклеофильности азота, так, например, доля продуктов с участием азота растёт при переходе от ацетамида к карбамату (сравнить строки 5 и 6 таблицы 11). Различие в поведении экзо- и эндо-изомеров **За-с** обусловлено, как мы предполагаем, следующим: в случае эндо-изомеров **За-с** в стабилизации карбкатиона участвует этоксикарбонильная группа. Это не приводит к лактонизации, так как равновесие сдвинуто в сторону образования азиридиниевого иона, но способствует образованию сольватно-разделённых ионных пар, что позволяет азоту эффективно конкурировать с нуклеофилом (схема 12):

Схема 12.

Таким образом, так как использование предложенного нами метода синтеза изоксазолов, конденсированных с азабициклогептанами, ограничено субстратами, не склонными к участю атома азота в стабилизации карбокатиона, можно сделать вывод, что производные 2азанорборнена должны содержать в положениях 2 и 3 электроноакцепторные группы, понижающие нуклеофильные свойства азота. Так, например, при присоединении фенилселенбромида к ацетильному производному *экзо-*Зс В хлористом метилене, перегруппированный продукт не образуется, а выход продукта 1,2-цис-присоединения минимален. Однако в рамках данной работы метод синтеза изоксазола из 2-азанорборнена опробован не был.

III.3 Синтез тетрагидропиридазинов, конденсированных с азабициклическим каркасом

В литературе описаны ингибиторы нейротрансмиттеров, ингибиторы нейрамидазы вирусов гриппа и регуляторы прогестероновых рецепторов, которые являются производными тетрагидропиридазинов. Авторами работы [141] сообщалось, что тетрагидропиридазины, конденсированные с бициклическим каркасом, были получены в реакции 1-бензоил-3-фенил-1,2-диаза-1,3-диена **86a** с норборненом и норборнадиеном с выходами 94% и 80% соответственно. Диен синтезировали *in situ* путём обработки α-бромгидразона основанием – карбонатом калия.

Однако при воспроизведении данной методики было найдено, что выход аддукта **87a** составил всего 20%. В связи с этим была проведена оптимизация условий реакции (таблица 12). Оказалось, что выход целевого соединения повышается при использовании в качестве основания карбоната цезия (строки 1 и 2 таблицы 12). Далее, выбрав в качестве основания Cs₂CO₃, мы меняли растворитель и время проведения реакции.

N⁰	Основание	Растворитель	Время	Выход, %
1	K ₂ CO ₃	CH ₂ Cl ₂	8ч	20
2	Cs ₂ CO ₃	CH ₂ Cl ₂	>24ч	44
3	Cs ₂ CO ₃	CH ₂ Cl ₂	24ч	41
4	Cs ₂ CO ₃	CH_2Cl_2	3 дня	54
5	Cs ₂ CO ₃	ΤΓΦ	24ч	-
6	Cs ₂ CO ₃	CH ₃ CN	7 дней	29
7	Cs ₂ CO ₃	C_6H_6	7 дней	52
8	Cs ₂ CO ₃	CH ₃ CN	3 дня	23
9	Cs ₂ CO ₃	C ₆ H ₆	7 дней	52

Таблица 12. Оптимизация условий взаимодействия норборнена с гидразоном 86а

Как видно из таблицы 12, оптимальным условием является проведение реакции в хлористом метилене в течение суток. Влияние основания на выход реакции изучалось также на примере гидразонов **86b-d**. В реакцию вводили 1 эквивалент α-бромгидразона, 3 эквивалента основания и 2 эквивалента норборнена. Полученные продукты выделяли методом колоночной хроматографии на силикагеле. Во всех случаях использование в качестве основания карбоната цезия приводило к существенному росту выходов аддуктов.

 $R = Ph(a), CH_3(b), \Phi yp-2-ил(c)$ Циклопропил(d)

Можно также отметить увеличение выходов с ростом электронно-донорных свойств заместителя в гидразоне.

Разница между карбонатом калия и цезия нивелируется при использовании тозилгидразона **86e**, однако попытка использовать вместо карбонатов триэтиламин не увенчалась успехом: аддукт выделен не был (строки 3,4 таблица 13). Существенной оказалась замена бромгидразона **86e** на хлоргидразон **86f**: выход упал в два раза.

N⁰	Гидразон Основание		Растворитель	Выход 87е, %
1		K ₂ CO ₃	CH ₂ Cl ₂	79
2	86e	Et ₃ N	CH ₂ Cl ₂	-
3	out	Et ₃ N	Et ₂ O	-
4		K ₂ CO ₃	СH ₂ Cl ₂ (H ₂ O, капля)	68
5		Cs ₂ CO ₃	CH ₂ Cl ₂	74
7	86f	K ₂ CO ₃	CH ₂ Cl ₂	38

Таблица 13. Взаимодействие норборнена с гидразонами 86е, f

Во всех случаях взаимодействие норборнена с α-бромгидразонами в присутствии оснований приводило к образованию единственного продукта с *экзо*-расположением тетрагидропиридазинового цикла, что однозначно следует из наличия КССВ протона в положении C-2 с протоном HC⁷ порядка 9 Гц и отсутствия КССВ протона HC² с протоном в голове моста.

Взаимодействие 1,2-диаза-1,3-диенов с 2-азанорборненами изучалось на примере 2-тозил-2-азабицикло[2.2.1]гептена **2с**. Также в качестве субстрата при взаимодействии с бромгидразоном **86b** был использован 3-бутоксикарбонил-3-аза-2-оксанорбонен **5a**. Результаты представлены в таблице 14.

Таблица 14. Результаты взаимодействия 2-азанорборнанов с гидразонами в присутствии оснований.

N⁰	Алкен	Гидразон	\mathbf{R}^1	\mathbb{R}^2	Основание	Продукт	Выход, %
1	2c	86a	Ts	Ph	K ₂ CO ₃	88a+89a	0
2	2c	86b	Ts	CH ₃	K ₂ CO ₃	88b+89b	30
3	2c	86b	Ts	CH ₃	Cs_2CO_3	88b+89b	30
4	2c	86e	Ts	Ts	K ₂ CO ₃	88c+89c	0
5	2c	86f	Ts	Ts	Cs_2CO_3	88c+89c	0
6	5a	86a	Boc	CH ₃	K ₂ CO ₃	88d+89d	0
7	5a	86a	Boc	CH ₃	Cs ₂ CO ₃	88d+89d	0

Таким образом, аддукт 2-азанорборнадиена и 1,2-диаза-1,3-диена был выделен только в случае алкена 2с и гидразона 86b. Реакция проходит нерегиоселективно, с образованием двух изомеров в соотношении 1:1. Тетрагидропиридазиновое кольцо имеет *экзо*-расположение, что следует из данных спектроскопии ЯМР ¹Н. Так, сигналы протонов при заместителях изомеров 88b и 89b проявляются в виде дублета с константой спин-спинового взаимодействия порядка 8.5-9.4 Гц (HC²) и триплета с константой спин-спинового взаимодействия порядка 8.9-9.4 Гц (HC⁷). Следует отметить, что линии в триплетах уширены, так как истинный вид этих сигналов – дублет дублетов дублетов, что следует из наличия большой КССВ протона HC⁷ с протоном HC² ($J \sim 8 - 9$ Гц), и большой и маленькой КССВ протона HC⁷ с протонами H₂C⁶. Сигнал

протона в голове моста, расположенный рядом с CH_2 -группой азабициклического каркаса представляет собой уширенный синглет, что связано со спин-спиновым взаимодействием с *экзо*-расположенным протоном CH_2 -группы (КССВ, определённая для *экзо*- H_2C , составляет около 3.5 Гц (для изомеров **88b** и **89b**)). Протон в голове моста, расположенный рядом с N-Ts, проявляется в виде узкого синглета. Отсутствие константы спин-спинового взаимодействия протонов в голове моста с протонами HC^2 и HC^7 свидетельствует о *экзо*-расположении тетрагидропиридазинового цикла. Отнесение сигналов к региоизомерам проводили на основании химических сдвигов: сигнал протона HC^2 изомера **88b** сдвинут в более сильное поле по сравнению с аналогичным сигналом изомера **89b**, а сигнал изомера **89b**. Аналогичная закономерность наблюдается для протонов в голове в голове поле по сравнению с аналогичным сигналом в голове моста:

Также было исследовано [4+2] циклоприсоединение 1,2-диаза-1,3-диенов к 7азабензнорборнадиену **9b**. С целью подбора условий были проварьированы соотношение реагентов и время реакции (таблица 15).

N⁰	Аддукт	R	Основание	Соотношение 9b:86:основание	Время	Выход, %
1				1:2:2	2 дня	неполная
			K_2CO_3			конверсия
2	90a	Ph		1:3:3	5 дней	75
3				1:2:2	2 лня	неполная
			Cs_2CO_3		- 4	конверсия
4				1:3:3	3 дня	70
5				1.2.2	2 лия	неполная
5			K ₂ CO ₃	1.2.2	2 дня	конверсия
6	90b	Mel		1:3:3	3 дня	52
7			CerCOr	1:1:1	3 дня	26
8			CS2CO3	1:2:2	2 дня	67
0				1.2.2	2 лия	неполная
				1.2.2	2 дня	конверсия
10			KaCOa	1.3.3	2 лия	неполная
10			K ₂ CO ₃	1.5.5	2 дня	конверсия
11	90c	Fur-2-y		1:3:3	4 дня	70
12				1:3:3	7 дней	72
13				1.2.2	<u>Л</u> лид	неполная
15			Cs ₂ CO ₃	1.3.3	т дня	конверсия
14				1:3:3	7 дней	75
15	90d	Ts	K ₂ CO ₃	1:3:3	4 дня	73

Таблица 15. Условия реакции [4+2] циклоприсоединения к азабензнорборнадиену 9b.

Экзо-расположение тетрагидропиридазинового кольца в соединениях **90а-d** нельзя установить на основании данных спектроскопии ЯМР, если эксперимент проводится при температуре 28° С, так как сигналы продуктов при заместителях представляют собой широкие синглеты. Подобное уширение является характерным для амидов и, в данном случае, карбаматов. Тем не менее, проведение эксперимента ЯМР при температуре 60° С позволяет преодолеть барьер вращения связи N-C(=O) бутоксикарбонильной группы, что приводит к регистрации спектра с хорошо разрешенными сигналами (рис. 9). Было найдено, что константа спин-спинового взаимодействия протонов HC² и HC⁷ имеет значение 8.5 Гц. При этом, как

следует из эксперимента COSY ${}^{1}\text{H}{}^{-1}\text{H}$, у протонов HC¹ и HC⁸ отсутствуют константы спинспинового взаимодействия с протонами HC² и HC⁷ (соответственно):

Рисунок 9. Фрагмент спектра ЯМР ¹Н (верхний) и спектр COSY ¹H-¹H (нижний) соединения **90a** (ДМСО-d₆, T=60^oC).

Сигналы протонов протонов HC^1 и HC^8 проявляются в виде синглетов, однако, наличие корреляции между этими сигналами в спектре COSY ¹H-¹H позволяет говорить о наличии W-константы между протонами в голове моста. Протоны группы H_2C^6 проявляются в виде дублетов дублетов и имеют геминальную константу спин-спинового взаимодействия 17.2 Гц, а также КССВ с протоном HC^7 (*J*=8.4Гц и 4.0Гц).

Структура соединения 90b была подтверждена данными рентгеноструктурного анализа (рис. 10).

Рисунок 10. Молекулярная структура тетрагидропиридазина 90b

Таким образом, нами впервые получены тетрагдропиридазины, конденсированные с азабициклическим каркасом. Реакция проходит стереоселективно с образованием аддуктов с *экзо*-расположением гетероциклического фрагмента. В случае 2-азанорборнена наблюдается образование двух региоизомеров.

ІV. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

IV.1. Общие сведения

Контроль за ходом реакции и чистотой веществ осуществляли методом тонкослойной хроматографии (TCX) на закрепленном слое силикагеля пластинки "Silufol". Препаративное хроматографическое разделение реакционных смесей осуществляли на колонках, заполненных силикагелем (µ 5/40, "Silica gel 60").

Спектры ЯМР ¹H, ¹³C регистрировали на спектрометрах «Bruker Avance 400», «Agilent 400-MR» и «Bruker Avance 600». В качестве растворителей использовали дейтерохлороформ, дейтеробензол и диметилсульфоксид-d₆. Химические сдвиги приведены в шкале δ (м.д.) относительно ГМДС как внутреннего стандарта. Константы спин-спинового взаимодействия (КССВ) приведены в Гц. В спектрах ЯМР ¹³С для отнесения сигналов в некоторых случаях использовалась последовательность АРТ.

Масс-спектры высокого разрешения (HRMS) регистрировали на масс-спектрометре Orbitrap Elite (Thermo Scientific) с ИРЭП. Для ввода растворов с концентрацией 0.1-9 мкг/мл (в 1% муравьиной кислоте в ацетонитриле) использовали прямой ввод в источник ионов с применением шприцевого насоса (5 мкл/мин). Напряжение при распылении ±3.5 кB, температура капилляра 275 °C.

Температуры плавления определяли в блоке с открытым капилляром. Использованные растворители были очищены и абсолютированы по методикам, приведенным в руководстве [128]. Коммерчески доступные реагенты не подвергали дополнительной очистке.

Элементный анализ синтезированных соединений был выполнен на CHN-анализаторе фирмы Carlo-Erbo.

Хромато-масс-спектрометрический анализ полученных веществ был выполнен на хромато-масс-спектрометре Finnigan MAT SSQ 7000 (электронный удар, 70 эВ).

Рентгеностуктурное исследование соединения **90b** проводили на дифрактометре Syntex Р21 при 293К (графитовый монохроматор, λ(MoKa) = 0.71073 Å, ω-сканирование). Учет поглощения проведен по измерениям интенсивностей эквивалентных отражений (Tmin/Tmax). Структуры расшифрованы прямым методом (SHELXS-97) и уточнена в полноматричном анизотропном МНК по F2 для всех неводородных атомов (SHELXL-97). Все атомы водорода были объективно локализованы И уточнены В изотропном приближении. Кристаллографические данные, детали эксперимента и уточнения структуры приведены в таблице 1 приложения. Важнейшие длины связей и валентные углы приведены в таблице 2 приложения. Полные таблицы длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDC 2343480).

IV.2. Синтез исходных соединений

IV.2.1. Синтез непредельных субстратов

2-Бензил-2-азабицикло[2.2.1]гепт-5-ен (1)

К смеси 12 мл (137 ммоль) 37% формалина и 20 г (137 ммоль) гидрохлорида бензиламина в 12 мл воды добавляли 17 мл (206 ммоль) свежеперегнанного циклопентадиена. Реакционную смесь перемешивали в течение 3-х часов при комнатной температуре. Затем экстрагировали петролейным эфиром (2×20 мл) и отбрасывали органические вытяжки. К водной фазе при перемешивании добавляли 82 мл 10%-ого раствора NaOH. Органический слой отделяли, водный экстрагировали диэтиловым эфиром (3×20 мл). Объединенные органические вытяжки сушили над безводным Na₂SO₄, растворитель упаривали, получили 18 г (71%) оранжевого масла. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., J/Γ ц): 1.45 (д, 1H, HC⁷_{син}, J = 7.8,), 1.62 (д, 1H, HC³_{эндо}, J = 8.6), 1.71 (д, 1H, HC⁷_{анти}, J = 7.9), 2.80 (уш.с., 1H, HC⁴), 3.22 (дд, 1H, HC³_{3K30}, $J_1 = 8.7$, $J_2 = 3.1$), 3.35 (д, 1H, CH₂Ph, J = 13.1), 3.60 (д, 1H, CH₂Ph, *J* = 13.1), 3.85 (уш.с., 1H, HC¹), 6.10 (д, 1H, HC⁵), 6.40 (м, 1H, HC⁶), 7.04 (т, 1H, HC_{аром}), 7.35 (м, 4Н, HC_{аром}). Физико-химические характеристики совпали с опубликованными ранее [6].

Метил 2-азабицикло[2.2.1]гепт-5-ен-2-карбоксилат (2а)

H₃CÓ

К смеси 6.6 г (0.13 моль) хлорида аммония, 13 мл (0.17 моль) 37% формалина в 25 мл метанола добавляли 20 мл (0.25 моль) свежеперегнанного циклопентадиена. После 12 часов перемешивания к смеси добавляли равный **=**O объем воды (~60 мл), экстрагировали диэтиловым эфиром (2×50 мл), отбрасывали органические вытяжки. К водной фазе добавляли NaOH до щелочной среды (pH~9), затем снова экстрагировали диэтиловым эфиром (2×50 мл). К органической вытяжке и 25 мл 10%-го раствора NaOH добавляли 3.9 мл (0.05 моль) метилхлорформиата. Реакционную смесь перемешивали 24 часа при комнатной температуре, органический слой отделяли, сушили над Na₂SO₄, растворитель упаривали, остаток хроматографировали. R_f 0.56 (элюент метанолхлороформ 1:100). Получили 5 г (68%) прозрачного масла. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц) двух ротамеров в соотношении 1:1: 1.51 (уш.с., 2H, H_2C^7), 2.56 (д, 0.5H, $HC^3_{_{3Hdo}}$, J = 8.2), 2.61 (д, 0.5H, $HC_{_{3H\partial o}}^{_{3}}$, J = 8.6), 3.13 (уш.с., 1H, $HC^{_{4}}$), 3.30 (м, 1H, $HC_{_{_{3K3o}}}^{_{3}}$), 3.59 и 3.61 (оба с., 3H, OCH₃), 4.57 (уш.с., 0.5H, HC¹), 4.69 (уш.с., 0.5H, HC¹), 6.22 (с, 1.5H, HC⁵+HC⁶), 6.31 (уш.с., 0.5H, HC⁶). ESI-MS (m/z): Вычислено для C₈H₁₁NO₂, 154.0863 [M+1], найдено: 154.0861.

Трет-бутил-2-азабицикло[2.2.1]гепт-5-ен-2-карбоксилат (2b)

К 6.6 г (0.13 моль) хлорида аммония, 13 мл (0.17 моль) 37% формалина в 25 мл метанола добавляли 20 мл (0.25 моль) свежеперегнанного циклопентадиена. Реакционную смесь перемешивали при комнатной температуре в течение 12 часов. Затем добавляли равный объем воды, экстрагировали диэтиловым эфиром

(2×50 мл), отбрасывали органические вытяжки. Водную фазу доводили до щелочной среды (pH~9) NaOH, снова экстрагировали диэтиловым эфиром (2×50 мл). К органической вытяжке и 25 мл 10%-го раствора NaOH добавляли 14 г (0.05 моль) *ди-трет*-бутилдикарбоната. Реакционную смесь перемешивали 24 часа при комнатной температуре, органический слой отделяли, сушили над Na₂SO₄, растворитель упаривали, остаток хроматографировали. Получили 7 г (81%) желтого масла. R_f 0.56 (этилацетат-петролейный эфир 1:3). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц) двух конформеров в соотношении мин:макс = 4:5: 1.43: (с, 9H, CH₃), 1.51-1.57 (м, 2H, HC⁷), 2.56 (д, 0.4H, HC³_{эндо} мин, *J* = 8.1), 2.62 (д, 0.5H, HC³_{эндо} макс, *J* = 8.1), 3.28 (дд, 1H, HC³_{экзо}, *J*₁ = 8, *J*₂=2.9), 4.56 (с, 0.5H, HC¹ макс), 4.70 (с, 0.4H, HC¹ мин), 6.25 (уш.с., HC⁵ макс, HC⁵ мин, HC⁶ макс), 6.36 (уш.с., 1H, HC⁶ мин). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 28.26 (CH₃), 42.78 (C⁴), 45.75 (CH₂), 47.87 (C³), 60.97 (C¹), 78.84 (O=<u>C</u>(CH₃)₃), 133.69, 136.52 (C=C), 153.65 (N<u>C</u>=O). Физико-химические характеристики совпали с опубликованными ранее [8].

2-Тозил-2-азабицикло[2.2.1]гепт-5-ен (2с)

К смеси 4.4 г (0.083 моль) хлорида аммония, 9 мл (0.12 моль) 37% формалина в 14 мл метанола при интенсивном перемешивании добавляли 13 мл (0.17 моль) свежеперегнанного циклопентадиена. Реакционную смесь перемешивали 12 часов, затем разбавляли водой и экстрагировали диэтиловым эфиром (2×30 мл), отбрасывали органические вытяжки. Водную фазу доводили до pH~9 NaOH, продукт выделяли экстракцией диэтиловым эфиром

(2×30 мл). К смеси выделенного продукта и 17 мл 10%-го раствора NaOH добавляли 6.3 г (0.033 моль) тозилхлорида. Реакционную смесь перемешивали 24 часа при комнатной температуре, органический слой отделяли, сушили над Na₂SO₄, растворитель упаривали. Получили 7 г (78%) кристаллизующегося масла. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц,): 1.40 (д, 1H, HC⁷_{антии}, J = 8.5), 1.45 (д, 1H, HC⁷_{син}, J = 8.5), 2.4 (с, 3H, CH₃), 2.52 (д, 1H, HC³_{эндо}, J = 8.5), 3.12 (уш.с, 1H, HC⁴), 3.33 (дд, 1H, HC³_{экзо}, $J_I = 8.5$, $J_2 = 3$), 4.62 (с, 1H, HC¹), 5.97 (д, 1H, HC⁵, J = 5.5), 6.08 (м, 1H, HC⁶), 7.25 (д, 2H, HC_{аром}, J = 8.3), 7.65 (д, 2H, HC_{аром}, J = 8.3). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 21.10 (CH₃), 43.31, 46.67, 47.50 (C³, C⁴, C⁷), 63.76 (C¹), 127.25, 129.08 (C²_{аром}, C³_{аром}, C⁵_{аром}, C⁶

_{аром}), 133 (С⁵ или С⁶), 135.63 (С⁴ _{аром}), 136.35 (С⁶ или С⁵), 142.80 (С¹ _{аром}). Вычислено для С₁₃H₁₅NSO₂, 250.0896 [M+1]. Найдено: 250.0894.

Бензоил- 2-азабицикло[2.2.1]гепт-5-ен (2d)

К смеси 4.4 г (0.083 моль) хлорида аммония, 9 мл (0.12 моль) 37% формалина в 14 мл метанола при интенсивном перемешивании добавляли 13 мл (0.17)моль) свежеперегнанного циклопентадиена. Реакционную смесь перемешивали 12 часов, затем разбавляли водой и экстрагировали диэтиловым эфиром (2×30 мл), отбрасывали органические вытяжки. Водную фазу доводили до pH~9 NaOH, продукт выделяли экстракцией диэтиловым эфиром (2×30 мл). К смеси выделенного продукта и 17 мл 10%-го раствора NaOH добавляли 3.9 г (0.033 моль) бензоилхлорида. Реакционную смесь перемешивали 24 часа при комнатной температуре, органический слой отделяли, сушили над Na₂SO₄, растворитель упаривали, остаток хроматографировали. Получили 5.5 г (81%) светло-желтого масла. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., J/Γ_{II}) двух конформеров в соотношении мин:макс = 4:6: 1.57-1.69 (м, 2H, H₂C⁷), 2.58 (д, 0.4H, HC³ эндо мин, J=8.8), 2.96 (д, 0.6H HC³ эндо макс, J=10.5,), 3.19 (уш.с., 0.4H, HC⁴ мин), 3.28 (уш.с., 0.6H, HC⁴ макс), 3.55 (дд, 0.4H, HC³_{экзо} мин, J_1 = 8.8, J_2 = 2.5), 3.59 (дд, 0.6H, HC³_{экзо} макс, J_{l} = 10.5, J_{2} = 2.9), 4.50 (уш.с., 0.6H, HC¹ макс), 5.2 (уш.с., 0.4H, HC¹ мин), 6.22 (м, 0.4H, HC⁵ мин), 6.26 (м, 0.6H, HC⁵ макс), 6.39 (м, 0.6H, HC⁶, макс), 6.53 (м, 0.4H, HC⁶ мин), 7.30-7.55 (м, 5Н, НС_{аром}). Физико-химические характеристики совпали с опубликованными ранее [142].

Синтез этилового эфира глиоксалевой кислоты

К раствору 10.5 г (0.05 моль) диэтилового эфира винной кислоты в 100 мл С₂H₅O H дихлорметана добавляли при постоянном перемешивании 21.4 г (0.1 моль) периодата натрия и 20 мл воды. Смесь кипятили при интенсивном перемешивании два часа, в течение которых образуется белый осадок. По окончании кипячения реакционную смесь охладили до 0°C и к реакционной смеси постепенно добавляли 40 г сульфата магния (процесс экзотермичен). После добавления всего MgSO₄, реакционную смесь перемешивали еще 15 мин, после чего осадок отфильтровали, промыли дихлорметаном и сушили над MgSO₄. Фильтрат упаривали на роторном испарителе. Получили 7 г (68%) жёлтого масла. Физико-химические характеристики совпали с опубликованными ранее [143].

Синтез этил-2-азабицикло[2.2.1]гепт-5-ен-3-карбоксилат

Раствор 16.5 мл свежеперегнанного циклопентадиена (0.2 моль) и 10.8 ^N CO₂C₂H₅ г (0.1 моль) этилглиоксалата в насыщенном водном растворе хлорида аммония (55 мл) перемешивали при комнатной температуре в атмосфере

аргона в течение 24 часов. Затем реакционную смесь экстрагировали эфиром, чтобы удалить избыток исходных реагентов. Водный слой довели до pH~9 4M раствором NaOH и экстрагировали CH₂Cl₂. Вытяжку сушили над Na₂SO₄, растворитель упаривали на роторном испарителе. Получили 6.7 г (40%) смеси *экзо-* и *эндо-*изомеров (соотношение *экзо:эндо* = 1:3) в виде оранжевого масла. ИК-спектр (пленка, v, см⁻¹): 3220 (N-H), 1750 (C=O). Спектр ЯМР ¹H *эндо-*изомера (CDCl₃, δ , м.д., *J*/Гц,): 1.02 (т, 3H, CH₃), 1.18 (д, 1H, *син-*HC⁷, *J*=8.5), 1.39 (д, 1H, *анти*-HC⁷, *J*=8.5), 3.19 (уш. с, 1H, HC⁴), 3.67 (т, 1H, HC³, *J*=3.6), 3.76 (уш. с, 1H, HC¹), 3.88 (м, 2H, OCH₂), 5.63 (м, 1H, HC⁵), 6.05 (м, 1H, HC⁶). Спектр ЯМР ¹H *экзо-*изомера (CDCl₃, δ , м.д., *J*/Гц,): 1.05 (т, 3H, CH₃), 1.12 (д, 1H, *син-*HC⁷, *J*=8.8), 2.70 (д, 1H, HC³, *J*=3.9), 3.02 (уш. с, 1H, HC⁴), 3.84 (уш.с, 1H, HC¹), 3.96 (м, 2H, OCH₂), сигналы HC⁵, HC⁶ и HC⁷ перекрываются с сигналами *эндо-*изомера. Спектр ЯМР ¹³С *эндо-*изомера (CDCl₃, δ , м.д.): 14.00 (CH₃), 47.71 (C⁷), 49.24 (C⁴), 56.92 (OCH₂), 60.62, 60.75 (C¹, C³), 129.91,136.29 (C=C), 173.30 (C=O). Спектр ЯМР ¹³С *экзо-*изомера (CDCl₃, δ , м.д.): 14.00 (CH₃), 45.47 (C⁷), 47.91 (C⁴), 57.32 (OCH₂), 60.14, 60.75 (C¹, C³), 135.70, 136.47 (C=C), 174.18 (C=O). Физико-химические характеристики совпали с опубликованными ранее [11].

Синтез этил-2-метоксикарбонил-2-азабицикло[2.2.1]гепт-5-ен-3-карбоксилат (Зэндо, Зэкзо)

6.7 г (0.04 моль) этил-2-азабицикло[2.2.1]гепт-5-ен-3-карбоксилата
^{CO2C2H5} растворяли в хлористом метилене (25 мл) при комнатной температуре,
добавляли к раствору 5.6 мл (0.04 моль) триэтиламина и смесь охлаждали до 0°С. Медленно добавляли 3 мл (0.04 моль) метилхлорформиата при

перемешивании и продолжали перемешивание в течение 24 часов при комнатной температуре. Затем реакционную смесь промывали водой, органический слой отделили, промывали водным раствором NaHCO₃, высушивали и упаривали на роторном испарителе, получив 5 г (60%) оранжевого масла, из которого методом колоночной хроматографии (этилацетат-петролейный эфир, 1:3) были выделены эндо- и экзо- изомеры в соотношении 2:1.

Эндо-изомер (*Z*:*E* = 1:1): 3.33 г, $R_f = 0.24$. Спектр ЯМР ¹Н эндо-*Z*: (CDCl₃, δ , м.д., *J*/Гц): 1.10 (уш.с, 6H, CH₃), 1.55 (уш.с, 4H, H₂C⁷), 3.40 (уш.с, 2H, HC⁴), 3.50 (с, 3H, OCH₃), 4.00 (м, 4H, OCH₂), 4.20 (с, 2H, HC³), 4.56 (с, 1H, HC¹), 5.95 (м, 2H, HC⁵), 6.40 (м, 2H, HC⁶). Спектр ЯМР ¹Н эндо-E: (CDCl₃, δ , м.д., *J*/Гц): 1.10 (уш.с, 6H, CH₃), 1.55 (уш.с, 4H, H₂C⁷), 3.40 (уш.с, 2H, HC⁴),

3.55 (с, 3H, OCH₃), 4.00 (м, 4H, OCH₂), 4.20 (с, 2H, HC³), 4.53 (с, 1H, HC¹), 5.95 (м, 2H, HC⁵), 6.40 (м, 2H, HC⁶). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 14.48 (OCH₂<u>C</u>H₃), 39.93 (O<u>C</u>H₃), 48.45, 49.70 (C⁴,C⁷), 62.28 (OCH₂), 60.72, 62.36 (C¹, C³), 135.17, 136.46 (C=C), 169.70, 170.09 (C=O). HRMS (ЭСИ): Вычислено для C₁₁H₁₅NO₄, 226.1074 [M+H]. Найдено: 226.1077.

Экзо-изомер (Z:E = 1:3): 0.117 г, $R_f = 0.28$. Спектр ЯМР ¹Н эндо-Z: (CDCl₃, δ , м.д., J/Γ ц,): 1.45 (т, 6H, CH₃, J=7.1), 1.50 (д, 2H, H₂C⁷, J=8.5), 1.95 (уш.с, 2H, H₂C⁷), 3.30 (с, 2H, HC⁴), 3.50 (уш.с, 1H, HC³), 3.70 (с, 3H, OCH₃), 4.20 (м, 4H, OCH₂), 4.72 (с, 1H, HC¹), 6.40 (с, 3H, HC⁵ и HC⁶). Спектр ЯМР ¹Н эндо-Е: (CDCl₃, δ , м.д., J/Γ ц,): 1.45 (т, 6H, CH₃, J=7.1), 1.50 (д, 2H, H₂C⁷, J=8.5), 1.95 (уш.с, 2H, H₂C⁷), 3.30 (с, 2H, HC⁴), 3.40 (уш.с, 1H, HC³), 3.60 (с, 3H, OCH₃), 4.20 (м, 4H, OCH₂), 4.85 (с, 1H, HC¹), 6.40 (с, 3H, HC⁵), 6.50 (м, 2H, HC⁶). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 14.50 (OCH₂<u>C</u>H₃), 39.94 (O<u>C</u>H₃), 48.20, 49.10 (C⁴,C⁷), 52.76 (OCH₂), 61.28, 61.65 (C¹, C³), 136.62, 138.27 (C=C), 167.55, 171.14 (C=O). HRMS (ЭСИ): Вычислено для C₁₁H₁₅NO₄, 226.1074 [M+H]. Найдено: 226.1075.

Трет-бутил гидроксикарбамат (4а)

N-гидроксибензамид (4b)

К суспензии гидрохлорида гидроксиламина (1.64 г, 23 ммоль) в 20 мл ОН диэтилового эфира добавили Na₂CO₃ (2.5 г, 23 ммоль) и перемешивали в течение 30 минут при комнатной температуре. Затем реакционную смесь охладили и по каплям прибавили раствор бензоилхлорида (3.32 г, 23 ммоль)

в 10 мл диэтилового эфира, продолжая перемешивать при охлаждении. Реакционную смесь медленно отогрели до комнатной температуры, осадок отфильтровали. Далее суспензию осадка в 100 мл этилацетата кипятили в течение 10 минут, фильтрат отделили горячим фильтрованием, охладили, растворитель упарили. Получили 2 г (63%) белого порошка. Спектр ЯМР ¹H (DMSOd₆, δ , м.д., J/Γ ц): 7.43 (т, 2H, HC_{аром} J = 7.5,), 7.50 (т, 1H, HC_{аром}, J = 7.3), 7.74 (д, 2H, HC_{аром} J = 7.0,), 9.04 (с, 1H, OH), 11.22 (с, 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [145].

Трет-бутил 2-окса-3-азабицикло[2.2.1]гепт-5-ен-3-карбоксилат (5а)

К охлажденному до 0°С раствору *трет*-бутил гидроксикарбамату (2 г, 17 ммоль) в 60 мл метанола и 20 мл воды добавили свежеперегнанный циклопентадиен (5.7 г, 85 ммоль) и NaIO₄ (3.6 г, 17 ммоль). Реакционную смесь

⁶ охладили до комнатной температуры и перемешивали 2 часа. Затем растворитель упарили, добавили 80 мл воды, экстрагировали CH₂Cl₂ (3×40 мл). Органический слой отделили, промыли насыщенный раствором хлорида натрия, высушили над Na₂SO₄, растворитель упарили, остаток хроматографировали. Получили 1.7 г (52%) желтого масла. R_f 0.4 (этилацетат-петролейный эфир 1:3). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.39 (с, 9H, C(CH₃)₃), 1.66 (д, 1H, HC⁷_{анти}, *J*=8.6), 1.90 (д, 1H, HC⁷_{син} *J*=8.6,), 4.90 (уш.с., 1H, HC⁴), 5.13 (уш.с., 1H, HC¹), 6.33 (м, 2H, HC⁵+HC⁶). Физико-химические характеристики совпали с опубликованными ранее [115].

2-Окса-3-азабицикло[2.2.1]гепт-5-ен-3-ил(фенил)метанон (5b)

К смеси N-гидроксибензамида (3.24 г, 24 ммоль), пиридина (1.9 г, 24 ммоль) и свежеперегнанного циклопентадиена (6.34 г, 96 ммоль) в 100 мл хлористого метилена при перемешивании добавили N-бромсукцинимид (4.2 г, 24 ммоль). Реакционную смесь перемешивали ночь, промыли равным объемом воды,

насыщенным раствором карбоната калия, затем снова водой. Объединенные органические вытяжки высушили безводным сульфатом натрия, растворитель упарили. Получили 2.6 г (55%) оранжевого масла. $R_f 0.36$ (CHCl₃). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.79 (д, 1H, HC⁷_{aнmu}, J = 8.5), 2.08 (д, 1H, HC⁷_{cun}, J = 8.5), 5.24 (уш.с, 1H, HC⁴), 5.30 (с, 1H, HC⁵), 6.33 (с, 1H, HC⁶), 6.44 (уш.с, 1H, HC¹), 7.36 (т, 2H, HC_{аром}, J = 7.5), 7.44 (т, 1H, HC_{аром}, J = 7.1), 7.71 (д, 2H, HC_{аром}, J = 6.7). Физико-химические характеристики совпали с опубликованными ранее [146].

N-метоксикарбонилпиррол

К суспензии NaH (60% дисперсия в минеральном масле) (5.9 г, 0.149 моль) в 40 мл сухого ТГФ добавили по каплям при перемешивании раствор пиррола (9.9 г, 0.148 моль) в 40 мл ТГФ. Через 30 минут к реакционной смеси по каплям добавили раствор метилхлорформиата (14 г, 0.148 моль) в 40 мл ТГФ. Реакционную смесь перемешивали три часа, затем добавили воду. Органический слой отделили, водный экстрагировали метиленом (3×30 мл). Объединенные органические вытяжки сушили над безводным сульфатом натрия, растворитель упарили. Продукт перегоняли в вакууме, получили 8 г (45%) карбометоксипиррола. $T_{KUII} = 54-55$ °C/14 мм. рт. ст. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 3.98 (с, OCH₃, 3H), 6.27 (т, 2H, *J*=2.2), 7.30 (т, 2H, *J*=2.2). Физико-химические характеристики совпали с опубликованными ранее [147].

Триметил-7-азабицикло[2.2.1]гепта-2,5-диен-2,3,7-трикарбоксилат (6а)

К раствору диметилацетилендикарбоксилата (3.43 г, 0.024 моль) в 90 мл хлористого метилена добавили пятикратный избыток хлорида алюминия (16 г, 0.12 моль). Реакционную смесь нагрели до 40°С и при перемешивании добавили N-метоксикарбонилпиррол (3 г, 0.024 моль) в 10 мл CH₂Cl₂. Реакционную смесь кипятили в течение часа, затем добавили воду. Органический слой отделили, водный экстрагировали. Органические вытяжки объединили и высушили над Na₂SO₄. Растворитель упарили, остаток хроматографировали, получили 7.5 г технического продукта. После деления реакционной смеси методом колоночной хроматографии выделяют в порядке вымывания (элюент этилацетат : петролейный эфир 1:1):

(с, 3H, OMe (изомер Z)), 3.91 (с, 3H, OMe (изомер E)), 3.92 (с, 3H, OMe (изомер Z)), 6.25 (т, 1H, CH⁴, *J*=3.3 (изомер Z)), 6.27 (т, 1H, CH⁴, *J*=3.5 (изомер E)), 6.30 (дд, 1H, H(3), *J*=3.3, *J*=1.6 (изомер E)), 6.35 (с, 1H, =CH (изомер Z)), 6.43 (д.д, 1H, CH³, *J*=3.3, *J*=1.8 (изомер Z)), 6.95 (с, 1H, =CH (изомер E)), 7.38 (м, 2H, CH⁵ (изомеры E, Z)).

6) 1.5 г (23%) продукта 6а, R_f 0.4. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц,): δ 3.61 (с, 3H, NCO₂Me), 3.80 (с, 6H, OMe), 5.50 (с, 2H, CH¹, CH⁴), 7.01 (с, 2H, CH=CH).
Физико-химические характеристики совпали с опубликованными ранее [116].

7-Трет-бутил 2,3-диметил 7-азабицикло[2.2.1]гепта-2,5-диен-2,3,7-трикарбоксилат (6b)

К раствору N-Вос пиррола (3 г, 18 ммоль) в 20 мл толуола добавили диметил бут-2-индиоата (2.6 г, 18 ммоль). Реакционную смесь кипятили в течение трех дней, затем растворитель упарили, остаток хроматографировали. Получили 1.6 г (30%) желтого масла. R_f 0.57 (этилацетат-петролейный эфир

1:2). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.39 (с, 9Н, С(CH₃)₃), 3.79 (с, 9Н, CH₃), 5.44 (уш.с., 2H, HC⁴ + HC¹), 7.11 (уш.с., 2H, HC⁵ + HC⁶). Физико-химические характеристики совпали с опубликованными ранее [148].

7-Трет-бутил 2,3-диэтил 7-азабицикло[2.2.1]гепта-2,5-диен-2,3,7-трикарбоксилат (8)

К раствору N-Вос пиррола (2 г, 12 ммоль) в 20 мл толуола добавили N^{Boc} диэтил бут-2-индиоата (2 г, 12 ммоль). Реакционную смесь кипятили в COOEt течение трех дней, затем растворитель упарили, остаток хроматографировали. COOEt Получили 0.8 г (20%) желтого масла. R_f 0.51 (этилацетат-петролейный эфир 1:3). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.29 (т, 6Н, *J*=7.1), 1.38 (с, 9Н, С(CH₃)₃), 4.23 (кв., 4Н, CH₂, J=7.1), 5.42 (уш.с., 2H, HC⁴ + HC¹), 7.11 (уш.с., 2H, HC⁵ + HC⁶). Физико-химические характеристики совпали с опубликованными ранее [148].

Метил 11-азатрицикло[6.2.1.0^{2,7}]ундека-2,4,6,9-тетраен-11-карбоксилат (9а)

К раствору N-метоксикарбонилпиррола (3.6 г, 0.029 моль) в 6 мл сухого OCH₃ ТГФ добавили магний (1 г, 0.043 моль). Смесь нагрели до кипения, затем по каплям прибавили о-фторбромбензол в 15 мл ТГФ и кипятили в течение трех часов. Реакционную смесь вылили в раствор хлорида аммония (21 г NH₄Cl в 74 мл H₂O). Органический слой отделили, водный дважды экстрагировали хлористым метиленом. Объединенные органические вытяжки высушили, растворитель упарили, остаток хроматографировали. Получили 0.7 г (12%) желтого масла. Rf 0.29 (хлороформ). Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Γμ): 3.65 (c, 3H, CH₃), 5.57 (уш.с, 2H, HC¹+HC⁸), 6.97 – 7.04 (м, 4H, HC_{apow}), 7.24 – 7.29 (м, 2H, HC⁹+HC¹⁰). Физико-химические характеристики совпали с опубликованными ранее [149].

Трет-бутил 11-азатрицикло[6.2.1.0^{2,7}]ундека-2,4,6,9-тетраен-11-карбоксилат (9b)

метилена по каплям в течение часа прибавляли смесь антраниловой кислоты (1.4 г, 0.01 моль) и N-Вос пиррола (1.67 г, 0.01 моль) в 8 мл ацетона. Смесь кипятили час. перемешивали ночь. Растворитель затем упарили, остаток хроматографировали. Получили 0.35 г (15%) бежевых кристаллов. Rf 0.32 (элюент – CHCl₃). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.38 (с, 9Н, С(CH₃)₃), 5.48-5.52 (м, 2Н, HC¹, HC⁸), 6.95-7.01 (м, 4Н, НСаром), 7.26 (с, 1Н). Физико-химические характеристики совпали с опубликованными ранее [43].

К кипящему раствору изоамилнитрита (1.3 г, 0.011 моль) в 4 мл хлористого

N-тозилпиррол

К суспензии NaH (60% дисперсия в минеральном масле) (3.0 г, 0.075 моль) в 20 мл сухого ТГФ добавили по каплям при перемешивании раствор пиррола (5.2 г, 0.075 моль) в 20 мл ТГФ. Через 30 минут к реакционной смеси по каплям добавили раствор тозилхлорида (14.2 г, 0.075 моль) в 20 мл ТГФ. Реакционную смесь перемешивали три часа, затем добавили воду. Органический слой отделили, водный экстрагировали метиленом (3×15 мл). Объединенные органические вытяжки сушили над безводным сульфатом натрия, растворитель упарили, остаток хроматографировали. Получили 12.2 г (74%). в виде бежевых кристаллов. R_f 0.3 (хлороформ). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 2.42 (с, CH₃, 3H), 6.31 (т, 2H, *J*=2.40), 7.18 (т, 2H, *J*=2.27), 7.31 (д, 2H, *J*=7.96), 7.76 (д, 2H, *J*=8.46). Физикохимические характеристики совпали с опубликованными ранее [150].

11-[(4-Метилфенил)сульфонил]-11-азатрицикло[6.2.1.0^{2,7}]ундека-2,4,6,9-тетраен (9с)

К раствору N-тозилпиррола (2 г, 0.009 моль) в 6 мл сухого ТГФ добавили магний (0.216 г, 0.009 моль). Затем реакционную смесь нагрели до кипения, по каплям прибавили *о*-фторбромбензол в 15 мл ТГФ и кипятили в течение трех часов. Далее реакционную смесь вылили в раствор хлорида аммония (7 г

NH₄Cl в 23 мл H₂O). Органический слой отделили, водный дважды экстрагировали хлористым метиленом. Объединенные органические вытяжки высушили над Na₂SO₄, растворитель упарили, остаток хроматографировали. Получили 0.35 г (13%) бежевых кристаллов. R_f 0.34 (хлороформ). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 2.35 (с, 3H, CH₃), 5.45 (т, 2H, HC¹+HC⁸, *J*=1.5), 6.78 – 6.80 (м, 4H, HC_{аром}), 7.04 (кв, 2H, HC⁹+HC¹⁰, *J*=3.0), 7.10 (д, 2H, HC_{аром}, *J* = 8.1), 7.47 (д, 2H, HC_{аром}, *J* = 8.3). Физико-химические характеристики совпали с опубликованными ранее [151].

IV.2.2. Синтез производных циклопропана

1,1-Дихлор-2-фенилциклопропан

СІ СІ К 23 мл свежеперегнанного стирола (20.8 г, 0.21 моль) в 100 мл хлороформа добавили ТЭБАХ (0.55 г, 0.002 моль). Затем к реакционной смеси при температуре 45°С по каплям при перемешивании прибавили 100 мл 50% раствора NaOH. Реакционную смесь перемешивали 6 часов при температуре 60 °С. Затем вылили в воду, экстрагировали хлороформом, органическую вытяжку промыли водой, высушили над сульфатом натрия. Растворитель упарили, остаток перегнали в вакууме. Получили 31 г (80%) в виде бесцветной жидкости. Т_{кип} = 105-106 °С/12 мм. Лит. [152]: Т_{кип}=101°С/8 мм, n^D₂₀=1.5510. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.89 (дд, 1Н, H₂C), 2.01 (дд, 1Н, H₂C), 2.94 (дд, 1Н, HC), 7.29 – 7.43 (м, 5Н, HC_{аром}). Физико-химические характеристики совпали с опубликованными ранее [152].

Фенилциклопропан (10а)

К мелкодисперсному металлическому натрию (6 г, 0.26 моль) добавили 30 мл абсолютного эфира. К полученной суспензии при энергичном перемешивании по каплям добавили 1,1-дихлор-2-фенилциклопропана (6.2 г, 0.033 моль) в смеси 9 мл метанола и 3 мл абсолютного эфира с такой скоростью, чтобы эфир в реакционной колбе равномерно кипел. После прибавления дихлорида добавили еще 2 мл метанола и перемешивали до полного растворения натрия (3-5 часов). Затем реакционную смесь обрабатывали водой (45 мл). Эфирный слой отделили, водный экстрагировали диэтиловым эфиром. Объединенные органические вытяжки промыли водой, перманганатом калия и высушили над сульфатом натрия. Растворитель упарили, остаток перегнали в вакууме. Получили 4.2 г (67%) в виде бесцветной жидкости. $T_{кнп}$ =173°C /758 мм. Лит.[153]: $T_{кнп}$ =173.5 °C/758 мм. n^{D}_{20} =1.5342. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.70-0.75 (м, 2H, HC_{циклопропил}), 0.95 – 1.01 (м, 2H, HC_{циклопропил}), 1.92 (тт, 1H, HC_{циклопропил}, J_1 = 8.2, J_2 = 5.3), 7.08 – 7.12 (м, 2H, HC_{аром}), 7.17 (тт, 1H, HC_{аром}, J_1 = 7.4, J_2 = 1.4), 7.26 – 7.31 (м, 2H, HC_{аром}). Физико-химические характеристики совпали с опубликованными ранее [154].

1-Метил-2-фенилциклопропан (10b)

К бензальацетону (8 г, 0.055 моль) в 20 мл абсолютного этанола с СН₃ небольшими порциями прибавили 90% гидрата гидразина (5 г, 0.09 моль). Растворитель упарили, остаток высушили карбонатом калия и перегнали в вакууме (Т_{кип}=180°С /32 мм.). К полученному пиразолину добавили небольшое количество растертой щелочи (КОН) и разлагали пиразолин при нагревании. Часть углеводорода отгонялась в приемник, остаток в колбе экстрагировали эфиром. Затем промывали 50% уксусной кислотой и водой, сушили над сульфатом натрия. Растворитель упарили, остаток перегнали в вакууме. Получили 4 г (55%) продукта **10b** в виде смеси *цис-* и *транс-*изомеров (соотношение по спектру ЯМР ¹Н 1:1.4). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.54 (м, 1H, CH₂ *цис-*изомера, $J_1 = 5.6$, $J_2 = 5.6$, $J_3 = 5.2$), 0.63 (дт, 1H, CH₂ *транс-*изомера, $J_1 = 8.4$, $J_2 = 5.3$, $J_3 = 5.3$), 1.00 (м, 1H, <u>H</u>CCH₃ *транс-*изомера), 1.10 (м, 1H, <u>H</u>CCH₃ *цис-*изомера), 1.48 (тд, 1H, <u>H</u>CPh *транс-*изомера, $J_{uuc} = 8.5$, $J_{mpanc} = 4.7$, $J_{mpanc} = 4.7$), 1.85 (м, 1H, CH₂ *цис-*изомера), 1.95 (м, 1H, СH₂ *транс-*изомера), 2.00 (тд, 1H, <u>H</u>CPh *цис-*изомера, $J_{uuc} = 8.5$, $J_{mpanc} = 6.0$), 6.95 (д, 2H, HC_{аром} *транс-*изомера, J = 7.7), 7.05 – 7.25 (м, HC_{аром}, *цис-*изомер + *транс-*изомера). Т_{кип}=190°С/758 мм. Лит.[155]: Т_{кип}=186 °С/743 мм.рт.ст., n^D₂₀=1.5208.

Метилциклогексилкетон

К смеси циклогексена (8.2 г, 0.1 моль) и хлористого ацетила (7.85 г, 0.1 СН₃ моль) в 20 мл циклогексана, охлажденной до -15°С, небольшими порциями при перемешивании прибавили AlCl₃ (26 г, 0.2 моль). Затем раствор медленно отогрели до комнатной температуры и при постоянном перемешивании нагрели на водяной бане до 70 °С до прекращения выделения хлороводорода. Далее смешали со льдом, нижний слой отделили, высушили над сульфатом натрия. Полученное масло перегнали. Получили 8.2 г (65%) Т_{кип}=67-68 °С/10 мм, п^D₂₀=1.4565. Лит. [156]: Т_{кип}=60°С/8 мм, Т_{кип}=183-184°С, п^D₂₀=1.4560.

Циклогексилстирилкетон

К гидроксиду натрия (3.4 г, 0.086 моль) в 20 мл H₂O и 12 мл спирта прибавили при перемешивании метилциклогексилкетон (5.4 г, 0.043 моль), затем бензальдегид (4.6 г, 0.043 моль). Реакционную смесь перемешивали 12

ч, экстрагировали диэтиловым эфиром и сушили над сульфатом натрия. Растворитель упарили, остаток перекристаллизовали из спирта. Получили 4.1 г (45%), T_{пл}=67°C, T_{кип}=182 °C/10 мм. Лит. [157]: T_{пл}=68°C T_{кип}=182°C/10 мм.

1-Циклогексил-2-фенилциклопропан (10с)

К циклогексилстирилкетону (4.3 г, 0.02 моль) в 10 мл этанола добавили 90% гидрат гидразина (6.6 г, 0.12 моль). Реакционную смесь кипятили 5 часов, растворитель упарили. Полученный пиразолин (2.1 г, (46%)) подвергали разложению действием КОН. Полученный углеводород в виде смеси *цис*- и *транс*-изомеров в соотношении 1:1 перегнали в вакууме. Получили 1 г (54%), Т_{кип}=144-145°C/8 мм. n^D₂₀=1.5276. Лит. [157]: Т_{кип}=148-150 °C/10 мм. n^D₂₀=1.5270.

4-Метил-1-фенилпент-1-ен-3-он

К 1.5 г (0.038 моль) NaOH в 150 мл воды и 98 мл этилового спирта / добавили 3.2 г (0.037 моль) 3-метилбутан-2-она. Реакционную смесь охладили до 5 °C и добавили 4 г (0.037 моль) бензальдегида. Во время

реакции поддерживали температуру 5 °С. Через 3 часа после окончания реакции смесь оставили на сутки при 10 °С. Органический слой отделили, водный дважды экстрагировали диэтиловым эфиром. Органические вытяжки объединили, высушили над безводным сульфатом натрия.

Растворитель упарили, остаток перегнали в вакууме. Получили 3.5 г (54%) 4-метил-1фенилпент-1-ен-3-она в виде бледно-желтой жидкости. $T_{KHII.}$ 145-150 °C /14 мм.рт.ст. Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*, Гц): 1.15 (д, 6H, H₃C⁵, CH₃, *J* = 6.8), 2.87 (септет, 1H, HC⁴, *J* = 6.8), 6.76 (д, 1H, HC¹, *J* =16.0), 7.32 (м, 3H, HC_{аром}), 7.49 (м, 2H, HC_{аром}), 7.54 (д, 1H, HC², *J* = 16.0). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 18.5 (CH₃), 39.2 (C⁴), 124.4 (C¹), 128.2, 128.9 (С_{аром}), 130.2 (С_{аром}), 134.7 (C¹), 142.3 (C²). ИК-спектр (тонк.пл., v, см⁻¹): 1690 (С=О), 1670 (С=С), 1615 (аром). Найдено, %: C 82.75; H 8.28. C₁₂H₁₄O. Вычислено, %: C 82.76; H 8.05.

3-Изопропил-5-фенилпиразолин

К раствору 3.5 г (0.02 моль) 4-метил-1-фенилпент-1-ен-3-она в 15 мл этанола при интенсивном перемешивании небольшими порциями добавили 90%-ный раствор гидрата гидразина (3 г, 0.055 моль). Реакционную смесь перемешивали 4 часа. Органический слой отделяли, водный экстрагировали

диэтиловым эфиром. Органические вытяжки объединяли и сушили над безводным сульфатом натрия. Растворитель упарили, остаток перегнали в вакууме. Получили 1.5 г (40%) 3-изопропил-5-фенилпиразолина в виде бледно-желтого масла. $T_{кип.}$ 190 °C/40 мм рт.ст (без разложения). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J, Гц): 1.17 (д, 6H, CH₃, J = 6.8), 2.65 (м, 2H, HC_{изопропил} + CH (CH₂)), 3.06 (дд, 1H, CH₂, $J_I = 16.0$, $J_2 = 10.3$), 4.72 (дд, 1H, C<u>H</u>Ph, $J_I = 10.3$, $J_2 = 8.7$), 7.25-7.40 (м, 5H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 20.1, 20.2 (CH₃), 29.7 (CH), 41.6 (CH₂), 63.7 (HCN), 126.2, 128.7 (С_{аром}, С_{аром}) 127.5 (С_{аром}), 143.7 (С_{аром}), 160.4 (C=N). ИК-спектр (тонк.пл., v, см⁻¹): 1715 (C=N), 1615 (аром). Найдено, %: С 75.17; Н 8.52; N 11.80. C₁₂H₁₆N₂. Вычислено, %: С 76.59; Н 8.51; N 14.89. (Вещество неустойчиво, разлагается в ходе проведения элементного анализа).

1-Изопропил-2-фенилциклопропан (10d)

3-Изопропил-5-фенилпиразолин (1.5 г, 0.008 моль) нагревали с КОН. Полученный технический продукт перегоняли в вакууме и получили 1.1 г (86%) смеси *цис*- и *транс*- изомеров (соотношение по спектру ЯМР ¹Н 1:2.7) 1-изопропил-2-фенилциклопропана в виде бесцветной жидкости. Т_{кип.} 98-100 °С / 14 мм.рт.ст. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*, Гц): 0.80-1.30 (м, группа сигналов протонов: HC_{изопропил} *цис*- и *транс*-изомеров, CH₃-группы *цис*-изомера, H(1), H₂C), 1.19 (д, 6H, CH₃ *транс*изомера, *J* = 6.4), 1.79 (дт, <u>H</u>CPh *транс*-изомера, *J* = 8.6, *J* = 4.9), 2.28 (тд, <u>H</u>CPh *цис*-изомера, *J* = 8.1, *J* = 6.4), 7.18-7.35 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): для *транс*-изомера: 8.7 (C³), 21.7, 21.9 (CH₃), 22.9 (CH_{изопропил}), 27.6 (C¹), 28.2 (C²), 125.6 (С_{аром}), 127.8 (С_{аром}), 128.9 (С_{аром}), 139.4 (С_{аром}); для *цис*-изомера 15.2 (C³), 22.0, 22.4 (CH₃), 22.6 (CH_{изопропил}), 31.8 (C¹), 33.7 (C²),
125.2 (С_{аром}), 125.9 (С_{аром}), 128.3 (С_{аром}), 144.1 (С_{аром}). Лит.[155]: Т_{кип.} 213-216 °С, n²⁰_D 1.5072.

3,3-Диметилбутанон (пинаколин)

Пинакон гексагидрат (6 г, 0.03 моль) кипятили в течение часа с 25% H₂SO₄ (4.7 г, 0.05 моль). Пинаколин из дистиллята экстрагировали эфиром (3 × 10 мл), эфирные вытяжки объединили и высушили над Na₂SO₄. Растворитель упарили, остаток перегнали в вакууме. Получили 1.6 г (60%) пинаколина. Т_{кип} = 102°С. Лит [152]: Т_{кип} = 106°С. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*, Гц): 1.16 (с, 9Н, CH₃), 2.13 (с, 3Н, CH₃). Физико-химические характеристики совпали с опубликованными ранее [152].

4,4-Диметил-1-фенилпент-1-ен-3-он

К раствору NaOH (0.8 г, 0.02 моль) в смеси с 5 мл этилового спирта и 10 мл воды при интенсивном перемешивании прибавили 1.7 г (0.017 моль) пинаколина, охлаждая смесь до 5°С. Затем добавили бензальдегид (1.8 г,

0.017 моль). Через 3 часа реакционную смесь оставили при температуре 10°С на двое суток. Далее органический слой отделили, водный экстрагировали эфиром (2 × 15 мл). Объединенные органические вытяжки высушили над Na₂SO₄. Растворитель упарили, остаток перегнали в вакууме. Получили 1.9 г (60%) 4,4-диметил-1-фенилпент-1-ен-3-она в виде бледно-желтой закристаллизовавшейся жидкости. $T_{\kappa un} = 160-175$ °C/20 мм рт. ст. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*, Гц): 1.22 (с, 9H, CH₃), 7.13 (д, 1H, HC¹, *J* = 15.6), 7.36 – 7.39 (м, 3H, HC_{аром}), 7.55 – 7.60 (м, 2H, HC_{аром}), 7.69 (д, 1H, *J* = 15.6, HC²). Физико-химические характеристики совпали с опубликованными ранее [158].

1-Фенил-2-трет-бутилциклопропан (10е)

К смеси гидразингидрата (33.5 г, 0.67 моль), 4,4-диметил-1-фенилпент-1ен-3-она (8.48 г, 0.045 моль) в 16.7 мл этанола. при перемешивании добавили NaOH. Реакционную смесь нагревали (340-400°С) в течение 3 часов. Этанол и

избыток гидразина удалили перегонкой. К полученному продукту после охлаждения добавили петролейный эфир, органический слой промыли водой (3×25 мл) и высушили над Na₂SO₄. Растворитель упарили, остаток перегнали в вакууме. Лит.: T_{кип} = 110°C/14 мм рт. ст. Получили 4 г (55%) 1- *трет* бутил-2-фенилциклопропана, T_{кип} = 125-130 /40 мм рт. ст.

IV.2.3 Синтез галогеноксимов

(Е)-Оксим бензальдегида (анти-бензальдоксима)

К 10 г (0.25 моль) гидроксида натрия в 50 мл воды при перемешивании и охлаждении порциями добавили 10.4 г (0.15 моль) гидрохлорида гидроксиламина. Затем реакционную смесь охладили и по каплям при охлаждении добавили 10.2 мл (0.1 моль) свежеперегнанного бензальдегида.
 Реакционную смесь перемешивали полчаса при комнатной температуре. Затем дважды экстрагировали диэтиловым эфиром (2×25 мл), эфирные вытяжки отбросили. Водную фазу довели до рН 7 концентрированной соляной кислотой. Продукт реакции извлекали эфиром (2×25 мл), высушили над Na₂SO₄, растворитель упарили. Получили 7.2 г (60%) желтого масла. Спектр ЯМР ¹Н (CDCl₃, δ, м.д.): 7.40-7.42 (м, 3H, CH_{аром}), 7.59-7.62 (м, 2H, CH_{аром}), 8.21 (с, 1H), 9.27 (уш.с, 1H). Физико-химические характеристики совпали с опубликованными ранее [152].

N-гидроксибензолкарбоксимидоилхлорид (29а)

N OH

К раствору 3.63 г (0.03 моль) *анти*-бензальдоксима в 25 мл ДМФА при перемешивании добавили 0.4 г (0.03 моль) N-хлорсукцинимида. Реакционную смесь перемешивали полчаса, затем добавили 3.6 г (0.027 моль) N-хлорсукцинимида. Продолжили перемешивание в течение 8 часов. Затем

добавили четырехкратный объем воды (100 мл), экстрагировали диэтиловым эфиром (2×25 мл). Объединенные органические вытяжки промыли 3 раза водой, высушили над безводным Na₂SO₄, растворитель упарили. Получили 3.2 г (68%) желтого кристаллизующегося масла. Спектр ЯМР ¹H (CDCl₃, δ, м.д.): 7.40-7.47(м, 3H, CH_{аром}), 7.84-7.86 (м, 2H, CH_{аром}), 8.83 (уш.с, 1H). Физикохимические характеристики совпали с опубликованными ранее [159].

(Е)-N-гидрокси-1-(4-метоксифенил)метанимин

К раствору 12.5 г (0.09 моль) анисового альдегида в 25 мл воды и 25 мл этилового спирта при перемешивании добавили 6.3 г (0.09 моль) гидрохлорида гидроксиламина и 40 мл ледяной воды. Затем добавили 18 г (0.225 моль) 50%-ого раствора NaOH. Реакционную смесь перемешивали

час, температуру реакционной смеси поддерживали ниже 35°С добавлением небольшого количества льда. После окончания перемешивания реакционную смесь экстрагировали диэтиловым эфиром (2×30 мл), отбросили органические вытяжки. Водную фазу довели до pH 6 концентрированной соляной кислотой, затем снова экстрагировали диэтиловым эфиром (2×30 мл). Объединенные органические вытяжки высушили над Na₂SO₄, растворитель упарили.

Получили 12 г (88%) белого порошка. Т_{пл.} = 134°С (лит. [160]: Т_{пл.} = 133°С). Спектр ЯМР ¹Н (CDCl₃, δ, м.д.): 3.84 (с, 3H, OCH₃), 6.92 (д, 2H, CH_{аром}, *J* = 8.8), 7.53 (д, 2H, CH_{аром}, *J* = 8.8), 8.11 (с, 1Н). Физико-химические характеристики совпали с опубликованными ранее [161].

N-гидрокси-4-метоксибензолкарбоксимидоилхлорид (29b)

К раствору 4.5 г (0.03 моль) 4-метоксибензальдоксима в 25 мл ДМФА при перемешивании добавили 0.4 г (0.003 моль) N-хлорсукцинимида. Реакционную смесь перемешивали полчаса, затем добавили 3.6 г (0.027 моль) N-хлорсукцинимида. Продолжали перемешивание в течение 8 часов.

Затем добавили четырехкратный объем воды (100 мл), экстрагировали диэтиловым эфиром (2×25 мл). Объединенные органические вытяжки промыли 3 раза водой, высушили над Na₂SO₄, растворитель упарили. Получили 4,4 г (80%) кремового порошка. Т_{пл.} = 90°С (лит. [160]: Т_{пл.} = 91 °C). Спектр ЯМР ¹Н (CDCl₃, δ, м.д.): 3.84 (с, 3H, OCH₃), 6.92 (д, 2H, *J*=8.9, CH_{аром}), 7.78 (д, 2H, J=8.9, CH_{аром}), 8.47 (уш.с, 1H, OH). Физико-химические характеристики совпали с опубликованными ранее [161].

(E)-N-гидрокси-1-(4-нитрофенил)метанимин

час.

К раствору 13.5 г (0.09 моль) 4-нитробензальдегида в 25 мл воды и 25 мл этилового спирта при перемешивании добавили 6.3 г (0.09 моль) гидрохлорида гидроксиламина и 40 мл ледяной воды. Затем добавили 18 г (0.225 моль) 50%-ого раствора NaOH. Реакционную смесь перемешивали

температуру реакционной смеси поддерживали ниже 35°С добавлением небольшого количества льда. После окончания перемешивания реакционную смесь экстрагировали диэтиловым эфиром (2×30 мл), органические вытяжки отбросили. Водную фазу довели до рН 6 концентрированной соляной кислотой, затем снова экстрагировали диэтиловым эфиром (2×30 мл). Объединенные органические вытяжки высушили над безводным Na₂SO₄, растворитель упарили. Получили 10 г (67%) желтого порошка. Т_{пл.} = 120°С (лит.: Т_{пл.} = 119-120°С). Спектр ЯМР ¹Н (CDCl₃, δ, м.д.): 8.04-8.06 (м, 2Н, СН_{аром}), 8.27 (д, 2H, CH_{аром}, J=8.9), 8.41 (с, 1H, <u>H</u>C=N). Физико-химические характеристики совпали с опубликованными ранее [161].

N-гидрокси-4-нитробензолкарбоксимидоилхлорид (29с)

К раствору 4.98 г (0.03 моль) 4-нитробензальдоксима в 25 мл ДМФА при перемешивании добавили 0.4 г (0.003 моль) N-хлорсукцинимида. Реакционную смесь перемешивали полчаса, затем добавили 3.6 г (0.027

моль) N-хлорсукцинимида. Продолжали перемешивание в течение 8 часов. Затем добавили четырехкратный объем воды (100 мл), экстрагировали диэтиловым эфиром (2×25 мл). Объединенные органические вытяжки промыли 3 раза водой, высушили над Na₂SO₄, растворитель упарили. Получили 4.3 г (72%) желтого порошка. $T_{пл.} = 123^{\circ}C$ (лит. [83]: $T_{пл.} = 123^{\circ}C$). Спектр ЯМР ¹H (CDCl₃, δ , м.д.): 8.04-8.06 (м, 2H, CH_{аром}), 8.27 (д, 2H, CH_{аром}, *J*=8.9), 8.55 (уш.с, 1H). Физико-химические характеристики совпали с опубликованными ранее [161].

Альдоксим глиоксиловой кислоты

К 50% водному раствору гидроксиламина (3 г, 0.1 моль) при перемешивании добавили глиоксиловую кислоту (8.1 г, 0.1 моль) в 10 мл воды. Реакционную смесь перемешивали в течение 16 часов при комнатной температуре, затем экстрагировали диэтиловым эфиром (3×20 мл), объединенные органические

вытяжки высушили над Na₂SO₄, растворитель упарили. Получили 6.3 г (71 %) белого кристаллического вещества. Физико-химические характеристики совпали с опубликованными ранее [162].

Дибромформальдоксим (гидроксикарбонимиддибромид) (29d)

ОН Альдоксим глиоксиловой кислоты (2.6 г, 29 ммоль) растворили в 52 мл воды и охладили до 4°С. Затем по каплям добавили 2 мл (40 ммоль) брома. После Вг добавления брома охлаждение убрали, реакционную смесь перемешивали 3 часа. Далее реакционную смесь экстрагировали диэтиловым эфиром (3×15 мл), объединенные органические вытяжки промыли 10 мл насыщенного раствора тиосульфата натрия, высушили над безводным Na₂SO₄, растворитель упарили. Получили 3 г (51%) желтого кристаллического вещества. Физико-химические характеристики совпали с опубликованными ранее [162].

Гидрохлорид этилового эфира глицина (этилглицинатгидрохлорид)

К 150 мл 96%-го этанола, охлажденного до -15 °С, при интенсивном перемешивании прикапывали 25 мл свежеперегнанного SOCl₂. Затем порциями прибавляли 25 г глицина по 5 г с интервалом в 5 мин. Охлаждение убрали, смесь медленно отогрели до комнатной температуры, далее осторожно нагревали до кипения и кипятили в течение 1 ч. Горячий раствор фильтровали и охлаждали до 0 °С. Выпавшие кристаллы отфильтровали, промывали сухим эфиром (2×50 мл) и высушили. Продукт перекристаллизовали из смеси этанол-эфир (1:1). Получили 40 г (86%), $T_{пл.} = 144^{\circ}$ С (лит. [152]: $T_{пл.} = 144^{\circ}$ С). Спектр ЯМР ¹Н (ДМСО-d₆, δ , м.д.): 1.20 (т, 3H, J = 7.1 Гц); 3.71 (с, 2H); 4.16 (кв, 2H, *J* = 7.1 Гц), 8.58 (уш. с, 3H). Физико-химические характеристики совпали с опубликованными ранее [152].

Этил хлоро(гидроксимино)ацетат (29е)

К охлажденному до -5°С раствору 7 г (0.05 моль) этилового эфира ^{OH} глицина в 9.5 мл воды добавили 4.15 мл концентрированной соляной кислоты, затем по каплям добавили 3.45 г (0.05 моль) нитрита натрия в 5 мл воды. По окончании прибавления первого эквивалента добавили второй эквивалент нитрита натрия в HCl. Реакционную смесь перемешивали 3 часа, экстрагировали диэтиловым эфиром (2×25 мл), органическую вытяжку сушили над Na₂SO₄, растворитель упарили. Получили 3 г (40%) кристаллизующегося масла. Физико-химические характеристики совпали с опубликованными ранее [163].

IV.2.4. Синтез гидразоноилхлоридов

Бензоил хлорид

К бензойной кислоте (3.5 г, 0.03 моль) добавили 8 г (0.04 моль) хлористого тионила. Реакционную смесь кипятили 4 часа. Избыток хлористого тионила удалили на роторном испарителе. Получили 3.4 г (86%) желтой жидкости. Без выделения ввели в следующую стадию [164].

N'-фенилбензогидразид

К раствору фенилгидразина (3 г, 0.03 моль) в 28 мл CH₂Cl₂ добавили пиридин (2.5 г, 0.03 моль). Смесь охладили до 0 °С. Затем медленно при перемешивании по каплям добавили бензоил хлорид (4 г, 0.03 моль) в 7

мл CH₂Cl₂, перемешивали в течение 12 часов. Реакционную смесь вылили в воду (50 мл), органический слой отделили, промыли водой и насыщенным раствором хлорида натрия. Высушили над безводным Na₂SO₄, растворитель упарили. Получили 3.6 г (60%) желтых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.42 (уш.с., 1H, NH), 6.88 – 6.96 (м, 3H, HC_{аром}), 7.21 – 7.26 (м, 3H, HC_{аром}), 7.49 – 7.52 (м, 2H, HC_{аром}), 7.56 (т, 1H, HC_{аром}, J=7.5), 7.84 (д, 2H, HC_{аром}, J=7.4), 8.19 (уш.с., 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [165].

N-фенилбензолкарбогидразоноилхлорид (34a)

N'-фенилбензогидразид (3.5 г, 0.017 моль) смешали с PPh₃ (5.2 г, 0.02 моль) и CCl₄ (3 г, 0.02 моль) в 34 мл CH₃CN. Реакционную смесь перемешивали 12 часов при комнатной тепературе, растворитель упарили,

остаток хроматографировали. Получили 0.9 г (30%) в виде бордовых кристаллов. R_f 0.4 (элюент петролейный эфир – этилацетат, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 6.97 (т, 1H, HC_{аром}, *J*=7.3), 7.20 (д, 2H, HC_{аром}, *J*=7.6), 7.32 (т, 2H, HC_{аром}, *J*=7.4), 7.39 – 7.44 (м, 3H, HC_{аром}), 7.95 (д, 2H, HC_{аром}, *J*=6.8), 8.06 (уш.с., 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [166].

N'-фенилфуран-2-карбогидразид

К раствору фенилгидразина (3.9 г, 0.037 моль) в 40 мл CH₂Cl₂ добавили пиридин (3.2 г, 0.04 моль). Смесь охладили до 0°С. Затем медленно при перемешивании по каплям добавили фуран-2-карбонил хлорид (5.4 г, 0.037 моль), перемешивали в течение 12 часов. Реакционную смесь вылили в воду (50 мл), органический слой отделили, промыли водой и насыщенным раствором хлорида натрия. Высушили над безводным Na₂SO₄, растворитель упарили. Получили 4 г (54%) желтых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.27 (уш.с., 1Н, NH), 6.55 (дд, HC_{фурил}, J_1 = 3.5, J_2 = 1.7,), 6.90 – 6.94 (м, 3H, HC_{аром}), 7.20 – 7.26 (м, 3H, HC_{аром} + HC_{фурил}), 7.51 (д, 1H, HC_{фурил}, J=1.0), 8.16 (уш.с., 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [165].

N-фенилфуран-2-карбогидразонилхлорид (34b)

N'-фенилфуран-2-карбогидразид (1 г, 4.9 ммоль) смешали с PPh₃ (1.6 г, 5.9 ммоль) и CCl₄ (0.6 г, 5.9 ммоль) в 7 мл CH₃CN. Реакционную смесь перемешивали 12 часов при комнатной тепературе, растворитель упарили,

остаток хроматографировали. Получили 0.4 г (36%) желтых кристаллов. R_f 0.48 (элюент петролейный эфир – этилацетат, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.49 (дд, 1H, HC_{фурил} $J_1 = 3.4$, $J_2 = 1.8$,), 6.76 (дд, 1H, HC_{фурил}, $J_1 = 3.4$, $J_2 = 0.8$), 6.95 (тт, 1H, HC_{аром}, $J_1 = 7.3$, $J_2 = 1.1$), 7.17 (дд, 2H, HC_{аром}, $J_1 = 8.6$, $J_2 = 1.1$), 7.32 (дд, 2H, HC_{аром}, $J_1 = 8.6$, $J_2 = 7.4$), 7.51 (дд, 1H, HC_{фурил}, $J_1 = 1.8$, $J_2 = 0.8$), 7.95 (уш.с., 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [167].

N'-фенилацетогидразид

К фенилгидразину (2 г, 0.03 моль) добавили уксусную кислоту (42 г, Н СН₃ 0.7 моль), реакционную смесь нагревали при 80°С в течение 3.5 часов. Затем растворитель упарили в вакууме, к остатку добавили NaOH (15%, 22

мл) и 100 мл CH₂Cl₂. Органический слой отделили, водный экстрагировали CH₂Cl₂ (2×40 мл). Объединенные органические вытяжки высушили над безводным Na₂SO₄, растворитель упарили. Получили 3.14 г (75%) в виде бледно-оранжевых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., J/Гц) смеси двух изомеров в соотношении 70:30: 2.03 (с, 2H, CH₃), 2.09 (с, 0.9H, CH₃), 5.85 (уш.с., 0.3H, NH), 6.20 (уш.с., 0.7H, NH), 6.74 (д, 0.6H, HC_{аром}, J=7.9), 6.81 (д, 1.4H, HC_{аром}, J=7.7), 6.88 – 6.94 (м, 1Н, НС_{аром}), 7.18 (уш.с, 0.3Н, NН), 7.21 – 7.25 (м, 2Н, НС_{аром}), 7.68 (уш.с., 0.7H, NH). Физико-химические характеристики совпали с опубликованными ранее [165].

(1Z)-N-фенилэтангидразоноилхлорид (34с)

N'-фенилацетогидразид (0.5 г, 0.0033 моль) смешали с PPh₃ (1 г, 0.004 ^H_N, ^{Cl}_{CH₃} моль) и CCl₄ (0.6 г, 0.004 моль) в 7 мл CH₃CN. Реакционную смесь перемешивали 12 часов при комнатной тепературе, растворитель упарили, остаток хроматографировали. Получили 0.35 г (63%) бордовых кристаллов. Rf 0.5 (элюент петролейный эфир – этилацетат, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.42 (с, 3H, CH₃), 6.92 (т, 1Н, НС_{аром}, *J*=7.4), 7.08 (д, 2Н, НС_{аром}, *J*=7.7), 7.29 (т, 2Н, НС_{аром}, *J*=7.4), 7.59 (уш.с., 1Н, NH). Физико-химические характеристики совпали с опубликованными ранее [168].

N'-фенилциклопропанкарбогидразид

К охлажденному до 0°С раствору фенилгидразина (4.8 г, 44 ммоль) в 45 мл хлористого метилена добавили пиридин (3.6 г, 44 ммоль). Затем в течение 1.5 ч по каплям прибавляли хлорангидрид циклопропанкарбоновой

кислоты (4.6 г, 44 ммоль) в 11 мл CH₂Cl₂. Реакционную смесь медленно отогрели до комнатной температуры и перемешивали в течение 6 ч. Далее добавили воду, органический слой отделили, высушили над безводным Na₂SO₄, растворитель упарили. Остаток перекристаллизовали из этанола. Получили 2.33 г (30%) бледно-розовых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., J/Гц): 0.80 – 0.87 (м, 2H, HC_{циклопропил}), 1.02 – 1.07 (м, 2H, HC_{циклопропил}), 1.49 (м, 0.7H, НС_{пиклопропил}), 2.25 (м, 0.3H, НС_{пиклопропил}), 6.83 – 6.95 (м, 3H, НС_{аром}), 7.02 (уш.с, 0.2H, NH), 7.22 -7.31 (м, 2H, HC_{аром}), 7.53 (уш.с, 0.6H, NH).

N-фенилциклопропанкарбогидразоноил хлорид (34d)

N'-фенилциклопропанкарбогидразид (1 г, 5.7 ммоль) смешали с PPh₃ (1.9 г, 7.2 ммоль) и CCl₄ (1.1 г, 7.4 ммоль) в 12 мл CH₃CN. Реакционную смесь перемешивали 12 часов при комнатной температуре, растворитель

упарили, остаток хроматографировали. Получили 0.4 г (35%) бордовых кристаллов. R_f 0.28 (элюент петролейный эфир – этилацетат, 1:50). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.85 – 0.90 (м, 2H, CH₂), 1.00 – 1.04 (м, 2H, CH₂), 1.96 – 2.03 (м, 1H, CH), 6.90 (т, 1H, HC_{аром}, J=7.3), 7.05 (дд, 2H, HC_{аром}, $J_1 = 8.6$, $J_2 = 1.1$), 7.28 (т, 2H, HC_{аром}, J=7.3), 7.58 (уш.с., 1H, NH). Физикохимические характеристики совпали с опубликованными ранее [169]

IV.3. Нитрозирование производных циклопропанов

Общая методика нитрозирования арилциклопропанов тетрафторборатом нитрозония в нитрометане. К суспезии 2 ммоль тетрафторбората нитрозония в 5 мл нитрометана добавляли раствор 2 ммоль циклопропана в 5 мл нитрометана при комнатной температуре. Реакционную смесь перемешивали в течение часа, затем гидролизовали насыщенным раствором NaHCO₃ (10мл), органический слой отделяли, водный трижды экстрагировали хлороформом (3×10 мл). Объединенные органические вытяжки сушили над Na₂SO₄. После отгонки растворителя остаток - вязкую маслянистую жидкость - хроматографировали. В результате реакции с циклопропаном 10а выделен изоксазолин 11а, 94%; с циклопропаном 10b выделены изоксазолины 11b, 43%, 12b, 26%, 13b, 7%; с циклопропаном 10c – изоксазолины 11c, 8%, 12c, 10%, 13c, 34%; с циклопропаном 10d – соединения 11d, 16%, 12d, 15%, 13d, 1%, 15d, 12%, 16d, 3%; с циклопропаном 10c – соединения 12e, 3%, 15e, 5%, 16e, 37%, 18, 3%, 19, 18%. Физикохимические характеристики полностью совпали с опубликоваными ранее: 11a [170], 11b, 12b [119], 11c,d, 12c-e, 13c,d, 16d,e, 19 [171], 15d [172], 15e [173].

Общая методика нитрозирования арилциклопропанов тетрафторборатом нитрозония в ацетонитриле. К суспезии 4 ммоль тетрафторбората нитрозония в 5 мл ацетонитрила добавляли раствор 2 ммоль циклопропана в 5 мл ацетонитрила при температуре 0 °C. Реакционную смесь перемешивали при этой температуре 30 мин, зптем отгревали до комнатной и гидролизовали насыщенным раствором NaHCO₃ (10мл). Органический слой отделяли, водный трижды экстрагировали хлороформом (3х10мл). Объединенные органические вытяжки сушили над Na₂SO₄. После отгонки растворителя остаток - вязкую маслянистую жидкость -

хроматографировали. В результате реакции с циклопропаном 10b выделен изоксазолин 11b, 90%.

Рh , R =H: <u>5-Фенил-2-изоксазолин</u> (**11a**) Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.96 (д.д.д, 1H, HC⁴, *J*=17.5, 7.9, 1.8) 3.42 (д.д.д, 1H, HC⁴, *J*=17.5, 11.3, 1.8), 5.51 (д.д, 1H, HC⁵, *J*=11.3, 7.9), 7.18 (т, 1H, HC³, *J*=1.8), 7.34 (м, 5H, HC_{аром}).

R=Me: <u>3-Метил-5-фенил-2-изоксазолин</u> (**11b**) Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.0 (с, 3H, CH₃), 2.94 (д.д.д, 1H, HC⁴, *J*=17.3, 8.5, 1.2) 3.40 (д.д.д, 1H, HC⁴, *J*=17.3, 10.8, 1.2), 5.58 (д.д 1H, HC⁵, *J*=10.8, 8.5) 7.30-7.40 (м, 5H, HC_{аром}).

R=Cyclopropyl: <u>3-Циклогексил-5-фенил-2-изоксазолин</u> (**11c**) Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.6-1.9, 1.0-1.4 (оба м, 10H, HC_{циклогексанового кольца}), 2.47 (м, 1H, HC_{циклогексанового кольца}), 2.92 (д.д.д, 1H, HC⁴, *J*=16.7, 8.0, 1.0), 3.38 (д.д.д, 1H, HC⁴, *J*=16.7, 10.8, 1.0), 5.53 (д.д, 1H, HC⁵, *J*=10.8, 8.0), 7.29-7.40 (м, 5H, HC_{аром}).

R=Pr^{*i***}**: <u>3-Изопропил-5-фенил-2-изоксазолин</u> (**11d**) Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.21, 1.22 (оба д, по 3H, CH₃, *J*=6.8), 2.78 (квинтет, 1H, Pr^{*i*}, *J*=6.8), 2.93 (д.д, 1H, HC⁴, *J*=16.8, 8.2), 3.39 (д.д, 1H, HC⁴, *J*=16.8, 10.8), 5.55 (д.д., 1H, HC⁵, *J*=10.8, 8.2), 7.31-7.40 (м, 5H, HC_{аром}).

RR=Me: <u>4-Метил-5-фенил-2-изоксазолин</u>12bСпектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц):Ph1.5 (д, 3H, CH₃, J=7.0), 3.25 (тд, 1H, HC⁴, J=7.0, 1.9), 5.00 (д, 1H, HC⁵, J=8.1), 7.1 (д,0-N1H, HC³, J=1.9), 7.25-7.50 (м, 5H, HC_{аром}).

R=Cyclopropyl: <u>4-Циклогексил-5-фенил-2-изоксазолин</u> **12с** Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.00-1.30, 1.60-1.90 (оба м, 11Н, HC_{циклогексанового каркаса}), 3.10 (тд, 1Н, HC⁴, *J*=6.5, 1.9), 5.26 (д, 1Н, HC⁵, *J*=6.5), 7.14 (д, 1Н, HC³, *J*=1.9), 7.29-7.40 (м, 5Н, HC_{аром}).

R=Pr^{*i*}: <u>4-Изопропил-5-фенил-2-изоксазолин</u> **12d** Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.07, 1.04 (оба д, по 3H, CH₃, *J*=6.8), 1.97 (секстет, 1H, Pr^{*i*}, *J*=6.5), 3.12 (дд, 1H, HC⁴, *J*=6.3, 1.6), 5.24 (д, 1H, HC⁵, *J*=6.3), 7.14 (д, 1H, HC³, *J*=1.6), 7.28-7.40 (м, 5H, HC_{аром}).

R=Bu^{*t*}: <u>4-*трет*-Бутил-3-фенил-2-изоксазолин</u> **12е** Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.04 (с, 9H, CH₃), 3.05 (д.д, 1H, HC⁴, *J*=5.5, 1.8), 5.30 (д, 1H, HC⁵, *J*=5.5), 7.14 (д, 1H, HC³, *J*=1.8), 7.28-7.39 (м, 5H, HC_{аром}).

Рh R=Me: <u>5-Метил-3-фенил-2-изоксазолин</u> (13b). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 1.44 (д, 3H, CH₃, *J* = 6.2), 2.94 (дд, 1H, HC⁴, *J* = 16.3, 7.9), 3.44 (дд, 1H, HC⁴, *J* = 16.3, 10.1), 4.89 (дд.кв, 1H, HC⁵, *J* = 10.1, 7.9, 6.2), 7.41 (м, 3H, HC_{аром}), 7.68 (м, 2H, HC_{аром}). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 21.0 (CH₃), 41.6 (C⁴), 77.5 (C⁵), 126.6 (C³_{аром}, C⁵_{аром}), 128.7 (С²_{аром}, С⁶_{аром}), 129.9 (С⁴_{аром}), 132.2 (С¹_{аром}), 156.5 (С³). HRMS (ESI): Вычислено для С₁₀Н₁₁NO, 162.0913 [М+Н]. Найдено: 162.0913.

R=Cyclopropyl: <u>5-Циклогексил-3-фенил-2-изоксазолин</u> **13с** Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.00-1.30, 1.50-1.80 (оба м, 10H, HC_{циклогексанового каркаса}), 1.96 (м, 10H, HC_{циклогексанового каркаса}), 3.07 (дд, 1H, HC⁴, *J*=16.4, 8.8), 3.30 (дд, 1H, HC⁴, *J*=16.4, 10.6), 4.50 (ддд, 1H, HC⁵, *J*=10.6, 8.8, 6.8), 7.37 (м, 3H, HC_{аром}), 7.64 (м, 2H, HC_{аром}).

R=Pr^{*i*}: <u>5-Изопропил-3-фенил-2-изоксазолин</u> **13d** Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.99, 1.04 (оба д, по 3H, CH₃, *J*=6.7), 1.94 (квинтет, 1H, Pr^{*i*}, *J*=6.7), 3.06 (дд, 1H, HC⁴, *J*=16.6, 8.8), 3.33 (дд, 1H, HC⁴, *J*=16.6, 10.8), 4.52 (ддд, 1H, HC⁵, *J*=10.8, 8.8, 6.7), 7.35-7.45 (м, 3H, HC_{аром}), 7.65-7.70 (м, 2H, HC_{аром}).

Рh Me R=Et: <u>3-Гидрокси-3-метил-1-фенилпентанон</u> **15d** Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.00 (т, 3H, CH₃, *J*=7.5), 1.44 (с, 3H, CH₃), 1.77 (кв, 2H, CH₂, *J*=7.5), 3.01 (д, 1H, HC², *J*=16.5), 3.16 (д, 1H, HC², *J*=16.5), 7.35-7.45 (м, 3H, HC_{аром}), 7.65-7.70 (м, 2H, HC_{аром}).

R=Pr^{*i*}: <u>3-Гидрокси-3,4-диметил-1-фенилпентанон</u> **15**е Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.98 (д, 3H, CH₃, *J*=6.5), 1.02 (д, 3H, CH₃, *J*=6.5), 1.38 (с, 3H, CH₃), 2.05 (м, 1H, HC⁴), 2.91 (д, 1H, HC², *J*=16.6), 3.20 (д, 1H, HC², *J*=16.6), 7.35-7.42 (м, 3H, HC_{аром}), 7.65-7.69 (м, 2H, HC_{аром}).

Рh _ R R=H: <u>6,6-Диметил-3-фенил-5,6-дигидро-4H-1,2-оксазин</u> **16d** Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.33 (с, 6H, CH₃), 1.90 (т, 2H, CH₂, *J*=7.0), 2.60 (т, 2H, CH₂, *J*=7.0), 7.40 (м, 3H, HC_{аром}).7.74 (м, 2H, HC_{аром}).

R=Me: <u>5,6,6-Триметил-3-фенил-5,6-дигидро-4H-1,2-оксазин</u> **16e** Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.05 (т, 3H, CH₃, *J*=6.7), 1.15 (с, 3H, CH₃), 1.39 (с, 3H, CH₃), 2.17 (д.д, 1H, HC⁴, *J*=18.2, 10.0), 2.63 (д.д, 1H, HC⁴, *J*=18.2, 6.0), 7.35-7.40 (м, 3H, HC_{аром}), 7.70-7.75 (м, 2H, HC_{аром}).

О <u>3,4,4-Триметил-3,4-дигидронафталин-1(2H)-он</u> (**18**). R_f 0.60 (элюент петролейный эфир - этилацетат, 3:1). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.07 (д, 3H, CH₃, *J* 6.9), 1.44 (с, 6H, CH₃), 2.22 (м, 1H, HC³), 2.55 (дд, 1H, HC², *J* = 17.4, 9.5), 3.60 (дд, 1H, HC², *J* = 17.4, 4.5), 7.31 (т, 1H, HC⁶_{аром}, *J* = 7.8), 7.47 (д, 1H, HC⁵_{аром}, *J* = 7.8), 7.55 (т, 1H, HC⁷_{аром}, *J* = 7.8), 8.04 (д, 1H, HC⁸_{аром}, *J* = 7.8). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 16.3 (CH₃), 16.9, 17.8 (CH₃), 37.45 (C⁴), 38.9 (C³), 43.1 (C²), 126.2, 127.0, 131.1, 134.0, 152.3 (С_{аром}), 198.4 (C=O). ИК спектр v, см⁻¹: 1690 (C=O). Масс-спектр: 188 (59.5) [M]⁺, 173 (100.0), 145 (47.4), 131 (39.0), 117 (21.7), 115 (14.5), 103 (10.4), 91 (11.1).

IV.4. 1,3-Диполярное циклоприсоединение к 2-азанорборненам

IV.4.1. Взаимодействие с нитрилоксидами

Синтез соединений 30а-о, 31а-о

Общая методика

Раствор N-гидроксиимоилгалогенида (2.25 ммоль; 1.5 ммоль в случае N-гидрокси-4метоксибензолкарбоксимидоилхлорида) в диэтиловом эфире или дихлорметане (10 мл). медленно по каплям добавляли к раствору алкена (1.5 ммоль) и триэтиламина (2.25 ммоль; 1.5 ммоль в случае N-гидрокси-4-метоксибензолкарбоксимидоилхлорида) в диэтиловом эфире или дихлорметане (10 мл). Смесь перемешивали при комнатной температуре в течение 0.5-5 ч (TCX-мониторинг). Затем добавляли воду (20 мл), органический слой отделяли, водный слой экстрагировали диэтиловым эфиром или дихлорметаном. Органические фазы объединили, высушили над сульфатом натрия, растворитель упарили. Остаток хроматографировали. Выходы полученных соединений приведены в табл. 1 (основной текст). В тех случаях, когда полное хроматографическое разделение изомеров **30** и **31** не представлялось возможным, отнесение сигналов осуществлялось на основе комплексного анализа фракций с различным содержанием изомеров.

9-Бензил-5-фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**30a**)

Рh Бесцветное масло, $R_f 0.61$ (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.49 (д, 1H, HC¹⁰_{син}, J=10.9), 1.61 (дт, 1H, HC¹⁰_{анти}, J=11.1, 1.4), 2.61 (дд, 1H, HC⁸_{экзо}, J=9.2, J=3.3), 2.62-2.69 (м, 2H, HC⁸_{эндо} +

30a ^{\C}H₂Ph HC⁷), 3.46 (уш.с., 1H, HC¹), 3.73 (дд, HC⁶, *J*=8.4, *J*=1.1), 3.76 (c, 2H, CH₂Ph), 4.91 (дт, 1H, HCO, *J*=8.4, 1.3), 7.30-7.45 (м, 8H, HC_{аром}), 7.70 (м, 2H, HC_{аром}). Спектр ЯМР ¹³C (CDCl₃, δ, м.д.): 28.96 (C¹⁰), 40.70 (C⁷), 55.83 (C⁶), 57.40 (C⁸), 59.54 (<u>C</u>H₂Ph), 64.50 (C¹), 85.92 (C-O), 126.83, 127.06, 128.37, 128.41, 128.80, 128.99, 129.93, 139.38 (C_{аром}), 156.87 (C=N). <u>8-Бензил-5-фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен</u> (**31a**)

Кристаллизующееся бесцветное масло. $R_f 0.45$ (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.59 (д, 1H, HC¹⁰_{син}, J=10.6), 1.67 (дт, 1H, HC¹⁰_{анти}, J=10.6, 1.5), 2.10 (д, 1H, HC⁹_{эндо}, J=9.9), 2.74 (д, 1H, HC¹, J=3.7), 2.99 (дд, 1H, HC⁹_{экзо}, J=9.9, 4.3), 3.49 (уш.с., 1H,

HC⁷), 3.69, 3.85 (два дублета по 1H, CH₂Ph, *J*=13.3), 4.02 (д, 1H, *J*=8.4, HC⁶), 4.81 (д, 1H, *J*=8.4, HCO), 7.27-7.45 (м, 8H, HC_{аром}), 7.53 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.49 (С¹⁰), 44.55 (С¹), 52.38 (С⁹), 53.42 (С⁶), 58.05 (<u>C</u>H₂Ph), 61.93 (С⁷), 86.35 (С-О), 126.68, 127.23, 128.45, 128.62, 128.70, 128.97, 129.83, 138.90 (С_{аром}), 156.55 (С=N). ESI-MS (m/z) изомеров **3f**+**4f**: вычислено для C₂₀H₂₁N₂O 305.1648 [M+1], найдено 305.1654.

<u>Метил 5-фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат</u> (**30b**) (с примесью **31b**)

Ph N O N N

Желтое масло. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): (ротамер мажор : минор = 60:40) 1.57 – 1.68 (м, 2H, HC¹⁰_{син}+ HC¹⁰_{анти}), 2.82 (уш.с., 1H, HC⁷), 3.12 (д, HC⁸_{эндо} минор, J=9.7), 3.18 (д, HC⁸_{эндо} мажор, J=9.8), 3.35 (м, COOMe HC⁸_{экдо}), 3.70 (OCH₃ минор), 3.73 (OCH₃, мажор), 3.76 (д, HC⁶, J=8.3), 4.42

(уш.с., HC¹ мажор), 4.55 (уш.с., HC¹ минор), 4.81 (д, HCO мажор, *J*=8.3), 4.89 (д, HCO минор, *J*=8.3), 7.42 (м, 4H, Ph), 7.71 (м, 1H, Ph). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.85 (C¹⁰ минор), 31.35 (C¹⁰ мажор), 39.35 (C⁷ мажор), 39.93 (C⁷ минор), 50.00 (C⁸ минор), 50.06 (C⁸ мажор), 52.21 (OCH₃), 55.30 (C⁶ минор), 55.33 (C⁶ мажор), 59.26 (C¹ минор), 59.52 (C¹ мажор), 84.41 (C-O минор), 84.59 (C-O мажор), 126.41, 128.51, 129.88 (С_{аром} мажор), 126.41, 128.58, 129.88 (С_{аром} минор), 154.94 (C=N).

<u>Метил 5-фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат</u> (**31b**)

Желтое масло, $R_f 0.65$ (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): (ротамер мажор : минор = 60:40) 1.62 (д, HC¹⁰_{син} минор, J=10.3), 1.66 (д, HC¹⁰_{син} мажор, J=9.5), 1.73 (д, HC¹⁰_{анти}, J=10.5), 2.96 (уш.с., HC¹), 3.00 (д, HC⁹_{эндо} мажор, J=10.2), 3.06 (д, HC⁹_{эндо} минор,

(уш.с., HC⁹), 5.00 (Д, HC⁹) мажор, J=10.2, 3.8), 3.36 (дд, HC⁹) мажор, J=10.5), 3.7), 3.73 (с, OCH₃ мажор), 3.82 (с, OCH₃ минор), 3.89 (д, HC⁶ минор, J=8.2), 3.99 (д, HC⁶ мажор, J=8.2), 4.44 (уш.с., HC⁷ минор), 4.55 (уш.с., HC⁷ мажор), 4.86 (д, HCO, J=8.3). 7.43 (м, 4H, Ph), 7.83 (м, 1H, Ph). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 30.88 (C¹⁰ мажор), 31.62 (C¹⁰ минор), 43.27 (C¹ минор), 43.88 (C¹ мажор), 46.13 (C⁹), 52.08 (OCH₃), 57.58 (C⁶ минор), 57.65 (C⁶ мажор), 58.14 (C⁷ мажор), 58.18 (C⁷ минор), 85.31 (С-О мажор), 85.39 (С-О минор), 126.42, 128.59, 129.88 (С_{аром}), 154.88

(C=O), 155.08 (C=N, минор), 155.12 (C=N, мажор). ESI-MS (m/z) изомеров **31a** + **31b**: вычислено для C₁₅H₁₆N₂O₃ 273.1234 [M+1], найдено 273.1234.

<u>Трет-бутил 5-фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат</u> (**30с**) <u>и трет-</u> бутил 5-фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (**31с**) (смесь).

 $\begin{array}{c} Ph \\ N \\ O \\ O \\ 30c \\ COOBu^{t} \end{array} \begin{array}{c} N \\ Ph \\ H \\ 31c \\ COOBu^{t} \end{array}$

мажор : минор = 71:29) 2.80 (уш.с., HC⁷), 3.08 (д. **31с** СООВи^t НС⁸_{эндо} минор, *J*=9.8), 3.14 (д, НС⁸_{эндо} мажор, *J*=9.8), 3.77 (д, HC^6 , J=8.3), 4.38 (с, HC^1 мажор), 4.50 (HC^1 минор, перекрываются с HC^7 **31с** минор), 4.80 (д, НСО мажор, J=8.3), 4.89 (НСО минор, перекрываются с НСО 31с), 7.70 (м, НС_{аром}); изомер **31c** (ротамер мажор : минор = 60:40) 2.93 (c, HC¹), 2.95 (HC⁹_{эндо} минор перекрывается с HC¹), 3.02 (HC⁹_{эндо} мажор, J=10.4), 3.86 (д, HC⁶ мажор, J=8.3), 3.98 (д, HC⁶ минор, J=8.3), 4.39 (уш.с., HC⁷ мажор), 4.50 (уш.с., HC⁷ минор), 4.86 (д, HCO, J=8.3), 7.76 (м, HC_{аром}), 7.80 (дд, НС_{аром}, мажор, *J*=7.8, *J*=2.1), 7.82 (дд, НС_{аром}, минор, *J*=7.8, *J*=2.3); изомер **30**с + изомер **31**с 1.46, 1.48, 1.57 (три с, CH₃), 1.59 – 1.74 (м, HC¹⁰_{син} + HC¹⁰_{анти}), 3.22-3.34 (м, HC⁸_{экзо} **30с** + HC⁹_{экзо} **31с**), 7.41 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): изомер **30с** 30.21 (С¹⁰ минор), 30.87 (С¹⁰ мажор), 39.44 (С⁷ мажор), 39.95 (С⁷ минор), 49.63 (С⁸ мажор), 49.69 (С⁸ минор), 59.67 (С¹ минор), 59.96 (С¹ мажор), 57.05 (С⁶ минор), 57.67 (С⁶ мажор); изомер **31с** 31.29 (С¹⁰), 43.37 (С¹ мажор), 43.94 (С¹ минор), 45.92 (С⁹ мажор), 46.43 (С⁹ минор), 55.32 (С⁶), 58.06 (С⁷); изомер **30с** + изомер 31с 79.41, 79.54, 79.80, 79.82 (ОС(СН₃)₃), 84.60, 84.68, 85.38, 85.46 (С-О), 126.25, 126.41, 128.02, 128.20, 128.39, 128.48, 128.55, 129.81 (Capon), 153.85, 154.0, 154.67, 154.99 (C=N, C=O). ESI-MS (m/z) изомеры **30с** + **31с**: вычислено для C₁₈H₂₂N₂O₃ 315.1703 [M+1], найдено 315.1704.

<u>9-[(4-Метилфенил)сульфонил]-5-фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**30d**) и 8-[(4-метилфенил)сульфонил]-5-фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**31d**) (смесь).</u>

Бесцветное масло. R_f 0.70 (MeOH – CHCl₃, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): изомер **30d** 1.00 (д, 1H, HC¹⁰_{*анти*}, J=11.1), 1.48 (д, 1H, HC¹⁰_{*син*}, J=11.1), 2.44 (с, 3H, **31d** Ts CH₃), 2.74 (уш.с., 1H, HC⁷), 3.13 (дд, 1H, HC⁸_{экзо}, J=9.3, 3.3),

Желтое масло, Rf 0.32 (MeOH – CHCl₃, 1:50). Спектр

ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): изомер **30с** (ротамер

3.20 (д, 1H, HC⁸_{эндо} *J*=9.2,), 3.77 (д, 1H, HC⁶, *J*=8.2), 4.37 (с, 1H, HC¹), 4.96 (д, 1H, HCO, *J*=8.2), 7.33 (д, 2H, H_{Ts}, *J*=7.8); изомер **31d**, 1.04 (д, 1H, HC¹⁰_{анти}, *J*=11.0), 1.56 (д, 1H, HC¹⁰_{син}, *J*=11.0), 2.43 (с, 3H, CH₃), 2.88 (уш.с., 1H, HC¹), 3.07 (с, 2H, HC⁹_{экзо} + HC⁹_{эндо}), 4.13 (д, 1H, HC⁶, *J*=8.3), 4.41 (с, 1H, HC⁷), 4.86 (д, 1H, HCO, *J*=8.3,), 7.32 (д, 2H, H_{Ts}, *J*=8.0); изомеры **30d** + **31d** 7.37-7.46 (м, HC_{аром}), 7.65-7.65 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): изомер **30d** 21.54 (CH₃), 30.63 (C¹⁰), 40.56 (C⁷), 51.66 (C⁶), 55.78 (C⁸), 62.48 (C¹), 85.63 (C-O), 126.75, 127.32, 128.13, 128.89, 129.93, 130.29, 135.27, 143.88 (С_{аром}), 156.32 (С=N); изомер **31d** 21.54 (СН₃), 30.99 (С¹⁰), 44.53 (С¹), 47.54 (С⁶), 59.10 (С⁹), 60.89 (С⁷), 85.63 (С-О), 126.75, 127.31, 128.15, 129.08, 129.94, 130.37, 135.31, 143.94 (С_{аром}), 155.00 (С=N). ESI-MS (m/z) изомеры **30d** + **31d**: вычислено для С₂₀H₂₀N₂O₃S 369.1267 [M+1], найдено 369.1263.

<u>5-Фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-ил](фенил)метанон</u> (**30e**) (с примесью **31e**)

Желтое масло. (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц) (ротамер мажор : минор = 77:23): 1.65-1.90 (м, HC¹⁰_{*cun*} + HC¹⁰_{*ahmu*}), 2.83 (уш.с., HC⁷ минор), 2.96 (уш.с., HC⁷ мажор), 3.16 (д, HC⁸_{эндо} минор, *J*=10.0), 3.38 (д, HC⁸_{эндо} мажор, *J*=11.5), 3.65 (дд, HC⁸_{экзо} мажор, *J*=11.5, 3.4), 3.79 (д, HC⁶ минор,

J=8.5), 3.91 (д, HC⁶ мажор, J=8.1), 4.39 (уш.с., HC¹ мажор), 4.96 (д, HCO мажор, J=8.2), 5.08 (д, HCO минор, J=8.5), 7.20-8.50 (м, HC_{аром}), HC¹ минор перекрывается с HCO мажор, HC⁸_{экзо} минор перекрывается с HC⁹_{экзо} мажор **31е**.

<u>5-Фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-ил(фенил)метанон (31е)</u>

Желтое масло.. R_f 0.47 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц) (ротамер мажор : минор = 55:45): 1.70-1.80 (м, HC¹⁰), 1.86 (д, HC¹⁰, *J*=10.8), 2.96 (уш.с., HC¹ минор), 3.01 (дд, HC⁹_{эндо} минор, *J*=10.1, 1.1), 3.08 (уш.с., HC¹ мажор), 3.32 (д, HC⁹_{эндо} минор, *J*=11.8), 3.61 (дд, HC⁹_{эндо} минор, *J*=10.0, 3.8), 3.58 (дд, HC⁹_{экзо} мажор, *J*=11.8, 4.1), 3.85 (д, HC⁶ мажор, *J*=8.4), 4.23 (д, HC⁶ минор, *J*=8.3), 4.33 (уш.с., HC⁷ мажор), 4.82 (д, HCO минор, *J*=8.3), 4.89 (уш.с., HC⁷ минор), 4.96 (д, HCO мажор, *J*=8.2), 7.17-7.25, 7.32, 7.40-7.62, 7.97 (все м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 30.71 (C¹⁰ минор), 31.84 (C¹⁰ мажор), 43.64, 44.64, 46.30, 50.41, 57.38, 58.08, 59.12, 60.91, 85.22 (С-О минор), 85.72 (С-О мажор), 126.41, 126.83, 127.04, 127.57, 128.08, 128.48, 128.78, 128.82, 129.04, 130.19, 130.21, 130.34, 130.87, 135.43 (С_{аром}), 154.58 (C=N мажор), 155.62 (C=N минор). ESI-MS (m/z) изомеры **30e**+**31e**: вычислено для C₂₀H₁₈N₂O₂ 319.1441 [M+1], найдено 319.1443.

<u>9-Бензил-5-(4-метоксифенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**30f**)</u>

OCH₃

Желтое масло. R_f 0.50 (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.50 (д, 1Н, HC¹⁰_{син}, *J*=10.8), 1.61 (дт, 1Н, HC¹⁰_{анти}, *J*=10.8, 1.4), 2.60 (дд, 1Н, HC⁸_{экзо}, *J*=9.2, 3.1), 2.62-2.67 (м, 2Н, HC⁷ + HC⁸_{эндо}), 3.46 (уш.с., 1Н, HC¹), 3.70 (д, 1Н, HC⁶, *J*=8.3), 3.74 (с, 2Н, CH₂Ph), 3.84 (с, 3Н, OCH₃), 4.88 (д, 1Н, HCO, *J*=8.3), 6.93 (д, 2Н, HC_{аром}, *J* = 8.8), 7.30-7.40 (м, 5Н,

Ph), 7.66 (д, 2H, HC_{аром}, J = 8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 28.49 (С¹⁰), 40.29 (С⁷),

54.95(ОСН₃), 55.70 (С⁶), 56.98 (С⁸), 59.13 (СН₂), 64.08 (С¹), 85.19 (С-О), 113.78, 121.06, 126.61, 127.93, 127.99, 139.00 (С_{аром}), 155.98 (С=N), 160.47 (С_{аром}). ESI-MS (m/z): вычислено для С₂₁H₂₂N₂O₂ 335.1754 [M+1], найдено 335.1764.

<u>8-Бензил-5-(4-метоксифенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (31f)</u>

OCH-

Желтое масло, $R_f 0.40$ (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.57 (д, 1H, HC¹⁰_{*cun*}, J=10.7), 1.65 (дт, 1H, HC¹⁰_{*anmu*}, J=10.9, 1.4), 2.09 (д, 1H, HC⁹_{*эндо*}, J=9.9), 2.74 (уш.д., 1H, HC¹, J=3.1), 2.90 (дд, 1H, HC⁹_{*экзо*}, J=9.8, 4.3), 3.46 (уш.с., 1H, HC⁷), 3.68, 3.83 (два д, 1H, CH₂Ph, J=13.5), 3.81 (с, 3H,

ОСН₃), 3.98 (д, 1Н, HC⁶, *J*=8.3), 4.55 (д, 1Н, HCO, *J*=8.3), 6.80 (д, 2Н, HC_{аром}, *J* = 8.8), 7.30-7.46 (м, 7Н, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.43 (С¹⁰), 44.53 (С¹), 52.39 (С⁹), 53.69 (С⁶), 55.33 (ОСН₃), 58.07 (СН₂), 61.93 (С⁷), 85.98 (С-О), 114.07, 121.46, 127.20, 128.19, 128.44, 128.6 (С_{аром}), 155.04 (С=N), 160.80 (С_{аром}). ESI-MS (m/z): вычислено для С₂₁H₂₂N₂O₂ 335.1754 [M+1], найдено 335.1761.

<u>Метил 5-(4-метоксифенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (**30g**) (с примесью **31g**)</u>

Коричневое масло. R_f 0.20 (MeOH – CHCl₃, 1:25). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): (ротамер мажор : минор = 54:46) 2.78 (уш.с., 1H, HC⁷), 3.09 (д, HC⁸_{3ндо} минор, *J*=9.4), 3.14 (д, HC⁸_{эндо} мажор, *J*=9.9), 3.25-3.35 (м, 1H, HC⁸_{экзо}), 4.39 (уш.с, HC¹ мажор), 4.51 (уш.с., HC¹ минор), 4.75 (д, HCO мажор, *J*=8.2), 4.83 (HCO минор, *J*=8.4), 6.90 (м, 2H, HC_{аром}), 7.65 (д, 2H, HC_{аром}, *J*=8.8),

COOMe 4.83 (НСО минор, J=8.4), 6.90 (м, 2H, HC_{аром}), 7.65 (д, 2H, HC_{аром}, J=8.8), сигналы HC¹, H₂C¹⁰, HC_{аром} перекрываются с **31g**. Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 31.30 (C¹⁰ мажор), 30.80 (C¹⁰ минор), 39.36 (C⁷ мажор), 39.93 (C⁷ минор), 49.97 (C⁸ минор), 50.04 (C⁸ мажор), 55.40 (C⁶), 59.27 (C¹ минор), 59.53 (C¹ мажор), 84.11 (С-О, минор), 84.28 (С-О, мажор), 154.61, 154.85, 154.65 (C=O, C=N), С_{аром} перекрывается с **31g**. ESI-MS (m/z): вычислено для C₁₆H₁₈N₂O₄ 303.1339 [M+1], найдено 303.1334.

Метил 5-(4-метоксифенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат (**31g**).

HC⁹_{эндо} мин, J=10.4), 3.67 (1H, HC⁶ мин, перекрывается с OCH₃), 3.70, 3.80 (два с, 3H, OCH₃)

мажор), 3.78, 3.82 (два с, 3H, OCH₃ минор), 3.92 (д, 1H, HC⁶ мажор, *J*=8.3), 4.40 (уш.с., 1H, HC⁷ минор), 4.49 (уш.с., 1H, HC⁷ мажор), 4.79 (д, 1H, HCO, *J*=8.3), 6.90 (м, 2H, HC_{аром}), 7.62 (д, HC_{аром} минор, *J*=8.9), 7.65 (д, HC_{аром} мажор, *J*=8.7), 7.73 (д, HC_{аром} мажор, *J*=8.7). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.82 (С¹⁰ мажор), 31.46 (С¹⁰ минор), 43.24 (С¹ минор), 43.85 (С¹ мажор), 46.10 (С⁹ мажор), 46.29 (С⁹ минор), 52.07 (ОСH₃ мажор), 52.46 (ОСH₃ минор), 54.93 (ОСH₃ мажор), 54.95 (ОСH₃ минор), 57.39 (С⁷ мажор), 57.74 (С⁶ минор), 58.42 (С⁷ минор), 85.01 (С-О минор), 84.93 (С-О мажор), 113.98, 120.40 (С_{аром}), 127.76 (С_{аром} минор), 128.00 (С_{аром} мажор), 154.15 (С=О минор), 154.40 (С=О мажор), 154.93 (С=N минор), 155.16 (С=N мажор). 160.74 (С_{аром}). ESI-MS (m/z): вычислено для С₁₆H₁₈N₂O₄ 303.1339 [M+1], найдено 303.1342.

<u>Трет-бутил</u> 5-(4-метоксифенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2,6}]дец-4-ен-9-карбоксилат (**30h**) (с примесью **31h**)

Желтое масло, $R_f 0.51$ (MeOH – CHCl₃, 1:25). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц) (ромамер мажор : минор = 67:33): 1.45 (с, CH₃), 1.6-1.75 (м, HC¹⁰_{син} + HC¹⁰_{анти}), 2.78 (уш.с., HC⁷), 3.07 (д, HC⁸_{эндо} мин, *J*=9.6), 3.12 (д, HC⁸_{эндо} мажор, *J*=9.6), 3.23-3.33 (м, HC⁸_{экзо}), 3.74 (д, HC⁶, *J*=8.1), 3.80 (с, OCH₃), 4.37 (HC¹ мажор), 4.49 (с, HC¹ мин), 4.78 (д, HCO мажор, *J*=8.0), 4.86 (д, HCO

минор, перекрывается с **31h**), 6.93 (д, HC_{аром}, *J*=8.1), 7.65 (д, HC_{аром}, *J*=8.1).

<u>Трет-бутил</u> 5-(4-метоксифенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (**31h**)

Желтое масло, R_f 0.60 (MeOH – CHCl₃, 1:25). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц) (ротамер мажор : минор = 60:40): 1.49 (с, CH₃, u^t мажор), 1.57 (с, CH₃, минор), 1.65 (д, 1H, HC¹⁰_{син}, *J*=10.1), 1.72 (д, 1H, HC¹⁰_{анти}, *J*=10.1), 2.92 (уш.с., HC¹), 2.94 (HC⁹_{эндо}, минор,

перекрывается с HC¹), 3.02 (д, HC⁹_{эндо}, мажор, J=10.5), 3.27 (дд, HC⁹_{экзо} минор, J=10.3, 3.8), 3.30 (дд, HC⁹_{экзо} мажор, J=10.5, 3.8), 3.83 (с, минор, OCH₃), 3.85 (с, мажор, OCH₃), 3.96 (д, HC⁶, минор, J=8.1), 4.37 (с, HC⁷ мажор), 4.49 (с, HC⁷ минор), 4.83 (д, HCO минор, J=8.0), 4.84 (д, HCO мажор, J=8.1), 6.93 (м, HC_{аром}), 7.73 (д, HC_{аром} мажор, J=8.7), 7.77 (д, HC_{аром} минор, J=8.7), сигнал HC⁶ мажор перекрывается с сигналом OCH₃. Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 28.09 (CH₃ мажор), 28.19 (CH₃ минор), 30.82 (C¹⁰ минор), 31.28 (C¹⁰ мажор), 43.36 (C¹ мажор), 43.94 (C¹ минор), 54.95, 55.00 (OCH₃), 57.96, 58.08, 58.36 (C⁶, C⁷), 79.77 (O<u>C</u>(CH₃)₃ мажор), 80.30 (O<u>C</u>(CH₃)₃ минор), 85.04 (С-О минор), 85.11 (С-О мажор), 154.23 (C=N).

<u>9-[(4-Метилфенил)сульфонил]-5-(4-метоксифенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (30i)</u>

Бесцветное масло. R_f 0.57 (MeOH – CHCl₃, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.98 (д,

1H, HC^{10}_{ahmu} , J=11.2), 1.48 (д, 1H, HC^{10}_{cuh} , J=11.2), 2.42 (c, 3H, CH₃), 2.73 (ym.c, 1H, HC^7), 3.12 (дд, 1H, $HC^8_{_{3K30}}$, $J_I=9.1$, $J_2=3.2$), 3.18 (д, 1H, J=9.1, $HC^8_{_{3Hdo}}$), 3.73 (д, 1H, HC^6 , J=8.2), 3.83 (c, 3H, OCH₃), 4.35 (c, 1H, HC^1), 4.92 (д, 1H, HCO, J=8.2), 6.90 (д, 2H, CH_{apom}, J=8.5), 7.34 (д, 2H, CH_{apom}, J=7.6), 7.59 (д, 2H, CH_{apom}, J=8.5), 7.73 (д, 2H, CH_{apom}, J=7.6). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 21.14 (CH₃), 30.22 Ts (C¹⁰), 40.18 (C⁷), 51.26 (C⁶), 54.97 (OCH₃), 55.68 (C⁸), 62.11 (C¹), 84.99 (C-O),

113.91, 120.24, 126.90, 127.95, 129.53, 134.93, 143.46, 160.76 (С_{аром}), 155.45 (С=N). ESI-MS (m/z) изомеры **30i** + **31i**: вычислено для С₁₉Н₂₄N₂O₄ 345.18088 [M+1], найдено 345.1813.

<u>8-[(4-Метилфенил)сульфонил]-5-(4-метоксифенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (31i)</u>

Бесцветное масло. R_f 0.33 (MeOH – CHCl₃, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.02 (д, 1H, HC¹⁰_{анти}, J=10.9,), 1.55 (д, 1H, HC¹⁰_{син}, J=10.9), 2.42 (с, 3H, CH₃), 2.86 (уш.с., 1H, HC¹), 3.06 (с, 2H, HC⁹_{экз0} + HC⁹_{экз0}), 3.86 (с, 3H, OCH₃), 4.10 (д, 1H, HC⁶, J=8.3), 4.39 (с,

1H, HC⁷), 4.82 (д, 1H, HCO, *J*=8.3), 6.96 (д, 2H, CH_{аром}, *J*=8.5), 7.31 (д, 2H, CH_{аром}, *J*=7.7), 7.68 (д, 2H, CH_{аром}, *J*=8.5), 7.71 (д, 2H, CH_{аром}, *J*=7.7). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.14 (CH₃), 30.56 (C¹⁰), 44.14 (C¹), 47.13 (C⁶), 55.00 (OCH₃), 59.02 (C⁹), 60.56 (C⁷), 84.89 (C-O), 114.11, 120.24, 126.90, 127.95, 129.53, 134.98, 143.52, 160.85 (С_{аром}), 154.14 (C=N). ESI-MS (m/z) изомеры **30i** + **31i**: вычислено для C₂₁H₂₂N₂O₄S 399.1373 [M+1], найдено 399.1374.

<u>5-Фенил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-ил(фенил)метанон</u> (**30ј**)

H₂CO

Желтое масло. R_f 0.41 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц) (ротамер мажор : минор = 77:23): 1.65-1.90 (м, HC¹⁰_{cuн} + HC¹⁰_{aнmu}), 2.83 (уш.с., HC⁷ минор), 2.94 (уш.с., HC⁷ мажор), 3.16 (д, HC⁸_{эндо} минор, *J*=9.9), 3.38 (д, HC⁸_{эндо} мажор, *J*=11.3), 3.54 (дд, HC⁸_{экзо} мажор, *J*=9.9, 3.5), 3.64 (дд, HC⁸_{экзо} мажор, *J*=11.3, 3.5), 3.76 (д, HC⁶ минор, *J*=8.0), 3.84 (с, OCH₃ мажор), 3.86 (с,

ОСН₃ минор), 3.89 (д, HC⁶ мажор, *J*=8.2), 4.38 (уш.с, HC¹ мажор), 4.95 (д, HCO мажор, *J*=8.2), 4.98 (уш.с., HC¹ минор), 5.05 (д, HCO минор, *J*=8.0), 6.91 (д, CH_{аром} минор, *J*=8.8), 6.95 (д, CH_{аром} мажор, *J*=8.9), 7.38-7.57 (м, CH_{аром}), 7.61 (д, CH_{аром} минор, *J*=8.8), 7.68 (д, CH_{аром} мажор, *J*=8.9). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.12 (С¹⁰ минор), 31.85 (С¹⁰ мажор), 39.09 (С⁷ мажор), 40.23 (C⁷ минор), 54.98 (ОСН₃), 49.95, 56.03 (C⁶, C⁸), 62.42 (C¹ мажор), 65.13 (C¹ минор), 83.52 (C-O минор), 84.89 (С-О мажор), 113.97, 120.10, 126.59, 126.84, 128.03, 128.26, 128.40, 130.06, 135.41 (C_{аром}), 155.98 (C=N), 160.85 (C_{аром}), 169.37 (C=O). ESI-MS (m/z): вычислено для C₂₁H₂₀N₂O₃ 349.1547 [M+1], найдено 319.1551.

<u>5-Фенил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-ил(фенил)метанон</u> (**31j**)

H₃CO

Желтое масло. R_f 0.50 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц) (ротамер мажор : минор = 56:44): 1.73 (уш.с., Сорь HC¹⁰), 1.77 (д, HC¹⁰, *J*=11.2), 1.86 (д, HC¹⁰, *J*=11.1), 2.95 (уш.с., HC¹ минор), 2.99 (д, HC⁹_{эндо} минор, J=10.0), 3.06 (уш.с., HC¹ мажор), 3.31 (д, HC⁹_{эндо} мажор, J=11.9), 3.56 (дд, HC⁹_{экзо} мажор, J=11.9, 4.1), 3.61 (дд, HC⁹_{экзо} минор,

J=10.0, 3.8), 3.80 (с, ОСН₃ мажор), 3.82 (д, НС⁶ мажор, *J*=8.3), 3.86 (с, ОСН₃ минор), 4.19 (д, НС⁶ минор, *J*=8.3), 4.30 (уш.с., HC⁷ мажор), 4.79 (д, HCO минор, *J*=8.3), 4.87 (уш.с., HC⁷ минор), 4.92 (д, HCO мажор, J=8.3), 6.70 (д, CH_{аром}, J=8.8), 6.97 (д, CH_{аром}, J=8.8), 7.15 (д, CH_{аром}, J=8.8), 7.40-7.60 (м, CH_{аром}), 7.90 (д, CH_{аром}, *J*=8.9). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.16 (С¹⁰ минор), 31.84 (С¹⁰ мажор), 43.14, 45.80 (С¹, С⁹ мажор), 44.16, 49.88 (С¹, С⁹ минор), 54.90 (ОСН₃), 57.17, 57.65 (C⁶, C⁷минор), 58.85, 60.47 (C⁶, C⁷ мажор), 84.42 (С-О минор), 84.92 (С-О мажор), 113.71, 113.99, 120.11, 120.42, 126.38, 127.13, 127.53, 128.01, 128.13, 128.35, 129.71, 130.38, 135.01, 136.34 (C_{аром}), 153.68, 154.63 (C=N), 160.57, 160.75 (С_{аром}), 169.45, 170.15 (C=O). ESI-MS (m/z): вычислено для C₂₁H₂₀N₂O₃ 349.1547 [M+1], найдено 319.1548.

9-Бензил-5-(4-нитрофенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**30k**)

Бесцветное масло, $R_f 0.50$ (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.45 (д, 1H, HC¹⁰_{син}, *J*=11.0), 1.65 (д, 1H, HC¹⁰_{анти}, J=11.0), 2.60 – 2.70 (м, 2H, HC⁸_{эндо} + HC⁸_{экзо}), 3.52 (уш.с., 1H, HC¹), 3.73 (д, 1H, HC⁶, J=8.5), 3.76 (с, 2H, CH₂Ph), 5.00 (д, 1H, HCO, J=8.3), 7.24-7.40 (м, 5H, Ph), 7.88, 8.27 (два д, 2H, J=8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 28.93 (C¹⁰), 40.58 (C⁷), 55.04 (C⁶), 57.26 (C⁸), 59.51 (CH₂Ph), 64.29 (C¹), 87.12 (C-O), 155.56

(C=N); изомеры **30k+31k** (**30k:31k** = 3:1): 123.96, 124.04, 127.15, 127.41, 128.38, 128.57, 135.18, 148.26 (Саром).

8-Бензил-5-(4-нитрофенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**31k**)

Бесцветное масло, R_f 0.36 (EtOAc – петролейный эфир, 2:1). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.50 (д, 1Н, HC¹⁰_{син}, *J*=10.6), 1.70 (д, 1H, HC¹⁰_{анти}, J=10.6), 2.15 (д, 1H, HC⁹_{эндо}, J=9.8), 2.81 (уш.с., 1H,

HC⁴), 2.98 (дд, 1H, HC⁹_{экзо}, J=9.9, 4.2), 3.44 (уш.с., 1H, HC⁷), 3.65, 3.90 (два д, 1H, CH₂Ph, J=13.3), 3.98 (м, 1H, HC⁶), 4.90 (д, 1H, HCO, J=8.3), 7.60, 8.12 (два д, 2H, J=8.8); 7.32-7.45 (м, 5H, Ph). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.46 (C¹⁰), 44.48 (C¹), 52.32, 58.02 (C⁹, CH₂), 52.69 (C⁶), 61.44 (C⁷), 87.51 (C-O); 155.27 (C=N); 123.96, 127.25, 128.60, 128.66, 135.09, 148.18 (С_{аром}). ESI-MS (m/z): вычислено для C₂₀H₁₉N₃O₃ 350.1499 [M+1], найдено 350.1498.

Метил 5-(4-нитрофенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат (**301**)

Желтое масло, R_f 0.4 (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц) (ротамер мажор : минор = 63:37): 1.64 (д, 1H, HC¹⁰_{син}, *J*=11.1), 1.71 (д, 1H, HC¹⁰_{анти}, *J*=11.3), 2.81 (уш.с., 1H, HC⁷), 3.15 (д, 1H, HC⁸_{эндо} минор, *J*=9.6), 3.20 (д, 1H, HC⁸_{эндо} мажор, *J*=9.9), 3.32-3.43 (м, 1H, HC⁸_{экзо}), 3.71 (с, 3H, OCH₃ минор), 3.74 (с, 3H, OCH₃ мажор), 3.77 (д, 1H, HC⁶, *J*=8.5), 4.47 (уш.с, 1H,

Сооме минор), 5.74 (с, 5н, ОСН₃ мажор), 5.77 (д, 1н, нс., J=8.5), 4.47 (уш.с, 1н, HC¹ мажор), 4.59 (уш.с., 1H, HC¹ минор), 4.92 (д, 1H, HCO мажор, J=8.3), 4.99 (д, HCO минор, J=8.4), 7.88 (д, HC_{аром}, J=8.6), 8.27 (д, HC_{аром}, J=8.6). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 30.88 (C¹⁰ минор), 31.39 (C¹⁰ мажор), 39.29 (C⁷ мажор), 39.85 (C⁷ минор), 49.86 (C⁸ минор), 49.95 (C⁸ мажор), 52.18 (OCH₃ минор), 52.30 (OCH₃ мажор), 54.54 (C⁶ минор), 54.55 (C⁶ мажор), 59.09 (C¹ минор), 59.36 (C¹ мажор), 85.50 (С-О минор), 85.67 (С-О мажор), 123.75, 127.11, 134.20, 148.09 (С_{аром}), 154.85 (C=N). Спектр ЯМР ¹H (DMSO-d₆, δ , м.д., J/Γ ц): 1.35 (д, HC¹⁰_{*cu*H}, J=11.1), 1.63 (м, HC¹⁰_{*aнти*}), 2.75 (уш.с., HC⁷), 3.10-3.25 (м, HC⁸_{экзо}+ HC⁸_{эндо}), 3.59 (с, OCH₃, мажор), 3.61 (с, OCH₃, минор), 4.10 (м, HC⁶), 4.28 (уш.с., HC¹), 4.85 (м, HCO), 8.03 (д, HC_{аром}, J=8.6), 8.35 (м, HC_{аром}).

<u>Метил 5-(4-нитрофенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат</u> (311)

NO

Желтое масло, $R_f 0.32$ (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц) (ротамер мажор : минор = 63:37): 1.54 (c, 2H, H₂C¹⁰), 3.01 (уш.с, 1H, HC¹), 3.03 (HC⁹_{эндо} минор), 3.07 (д, HC⁹_{эндо} мажор, J=10.7), 3.32-3.43 (м, HC⁹_{эк30}), 3.73 (с, OCH₃ мажор), 3.82 (с,

ОСН₃ минор), 3.89 (д, HC⁶ минор, J=8.3), 3.98 (д, HC⁶ мажор, J=8.3), 4.42 (уш..с, HC⁷ минор), 4.50 (уш.с., HC⁷ мажор), 4.97 (д, 1H, HCO, J=8.3), 7.90 (д, HC_{аром} минор, J=8.6), 7.97 (д, HC_{аром} мажор, J=8.6), 8.26 (д, HC_{аром} мажор, J=8.6), 8.29 (д, HC_{аром} минор, J=8.6). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.82 (C¹⁰ мажор), 31.51 (C¹⁰ минор), 43.22 (C¹ минор), 43.82 (C¹ мажор), 46.06 (C⁹ мажор), 46.23 (C⁹ минор), 52.12 (OCH₃, мажор), 52.52 (OCH₃, минор), 56.78, 57.38 , 57.50 (C⁶,C⁷), 86.51 (С-О мажор), 86.58 (С-О минор), 154.93 (С=N минор), 155.15 (С=N мажор), 155.42 (С=О минор), 155.63 (С=О мажор), 123.66, 126.85, 134.20, 147.98 (С_{аром} мажор), 123.74, 127.04, 134.11, 147.98 (С_{аром} минор). Спектр ЯМР ¹H (DMSO-d₆, δ, м.д., *J*/Гц): 1.43 (д, HC¹⁰_{син}, *J*=10.3), 1.63 (м, HC¹⁰_{анти}), 2.88 (уш.с., HC¹), 2.99 (м, HC⁹_{эндо}), 3.23 (м, HC⁹_{экзо}), 3.62 (с, OCH₃, мажор), 3.70 (с, ОСН₃, минор), 4.11 (м, НС⁶), 4.28 (уш.с., НС⁷, минор), 4.31 (уш.с., НС⁷, мажор), 4.99 (м, НСО), 7.91 (м, НС_{аром}), 8.35 (м, НС_{аром}). ESI-MS (m/z) изомеры **301+311**: вычислено для C₁₅H₁₅N₃O₅ 318.1084 [M+1], найдено 318.1074.

<u>Трет-бутил 5-(4-нитрофенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат</u> (30m)

Желтое масло. R_f 0.47 (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц) (ротамер мажор : минор = 73:27): 1.57 (с, CH₃), 1.58-1.74 (м, HC¹⁰), 2.79 (с, HC⁷), 3.12 (д, HC⁸_{3ндо} минор, *J*=9.2), 3.17 (д, HC³_{эндо}, мажор, *J*=10.2), 3.35 (дд, HC³_{экзо}, *J*=9.9, 3.0), 3.78 (д, HC⁶, *J*=8.4), 4.42 (уш.с., HC¹ мажор), 4.56 (уш.с., HC¹ минор), 4.91 (д, HCO мажор, *J*=8.2), 4.99 (д, HCO

[\]_{COOBu^t} мажор), 4.56 (уш.с., НС¹ минор), 4.91 (д, НСО мажор, *J*=8.2), 4.99 (д, НСО минор, *J*=7.7), 7.89 (д, НС_{аром}, *J*=8.6), 8.28 (д, НС_{аром}, *J*=8.8). ESI-MS (m/z): вычислено для С₁₈Н₂₁N₃O₅ 360.1554 [M+1], найдено 360.1551.

Трет-бутил 5-(4-нитрофенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (31m)

 NO_2

Желтое масло. R_f 0.54 (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц) (ротамер мажор : минор = 55:45): 1.49 (с, CH₃ мажор), 1.58 (с, CH₃ минор), 1.62 – 1.78 (м, HC¹⁰), 2.99 (с, HC¹), 3.05 (д, HC⁹_{эндо} мажор, J=10.5), 3.32 (дд, HC⁹_{экзо} минор, J_I =10.3, 3.8), 3.35 (дд, HC⁹_{экзо} мажор, J_I =10.2, 4.0), 3.87 (д, HC⁶ мажор,

J=8.3), 3.98 (д, HC⁶ минор, *J*=8.4), 4.36 (с, HC⁷ мажор), 4.47 (с, HC⁷ минор), 4.96 (д, HCO, минор, *J*=7.9), 4.97 (д, HCO, мажор, *J*=7.9), 7.95 (д, HC_{аром} мажор, *J*=8.7), 7.99 (д, HC_{аром} минор, *J*=8.7), 8.27 (дд, HC_{аром}, *J*₁=8.8, 2.9), сигнал HC⁹_{эндо} минор перекрывается с HC¹. Спектр ЯМР ¹³C (CDCl₃, δ, м.д.): 30.86 (C¹⁰ мажор), 31.36 (C¹⁰ минор), 43.34 (C¹ мажор), 43.93 (C¹ минор), 45.91 (C⁹ мажор), 46.39 (C⁹ минор), 56.92 (C⁶ минор), 56.87 (C⁶ мажор), 57.31 (C⁷ мажор), 57.88 (C⁷ минор), 79.89 (O<u>C</u>(CH₃)₃, минор), 80.14 (O<u>C</u>(CH₃)₃, мажор), 86.65 (C-O), 153.44, 153.66 (C=N, C=O). ESI-MS (m/z): вычислено для C₁₈H₂₁N₃O₅ 360.1554 [M+1], найдено 360.1552.

<u>9-[(4-Метилфенил)сульфонил]-5-(4-нитрофенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (30n)</u>

NO₂ N O N Ts

Бесцветное масло. R_f 0.72 (MeOH – CHCl₃, 1:25). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 1.05 (дм, 1H, HC¹⁰_{*анти*}, *J*=11.2), 1.44 (д, 1H, HC¹⁰_{*син*}, *J*=11.2), 2.43 (с, 3H, CH₃), 2.73 (уш.с., 1H, HC⁷), 3.16 (дд, 1H, HC⁸_{экзо}, *J*₁=9.3, 3.3), 3.23 (д, 1H, HC⁸_{эндо}, *J*=9.3), 3.79 (д, 1H, HC⁶, *J*=8.3), 4.41 (с, 1H, HC¹), 5.07 (д, 1H, HCO, *J*=8.3), 7.35 (д, 2H, CH_{аром}, *J*=8.1), 7.74 (д, 2H, CH_{аром}, *J*=8.1), 7.84 (д, 2H, CH_{аром}, *J*=8.8), 8.26 (д, 2H,

СН_{аром}, *J*=8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.17 (CH₃), 30.30 (С¹⁰), 40.11 (С⁷), 51.18 (С⁶),

54.66 (C⁸), 61.91 (C¹), 86.45 (С-О), 123.77, 126.94, 127.07, 129.62, 134.69, 135.50 (С_{аром}), 155.40 (C=N).

<u>(8-[(4-Метилфенил)сульфонил]-5-(4-нитрофенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2,6}]дец-4-ен)</u> (**31n**)

Бесцветное масло. R_f 0.67 (MeOH – CHCl₃, 1:25). Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.15 (дм, 1H, HC¹⁰_{анти}, *J*=11.4), 1.54 (д, 1H, HC¹⁰_{син}, *J*=11.4), 2.43 (с, 3H, CH₃), 2.95 (уш.с., 1H, HC¹), 3.11 (м, 2H, HC⁹_{экзо} + HC⁹_{эндо}), 4.19 (д, 1H, HC⁶, *J*=8.4), 4.37 (с, 1H, HC⁷), 4.99 (д, 1H, HCO, *J*=8.4), 7.34 (д, 2H,

СН_{аром}, *J*=8.0), 7.73 (д, 2H, CH_{аром}, *J*=8.0), 7.93 (д, 2H, CH_{аром}, *J*=8.8), 8.31 (д, 2H, CH_{аром}, *J*=8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.17 (CH₃), 30.76 (C¹⁰), 44.16 (C¹), 47.01 (C⁶), 58.06 (C⁹), 60.30 (C⁷), 86.43 (C-O), 123.94, 126.86, 127.08, 129.61, 133.90, 134.90, 143.75, 148.17 (С_{аром}), 153.44 (C=N). ESI-MS (m/z) изомеры **3s**+**4s**: вычислено для C₂₀H₁₉N₃O₅S 414.1111 [M+1], найдено 414.1118.

<u>5-(4-Нитрофенил)-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-ил(фенил)метанон (**300**)</u>

Желтое масло. R_f 0.50 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): (ротамер мажор : минор = 73:27): 1.65 (д, HC¹⁰_{син} + HC¹⁰_{анти} мажор, *J*=11.2), 1.75 (д, HC¹⁰_{син} + HC¹⁰_{анти} минор, *J*=10.7), 2.82 (уш.с., HC⁷ минор), 2.94 (уш.с., HC⁷ мажор), 3.18 (д, HC⁸_{эндо} минор, *J*=9.5), 3.42 (д, HC⁸_{эндо} мажор, *J*=10.5), 3.57 (д, HC⁸_{экзо} минор, *J*=9.5), 3.65 (д, HC⁸_{экзо} мажор, *J*=10.5), 3.79 (д, HC⁶ мин, *J*=8.2), 3.92 (д, HC⁶ мажор, *J*=8.2), 4.41 (уш.с., HC¹ мажор,

4.97 (уш.с., HC¹ минор), 5.05 (д, HCO мажор, *J*=8.2), 5.15 (д, HCO минор, *J*=8.0), 7.40-7.53 (м, Ph), 7.84 (д, HC_{аром}, *J*=8.4), 7.91 (д, HC_{аром} мажор, *J*=8.4), 8.20-8.30 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 31.94 (С¹⁰ мажор), 39.05 (С⁷ мажор), 49.93, 55.06 (С⁶, С⁸), 62.26 (С¹ мажор), 86.26 (С-О мажор), 123/82, 126.56, 127.20, 127.95, 129.14, 132.52 (С_{агот}), 155.01 (С=N), 169.45 (С=О). ESI-MS (m/z): вычислено для С₂₀H₁₇N₃O₄ 364.1292 [M+1], найдено 364.1292.

<u>5-(4-Нитрофенил)-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-ил(фенил)метанон</u> (**310**)

Желтое масло. R_f 0.41 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц) (ротамер мажор : минор = 55:45): 1.67-1.73 (м, HC¹⁰_{син} + HC¹⁰_{анти}), 1.77-1.89 (м, HC¹⁰_{син} + HC¹⁰_{анти}), 3.02 (уш.с., HC¹ мажор), 3.04 (д, HC⁹_{эндо} мажор, J=9.9), 3.14 (уш.с., HC¹ минор), 3.36 (д, HC¹

минор, *J*=12.2), 3.58 (дд, HC⁹_{экзо} минор, *J*=12.2, 4.11), 3.66 (дд, HC⁹_{экзо} мажор, *J*=10.0, 3.9), 3.82 (д, HC⁶ минор, *J*=8.4), 4.22 (д, HC⁶ мажор, *J*=8.4), 4.30 (уш.с., HC⁷ минор), 4.83 (уш.с., HC⁷

мажор), 4.92 (д, НСО мажор, *J*=8.5), 5.05 (д, НСО минор, *J*=8.4), 7.32 (д, НС_{аром}, *J*=8.8), 7.4-7.6 (м, Ph), 8.05 (д, НС_{аром}, *J*=8.8), 8.10 (д, НС_{аром}, *J*=8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 30.14 (С¹⁰ мажор), 31.87 (С¹⁰ минор), 43.10, 45.73 (С¹, С⁹ минор), 44.05, 49.85 (С¹, С⁹ мажор), 56.00, 57.42 (С⁶, С⁷ мажор), 57.76, 60.18 (С¹, С⁷ минор), 85.89 (С-О мажор), 86.41 (С-О минор), 123.46, 123.74, 126.23, 126.55, 127.10, 127.23, 128.03, 128.47, 129.95, 130.61, 133.75, 134.03, 134.52, 136.18, 147.75, 147.98 (С_{аром}), 152.89, 153.89 (С=N), 169.46, 170.40 (С=O). ESI-MS (m/z): вычислено для С₂₀Н₁₇N₃O₄ 364.1292 [M+1], найдено 364.1294.

Синтез соединений 30р-г, 31р-г

Общая методика

К смеси алкена (2.5 ммоль) и дибромформальдоксима (2.5 ммоль) в этилацетате (25 мл) при 5°C добавляли бикарбонат натрия (12.5 ммоль) и перемешивали в течение 1 часа, затем нагревали до комнатной температуры и перемешивали более 4 часов. Смесь разбавляли водой, органический слой отделяли, водный экстрагировали CH_2Cl_2 . Объединенные органические вытяжки высушили над Na₂SO₄, растворитель упарили. Остаток хроматографировали. Выходы соединений приведены в табл. 1. Полное хроматографическое разделение изомеров **30** и **31** не удалось. Отнесение сигналов осуществлялось на основе анализа фракций с различным содержанием изомеров.

<u>9-Бензил-5-бромо-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**30р**) и 8-бензил-5-бромо-3-окса-<u>4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен (**31р**)</u> (смесь).</u>

Бесцветное масло, R_f 0.30 (EtOAc – петролейный эфир, 1:1). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): изомер **30р** 1.48 (д, 1H, HC¹⁰_{син}, *J*=11.1), 1.68 (дм, 1H, HC¹⁰_{анти}, *J*=11.1), 2.52 (д, 1H, HC⁸_{эида}, *J*=9.5), 2.60 (дд, 1H, HC⁸_{экза}, *J*=9.5, 3.4), 2.65

(уш.с., 1Н, HC⁷), 3.39 (д, 1Н, HC⁶, *J*=8.4), 3.44 (уш.с., 1Н, HC¹), 3.70 (с, 2Н, CH₂Ph), 4.86 (д, 1Н, HCO, *J*=8.4); изомер **31p** 1.60 (д, 1Н, HC¹⁰_{син}, *J*=11.1), 1.75 (дм, 1Н, HC¹⁰_{анти}, *J*=11.1), 2.03 (д, 1H, HC⁹_{эндо}, *J*=9.9), 2.73 (уш.д., 1Н, HC¹, *J*=4.2), 2.78 (дд, 1Н, HC⁹_{экзо} *J*=9.9, 4.4), 3.48 (уш.с., 1Н, HC⁷), 3.65 (с, 2Н, CH₂Ph), 3.72 (HC⁶, перекрывается с CH₂Ph **30p**), 4.75 (д, 1Н, HCO, *J*=8.3); изомеры **30p** +**31p** 7.20-7.40 (м, HC_{аром}). Спектр ЯМР ¹³C (CDCl₃, δ, м.д.): изомер **30p** 28.87 (C¹⁰), 39.99 (C⁷), 56.67 (C⁸), 59.12 (CH₂), 60.83 (C⁶), 64.22 (C¹), 85.72 (C-O); изомер **31p** 30.16 (C¹⁰), 44.39 (C¹), 56.67 (C⁶), 58.27 (CH₂), 59.40 (C⁹), 62.13 (C⁷), 86.45 (C-O); изомеры **30p** +**31p** 128.40, 128.42, 128.46 (С_{аром}). ESI-MS (m/z): Вычислено для C₁₄H₁₆BrN₂O 307.0451 [M+1], найдено 307.0448, вычислено для C₁₄H₁₆BrN₂O 309.0431 [M+3], найдено 309.0428.

Метил 5-бромо-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат (**30q**) и метил 5бромо-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (**31q**) (смесь).

Желтое масло, R_f 0.71 (MeOH – CHCl₃, 1:30). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): изомер **30q** (ротамер мажор : минор = 54:46) 2.81 (уш.с., HC⁷), 3.00 (д, HC⁸_{эндо} минор, *J*=9.8), 3.05 (д, HC⁸_{эндо} мажор, *J*=9.9),

3.42 (д, HC⁶, J=8.3), 4.73 (д, HCO мажор, J=8.0); изомер **31q** (ротамер мажор : минор = 58:42) 2.91 (HC⁹_{эндо} минор), 2.94 (уш.с., HC¹), 2.95 (HC⁹_{эндо} мажор), 3.56 (д, HC⁶ минор, J=7.8), 3.65 (HC⁶ мажор),); изомер **30q** + изомер **31q** 1.60-1.80 (м, HC¹⁰), 3.25-3.39 (м, HC⁸_{экзо} **30q** и HC⁹_{экзо} **31q**), 3.67, 3.70, 3.72 (три с, OCH₃), 4.39 (уш.с., HC¹ **30q** мажор, HC⁷ **31q** минор), 4.51 (уш.с., HC¹ **30q** минор, HC⁷ **31q** мажор), 4.80(д, HCO **30q** минор +**31q** мажор, J=8.2). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): изомер **30q** 30.73 (C¹⁰ минор), 31.20 (C¹⁰ мажор), 38.76 (C⁷ мажор), 39.32 (C⁷ минор), 49.44 (C⁸), 59.04 (C¹ минор), 59.31 (C¹ мажор), 60.30 (C²), 84.27 (С-О минор), 84.42 (С-О мажор); изомер **31q** 31.00 (C¹⁰ мажор), 31.50 (C¹⁰ минор), 43.19 (C¹ минор), 43.77 (C¹ мажор), 46.15 (C⁹), 56.71 (C⁷ мажор), 56.95 (C⁷ минор), 62.31 (C⁶ минор), 62.68 (C⁶ мажор), 85.61 (C-O); изомер **30q** + изомер **31q** 52.29, 52.45, 52.52 (OCH₃), 136.50, 136.79, 138.50, 138.70 (C=N), 154.72, 154.95 (C=O). ESI-MS (m/z): Вычислено для C₉H₁₁BrN₂O₃ 275.0026 [M+1], найдено 275.0024, вычислено для C₉H₁₁BrN₂O₃ 277.0005 [M+3], найдено 277.0004.

Трет-бутил 5-бромо-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8-карбоксилат (**30r**) и *трет*бутил 5-бромо-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен-9-карбоксилат (**31r**) (смесь).

Желтое масло, $R_f 0.32$ (EtOAc – петролейный эфир, 1:1). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): изомер **30r** (ротамер мажор : минор = 67:33) 2.80 (уш.с., **31r** COOBu^t HC⁷), 2.96 (HC⁸_{энда} минор, перекрывается с HC⁹_{энда}

31г минор), 3.03 (д, HC⁸_{эндо} мажор, *J*=10.3), 3.43 (д, HC⁶, *J*=8.2), 4.35 (уш.с., HC¹ мажор), 4.73 (д, HCO мажор, *J*=8.2), 4.81 (д, HCO минор, перекрывается HCO **31r**); изомер **31r** (ротамер мажор : минор = 53:47), 2.87 (д, HC⁹_{эндо} мажор, *J*=9.7), 2.92 (уш.с., HC¹ минор), 2.93 (HC⁹_{эндо} минор, перекрывается с HC¹), 3.53 (д, HC⁶ мажор, *J*=7.8), 3.66 (д, HC⁶ минор, *J*=7.9), 4.31 (уш.с., HC⁷ мажор), 4.81 (д, HCO, *J*=8.2); изомер **30r** + изомер **31r** 1.45, 1.46, 1.48 (три синглета, CH₃), 1.6-1.75 (м, HC¹⁰_{син} + HC¹⁰_{анти}), 3.23-3.35 (м, HC⁸_{экзо} **30r**, HC⁹_{экзо} **31r**), 4.48 (уш.с., HC¹ **30r** минор, HC⁷ **31r** минор). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): изомер **30r** 30.71 (C¹⁰ минор), 31.15 (C¹⁰ мажор), 38.85 (C⁷ мажор), 39.36 (C⁷ минор), 49.03 (C⁸ мажор), 49.64 (C⁸ минор), 58.51 (C¹ минор), 59.45 (C¹ мажор), 60.33 (C⁶); изомер **31r** 30.94 (C¹⁰ минор), 31.30 (C¹⁰ мажор), 43.32 (C¹ мажор), 43.87

(C¹ минор), 45.81 (C⁹ минор), 46.33 (C⁹ мажор), 56.18 (C⁷ минор), 57.27 (C⁷ мажор), 62.31 (C⁶ мажор), 62.66 (C⁶ минор); изомер **30r** + изомер **31r** 27.99 (CH₃), 79.84, 79.94, 80.07, 80.11 (O<u>C</u>(CH₃)₃), 84.42, 84.54, 85.69 (C-O), 136.47, 136.61, 138.54, 138.81 (C=N), 153.68 (C=O). ESI-MS (m/z): Вычислено для C₁₂H₁₇BrN₂O₃, 260.9869 [M+1-Bu^t], найдено 260.9869, C₁₂H₁₇BrN₂O₃, 262.9849 [M+3-Bu^t], найдено 262.9848.

Общая методика

Раствор N-гидроксиимоилгалогенида (2.25 ммоль) в дихлорметане (10 мл) медленно по каплям добавляли к раствору алкена (1.5 ммоль) и триэтиламина (2.25 ммоль) в дихлорметане (10 мл). Смесь перемешивали при комнатной температуре в течение 0.5-5 ч (ТСХ-мониторинг). Затем добавляли воду (20 мл), органический слой отделяли, водный слой экстрагировали дихлорметаном. Органические фазы объединили, высушили над сульфатом натрия, растворитель упарили. Остаток хроматографировали. Выходы полученных соединений приведены в табл. 2 (основной текст).

<u>Этил 9-бензил-3-окса-4,9-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен карбоксилат (30s)</u>

СООЕт Коричневое масло: $R_f 0.69$ (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.35 (1H, HC¹⁰_{син}), 1.37 (т, 3H, CH₃, J=7.1), 1.66 (дм, 1H, HC¹⁰_{антиь} J=11.2), 2.58 (с, 2H, HC⁸_{эндо +} HC⁸_{экзо}), 2.74 (уш.с., 1H, HC⁷), 3.46 (уш.с., 1H, HC¹), 3.51 (д, 1H, HC⁶, J=8.5), 3.71 (с, 2H, CH₂Ph), 4.34 (м, 2H, OCH₂), 4.92 (д,

1H, HCO, *J*=8.5), 7.30-7.38 (м, 5H, CH_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.72 (CH₃), 28.47 (C¹⁰), 40.34 (C⁷), 54.07 (OCH₂), 56.76 (C⁸), 59.02 (CH₂Ph), 61.58 (C⁶), 63.75 (C¹), 87.71 (C-O), 126.71, 127.95, 127.98 (C_{аром}), 151.85 (C=N), 160.25 (C=O). ESI-MS (m/z): вычислено для C₁₇H₂₀N₂O₃ 301.1547 [M+1], найдено 301.1537.

Этил 8-бензил-3-окса-4,8-диазатрицикло[5.2.1.0^{2.6}]дец-4-ен карбоксилат (**31s**)

Коричневое масло: $R_f 0.45$ (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.30 (т, 3H, CH₃, J=7.1), 1.48 (д, 1H, HC¹⁰_{син}, J=10.8), 1.72 (д, 1H, HC¹⁰_{анти}, J=10.8), 2.03 (д, 1H, HC⁹_{эндо}, J=10.3), 2.74 (уш.с., 1H, HC¹), 2.84 (дд, 1H, HC⁹_{экзо}, J=10.3, 4.3), 3.58 (уш.с., 1H,

HC⁷), 3.64, 3.71 (два д., 1H, CH₂Ph, J = 13.3), 3.85 (д, 1H, HC⁶, J=8.4), 4.29 (м, 2H, OCH₂), 4.85 (д, 1H, HCO, J=8.4) 7.30 (м, 5H, CH_{apon}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.63 (CH₃), 30.00 (C¹⁰), 43.94 (C¹), 51.66 (OCH₂), 52.15 (C⁶), 57.53 (CH₂), 61.54 (C⁹), 62.16 (C⁷), 88.28 (C-O), 159.99

(C=O), 126.83, 127.42, 127.98, 128.18 (С_{аром}), 151.47 (C=N). ESI-MS (m/z): вычислено для С₁₇Н₂₀N₂O₃ 301.1547 [M+1], найдено 301.1544.

<u>Этил 9-[(4-метилфенил)сульфонил-3-окса-4,9-диазатрицикло[5.2.1^{2.6}]дец-4-ен-5-карбоксилат</u> (**30t**)

Коричневое масло. R_f 0.60 (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.04 (д, 1H, J=11.4, HC¹⁰_{анти}), 1.35 (т, 3H, OCH₂C<u>H</u>₃, J=7.2), 2.44 (с, 3H, CH₃, T_s), 2.84 (уш.с., 1H, HC⁷), 3.08 (дд, 1H, HC⁸_{экзо}, J=9.3, 3.0), 3.13 (д, 1H, HC⁸_{эндо}, J=9.3), 3.55 (д, 1H, HC⁶, J=8.4), 4.30 (м, 2H, OC<u>H</u>₂CH₃), 4.36 (с, 1H, HC¹), 4.99 (дд, 1H, HCO, J=8.4, 1.2), 7.34 (д, 2H, CH_{аром}, J=8.1), 7.71 (д, 2H, CH_{аром}, J=8.1). Сигналы протонов HC⁷_{cun} перекрываются с сигналами OCH₂C<u>H</u>₃. Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 13.66 (OCH₂CH₃), 21.17 (CH₃), 30.23 (C¹⁰), 40.31 (C⁷), 51.18 (C⁶), 54.16 (C⁸), 61.85, 61.91 (C¹, OCH₂CH₃), 87.25 (C-O), 126.92, 129.59, 134.66, 143.62 (C_{аром}), 151.27 (C=N), 159.77 (C=O). ESI-MS (m/z): Вычислено для C₁₇H₂₀N₂O₅S 365.1166 [M+1], найдено 365.1168.

<u>Этил 8-[(4-метилфенил)сульфонил-3-окса-4,8-диазатрицикло[5.2.1.0^{2,6}]дец-4-ен-5-карбоксилат</u> (**31t**)

Коричневое масло. R_f 0.68 (MeOH – CHCl₃, 1:50). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.15 (д, 1H, HC¹⁰_{анти}, J=11.2), 1.39 (т, 3H, OCH₂C<u>H₃</u>, J=7.2), 1.44 (д, 1H, HC¹⁰_{син}, J=11.2), 2.43 (с, 3H, CH₃, Ts), 2.89 (уш.с., 1H, HC¹), 2.96 (д, 1H, HC⁹_{эндо}, J=9.9), 3.16 (дд, 1H, HC⁹_{экзо} J=9.9, 4.1), 3.78 (д, 1H, HC⁶,

J=8.5), 4.30 (м, 2H, OC<u>H</u>₂CH₃), 4.46 (с, 1H, HC⁷), 4.85 (д, 1H, HCO, J=8.5), 7.34 (д, 2H, HC_{аром}, J=8.2), 7.73 (д, 2H, HC_{аром}, J=8.2). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.66 (OCH₂<u>C</u>H₃), 21.14 (CH₃), 30.68 (C¹⁰), 44.01 (C¹), 47.14 (C⁶), 57.04 (C⁹), 60.18 (C⁷), 61.85 (O<u>C</u>H₂CH₃), 87.55 (C-O), 126.97, 129.57, 134.76, 143.57 (C_{аром}), 151.30 (C=N), 159.43 (C=O). ESI-MS (m/z): Вычислено для C₁₇H₂₀N₂O₅S 365.1166 [M+1], найдено 365.1166.

IV.4.2. Взаимодействие с нитрилиминами

Общая методика

К раствору одного эквивалента алкена в 10 мл хлористого метилена при комнатной температуре добавили указанное количество триэтиламина. Затем медленно при перемешивании по каплям прибавляли раствор гидразоноилхлорида в 10 мл хлористого метилена. Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали.

Взаимодействие 2-бензил-2-азабицикло[2.2.1]гепт-5-ена с нитрилиминами

Реакция с N-фенилбензолкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.125 г (1 ммоль) гидразоноилхлорида и 0.05 г (1 ммоль) триэтиламина были получены 0.19 г (94%) <u>8-бензил-3,5-дифенил-3,4,8-</u> <u>триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**35а**) и <u>9-бензил-5-(фенил-2-ил)-3-фенил-3,4,9-</u> <u>триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36а**) в виде коричневого масла.

R_f 0.51 (MeOH – CH₂Cl₂, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): изомер **35а**: 1.55 (д, 1Н, HC¹⁰, *J*=10.4), 1.68 (д, 1H, HC¹⁰, *J*=10.4), 2.33 (д, 1Н, эндо-HC⁹, *J*=9.5), 2.95 (уш.с., 1H, HC¹), 3.01 (дд, 1Н, экзо-HC⁹, *J*=9.5, 4.0), 3.61 (с, 1H,

HC⁷), 4.08 (д, 1H, HC⁶, *J*=9.5), 4.29 (д, 1H, HC², *J*=9.5), 6.90 (т, 1H, HC_{аром}, *J*=7.3); изомер **36**а: 1.48 (д, 1H, HC¹⁰, *J*=10.6), 1.62 (д, 1H, HC¹⁰, *J*=10.6), 2.73 (д, 1H, эндо-HC⁸, *J*=8.9), 2.78 – 2.87 (м, 2H, HC⁷, экзо-HC⁸), 3.66 (с, 1H, HC¹), 4.51 (д, 1H, HC², *J*=9.5), 6.83 (т, 1H, HC_{аром}, *J*=7.2), 7.04 (д, 2H, HC_{аром}, *J*=8.3), 7.83 (д, 2H, HC_{аром}, *J*=8.3); изомеры **35а** +**36а**: 3.76-3.95 (м, HC⁶, CH₂(Bn) **35а** +**36а**), 7.20-7.63 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): изомер **35а** + изомер **36а**: 29.56, 30.80 (C¹⁰), 41.32, 42.63, 51.02, 53.41, 53.62, 57.57, 57.70, 58.88, 62.29, 62.53, 66.21, 66.67 (C¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.91, 112.07, 118.31, 118.45, 125.31, 125.43, 126.80, 126.88, 127.86, 127.91, 128.07, 128.12, 128.14, 128.19, 128.23, 128.37, 128.76, 128.85, 131.85, 131.97, 138.59, 139.08, 143.87, 144.00, 147.87, 148.46 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃ 380.2121 [M+1], найдено 380.2125.

Реакция с N-фенилфуран-2-карбогидразонилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.36 г (1.6 ммоль) гидразоноилхлорида и 0.16 г (1.6 ммоль) триэтиламина были получены 0.067 г (36%) <u>8-бензил-5-(фуран-2-ил)-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**35b**) и <u>9-бензил-5-(фуран-2-ил)-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36b**) в виде коричневого масла.

R_f 0.60 (этилацетат – петролейный эфир, 1:1). Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): изомер **35b**: 1.54 (дм, 1H, HC¹⁰, *J*=10.6), 1.68 (д, 1H, HC¹⁰, *J*=10.6), 2.92 (уш.с., 1H, HC¹), 2.32 (д, 1H, эндо-HC⁹, *J*=9.6), 2.97 (дд, 1H, экзо-HC⁹, *J*=9.6,

4.1), 3.59 (с, 1H, HC⁷), 4.01 (д, 1H, HC⁶, *J*=9.5), 4.27 (д, 1H, HC², *J*=9.5), 6.31 (д, 1H, HC_{фурил}, *J*=3.3), 6.41 (дд, 1H, HC_{фурил}, *J*=3.3, 1.8), 6.85 (т, 1H, HC_{аром}, *J*=7.2); изомер **36b**: 1.46 (д, 1H, HC¹⁰, *J*=10.7), 1.62 (д, 1H, HC¹⁰, *J*=10.7), 2.82 (уш.с, 1H, HC⁷), 2.69 (д, 1H, эндо-HC⁸, *J*=9.1), 2.77 (дд,

1H, *экзо*-HC⁸, *J*=9.1, 3.4), 3.62 (с, 1H, HC¹), 3.69 (д, 1H, HC⁶, *J*=9.7), 3.75 (д, 1H, CH₂(Bn), *J*=13.3), 4.45 (д, 1H, HC², *J*=9.6), 6.49 (дд, 1H, HC_{фурил}, *J*=3.3, 1.7), 6.63 (д, 1H, HC_{фурил}, *J*=3.4), 6.78 (т, 1H, HC_{аром}, *J*=7.3), 7.50 (д, 1H, HC_{фурил}, *J*=1.7); изомер **35b** + изомер **36b**: 3.78 - 3.88 (м, 2H изомер **35b**, 1H изомер **36b** CH₂(Bn)), 7.25-7.35 (м, HC_{аром}), 7.35-7.47 (м, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): изомер **35b** + изомер **36b**: 29.43, 30.66 (C¹⁰), 41.57, 42.4851.54, 53.58, 53.73, 57.38, 57.70, 58.88, 62.37, 62.69, 65.69, 66.11 (C¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.94, 112.10, 118.41, 118.58, 126.82, 126.89, 128.03, 128.06, 128.16, 128.31, 128.65, 128.74, 142. 70, 142.76, 143.50, 143.64, 147.58, 147.85 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₄H₂₄N₃O 370.1914 [M+1], найдено 370.1917.

Реакция с (1Z)-N-фенилэтангидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.1 г (0.7 ммоль) гидразоноилхлорида и 0.07 г (0.7 ммоль) триэтиламина было получено 0.119 г (70%) в виде желтого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:1) выделили в порядке вымывания:

<u>8-Бензил-5-метил-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен (35с)</u>

 $\begin{array}{c} Ph \\ M_{1} \\ M_{2} \\ M_{3} \\ \end{array}$

R_f 0.40. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.47 (д, 1Н, HC¹⁰, *J*=10.4), 1.68 (д, 1Н, HC¹⁰, *J*=10.4), 1.96 (д, 3Н, CH₃), 2.26 (д, 1Н, эндо-HC⁹, *J*=9.4), 2.81 (уш.с, 1Н, HC¹), 2.84 (дд, 1Н, экзо-HC⁹, *J*=9.4, 4.2), 3.41 (с, 1Н, HC⁷), 3.58 (д, 1H, HC⁶, *J*=9.2), 3.70, 3.74 (оба д, *J*=13.8), 4.04 (д, 1H, HC², *J*=9.2), 6.78 (т,

1H, HC_{аром}, *J*=7.3), 7.01 (д, 2H, HC_{аром}, *J*=8.0), 7.26 (дд, 2H, HC_{аром}, *J*=8.4, 7.5), 7.28-7.31 (м, 1H, HC_{аром}), 7.33-7.40 (м, 4H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 14.63 (CH₃), 30.75 (C¹⁰), 43.03, 53.97, 56.07, 58.42, 62.38, 66.61 (C¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.78, 117.99, 127.04, 128.36, 128.45, 129.08, 145.41 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₁H₂₄N₃ 318.1965 [M+1], найдено 318.1960.

<u>9-Бензил-5-метил-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36с**)

СН₃ R_f 0.16. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.39 (д, 1H, HC¹⁰, J=10.7), 1.61 (д, 1H, HC¹⁰, J=10.7), 2.01 (д, 3H, CH₃, J=0.9), 2.57-2.63 (м, 2H, HC⁷, эндо-HC⁸), 2.75 (дд, 1H, экзо-HC⁸, J=9.3, 3.6), 3.23 (д, 1H, HC⁶, J=9.2), 3.52 (с, 1H, HC¹), 3.79, 3.83 (оба д, J=13.4), 4.27 (д, 1H, HC², J=9.2), 6.72 (тт, 1H, HC_{аром}, J=7.3, 0.9), 6.81 (д, 2H, HC_{аром}, J=8.7), 7.15 (дд, 2H, HC_{аром}, J=8.7, 7.3), 7.30 (тт, 1H, HC_{аром}, J=7.1, 1.9), 7.38 (т, 2H, HC_{аром}, J=7.4), 7.44 (д, 2H, HC_{аром}, J=7.1), Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 14.44 (CH₃), 29.65

(C¹⁰), 40.49, 57.63, 57.91, 59.29, 63.01, 66.01 (C¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.61, 117.85, 127.16, 128.39, 128.51, 129.04, 145.22 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₁H₂₄N₃ 318.1965 [M+1], найдено 318.1959.

Реакция с N-фенилциклопропанкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.3 г (1.5 ммоль) гидразоноилхлорида и 0.15 г (1.5 ммоль) триэтиламина было получено 0.074 г (40%) в виде коричневого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:1) выделили в порядке вымывания:

<u>8-Бензил-5-циклопропил-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (35d)

R_f 0.55. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.75-0.85 (м, 4H, С_{циклопропил}), 1.47 (д, 1H, HC¹⁰, *J*=10.5), 1.50 (м, 1H, С_{циклопропил}), 1.69 (д, 1H, HC¹⁰, *J*=10.5), 2.25 (д, 1H, эндо-HC⁹, *J*=9.7), 2.80 (уш.с., 1H, HC¹), 2.87 (дд, 1H, экзо-HC⁹, *J*=9.7, 4.2), 3.46 (с, 1H, HC⁷), 3.61 (д, 1H, HC⁶, *J*=9.3), 3.70, 3.76 (оба д,

J=13.4), 4.03 (д, 1H, HC², J=9.3), 6.78 (т, 1H, HC_{аром}, J=7.3), 7.00 (дд, 2H, HC_{аром}, J=8.7, 1.0), 7.25 (дд, 2H, HC_{аром}, J=8.7, 7.3), 7.28-7.32 (м, 1H, HC_{аром}), 7.34-7.42 (м, 4H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.57, 7.13, 9.98 (С_{циклопропил}), 30.92 (С¹⁰), 42.87, 54.09, 54.66, 58.31, 62.95, 66.78 (С¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.76, 117.83, 127.04, 128.39, 128.46, 129.07, 145.42, 154.32 (С_{аром}, C=N). ESI-MS (m/z): вычислено для С₂₃H₂₆N₃ 344.2121 [M+1], найдено 344.2125.

<u>9-Бензил-5-циклопропил-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36d**)

R_f 0.43. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.75-0.92 (м, 4H, С_{циклопропил}), 1.37 (д, 1H, HC¹⁰, *J*=10.6), 1.55 (м, 1H, С_{циклопропил}), 1.61 (д, 1H, HC¹⁰, *J*=10.6), 2.47 (дд, 1H, экзо-HC⁸, *J*=9.1, 3.5), 2.57 (д, 1H, эндо-HC⁸, *J*=9.1), 2.68 (уш.с., Bn 1H, HC⁷), 3.28 (д, 1H, HC⁶, *J*=9.3), 3.50 (с, 1H, HC¹), 3.78, 3.83 (оба д, *J*=13.4),

4.23 (д, 1H, HC², *J*=9.3), 6.70 (т, 1H, HC_{аром}, *J*=7.3), 6.80 (дд, 2H, HC_{аром}, *J*=8.7, 0.9), 7.14 (дд, 2H, HC_{аром}, *J*=8.6, 7.3), 7.30 (т, 1H, HC_{аром}, *J*=7.1), 7.38 (т, 2H, HC_{аром}, *J*=7.2), 7.43 (д, 2H, HC_{аром}, *J*=7.0). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.60, 7.30, 9.69 (С_{циклопропил}), 29.72 (C¹⁰), 41.27, 57.76, 57.97, 59.34, 62.85, 66.35 (C¹, C², C⁶, C⁷, C⁹, <u>C</u>H₂(Bn)), 111.63, 117.67, 127.05, 128.34, 128.44, 128.96, 145.31, 154.92 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₃H₂₆N₃ 344.2121 [M+1], найдено 344.2125.

Взаимодействие 2-тозил-2-азабицикло[2.2.1]гепт-5-ена с нитрилиминами

Реакция с N-фенилбензолкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.37 ммоль) алкена, 0.26 г (1 ммоль) гидразоноилхлорида и 0.1 г (1 ммоль) триэтиламина было получено 0.11 г (68%) в виде желтого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

<u>8-[(4-Метилфенил)сульфонил]-3,5-дифенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен (35е)</u>

Рh Rf 0.40. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.05 (д, 1Н, HC¹⁰, J=10.9), 1.50 (д, 1H, HC¹⁰, J=10.9), 2.43 (с, 3H, CH₃), 3.04 (уш.с., 1H, HC¹), 3.18 (дд, 1H, *экзо*-HC⁹, J=9.5, 3.8), 3.27 (д, 1H, *эндо*-HC⁹, J=9.5), 4.18 (д, 1H, HC⁶, J=9.5), 4.37 (д, 1H, HC², J=9.5), 4.51 (с, 1H, HC⁷), 6.86 (т, 1H, HC_{аром}, J=7.3), 7.13 (д, 2H, HC_{аром}, J=7.8), 7.28-7.40 (м, 5H), 7.44 (т, 2H, HC_{аром}, J=7.6), 7.76 (д, 2H, HC_{Ts}, J=8.2), 7.80 (д, 1H, HC_{аром}, J=7.8). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 21.57 (CH₃), 31.76 (C¹⁰), 43.16, 48.98, 57.17, 61.68, 66.50 (C¹, C², C⁶, C⁷, C⁹), 112.43, 119.39, 125.69, 127.36, 128.74, 128.89, 129.26, 129.93, 131.55, 135.54, 143.84, 143.90,146.37 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃O₂S 444.1740 [M+1], найдено 444.1742.

<u>9-[(4-Метилфенил)сульфонил]-5-(фуран-2-ил)-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2.6}]дец-4-ен</u> (**36e**)

Рh R_f 0.28. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.01 (д, 1H, HC¹⁰, J=11.1), 1.47 (д, 1H, HC¹⁰, J=11.1), 2.44 (с, 3H, CH₃), 2.88 (уш.с., 1H, HC⁷), 3.17 (дд, 1H, μ C¹⁰, J=10, 3.4), 3.33 (д, 1H, μ Ao-HC⁸, J=9.0), 3.85 (д, 1H, HC⁶, J=9.5), 4.61 (д, 1H, HC², J=9.5), 4.55 (с, 1H, HC¹), 6.90 (т, 1H, HC_{apom}, J=7.3), 7.21 (д, 2H, HC_{apom}, J=8.6), 7.30-7.36 (м, 5H, HC_{apom}), 7.73 (д, 1H, HC_{apom}, J=8.6), 7.77 (д, 2H, HC_{Ts}, J=8.3). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 21.57 (CH₃), 31.43 (C¹⁰), 41.65, 52.22, 53.55, 61.77, 68.11 (C¹, C², C⁶, C⁷, C⁹), 112.36, 119.46, 125.70, 127.35, 128.66, 128.68, 129.45, 129.92, 131.60, 135.50, 143.76, 143.82, 147.99 (C_{apom}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃O₂S 444.1740 [M+1], найдено 444.1731.

Реакция с N-фенилфуран-2-карбогидразонилхлоридом

В результате взаимодействия 0.1 г (0.37 ммоль) алкена, 0.24 г (1 ммоль) гидразоноилхлорида и 0.11 г (1 ммоль) триэтиламина было получено 0.12 г (73%) в виде темно-

зеленого кристаллизующегося масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

<u>8-[(4-Метилфенил)сульфонил]-5-(фуран-2-ил)-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**35f**)

R_f 0.38. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.10 (дм, 1Н, HC¹⁰, *J*=11.1), 1.52 (д, 1Н, HC¹⁰, *J*=11.0), 2.43 (с, 3Н, CH₃), 3.03 (уш.с, 1Н, HC¹), 3.18 (дд, 1Н, экзо-HC⁹, *J*=9.5, 3.5), 3.22 (д, 1Н, эндо-HC⁹, *J*=9.5), 4.04 (д, 1Н, HC⁶, *J*=9.5), 4.31 (д, 1H, HC², *J*=9.5), 4.53 (уш.с, 1Н, HC⁷), 6.53 (дд, 1Н, HC_{фурил}, *J*=3.4, 1.8), 6.71 (д,

1H, HC_{фурил}, *J*=3.4), 6.85 (т, 1H, HC_{аром}, *J*=7.3), 7.09 (д, 2H, HC_{аром}, *J*=8.6), 7.27 (дд, 2H, HC_{аром}, *J*=8.6, 7.3), 7.34 (д, 2H, HC_{Ts}, *J*=8.1), 7.52 (д, 1H, HC_{фурил}, *J*=1.4), 7.76 (д, 2H, HC_{Ts}, *J*=8.3).). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.57 (CH₃), 31.79 (C¹⁰), 43.07, 48.98, 57.22, 61.83, 65.96 (C¹, C², C⁶, C⁷, C⁹), 110.00, 111.85, 112.53, 119.52, 127.35, 129.23, 129.95, 135.50, 138.82, 143.63, 143.70, 1443.86, 147.34 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃O₂S 434.1533 [M+1], найдено 434.1527.

<u>9-[(4-Метилфенил)сульфонил]-5-(фуран-2-ил)-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36f**)

R_f 0.27. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.03 (д, 1Н, HC¹⁰, *J*=11.0), 1.47 (д, 1Н, HC¹⁰, *J*=11.0), 2.43 (с, 3Н, CH₃), 2.92 (уш.с, 1Н, HC⁷), 3.17 (дд, 1Н, экзо-HC⁸, *J*=9.1, 3.4), 3.30 (д, 1Н, эндо-HC⁸, *J*=9.1), 3.75 (д, 1Н, HC⁶, *J*=9.5), 4.57 (д, 1H, HC², *J*=9.5), 4.53 (с, 1H, HC¹), 6.48 (дд, 1H, HC_{фурид}, *J*=3.4, 1.8), 6.65 (д, 1H,

НС_{фурил}, *J*=3.4), 6.89 (т, 1Н, НС_{аром}, *J*=7.3), 7.16 (д, 2Н, НС_{аром}, *J*=7.8), 7.29-7.36 (м, 4Н, НС_{аром}), 7.48 (д, 1Н, НС_{фурил}, *J*=1.8), 7.76 (д, 2Н, НС_{тs}, *J*=8.3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.56 (CH₃), 31.42 (C¹⁰), 41.95, 52.07, 53.96, 61.61, 67.56 (C¹, C², C⁶, C⁷, C⁹), 109.23, 111.78, 112.43, 119.57, 127.34, 129.42, 129.92, 135.45, 140.68, 143.30, 143.50, 143.80, 147.64 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃O₂S 434.1533 [M+1], найдено 434.1527.

Реакция с (1Z)-N-фенилэтангидразоноилхлоридом

В результате взаимодействия 0.1 г (0.37 ммоль) алкена, 0.142 г (0.85 ммоль) гидразоноилхлорида и 0.09 г (0.85 ммоль) триэтиламина было получено 0.09 г (61%) в виде желтого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:1) выделили в порядке вымывания:

Ph

$$R_f 0.77.$$
 Cnektp $\mathcal{M}P^{-1}H$ (CDCl₃, δ , M.d., $J/\Gamma \mu$): 1.02 (dm, 1H, HC¹⁰, $J=10.8$),
 $I.41$ (d, 1H, HC¹⁰, $J=10.8$), 2.01 (d, 3H, CH₃, $J=1.1$), 2.44 (c, 3H, CH₃), 2.89
(yiii.c, 1H, HC¹), 3.10 (dd, 1H, $\Im \kappa 30$ -HC⁹, $J=9.6$, 3.3), 3.14 (d, 1H, $\Im h \partial o$ -HC⁹,
 $J=9.6$), 3.59 (d, 1H, HC⁶, $J=9.4$), 4.08 (d, 1H, HC², $J=9.4$), 4.32 (viii.c., 1H, HC⁷).

6.78 (тт, 1Н, HC_{аром}, *J*=7.3, 1.0), 6.94 (д, 2Н, HC_{аром}, *J*=8.8), 7.23 (дд, 2Н, HC_{аром}, *J*=8.8, 7.3), 7.34 (д, 2Н, HC_{Ts}, *J*=8.5), 7.74 (д, 2Н, HC_{Ts}, *J*=8.3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 14.58 (CH₃), 21.51 (CH₃), 31.56 (C¹⁰), 43.03, 49.01, 60.74, 60.90, 66.07 (C¹, C², C⁶, C⁷, C⁹), 111.90, 118.65, 127.37, 129.16, 129.90, 135.49, 143.77, 144.92, 147.18 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₁H₂₄N₃O₂S 382.1584 [M+1], найдено 382.1578.

<u>9-[(4-Метилфенил)сульфонил]-5-метил-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен (36g)</u>

R_f0.58. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.02 (дм, 1Н, HC¹⁰, *J*=11.0), 1.39 (д, 1Н, HC¹⁰, *J*=11.0), 1.98 (д, 3Н, CH₃, *J*=1.0), 2.43 (с, 3Н, CH₃), 2.67 (уш.с, 1H, HC⁷), 3.13 (дд, 1Н, экзо-HC⁸, *J*=9.1, 3.3), 3.18 (д, 1Н, эндо-HC⁸, *J*=9.1), 3.27 (д, 1Н, HC⁶, *J*=9.4), 4.35 (д, 1Н, HC², *J*=9.4), 4.42 (уш.с, 1Н, HC¹), 6.82 (тт,

1H, HC_{аром}, *J*=7.4, 1.2), 7.02 (д, 2H, HC_{аром}, *J*=8.7), 7.28 (дд, 2H, HC_{аром}, *J*=8.7, 7.4), 7.33 (д, 2H, HC_{Ts}, *J*=8.5), 7.74 (д, 2H, HC_{Ts}, *J*=8.3). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 14.26 (CH₃), 21.50 (CH₃), 31.22 (C¹⁰), 40.49, 52.15, 57.40, 61.77, 67.60 (C¹, C², C⁶, C⁷, C⁹), 111.85, 118.70, 127.34, 129.32, 129.84, 135.68, 143.69, 144.77, 148.94 (C_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₁H₂₄N₃O₂S 382.1584 [M+1], найдено 382.1582.

Реакция с N-фенилциклопропанкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.37 ммоль) алкена, 0.142 г (0.73 ммоль) гидразоноилхлорида и 0.07 г (0.73 ммоль) триэтиламина было получено 0.14 г (93%) в виде желтого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

<u>8-[(4-Метилфенил)сульфонил]-5-циклопропил-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**35h**)

R_f 0.44. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.77 (м, 1Н, С_{циклопропил}), 0.85-0.95 (м, 3H, С_{циклопропил}), 1.05 (д, 1H, HC¹⁰, *J*=10.7), 1.41 (д, 1H, HC¹⁰, *J*=10.7), 1.57 (м, 1H, С_{циклопропил}), 2.45 (с, 3H, CH₃), 2.88 (уш.с, 1H, HC¹), 3.13 (уш.с, 2H, экзо-HC⁹, эндо-HC⁹), 3.61 (д, 1H, HC⁶, *J*=9.3), 4.06 (д, 1H, HC², *J*=9.3),

<u>8-[(4-Метилфенил)сульфонил]-5-метил-3-фенил-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен (35g)</u>

4.39 (с, 1H, HC⁷), 6.78 (т, 1H, HC_{аром}, *J*=7.3), 6.93 (д, 2H, HC_{аром}, *J*=8.6), 7.21 (дд, 2H, HC_{аром}, *J*=8.6, 7.3), 7.35 (д, 2H, HC_{Ts}, *J*=8.1), 7.75 (д, 2H, HC_{Ts}, *J*=8.2). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.46, 7.21, 9.33 (С_{циклопропил}), 21.17 (CH₃), 31.25 (C¹⁰), 42.52, 48.68, 59.35, 61.00, 65.79 (C¹, C², C⁶, C⁷, C⁹), 111.46, 118.10, 126.95, 128.74, 129.55, 135.05, 143.41, 144.57, 151.98 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₃H₂₆N₃O₂S 408.1740 [M+1], найдено 408.1744.

<u>9-[(4-Метилфенил)сульфонил]-5-циклопропил-3-фенил-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**36h**)

R_f 0.32. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.76-0.93 (м, 4H, С_{циклопропил}), 1.01 (д, 1H, HC¹⁰, *J*=11.0), 1.37 (д, 1H, HC¹⁰, *J*=11.0), 1.48 (м, 1H, С_{циклопропил}), 2.44 (с, 3H, CH₃), 2.78 (уш.с, 1H, HC⁷), 3.14 (дд, 1H, экзо-HC⁸, *J*=9.0, 3.2), 3.19 (д, 1H, эндо-HC⁸, *J*=9.0), 3.34 (д, 1H, HC⁶, *J*=9.3), 4.33 (д, 1H, HC², *J*=9.3), 4.41

(с, 1H, HC¹), 6.81 (т, 1H, HC_{аром}, *J*=7.3), 7.00 (д, 2H, HC_{аром}, *J*=8.7), 7.26 (дд, 2H, HC_{аром}, *J*=8.7, 7.3), 7.33 (д, 2H, HC_{тs}, *J*=8.0), 7.75 (д, 2H, HC_{тs}, *J*=8.3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.33, 7.20, 9.02 (С_{циклопропил}), 21.14 (CH₃), 30.82 (C¹⁰), 40.75, 51.80, 56.21, 61.27, 67.37 (C¹, C², C⁶, C⁷, C⁹), 111.43, 118.14, 126.96, 128.89, 129.47, 135.09, 143.33, 144.42, 153.67 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₃H₂₆N₃O₂S 408.1740 [M+1], найдено 408.1743.

IV.5. 1,3-Диполярное циклоприсоединение к производным 7-азанорборнадиена

IV.5.1. Производные 7-азабензнорборнадиена

IV.5.1.1. Взаимодействие с нитрилоксидами

Общая методика

К указанному количеству алкена в хлористом метилене при комнатной температуре прибавили триэтиламин. Затем по каплям добавили галогеноксим в хлористом метилене. Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали.

<u>14-*Трет*-бутоксикарбонил-10-фенил-11,14-диаза-12-оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-</u> 2,4,6,10-тетраен (**39а**)

В результате взаимодействия 0.9 г (3.8 ммоль) алкена, 0.9 г (5.7 ммоль) хлороксима и 0.58 г (5.7 ммоль) триэтиламина было получено 1.3 г (95 %) в виде бежевых кристаллов. R_f 0.33 (MeOH : CHCl₃ 1:100). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.15 + 1.38 (оба уш.с., 4H+5H, CH₃), 3.95 (д, 1H, HC^{3a}, J =

7.8), 5.04 (уш.с., 1Н, НСО), 5.43 и 5.61 (с. и уш.с., 1.5Н и 0.5Н, НС⁴ и НС⁹), 7.23 (м, 2Н, НС⁵ и НС⁸), 7.37 (м, 2Н, НС⁶ и НС⁷), 7.47 (уш.с., 3Н, Рh), 7.78 (м, 2Н, Рh). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.60 (CH₃), 59.22 (С^{3а}), 80.26, 87.85 и 88.35, 119.66, 120.16, 121.28, 126.30, 126.95, 127.28, 128.50, 129.73, 140.70, 153.93. ESI-MS (m/z): вычислено C₂₂H₂₂N₂O₃ 363.170.32 [M+1], найдено 363.1705.

<u>14-Метоксикарбонил-10-(4-метоксифенил)-11,14-диаза-12-</u> оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-тетраен (**39b**)

MeOOC

В результате взаимодействия 0.124 г (0.6 ммоль) алкена, 0.17 г (0.9 ммоль) хлоркосима и 0.09 г (0.9 ммоль) было получено 0.17 г (80%) в виде коричневых кристаллов. R_f 0.23 (MeOH : CHCl₃ 1:100).Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 3.45 - 3.65 (м, 3H, C(O)O<u>C</u>H₃), 3.87 (с, 3H, OCH₃), 3.94 (д, 1H, HC^{3a}, J = 8.0), 4.97 (д, 1H, HCO), 5.35 – 5.60 (м, 2H, HC⁴, HC⁹), 6.96 (д,

2H, HC_{аром}, *J* = 8.7), 7.22 (м, 2H, HC_{аром}), 7.35 (м, 2H, HC_{аром}), 7.68 (д, 2H, HC_{аром}, *J* = 8.7). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 52.71 (C(O)O<u>C</u>H₃), 55.40 (OCH₃), 59.83, 63.30, 67.43, 87.56, 114.41, 120.4, 121.0, 122.0, 127.56, 127.88, 128.28, 128.35, 161.13, 164.52 (C=O). ESI-MS (m/z): вычислено C₂₀H₁₈N₂O₄ 351.1339 [M+1], найдено 351.1336.

<u>14-*Трет*-бутоксикарбонил-10-(4-метоксифенил)-11,14-диаза-12-</u> оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-тетраен (**39с**)

В результате взаимодействия 0.5 г (2 ммоль) алкена, 0.74 г (4 ммоль) оксима и 0.4 г (4 ммоль) триэтиламина было получено 0.66 г (85%) в виде желтых кристаллов. R_f 0.62 (MeOH : CHCl₃ 1:50). Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.17 и 1.38 (оба уш.с., 4H + 5H, CH₃(Boc)), 3.86 (с, 3H, OCH₃), 3.91 (д, 1H, HC^{3a}, *J* = 7.5), 4.98 (уш.с., 1H, HC^{9a}), 5.41 и 5.58 (оба с, 1.5H + 0.5H,

HC⁴ и HC⁹), 6.95 (м, 2H, HC_{аром}), 7.17 (м, 2H, HC_{аром}), 7.34 (м, 2H, HC_{аром}), 7.70 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.98 (CH₃, (Boc)), 55.36 (OCH₃), 59.84, 63.01, 65.6, 67.2, 80.6 (O<u>C</u>(CH₃)₃), 87.96, 88.37, 114.31, 120.0, 121.8, 121.58, 127.28, 127.61, 128.20, 141.17, 161.0. ESI-MS (m/z): вычислено C₂₃H₂₄N₂O₄ 393.18088 [M+1], найдено 393.1818.

<u>14-Тозил-10-(4-метоксифенил)-11,14-диаза-12-оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-</u> <u>тетраен</u> (**39d**)

В результате взаимодействия 0.07 г (0.2 ммоль) алкена, 0.09 г (0.46 ммоль) хлороксима и 0.05 г (0.5 ммоль) триэтиламина было получено 0.064 г (64%) в виде белых кристаллов. R_f 0.3 (MeOH : CHCl₃ 1:100). Спектр ЯМР ¹Н

(CDCl₃, δ, м.д., *J*/Гц): 2.29 (с, 3H, CH₃), 3.88 (с, 3H, OCH₃), 3.96 (д, 1H, HC^{3a}, *J* = 8.0), 4.89 (д, 1H, HCO, J = 8.0), 5.19 и 5.30 (оба с., по 1H, HC⁴ и HC⁹), 6.96 (д, 2H, HC_{аром} (C₆H₄OMe), J = 8.9), 7.00 (д, 2H, HC_{аром} (Ts), J = 8.2), 7.06 (м, 2H, HC_{аром}), 7.15 (м, 2H, HC_{аром}), 7.43 (д, 2H, HC_{аром} (Ts), J = 8.2), 7.63 (д, 2H, HC_{аром}(OMe), J = 8.9). Спектр ЯМР ¹³С (DMSO-d₆, δ, м.д.): 21.28 (CH₃), 55.78 (OCH₃), 59.87, 65.69, 69.98, 87.02, 114.86, 120.99, 122.06, 122.62, 127.27, 127.55, 127.94, 128.93, 129.37, 135.01, 139.64, 143.26, 143.57, 153.54, 161.11. ESI-MS (m/z): вычислено C₂₅H₂₂N₂O₄S 447.1373 [M+1], найдено 447.1393.

14-Метоксикарбонил-10-(4-нитрофенил)-11,14-диаза-12оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-тетраен (**39e**)

В результате взаимодействия 0.14 г (0.7 ммоль) алкена, 0.2 г (1 ммоль) NO_2 хлороксима и 0.1 г (1 ммоль) триэтиламина было получено 0.14 г (57%) в виде коричневого масла. R_f 0.56 (MeOH : CHCl₃ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 3.58 (уш.с., 3H, СООСН₃), 3.98 (д, 1H, HC^{3a}, *J* = 7.9), 5.10 (д, 1H, HC⁹, J = 7.9), 5.42 и 5.55 (оба уш.с. по 1H, HC⁴ и HC⁹), 7.25 (м, 2H, НС_{аром}), 7.40 (м, 2H, HC_{аром}), 7.95 (д, 2H, HC_{аром}, J = 8.7), 8.35 (д, 2H, HC_{аром}, J = 8.7). ESI-MS

(m/z): вычислено С₁₉H₁₅N₃O₅ 388.09039 [M+Na], найдено 388.0902.

<u>14-Тозил-10-(4-нитрофенил)-11,14-диаза-12-оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2.4.6.10-</u> <u>тетраен</u> (**39g**)

MeOOC

В результате взаимодействия 0.07 г (0.2 ммоль) алкена, 0.1 г (0.4 ммоль) хлороксима и 0.05 г (0.4 ммоль) триэтиламина было получено 0.026 г (26%) в виде бежевых кристаллов. R_f 0.58 (MeOH : CHCl₃ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.18 (с, 3H, CH₃), 4.31 (д, 1H, HC-C, *J* = 8.1), 5.01 (д, 1H, HCO, J = 8.1), 5.28 (c, 1H, HC⁴), 5.42 (c, 1H, HC¹), 6.92 - 6.96 (M, 2H, HC_{apon}), 6.98 (д, 2H, HC_{аром}, J = 8.1), 7.10 – 7.14 (м, 1H, HC_{аром}), 7.17 – 7.21 (м, 1H,

НС_{аром}), 7.26 (д, 2H, НС_{аром}, *J* = 8.1), 8.11 (д, 2H, НС_{аром}, *J* = 8.9), 8.34 (д, 2H, НС_{аром}, *J* = 8.9). ESI-MS (m/z): вычислено C₂₄H₁₉N₃O₅S 462.11182 [M+H], найдено 462.1130.

14-Метоксикарбонил-10-этоксикарбонил-11,14-диаза-12оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-тетраен (**39h**)

В результате взаимодействия 0.3 г (1.5 ммоль) алкена, 0.4 г (3 ммоль) хлороксима и 0.3 г (3 ммоль) триэтиламина было получено 0.26 г (55%) в виде коричневого масла. Rf 0.79 (MeOH : CHCl₃ 1:30). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.41 (т, 3H, CH₃, *J* = 7.0), 3.61 (с, 3H, OCH₃),

3.76 (д, 1H, HC^{3a}, J = 8.0), 4.40 (кв, 2H, OCH₂), 5.01 (д, 1H, HCO, J = 8.0), 5.5 (уш.с, 2H,), 7.20-7.38 (м, 4H, HC_{аром}). ESI-MS (m/z): вычислено C₁₆H₁₆N₂O₅ 317.1132 [M+1], найдено 317.1130.

14-Трет-бутоксикарбонил-10-этоксикарбонил-11,14-диаза-12оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-тетраен

В результате взаимодействия 0.5 г (2 ммоль) алкена, 0.27 г (2 ммоль) хлороксима и 0.2 г (2 ммоль) триэтиламина было получено 0.38 г (52%) в виде коричневого масла. R_f 0.38 (MeOH : CHCl₃ 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.37 (с, 9H, CH₃), 1.41 (т, 3H, CH₃, *J* = 7.0), 3.75 (д, 1H, HC^{3a} , J = 8.0), 4.40 (KB, 2H, OCH₂, J = 7.0), 5.03 (yIII.c., 1H, HCO), 5.35 - 5.60 (M, 2H, HC⁴, HC⁹), 7.20 (м, 2Н, НС_{аром}), 7.33 (м, 2Н, НС_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.72 (CH₃), 27.56

(CH₃), 57.86 (C^{3a}), 61.75 (OCH₂CH₃), 65.95, 66.88 (C⁴, C⁹), 80.61 (OC(CH₃)₃), 89.93 (C⁹), 120.66, 121.09, 127.03, 127.49, 140.10, 144.02 (Canow), 149.03 (C=N), 153.81 (C=O (Boc)), 159.91 (C=O (COOEt)). ESI-MS (m/z): вычислено C₁₉H₂₂N₂O₅ 359.16015, найдено 359.1607.

<u>14-Тозил-10-этоксикарбонил-11,14-диаза-12-оксатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,10-</u> <u>тетраен</u> (39i)

В результате взаимодействия 0.1 г (0.37 ммоль) алкена, 0.1 г (0.75 ммоль) хлороксима и 0.08 г (0.75 ммоль) триэтиламина было получено 0.07 г (52%) в виде светло-коричневых кристаллов. R_f 0.47 (MeOH : CHCl₃ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.39 (т, 3Н, CH₃, *J* = 7.2), 2.28

(с, 3H, CH₃), 3.75 (д, 1H, HC^{3a}, *J* = 8.2), 4.38 (кв., 2H, OCH₂, *J* = 7.2), 4.93 (д, 1H, HCO, *J* = 8.2), 5.32 и 5.33 (оба с по 1Н, НС⁴ и НС⁹), 7.01 (м, 2Н, НС_{аром}), 7.09 (м, 2Н, НС_{аром}), 7.42 (д, 2Н, HC_{аром}, J = 8.3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.68 (CH₃), 20.99 (CH₃), 58.40 (C^{4a}), 61.95 (OCH₂), 65.00 (HC⁴), 69.18 (HC⁹), 88.68 (HCO), 120.95, 121.69, 127.28, 127.46, 127.69, 128.76, 134.74, 138.62, 142.82, 143.09 (Саром), 148.24 (С=N), 159.91 (С=О). ESI-MS (m/z): вычислено C₂₁H₂₀N₂O₅S 413.11657 [М+Н], найдено 413.1162.

Взаимодействие 2-бензил-2-азабицикло[2.2.1]гепт-5-ена с нитрилиминами

Реакция с N-фенилбензолкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.09 г (0.4 ммоль) гидразоноилхлорида и 0.04 г (0.4 ммоль) триэтиламина и после хроматографической очистки (MeOH – CHCl₃, 1:100) было получено 0.09 г (52%) <u>трет-бутил-10,12-дифенил-10,11,14-</u> <u>триазатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,11-тетраен-14-карбоксилата</u> (**40a**) в виде оранжевого масла.

HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.64, 28.62 (OC(<u>C</u>H₃)₃), 57.59, 63.64, 64.16, 64.38, 69.02, 69.32 (C¹, C⁸, C⁹, C¹³), 80.39 (O<u>C</u>(CH₃)₃), 112.12, 112.52, 118.89, 119.96, 120.21, 120.97, 121.18, 125.58, 127.22, 127.55, 128.70, 129.28, 132.20, 142.14, 143.40, 145.05 (C_{аром}, C=N, C=O). ESI-MS (m/z): вычислено для C₂₈H₂₈N₃O₂ 438.2176 [M+1], найдено 438.2179.

Реакция с N-фенилфуран-2-карбогидразонилхлоридом

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.18 г (0.8 ммоль) гидразоноилхлорида и 0.08 г (0.8 ммоль) триэтиламина и после хроматографической очистки (MeOH – CHCl₃, 1:100) было получено 0.077 г (44%) <u>трет-бутил-12-(фур-2-ил)-10-фенил-10,11,14-триазатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,11-тетраен-14-карбоксилат (40b) в виде коричневого масла.</u>

R_f 0.16 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.20 (с, 9H, CH₃), 3.91 (д, 1H, HC¹³, *J*=9.1), 4.54 (м, 1H, HC⁹), 5.54-5.77 (м, 2H, HC¹, HC⁸), 6.55 (уш.с, 1H, HC_{фурил}), 6.77 (д, 1H, HC_{фурил}, *J*=3.3), 6.89 (т, 1H, HC_{аром}, *J*=7.2), 7.19 (уш.с, 2H, HC_{аром}), 7.26 (м, 2H, HC_{аром}),

7.31-7.38 (м, 2H, HC_{аром}), 7.40 (уш.с., 1H, HC_{аром}), 7.45 (м, 1H, HC_{аром}), 7.56 (уш.с, 1H, HC_{фурил}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.69 (OC(<u>C</u>H₃)₃), 57.80, 63.90, 64.33, 68.54 (C¹, C⁸, C⁹, C¹³), 80.49 (O<u>C</u>(CH₃)₃), 108.36, 108.73, 111.87, 111.89, 112.31, 112.59, 119.01, 119.22, 119.46, 120.24, 120.48, 121.09, 126.52, 127.24, 127.56, 129.26, 129.42, 142.11, 142.89, 143.05, 143.18, 144.91, 145.42, 148.56 (С_{аром}, C=N). ESI-MS (m/z): вычислено для C₂₆H₂₆N₃O₃ 428.1978 [M+1], найдено 428.1969.
Реакция с (1Z)-N-фенилэтангидразоноилхлоридом

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.14 г (0.8 ммоль) гидразоноилхлорида и 0.08 г (0.8 ммоль) триэтиламина и после хроматографической очистки (MeOH – CHCl₃, 1:100) было получено 0.08 г (54%) <u>трет-бутил-12-метил-10-фенил-10,11,14-</u> <u>триазатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,11-тетраен-14-карбоксилата (40c) в виде</u> оранжевого масла

 $R_f 0.68$ (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.21 (с, 6.4H, C(CH₃)₃), 1.39 (с, 2.6H, C(CH₃)₃), 2.18 (с, 3H, CH₃), 3.46 (д, 1H, HC¹³, *J*=8.6), 4.32 (д, 1H, HC⁹, *J*=8.6), 5.33 (уш.с, 0.3H) + 5.51 (уш.с, 0.7H) + 5.54-5.64 (м, 1H) (HC¹ + HC⁸), 6.82 (т, 1H, HC_{аром}, *J*=7.3), 7.06 (д,

2H, HC_{аром}, *J*=7.8), 7.23 (м, 2H, HC_{аром}), 7.28-7.35 (м, 3H, HC_{аром}), 7.41 (м, 1H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 14.80 (CH₃), 27.75, 29.71 (C(<u>C</u>H₃)), 61.13, 62.29, 64.25, 68.23 (C¹, C⁸, C⁹, C¹³), 80.39 (O<u>C</u>(CH₃)₃), 111.50, 115.41, 117.97, 120.15, 120.79, 125.92, 127.10, 127.39, 142.21, 143,97, 144.74, 153.48 (C_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₂₃H₂₆N₃O₂ 376.2020 [M+1], найдено 376.2023.

Реакция с N-фенилциклопропанкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.16 г (0.8 ммоль) гидразоноилхлорида и 0.08 г (0.8 ммоль) триэтиламина и после хроматографической очистки (MeOH – CHCl₃, 1:100) было получено 0.13 г (81%) <u>трет-бутил-12-циклопропил-10-фенил-10,11,14-триазатетрацикло[6.5.1.0^{2,7}.0^{9,13}]тетрадека-2,4,6,11-тетраен-14-карбоксилат (40c) в виде коричневого масла.</u>

R_f 0.43 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.83-1.05 (м, 4H, С_{циклопропил}), 1.19 (с, 6.5H, C(CH₃)₃), 1.39 (с, 2.5H, C(CH₃)₃), 1.67 (уш.с, 1H, С_{циклопропил}), 3.51 (д, 1H, HC¹³, *J*=8.5), 4.33 (д, 1H, HC⁹, *J*=8.5), 5.40 (уш.с, 0.3H) + 5.54 (уш.с, 1H) + 5.59 (м, 0.7H) (HC¹ + HC⁸), 6.80

(т, 1H, HC_{аром}, *J*=7.3), 7.04 (д, 2H, HC_{аром}, *J*=7.7), 7.23 (м, 2H, HC_{аром}), 7.27-7.36 (м, 3H), 7.41 (м, 1H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.60, 8.12, 9.79 (С_{циклопропил}), 27.79, 29.71 (С(<u>C</u>H₃)), 60.36, 63.08, 64.03, 68.54 (C¹, C⁸, C⁹, C¹³), 80.23 (О<u>С</u>(CH₃)₃), 111.59, 117.89, 118.74, 120.08, 120.83, 125.80, 127.05, 127.38, 129.12, 129.31, 142.33, 144.16, 145.08, 151.12 (С_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₂₅H₂₈N₃O₂ 402.2176 [M+1], найдено 402.2180.

IV.5.2. Производные 7-азанорборнадиена

IV.5.2.1. Взаимодействие с нитрилоксидами

К раствору диена **6a** (0.3 г, 0.001 моль) в 10 мл хлористого метилена прибавили 0.1 г (0.001 моль) триэтиламина. Затем медленно по каплям добавили хлороксим **29e** (0.17 г, 0.001 моль). Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали. После хроматографического разделения выделили:

Метоксикарбонилпиррол

Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 3.96 (с, 3H, OCH₃), 6.24 (т, 2H, HC³, HC⁴, J = 2.3), 7.27 (т, 2H, HC², HC⁵, J = 2.3). Физико-химические характеристики совпали с опубликованными ранее [147].

3-Этил 4,5-диметил 1,2-оксазол-3,4,5-трикарбоксилат

МеООС ООЕ
 МеООС ООЕ
 Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.41 (т, 3H, CH₃, *J* = 7.1), 3.96 (с, 3H, OCH₃), 4.01 (с, 3H, OCH₃), 4.46 (кв, 2H, OCH₂, *J* = 7.1). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 13.53 (OCH₂CH₃), 53.06, 53.20 (OCH₃), 117.38 (C=N), 153.94, 155.12, 157.44, 158.51, 159.74 (C³, C⁴, C⁵, C=O). Физико-химические характеристики совпали с опубликованными ранее [174].

Этил 1,2-оксазол-3-карбоксилат

COOEt Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.41 (т, CH₃, *J* = 7.1), 4.45 (кв, OCH₂, *J* = 7.1),
 6.78 (д, HC⁴, *J* = 1.6), 8.53 (д, HC⁵, *J* = 1.6). Физико-химические характеристики совпали с опубликованными ранее [175].

Триметилпиррол-1,3,4-трикарбоксилат

меоос сооме Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 3.84 (с, 6H, OCH₃), 4.04 (с, 3H, OCH₃), 7.79 (с, 2H, HC², HC⁵).

К раствору диена **6b** (0.5 г, 0.0016 моль) в 10 мл хлористого метилена прибавили 0.16 г (0.0016 моль) триэтиламина. Затем медленно по каплям добавили хлороксим **29e** (0.22 г, 0.0016 моль). Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали. После хроматографического разделения выделили:

Трет-бутоксикарбонилпиррол

Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.61 (с, 9Н, C(CH₃)₃), 6.22 (т, 2Н, HC³, HC⁴, J = 2.3), 7.25 (т, 2Н, HC², HC⁵, J = 2.3).

1-Трет-бутил 3,4-диметилпиррол-1,3,4-трикарбоксилат

Сооме Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.61 (с, 9H, C(CH₃)₃), 3.85 (с, 6H, OCH₃), 7.74 (с, 2H, HC², HC⁵). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.38 (C(<u>C</u>H₃)₃), 51.39 (OCH₃), 85.78 (<u>C</u>(CH₃)₃), 117.70, 125.52, 146.70, 162.79 (С_{аром}, C=O).

К раствору диена **6a** (0.3 г, 0.001 моль) в 10 мл хлористого метилена прибавили 0.1 г (0.001 моль) триэтиламина. Затем медленно по каплям добавили хлороксим **29b** (0.2 г, 0.001 моль). Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали. После хроматографического разделения выделили:

Диметил 3-(4-метоксифенил)-1,2-оксазол-4,5-дикарбоксилат

MeOOC

ОСН₃ Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 3.85 (с, 3H, OCH₃), 3.91 (с, 3H, OCH₃), 4.00 (с, 3H, OCH₃), 6.98 (д, 2H, HC_{аром}, *J* = 8.8), 7.64 (д, 2H, HC_{аром}, *J* = 8.8). Физико-химические характеристики совпали с опубликованными ранее [176].

3-(4-Метоксифенил)-1,2-оксазол

К раствору диена **6b** (0.5 г, 0.0016 моль) в 10 мл хлористого метилена прибавили 0.16 г (0.0016 моль) триэтиламина. Затем медленно по каплям добавили хлороксим **29b** (0.3 г, 0.0016 моль). Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали.

IV.5.2.2. Взаимодействие с нитрилиминами

Общая методика

К диену **8** (0.3 ммоль) в 10 мл хлористого метилена прибавили эквимольное количество триэтиламина. Затем медленно прикапывали раствор гидразоноилхлорида **34а-d** в 10 мл хлористого метилена. Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали. Получили:

3-Метил-1-фенилпиразол

СH₃ Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.25 (д, 1Н, HC⁴, J = 2.3), 7.25 (т, 1Н, HC_{аром}, J = 7.4), 7.43 (т, 2Н, HC_{аром}, J = 7.5), 7.66 (д, 2Н, HC_{аром}, J = 8.8), 7.83 (д, 1Н, HC⁵, J = 2.3). Физико-химические характеристики совпали с опубликованными ранее [178].

3-(Фуран-2-ил)-1-фенилпиразол

Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.50 (дд, 1Н, HC_{фурил}, $J_1 = 3.3$, $J_2 = 1.8$), 6.71 (д, 1Н, HC⁴, J = 2.5), 6.79 (дд, 1Н, HC_{фурил}, $J_1 = 3.3$, $J_2 = 0.6$), 7.30 (т, 1Н, HC_{аром}, J = 7.4), 7.46 (т, 2Н, HC_{аром}, J = 7.5), 7.50 (дд, 1Н, HC_{фурил}, $J_1 = 1.8$, $J_2 = 0.7$), 7.75 (дд, 2H, HC_{аром}, $J_1 = 8.7$, $J_2 = 1.2$), 7.92 (д, 1H, HC⁵, J = 2.5). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 104.94, 106.43, 111.37, 119.23, 126.52, 127.85, 129.41, 139.96, 142.12, 145.43, 148.55. ESI-MS (m/z): Вычислено для C₁₃H₁₁N₂O 211.0866 [M+1], найдено 211.0866. Физико-

химические характеристики совпали с опубликованными ранее [179].

1,3-Дифенилпиразол

Рh Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 6.79 (д, 1H, HC⁴, J = 2.5), 7.51 (т, 1H, HC_{аром}, J = 7.5), 7.35 (тт, 1H, HC_{аром}, $J_1 = 7.4$, $J_2 = 1.3$), 7.45 (т, 2H, HC_{аром}, J = 7.7), 7.48 (т, 2H, HC_{аром}, J = 7.5), 7.79 (дд, 2H, HC_{аром}, $J_1 = 8.7$, $J_2 = 1.2$), 7.94 (дд, 2H, HC_{аром}, $J_1 = 8.1$, $J_2 = 1.0$), 7.97 (д, 1H, HC⁵, J = 2.5). ESI-MS (m/z): Вычислено для C₁₅H₁₃N₂ 221. 1073

[M+1], найдено 221.1075. Физико-химические характеристики совпали с опубликованными ранее [179].

3-Циклопропил-1-фенилпиразол

Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.79 – 0.84, 0.95 – 1.01 (оба м, по 2H, НС_{циклопропил}), 6.11 (д, 1H, HC⁴, J = 2.5), 7.24 (т, 1H, HC_{аром}, J = 7.5), 7.42 (т, 2H, НС_{аром}, J = 7.5), 7.65 (дд, 2H, HC_{аром}, $J_1 = 8.8$, $J_2 = 1.2$), 7.79 (д, 1H, HC⁵, J = 2.5). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 8.09, 9.31, 104.0, 118.75, 125.80, 127.19, 129.29, 140.19, 157.02. ESI-MS (m/z): Вычислено для C₁₂H₁₃N₂ 185.1073 [M+1], найдено 185.1074. Физико-химические характеристики совпали с опубликованными ранее [179].

3-(4-Хлорфенил)-1-фенилпиразол

Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 6.70 (д, 1Н, HC⁴, *J* = 2.5), 7.31 (т, 1Н, HC_{аром}, *J* = 7.4), 7.41 (д, 2Н, HC_{аром}, *J* = 8.6), 7.48 (т, 2Н, HC_{аром}, *J* = 8.3), 7.77 (д, 2Н, HC_{аром}, *J* = 7.7), 7.86 (д, 2Н, HC_{аром}, *J* = 8.5), 7.97 (д, 1Н, HC⁵, *J* = 2.5). Физико-химические характеристики совпали с опубликованными ранее [179].

Диэтил 3-метил-1-фенилпиразол-4,5-дикарбоксилат

EtOOC CH₃ Cneктр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.22, 1.33 (оба т, по 3H, CH₃, *J* = 7.1), 2.52 (с, 3H, CH₃), 4.30, 4.31 (оба кв, по 2H, OCH₂, *J* = 7.1), 7.37 – 7.50 (м, 5H, HC_{аром}).

Диэтил 3-(фуран-2-ил)-1-фенилпиразол-4,5-дикарбоксилат

Диэтил 1,3-дифенилпиразол-4,5-дикарбоксилат

Ρh

Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.24, 1.28 (оба т, по 3H, CH₃, *J* = 7.1), 4.31, 4.32 (оба кв, OCH₂, *J* = 7.1), 7.39 – 7.57 (м, 8H, HC_{аром}), 7.75 – 7.79 (м, 2H, HC_{аром}). Физико-химические характеристики совпали с опубликованными ранее [180].

Диэтил 3-(4-хлорфенил)-1-фенилпиразол-4,5-дикарбоксилат

Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 3.83, 3.87 (оба с, по 3H, OCH₃), 7.41 (д, 2H, HC_{аром}, J = 8.5), 7.44 – 7.56 (м, 6H, HC_{аром}), 7.72 (д, 2H, HC_{аром}, J = 8.5). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 51.82, 52.86 (OCH₃), 113.40, 124.02, 128.01, 128.83, 128.88, 129.44, 129.85, 134.60, 136.89, 138.47, 150.64 (С_{аром}), 160.27, 162.70 (C=O). Физико-химические характеристики совпали с

опубликованными ранее [180].

IV.6. 1,3-Диполярное циклоприсоединение к производным 3-аза-2-оксабицикло[2.2.1]гепт-5-ена

IV.6.1. Взаимодействие с нитрилоксидами

Общая методика

К раствору одного эквивалента алкена в 10 мл хлористого метилена при комнатной температуре добавили указанное количество триэтиламина. Затем медленно при перемешивании по каплям прибавляли раствор хлороксима в 10 мл хлористого метилена. Реакционную смесь перемешивали ночь, растворитель упарили, остаток хроматографировали.

Реакция с фенилнитрилоксидом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.16 г (1 ммоль) хлороксима и 0.1 г (1 ммоль) триэтиламина было получено 0.27 г (86%) в виде желтого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания:

<u>9-Трет-бутоксикарбонил-5-фенил-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ена (61а)</u>

R_f 0.42. CΠΕΚΤΡ ЯΜР ¹H (CDCl₃, δ, M.д., J/Γ μ): 1.52 (c, 9H, C(CH₃)₃), 1.89 (д, 1H, HC⁹, J = 11.4), 1.99 (д, 1H, HC⁹, J = 11.4), 4.13 (д, 1H, HC⁵, J = 8.3), 4.82 (c, 1H, HC¹), 4.91 (c, 1H, HC⁶), 5.03 (д, 1H, HC², J = 8.3), 7.39 – 7.45 (M, 3H, HC_{apom}), 7.68 – 7.73 (M, 2H, HC_{apom}). CΠΕΚΤΡ ЯΜР ¹³C (CDCl₃, δ, M.д.): 27.74 (C(<u>C</u>H₃)₃), 31.94, 56.86, 62.00, 78.88, 82.63 (C¹, C², C⁶, C⁷, C⁹), 82.66 (C(CH₃)₃), 126.30, 127.49,

128.67, 130.21 (С_{аром}), 154.64, 155.99 (С=N, С=О). ESI-MS (m/z): вычислено С₁₇H₂₁N₂O₄ 317.1496 [M+1], найдено 317.1499.

<u>8-*Трет*-бутоксикарбонил-5-фенил-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (62а)</u>

R_f 0.34. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.54 (с, 9H, C(CH₃)₃), 1.92 (д, 1H, HC⁹, J = 11.5), 1.98 (д, 1H, HC⁹, J = 11.5), 4.14 (д, 1H, HC⁵, J = 8.3), 4.78 (с, 1H, HC¹), 4.86 (с, 1H, HC⁶), 4.99 (д, 1H, HC², J = 8.3), 1.54 (с, 9H, C(CH₃)₃), 7.41 – 7.49 (м, 3H, HC_{apon}), 7.74 – 7.80 (м, 2H, HC_{apon}). Спектр ЯМР ¹³C (CDCl₃, δ ,

м.д.): 27.76 (С(<u>С</u>H₃)₃), 32.11, 55.09, 59.66, 79.84, 82.45 (С¹, С², С⁶, С⁷, С⁹), 82.78 (С(<u>С</u>H₃)₃), 126.37, 127.38, 128.66, 130.23, 154.90, 156.50 (С=N, С=О).

В результате взаимодействия 0.2 г (1 ммоль) алкена, 0.23 г (1.5 ммоль) хлороксима и 0.15 г (1.5 ммоль) триэтиламина было получено 0.25 г (40%) в виде желтого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания: 9-Бензоил-5-фенил-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (**61b**)

R_f 0.47. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 2.04 (д, 1Н, HC⁹, J = 11.6), 2.11 (дт, 1H, HC⁹, $J_1 = 11.6$, $J_2 = 1.3$), 4.34 (д, 1H, HC⁵, J = 8.4), 4.94 (с, 1H, HC¹), 5.12 (с, 1H, HC⁶), 5.01 (д, 1H, HC², J = 8.4), 7.41 – 7.57 (м, 6H, HC_{аром}), 7.70 – 7.74 (м, 2H, HC_{аром}), 7.83 (д, 2H, HC_{аром}, J = 7.9). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 32.30, 55.06, 58.65, 80.75, 82.32 (C¹, C², C⁶, C⁷, C⁹), 126.41, 127.14, 127.87, 128.65, 128.75, 130.36, 131.78, 132.37, 154.87, 170.48. ESI-MS (m/z): вычислено C₁₉H₁₇N₂O₃ 321.1234 [M+1], найдено 321.1235. Физико-химические характеристики совпали с опубликованными ранее [181].

<u>8-Бензоил-5-фенил-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (62b)</u>

 $R_f 0.32.$ Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 2.08 (с, 2H, H₂C⁹), 4.25 (д, 1H, HC⁵, J = 8.4), 5.03 (с, 1H, HC¹), 5.12 (с, 1H, HC⁶), 5.19 (д, 1H, HC², J = 8.3), 7.41 – 7.57 (м, 6H, HC_{аром}), 7.70 – 7.74 (м, 2H, HC_{аром}), 7.76 (д, 2H, HC_{аром}, J = 7.8). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 32.30, 56.95, 61.66, 79.66, 82.32 (C¹, C², C⁶, C⁷, C⁹), 126.34, 127.31, 127.98, 128.38, 128.75, 130.38, 131.66, 132.44, 154.54, 169.62. Физико-химические характеристики совпали с опубликованными ранее [181].

Реакция с 4-метоксифенилнитрилоксидом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.18 г (1 ммоль) хлороксима и 0.1 г (1 ммоль) триэтиламина было получено 0.3 г (87%) в виде коричневого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания:

<u>9-*Трет*-бутоксикарбонил-5-(4-метоксифенил)-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ена</u> (**61c**)

R_f 0.51. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.87 (дт, 1Н, HC⁹, $J_I = 11.4$, $J_2 = 1.7$), 1.99 (д, 1Н, HC⁹, J = 11.4), 4.09 (д, 1Н, HC⁵, J = 8.3), 4.79 (с, 1Н, HC¹), 4.89 (с, 1Н, HC⁶), 4.99 (дд, 1Н, HC², $J_I = 8.4$, $J_2 = 1.3$), 1.51 (с, 9Н, С(CH₃)₃), 3.83 (с, 3H, OCH₃), 6.92 (д, 2H, HC_{аром}, J = 8.9), 7.63 (д, 2H, HC_{аром}, J = 8.9). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 27.67 (С(<u>CH₃</u>)₃), 31.85, 54.92, 57.09, 61.98, 78.88, 82.24, 82.50 (C¹, C², C⁶, C⁷, С⁹, ОСН₃, О<u>С</u>(СН₃)₃), 114.05, 119.87, 127.84, 154.10, 155.97, 161.00 (С_{аром}, С=N, С=О). ESI-MS (m/z): вычислено С₂₀Н₁₉N₂O₄ 351.1339 [M+1], найдено 351.1334. ESI-MS (m/z): вычислено С₁₈Н₂₃N₂O₅ 347.1602 [M+1], найдено 347.1609.

<u>8-*Трет*-бутоксикарбонил-5-(4-метоксифенил)-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**62c**)

H₃CO

R_f 0.43. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.91 (дт, 1Н, HC⁹, J_I = 11.4, J_2 = 1.5), 1.98 (д, 1Н, HC⁹, J = 11.4), 4.10 (д, 1Н, HC⁵, J = 8.4), 4.75 (с, 1Н, HC¹), 4.84 (с, 1Н, HC⁶), 4.95 (д, 1Н, HC², J = 8.4), 1.54 (с, 9Н, C(CH₃)₃), 3.85 (с, 3Н, OCH₃), 6.95 (д, 2Н, HC_{аром}, J = 8.8), 7.70 (д, 2Н,

HC_{аром}, *J* = 8.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.76 (C(<u>C</u>H₃)₃), 32.07, 54.99, 55.35, 59.67, 79.87, 82.14, 82.70 (C¹, C², C⁶, C⁷, C⁹, OCH₃, O<u>C</u>(CH₃)₃), 114.08, 119.82, 127.95, 154.39, 156.51, 161.04 (С_{аром}, C=N, C=O).

В результате взаимодействия 0.2 г (1 ммоль) алкена, 0.3 г (1.5 ммоль) хлороксима и 0.15 г (1.5 ммоль) триэтиламина было получено 0.6 г (88%) в виде коричневого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания:

9-Бензоил-5-(4-метоксифенил)-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (61d)

R_f 0.43. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.04 (д, 1H, HC⁹, *J* = 11.5), 2.09 (дт, 1H, HC⁹, *J*₁ = 11.2, *J*₂ = 1.7), 3.85 (с, 3H, OCH₃), 4.30 (д, 1H, HC⁵, *J* = 8.4), 4.92 (с, 1H, HC¹), 5.09 (с, 1H, HC⁶), 4.98 (д, 1H, HC², *J* = 8.4), 6.94 (д, 2H, HC_{аром}, *J* = 8.9), 7.43 – 7.49 (м, 3H, HC_{аром}), 7.51 – 7.58 (м, 1H, HC_{аром}), 7.65 (д, 2H, HC_{аром}, *J* = 8.9), 7.83 (д, 2H, HC_{аром}, *J* = 8.4). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 32.25, 55.02, 55.36, 80.82, 82.00 (C¹, C², C⁶, C⁷, C⁹, OCH₃), 114.13, 119.52, 127.83, 127.92, 128.01,

128.65, 131.71, 154.40, 161.11, 170.44 (С_{аром}, С=N, С=О). ESI-MS (m/z): вычислено С₂₀H₁₉N₂O₄ 351.1339 [M+1], найдено 351.1334.

<u>8-Бензоил-5-(4-метоксифенил)-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (62d)</u>

R_f 0.33. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 2.07 (с, 2H, H₂C⁹), 3.85 (с, 3H, OCH₃), 4.22 (д, 1H, HC⁵, J = 8.3), 5.00 (с, 1H, HC¹), 5.09 (с, 1H, HC⁶), 5.14 (д, 1H, HC², J = 8.4), 6.94 (д, 2H, HC_{аром}, J = 8.9), 7.43 – 7.49 (м, 3H, HC_{аром}), 7.51 – 7.58 (м, 1H, HC_{аром}), 7.65 (д, 2H, HC_{аром}, J = 8.9), 7.76 (д,

2H, HC_{аром}, *J* = 8.4). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 32.29, 55.02, 57.29, 79.70, 82.04, (C¹, C², C⁶,

C⁷, C⁹, OCH₃), 114.13, 119.52, 127.83, 127.92, 128.01, 128.64, 131.71, 154.40, 161.11, 170.44 (С_{аром}, C=N, C=O).

Реакция с 4-нитрофенилнитрилоксидом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена с 0.15 г (0.75 ммоль) хлороксима и 0.08 г (0.75 ммоль) триэтиламина было получено 0.32 г (90%) в виде желтого масла. После хроматографического разделения (MeOH – CHCl₃, 1:25) выделили в порядке вымывания:

<u>8-*Трет*-бутоксикарбонил-5-(4-нитрофенил)-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен</u> (**62e**)

R_f 0.68. Cπεκτρ ЯМР ¹H (CDCl₃, δ, м.д., J/Γ ц): 1.53 (c, 9H, C(CH₃)₃), 1.9 – 2.0 (м, 1H, HC⁹), 4.13 (д, 1H, HC⁵, J = 8.4), 4.74 (c, 1H, HC¹), 4.89 (c, 1H, HC⁶), 5.06 (д, 1H, HC², J = 8.4), 7.93 (д, 2H, HC_{аром}, J = 8.9), 8.28 (д, 2H, HC_{аром}, J = 8.9). Спектр ЯМР ¹³C (CDCl₃, δ, м.д.): 28.14 (C(CH₃)₃), 32.57,

54.81, 59.79, 80.09, 83.56, 83.99 (С¹, С², С⁶, С⁷, С⁹, О<u>С</u>(СН₃)₃), 124.33, 127.42, 133.98, 154.04, 156.32 (С_{аром}, С=N, С=O). ESI-MS (m/z): вычислено С₁₇Н₂₀N₃O₆ 362.1347 [M+1], найдено 362.1356.

<u>9-*Трет*-бутоксикарбонил-5-(4-нитрофенил)-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ена</u> (**61e**)

NO₂ NO₂ R_f 0.56. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.51 (с, 9H, C(CH₃)₃), 1.9 − 2.0 (м, 1H, HC⁹), 4.12 (д, 1H, HC⁵, J = 8.4), 4.86 (с, 1H, HC¹), 4.89 (с, 1H, HC⁶), 5.12 (д, 1H, HC², J = 8.4), 7.88 (д, 2H, HC_{аром}, J = 8.9), 8.27 (д, 2H, HC_{аром}, J = 8.9). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 28.14 (C(<u>C</u>H₃)₃), 32.42, 56.60, 62.29, 78.93, 83.40, 84.24 (C¹, C², Boc C⁶, C⁷, C⁹, O<u>C</u>(CH₃)₃), 124.35, 127.49, 133.89, 153.77, 156.32 (С_{аром}, C=N, C=O).

В результате взаимодействия 0.2 г (1 ммоль) алкена, 0.3 г (1.5 ммоль) хлороксима и 0.15 г (1.5 ммоль) триэтиламина было получено 0.47 (65%) в виде желтого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания:

9-Бензоил-5-(4-нитрофенил)-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (61f)

R_f 0.52. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 2.02 (д, 1H, J = 11.7, HC⁹), 2.18 (дт, 1H, HC⁹, $J_I = 11.7$, $J_2 = 1.8$), 4.35 (д, 1H, HC⁵, J = 8.5), 4.98 (с, 1H, HC¹), 5.10 (дт, HC², $J_I = 8.5$, $J_2 = 1.5$), 5.12 (с, 1H, HC⁶), 7.47 (т, 2H, HC_{аром}, J = 7.8), 7.54 – 7.60 (м,

1Н, НС_{аром}), 7.84 (д, 2Н, НС_{аром}, *J* = 8.6), 7.90 – 7.98 (м, 2Н, НС_{аром}), 8.29 (д, 2Н, НС_{аром}, *J* = 8.6). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 32.32, 54.23, 58.09, 80.65, 83.36 (С¹, С², С⁶, С⁷, С⁹), 123.97, 127.20, 127.87, 128.80, 132.03, 133.25, 148.38, 153.71, 171.11. ESI-MS (m/z): вычислено С₁₉Н₁₆N₃O₅ 366.1085 [М+1], найдено 366.1079.

<u>8-Бензоил-5-(4-нитрофенил)-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (62f)</u>

R_f 0.30. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 2.04 (д, 1H, J = 11.6, HC⁹), 2.12 (μ T, 1H, HC⁹, $J_1 = 11.6$, $J_2 = 1.8$), 4.24 (μ , 1H, HC⁵, J = 8.4), 5.00 (c, 1H, ^{\approx O} HC¹), 5.19 (уш.с, 1H, HC⁶), 5.29 (дт, 1H, HC², $J_1 = 8.5, J_2 = 1.5$), 7.46 (т, 2H, НС_{аром}, J = 7.7), 7.55 (тт, 1Н, НС_{аром}, J₁ = 7.5, J₂ = 1.2), 7.77 (д, 2Н, НС_{аром}, J

= 8.6), 7.90 (д, 2H, HC_{аром}, J = 8.6), 8.29 (д, 1H, HC_{аром}, J = 8.5). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 32.38, 56.30, 61.44, 79.29, 83.48 (C¹, C², C⁶, C⁷, C⁹), 123.97, 127.07, 127.99, 128.47, 131.85, 132.17, 133.43, 148.37, 153.24, 170.23.

Реакция этоксикарбонилнитрилоксидом

COOEt

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, COOEt 0.1 г (0.75 ммоль) хлороксима и 0.08 г (0.75 ммоль) триэтиламина было получено 0.2 г (70%) смеси <u>9-трет-</u> Boc бутоксикарбонил-5-этоксикарбонил-4,9-диаза-3,8-<u>диоксатрицикло[5.2.1.0^{2,6}]дец-4-ена</u> (61g) и <u>8-трет-бутоксикарбонил-5-этоксикарбонил-4,8-</u> диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ена (**62g**) в виде желтого масла. R_f 0.3. (MeOH – СНСl₃, 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.36 (т, 3H, CH₃, *J* = 7.1), 1.38 (т, 3H, CH₃, *J* 10.5), 3.90 (д. 1H, HC⁵ для обоих изомеров, J = 8.7), 4.29 – 4.42 (м. 2H, OCH₂), 4.82, 4.99 (оба с. по 1H, HC¹, HC⁶), 5.01 (д, 1H, HC², J = 8.6), 5.07 (д, 1H, HC², J = 8.6).

В результате взаимодействия 0.9 г (0.5 ммоль) алкена, 0.97 г (7.2 ммоль) хлороксима и 0.73 г (7.2 ммоль) триэтиламина было получено 2.2 г (73%) в виде желтого масла. После хроматографического разделения (MeOH – CHCl₃, 1:50) выделили в порядке вымывания: 9-Бензоил-5-этоксикарбонил-4,9-диаза-3,8-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (**61h**)

> R_f 0.46. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.37 (т, 3H, CH₃, J = 7.1), 1.93 (д, 1H, HC^9 , J = 11.7), 2.11 (μ T, 1H, HC^9 , $J_1 = 11.7$, $J_2 = 1.7$), 4.00 (μ , 1H, HC^5 , J = 8.5),

4.30 – 4.40 (м, 2H, OCH₂), 5.08 (с, 1H, HC¹), 5.17 (уш.с, 1H, HC⁶), 5.23 (дт, 1H, HC², $J_1 = 8.5$, $J_2 = 1.4$), 7.44 (т, 2H, HC_{аром}, J = 7.7).

<u>8-Бензоил-5-этоксикарбонил-4,8-диаза-3,9-диоксатрицикло[5.2.1.0^{2,6}]дец-4-ен (62h)</u>

В f 0.36. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.86 (д, 1H, HC⁹, J = 11.7), 2.03 (д, 1H, HC⁹, J = 11.7), 4.09 (д, 1H, HC⁵, J = 8.5), 4.93 (с, 1H, HC¹), 5.15 (уш.с, 1H, HC⁶), 5.11 (дт, 1H, HC², $J_I = 8.5$, $J_2 = 1.4$), 7.53 (т, 1H, HC_{аром}, J = 7.5), 7.76 (дд, 2H, HC_{аром}, $J_I = 8.5$, $J_2 = 1.4$).

IV.6.2. Взаимодействие с нитрилиминами

Реакция с N-фенилбензолкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.23 г (1 ммоль) гидразоноилхлорида и 0.23 г (1 ммоль) триэтиламина было получено 0.15 г (78%) в виде оранжевого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:5) выделили в порядке вымывания:

Трет-бутил-3,5-дифенил-9-окса-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен-8-карбоксилат (63i)

R_f 0.33. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., J/Γ ц): 1.58 (с, 9H, CH₃), 1.95 (уш.с, 2H, HC¹⁰_{син} + HC¹⁰_{анти}), 4.21 (д, 1H, HC⁶, J=9.7), 4.63 (д, 1H, HC², J=9.7), 4.87 (с, 1H, HC⁷), 5.04 (д, 1H, HC¹, J=1.2), 6.90 (т, 1H, HC_{аром}, J=7.3), 7.18 (д, 2H, HC_{аром}, J=8.6), 7.31 (дд, 2H, HC_{аром}, J=8.6, 7.3), 7.37 (т, 1H, HC_{аром}, J=7.2), 7.43

(т, 2H, HC_{аром}, *J*=7.1), 7.83 (д, 2H, HC_{аром}, *J*=7.1). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.84 (CH₃), 32.92 (C¹⁰), 52.94, 60.60, 65.23 (C², C⁶, C⁷), 79.47, 82.60 (C¹, O<u>C</u>(CH₃)₃), 112.06, 119.43, 125.29, 128.45, 128.55, 129.0, 130.91, 143.60, 146.07, 156.45 (C_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₂₃H₂₆N₃O₃ 392.1969 [M+1], найдено 392.1971.

Трет-бутил-3,5-дифенил-8-окса-3,4,9-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен-9-карбоксилат (64i)

HC_{аром}, *J*=7.1). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.86 (CH₃), 33.00 (C¹⁰), 54.56, 61.00, 64.50 (C², C⁶, C⁷), 79.91, 82.61 (C¹, O<u>C</u>(CH₃)₃), 112.03, 119.44, 125.25, 128.46, 128.57, 128.98, 131.00, 143.61,

145.64, 155.94 (Саром, С=О, С=N). ESI-MS (m/z): вычислено для С23H26N3O3 392.1969 [M+1], найдено 392.1972.

Реакция с N-фенилфуран-2-карбогидразонилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.1 г (0.5 ммоль) гидразоноилхлорида и 0.05 г (0.5 ммоль) триэтиламина было получено 0.1 г (54%) в виде оранжевого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

*<u>Трет-бутил-5-(фуран-2-ил)-3-фенил-9-окса-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-</u>ен-8*карбоксилат (63ј)

R_f 0.59. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.56 (с, 9H, CH₃), 1.89-1.98 (м, 2H, HC¹⁰_{син} + HC¹⁰_{анти}), 4.10 (д, 1H, HC⁶, J=9.8), 4.59 (д, 1H, HC², J=9.8), 4.91 (д, 1Н, НС⁷, *J*=1.2), 5.02 (с, 1Н, НС¹), 6.52 (дд, 1Н, НС_{фур}, *J*=3.4, 1.8), 6.74 (д, 1H, HC_{фур}, J=3.4), 6.89 (т, 1H, HC_{аром}, J=7.4), 7.14 (д, 2H, HC_{аром}, J=8.7), 7.30 (дд, 2H, HC_{аром}, J=8.7, 7.3), 7.53 (d, 1H, HC_{фурил}, J=1.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 28.25 (СН₃), 33.40 (С¹⁰), 55.21, 61.30, 61.34, 64.35 (С², С⁶, С⁷), 80.42, 80.46, 83.05 (С¹, OC(CH₃)₃), 109.74, 111.90, 111.92,112.50, 119.56, 129.36, 138.45, 143.69, 143.71, 143.74, 147.23, 156.28 (Саром, С=О, С=N). ESI-MS (m/z): вычислено для С21H24N3O4 382.1761 [M+1], найдено 382.1765.

<u>Трет-бутил-5-(фуран-2-ил)-3-фенил-8-окса-3,4,9-триа</u>затрицикло[5.2.1.0^{2,6}]дец-4-ен-9карбоксилат (64j)

Rf 0.52. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.58 (с, 9Н, CH₃), 1.98 (д, 1Н, НС¹⁰, J=11.2), 2.03 (дт, 1Н, НС¹⁰, J=11.2, 1.6), 4.12 (д, 1Н, НС⁶, J=10.0), 4.62 (д, 1H, HC², *J*=10.0), 4.93 (с, 1H, HC⁷), 5.01 (с, 1H, HC¹), 6.51 (дд, 1H, HC_{фурил}, J=3.4, 1.8), 6.68 (д, 1H, HC_{фурил}, J=3.4), 6.91 (т, 1H, HC_{аром}, J=7.3), 7.22 (д, 2H,

НС_{аром}, J=8.7), 7.32 (дд, 2H, HC_{аром}, J=8.7, 7.3), 7.52 (д, 1H, HC_{фурил}, J=1.8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 28.25 (CH₃), 33.40 (C¹⁰), 55.21, 61.30, 61.34, 64.35 (C², C⁶, C⁷), 80.42, 80,46, 83.05 (C¹, O<u>C</u>(CH₃)₃), 109.74, 111.90, 111.92, 112.50, 119.95, 129.36, 138.45, 143.69, 143.71, 143.74, 147.23, 156.28 (Саром, С=О, С=N). ESI-MS (m/z): вычислено для С21H24N3O4 382.1761 [M+1], найдено 382.1763.

Реакция с (1Z)-N-фенилэтангидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.17 г (1 ммоль) гидразоноилхлорида и 0.1 г (1 ммоль) триэтиламина было получено 0.12 г (74%) в виде желтого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

<u>Трет-бутил-5-метил-3-фенил-9-окса-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен-8-карбоксилат</u> (63k)

ЯМР ¹³С (CDCl₃, δ, м.д.): 14.04 (CH₃), 27.76 (CH₃), 32.53 (C¹⁰), 56.96, 59.89, 65.05 (C², C⁶, C⁷), 79.48, 82.55 (C¹, O<u>C</u>(CH₃)₃), 111.54, 118.72, 128.91, 144.59, 147.01, 156.86 (C_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₁₈H₂₄N₃O₃ 330.1812 [M+1], найдено 330.1815.

<u>Трет-бутил-5-метил-3-фенил-8-окса-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен-8-карбоксилат</u> (64k)

R_f 0.3. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.57 (с, 9H, CH₃), 1.91 (д, 1H, HC¹⁰, *J*=11.1), 2.00 (дт, 1H, HC¹⁰, *J*=11.1, 1.8), 2.03 (д, 3H, CH₃, *J*=0.9), 3.66 (д, 1H, HC⁶, *J*=9.3), 4.40 (д, 1H, HC², *J*=9.3), 4.81 (уш.с, 2H, HC¹, HC⁷), 6.85 (т, 1H, HC_{apom}, *J*=7.3), 7.08 (д, 2H, HC_{apom}, *J*=8.6), 7.28 (дд, 2H, HC_{apom}, *J*=8.6, 7.3).

Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 14.27 (CH₃), 27.83 (CH₃), 32.86 (C¹⁰), 58.24, 61.03, 64.14 (C², C⁶, C⁷), 79.15, 82.45 (C¹, O<u>C</u>(CH₃)₃), 111.54, 118.74, 128.90, 144.65, 146.48, 155.95 (C_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₁₈H₂₄N₃O₃ 330.1812 [M+1], найдено 330.1813.

Реакция с N-фенилциклопропанкарбогидразоноилхлоридом

В результате взаимодействия 0.1 г (0.5 ммоль) алкена, 0.19 г (1 ммоль) гидразоноилхлорида и 0.1 г (1 ммоль) триэтиламина было получено 0.09 г (50%) в виде коричневого масла. После хроматографического разделения (этилацетат – петролейный эфир 1:3) выделили в порядке вымывания:

Трет-бутил-5-циклопропил-3-фенил-9-окса-3,4,8-триазатрицикло[5.2.1.0^{2.6}]дец-4-ен-8карбоксилат (63l)

 R_{f} 0.54. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 0.82-0.97 (м, 4H, $C_{циклопропил}$), 1.54 (s, 9H, CH₃), 1.61 (м, 1H, $C_{циклопропил}$), 1.82-1.91 (м, 2H, HC_{cuh}^{10} + HC_{ahmu}^{10}), 3.68 (д, 1H, HC^{6} , J=9.4), 4.35 (д, 1H, HC^{2} , J=9.4), 4.76 (с, 1H, HC^{7}), 4.91 (с, 1H, HC^{1}), 6.81 (т, 1H, HC_{apom} , J=7.4), 6.98 (д, 2H, HC_{apom} , J=8.6), 7.24

(дд, 2H, HC_{аром}, *J*=8.6, 7.4). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 6.90, 7.58, 9.65 (С_{циклопропил}), 28.17 (CH₃), 33.04 (C¹⁰), 56.27, 60.86, 60.91, 65.56 (C², C⁶, C⁷), 79.79, 79.84, 82.90 (C¹, O<u>C</u>(CH₃)₃), 111.96, 118.99, 129.24, 145.07, 152.51, 157.15 (С_{аром}, C=O, C=N). ESI-MS (m/z): вычислено для C₂₀H₂₆N₃O₃ 356.1969 [M+1], найдено 356.1969.

Трет-бутил-5-циклопропил-3-фенил-8-окса-3,4,8-триазатрицикло[5.2.1.0^{2,6}]дец-4-ен-8карбоксилат (641)

 $\begin{array}{c} R_{\rm f}\,0.39.\ {\rm Спектр}\ {\rm ЯМP}\ ^1{\rm H}\ ({\rm CDCl}_3,\ \delta,\ {\rm м.д.},\ J/{\Gamma {\rm I}}):\ 0.82\ ({\rm M},\ 1{\rm H},\ {\rm C}_{{\rm циклопропил}}),\ 0.85-\\ 0.94\ ({\rm M},\ 3{\rm H},\ {\rm C}_{{\rm циклопропил}}),\ 1.57\ ({\rm c},\ 9{\rm H},\ {\rm CH}_3),\ 1.58-1.61\ ({\rm M},\ 1{\rm H},\ {\rm C}_{{\rm циклопропил}}),\ 1.90\\ ({\rm d},\ 1{\rm H},\ {\rm HC}^{10},\ J=11.1),\ 2.01\ ({\rm d}{\rm T},\ 1{\rm H},\ {\rm HC}^{10},\ J=11.1,\ 1.8),\ 3.68\ ({\rm d},\ 1{\rm H},\ {\rm HC}^6,\\ J=9.4),\ 4.38\ ({\rm d},\ 1{\rm H},\ {\rm HC}^2,\ J=9.4),\ 4.80\ ({\rm c},\ 1{\rm H},\ {\rm HC}^7),\ 4.85\ ({\rm c},\ 1{\rm H},\ {\rm HC}^1),\ 6.84\ ({\rm T},\ 1{\rm H},\ {\rm HC}_{\rm apom},\ J=7.3),\ 7.06\ ({\rm d},\ 2{\rm H},\ {\rm HC}_{\rm apom},\ J=7.8),\ 7.27\ ({\rm T},\ 2{\rm H},\ {\rm HC}_{\rm apom},\ J=8.3).\ {\rm Cnektrp}\ {\rm SMP}\ ^{13}{\rm C}\\ ({\rm CDCl}_3,\ \delta,\ {\rm M.d.}):\ 6.98,\ 7.44,\ 9.89\ ({\rm C}_{{\rm циклопропил}}),\ 28.24\ ({\rm CH}_3),\ 33.30\ ({\rm C}^{10}),\ 57.50,\ 61.31,\ 61.35,\ 64.67\\ ({\rm C}^2,\ {\rm C}^6,\ {\rm C}^7),\ 80.14,\ 80.19,\ 82.84\ ({\rm C}^1,\ {\rm O\underline{C}}({\rm CH}_3)_3),\ 111.96,\ 119.02,\ 129.24,\ 145.12,\ 152.05,\ 156.32\\ ({\rm C}_{{\rm apom}},\ {\rm C=O,\ C=N}).\ {\rm ESI-MS\ (m/z):}\ {\rm Bычислено\ для\ C}_{20}{\rm H}_{20}{\rm H}$

IV.7. Синтез изоксазолов, конденсированных с азабициклическим каркасом

<u>Диметил 7-трет-бутоксикарбонил-эндо-5-бром-экзо-6-фенилселено-7-азабицикло[2.2.1]гепт-2-</u> ен-2,3-дикарбоксилат (**65**)

Вос К раствору 7-*трет*-бутил 2,3-диметил 7-азабицикло[2.2.1]гепта-2,5-диен-2,3,7-трикарбоксилата (0.5 г, 16 ммоль) в 20 мл хлористого метилена при 0°С добавили PhSeBr (0.4 г, 16 ммоль). Реакционную смесь перемешивали в течение суток, растворитель упарили. Получили 0.79 г (90%) коричневого масла. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.44 (с, 9H, C(CH₃)₃), 3.39 (д, 1H, HCSe, *J* = 3.0), 3.79 (с, 3H, OCH₃), 3.81 (с, 3H, OCH₃), 4.22 (т, 1H, HCBr, *J* = 3.8), 4.93 (уш.с, 1H, HC¹), 5.29 (уш.с, 1H, HC⁴), 7.29-7.34 (м, 3H, HC_{аром}), 7.61-7.66 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.71 (C(<u>C</u>H₃)₃), 46.86, 47.52 (оба уширены, C⁵, C⁶), 52.10, 52.15 (OCH₃), 68.84 (C¹, C⁴), 81.73 O<u>C</u>(CH₃)), 127.79, 127.98, 128.93, 133.83 (C_{аром}), 162.59 (C=O), положение сигналов C², C³, C=O установить не удалось из-за характерного уширения сигналов для карбаматов.). ESI-MS (m/z): вычислено для C₂₁H₂₄BrNO₆Se 546.0025 [M+1], найдено 546.0014.

<u>Смесь изомеров 7-*трет*-бутоксикарбонил-2-экзо-3-эндо-ди(метоксикарбонил)-эндо-5-бромэкзо-6-фенилселено-7-азабицикло[2.2.1]гептана и 7-*трет*-бутоксикарбонил-2-эндо-3-экзоди(метоксикарбонил)-эндо-5-бром-экзо-6-фенилселено-7-азабицикло[2.2.1]гептана (**67**)</u>

К соединению **65** (0.96 г, 1.75 ммоль) в 40 мл метанола добавили NaBH₄ (0.53 г, 14 ммоль). Реакционную смесь перемешивали в течение 12 часов. Затем добавили раствор соляной

 $^{1}_{Br}$ COOCH₃ кислоты до нейтральной среды, экстрагировали хлороформом, высушили над безводным Na₂SO₄, упарили. Получили 0.76 г (80%) соединения **67** в виде желтого масла. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.43 (с, 9H, C(CH₃)₃), 3.08-3.22 (уш.с, 0.8H, HC-CO₂Me), 3.30 (д, 0.2H, HC-CO₂Me, J = 6.0), 3.36 (д, 0.2H, HCSe, J = 4.4), 3.51 (с, 2.4H, OCH₃), 3.61-3.66 (м, 1H, HC-CO₂Me), 3.67-3.68 (м, 1.2H, OCH₃), 3.71 (с, 2.4H, OCH₃), 3.85 (д, 0.8H, HCSe, J = 4.4), 4.10 (т, 1H, HCBr, J = 3.8), 4.37-4.80 (м, 2H, HC¹, HC⁴), 7.25-7.33 (м, 3H, HCapoM), 7.56-7.63 (м, 2H, HCapoM)... Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 27.71 (C(CH₃)₃), 44.27, 50.16, 50.83, 51.80, 52.27, 64.55, 64.94 (C¹, C², C³, C⁴, C⁵, C⁶, OCH₃), 81.15 OC(CH₃)), 127.96, 128.04, 128.08, 128.87, 128.90, 134..47, 153.03 (С_{аром}), 169.58, 171.82 (C=O). ESI-MS (m/z): вычислено для C₂₁H₂₇BrNO₆Se 548.0181 [M+1], найдено 548.0167.

К соединению **67** (0.34 г, 0.62 ммоль) в 10 мл ТГФ добавили 1 мл 33% H₂O₂. Реакционную смесь перемешивали 18ч. Затем добавили 10 мл диэтилового эфира, вылили в 10% раствор сульфата натрия. Органический слой отделили, промыли насыщенным раствором карбоната калия, затем промыли водой и насыщенным раствором NaCl, высушили над безводным сульфатом натрия. Растворитель упарили, остаток хроматографировали. В результате хроматографирования выделены

Трет-бутил 3-бром-1Н-пиррол-1-карбоксилат (69)

Вос 0.11 г (57%) желтого масла. R_f 0.28 (метанол-хлороформ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 1.59 (с, 9H, C(CH₃)₃), 6.22 (дд, 1H, HC⁴, $J_1 = 3.3$, $J_2 = 1.6$), 7.16 (т, 1H, HC⁵, J = 2.7), 7.24 (т, 1H, HC², J = 1.7). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 27.50 (C(<u>CH₃</u>)₃), 84.03 O<u>C</u>(CH₃)), 100.10, 114.20, 118.99, 120.04 (С_{аром}), 147.36 (C=O).

Физико-химические характеристики совпали с опубликованными ранее [182].

Диметиловый эфир фумаровой кислоты (70)

Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 3.82 (с, 6H, OCH₃), 6.87 (с, 2H). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 51.92 (OCH₃), 133.00 (C=C), 164.98 (C=O). Физико-химические характеристики совпали с опубликованными ранее [183].

К раствору бромалкена **68** (0.3 г, 0.8 ммоль) в 15 мл хлористого метилена добавили Et₃N (0.08 г, 0.8 ммоль). Затем медленно по каплям прибавляли хлороксим (0.12 г, 0.8 ммоль). Реакционную смесь перемешивали 12 ч, растворитель упарили, остаток хроматографировали. Получили:

Диметил 3-фенил-4,5-дигидро-1,2-оксазол-4,5-дикарбоксилат (71)

^{H₃COOC} O_N 0.14 г (71%) желтого масла. R_f 0.5 (метанол-хлороформ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 3.73 (с, 3H, CH₃), 3.82 (с, 3H, CH₃), 4.85 (д, 1H, HC⁴, *J* = 4.8), 5.48 (д, 1H, HC⁵, *J* = 4.8), 7.38 – 7.43 (м, 3H, HC_{аром}), 7.75 (м, 2H, HC_{аром}).
^C Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 52.85, 52.97 (OCH₃), 56.15 (C⁴), 81.68 (C⁵), 127.01, 128.39, 130.38, 153.61 (Cаром), 167.86, 168.92 (C=O), сигнал C³ не определён из-за малой интенсивности. ESI-MS (m/z): вычислено для C₁₃H₁₄NO₅ 264.0866 [M+1], найдено 264.0866.Физико-химические характеристики совпали с опубликованными ранее [184].

<u>11-*Трет*-бутоксикарбонил-*эндо*-9-бром-*экзо*-10-фенилселено-11-азатрицикло[6.2.1.0^{2,7}]ундека-2(7),3,5-триен (**73**)</u>

К алкену (0.5 г, 2 ммоль) в 20 мл хлористого метилена при 0°С добавили PhSeBr (0.47 г, 2 ммоль). Реакционную смесь перемешивали ночь при комнатной температуре. Растворитель упарили. Получили 0.93 г (97%) коричневого масла. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.44 (с, 9H, C(CH₃)₃), 3.17 (д, 1H, HCSe, *J* = 2.8), 4.45 (т, 1H, HCBr, *J* = 3.9), 5.16 (уш.с.,

1H, HC¹), 5.23 (уш.с., 1H, HC⁴), 7.20-7.25 (м, 3H, HC_{аром}), 7.30 – 7.33 (м, 3H, HC_{аром}), 7.37 – 7.39 (м, 1H, HC_{аром}), 7.65 – 7.67 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.83 (С(<u>C</u>H₃)₃), 49.54, 50.95 (оба уширены, С⁹, С¹⁰), 65.49, 66.83 (С¹, С8), 80.81 О<u>С</u>(CH₃)), 119.00, 123.35, 126.37, 127.36, 127.78, 134.28, 140.39, 143.17 (Саром, С=О).

<u>11-*Трет*-бутоксикарбонил-9-бром-11-азатрицикло[6.2.1.0^{2,7}]ундека-2,4,6,9-тетраен</u> (74)

К раствору соединения **73** (0.93 г, 1.9 ммоль) в 20 мл ТГФ добавили 3.3 мл 33% H₂O₂. Реакционную смесь перемешивали 12 ч, затем добавили 15 мл диэтилового эфира. Далее вылили в 10% раствор сульфита натрия. Органический слой отделили, промыли насыщенным раствором Na₂CO₃ (10

мл), 10 мл воды, насыщенным раствором NaCl (10 мл), высушили над безводным сульфатом натрия. Растворитель упарили, остаток хроматографировали. Получили 0.2 г (33%) оранжевого масла. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.41 (с, 9H, C(CH₃)₃), 5.29 (уш.с., 1H, HC²), 5.52 (уш.с., 1H, HC⁸), 6.93 (уш.с., 1H, HC¹⁰), 6.98–7.07 (м, 2H, HC_{аром}), 7.20-7.28 (м, 1H, HC_{аром}), 7.35-7.43 (м, 1H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.68 (C(<u>CH₃)₃</u>), 67.88, 72.26 (C¹, C8), 80.82 О<u>С</u>(CH₃)), 120.53, 124.84, 125.46, 127.75, 128.89, 134.28, 140.40, 145.91 (Саром, C=O), часть сигналов уширена и малоинтенсивна. ESI-MS (m/z): вычислено для C₁₅H₁₇NO₃ 322.0437 [M+1], найдено 322.0436.

<u>14-*Трет*-бутоксикарбонил-9-бром-12-фенил-11,14-диаза-10-</u> оксатетрацикло[6.2.1.0^{2,7}.0^{9,13}]ундека-2,4,6,11-тетраен (**75**)

К бромалкену (0.14 г, 0.4 ммоль) в 15 мл хлористого метилена добавили Et₃N (0.09 г, 0.8 ммоль). Затем медленно по каплям прибавляли раствор хлороксима (0.07 г, 0.4 ммоль). Реакционную смесь перемешивали ночь. Растворитель упарили, остаток хроматографировали. Получили 0.07 г (40%)

желтого масла, R_f = 0.68 (элюент метанол-хлороформ 1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.19 (уш.с., 4H, C(CH₃)₃), 1.41 (уш.с., 5H, C(CH₃)₃), 4.02 (с, 1H, HC¹³), 5.48 (уш.с., 1H, HC¹), 5.58 (уш.с., 0.54H, HC⁸), 5.74 (уш.с., 0.46H, HC⁸), 7.28 – 7.32 (м, 2H, HC_{аром}), 7.37-7.41 (м, 1H, HC_{аром}), 7.47 – 7.55 (м, 4H, HC_{аром}), 7.70 – 7.78 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.59 (C(<u>C</u>H₃)₃), 63.71, 69.32 (C¹, C⁸), 81.07 О<u>С</u>(CH₃)), 103.06 (C⁹), 119.68, 123.75, 126.56, 127.00, 127.82, 128.75, 130.62, 141.43 (С_{аром}), положение сигналов C¹², C¹³, C=O установить не удалось из-за характерного для карбаматов уширения сигналов. ESI-MS (m/z): вычислено для C₂₂H₂₁BrN₂O₃ 441.0808 [M+1], найдено 441.0806.

<u>11-*Трет*-бутоксикарбонил-9-фенилселено-11-азатрицикло[6.2.1.0^{2,7}]ундека-2,4,6,9-тетраен</u> (76)

К соединению **73** (0.25 г, 0.5 ммоль) добавили 0.5 мл ДБУ. Реакционную смесь перемешивали при 90°С на водяной бане в течение 24 часов. После окончания перемешивания смесь хроматографировали. Получили 0.15 г (72%) желтого масла, $R_f = 0.3$ (элюент хлороформ). Спектр

ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.39 (с, 9Н, C(CH₃)₃), 5.25 (уш.с., 1Н, HC⁸), 5.47-5.65 (м, 1Н, HC¹), 6.87 (с, 1Н, HC¹⁰), 6.93 - 7.03 (м, 2Н, HC_{аром}), 7.18 - 7.25 (м, 2Н, HC_{аром}), 7.30 - 7.37 (м, 3Н, HC_{аром}), 7.50 - 7.56 (м, 2Н, HC_{аром}). ESI-MS (m/z): вычислено для C₂₁H₂₂NO₂Se 400.0810 [M+1], найдено 400.0804.

<u>14-*Трет*-бутоксикарбонил-9-фенилселено-12-фенил-11,14-диаза-10оксатетрацикло[6.2.1.0^{2,7}.0^{9,13}]ундека-2,4,6,11-тетраен (77)</u>

К раствору алкена **73** (0.1 г, 0.28 ммоль) в 15 мл хлористого метилена добавили Et_3N (0.03 г, 0.34 ммоль). Затем медленно по каплям добавляли хлороксим (0.05 г, 0.34 ммоль). Реакционную смесь перемешивали в течение суток, далее растворитель упарили, остаток хроматографировали. Получили 0.042 г (37%) коричневого масла, $R_f = 0.58$ (элюент метанол – хлороформ

1:50). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.15 (уш.с., 4.6Н, C(CH₃)₃), 1.39 (уш.с., 4.4Н, C(CH₃)₃), 3.73 (с, 1H, HC¹³), 5.45, 5.60 (оба с, по 1.5Н и 0.5Н соответственно, HC¹ и HC⁸), 7.24 (м, 1H, HC_{аром}), 7.25-7.75 (м, 14H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 27.96 (C(<u>C</u>H₃)₃), 64.08, 65.87 (C¹, C⁸), 80.89 O<u>C</u>(CH₃)), 119.92, 123.11, 126.42, 126.64, 127.02, 127.90, 128.79, 128.87, 129.07, 130.24, 136.09, 142.25 (Саром). ESI-MS (m/z): вычислено для C₂₈H₂₇N₂O₃Se 519.1181 [M+1], найдено 519.1175.

<u>9,13-Дегидро-14-*трет*-бутоксикарбонил-12-фенил-11,14-диаза-10оксатетрацикло[6.2.1.0^{2,7}.0^{9,13}]ундека-2,4,6,11-тетраен (**78**)</u>

К изоксазолину 77 (0.042 г, 0.081 ммоль) в 5 мл ТГФ добавили 30% H₂O₂ (0.014 г, 0.4 ммоль). Реакционную смесь оставили на ночь. Затем добавили воды и диэтиловый эфир. Органический слой отделили, высушили, упарили. Получили 0.012 г (41%) коричневого масла. Спектр ЯМР ¹Н

(CDCl₃, δ, м.д., *J*/Гц): 1.41 (с, 9H, C(CH₃)₃), 5.86 (уш.с., 1H, HC¹), 5.92-6.07 (м, 1H, HC⁸), 6.99-7.05 (м, 2H, HC_{аром}), 7.31 (уш.с, 1H, HC_{аром}), 7.41 (уш.с, 1H, HC_{аром}), 7.45 – 7.51 (м, 3H, HC_{аром}), 7.72-7.78 (м, 2H, HC_{аром}). ESI-MS (m/z): вычислено для C₂₂H₂₁N₂O₃ 361.1547 [M+1], найдено 361.1549.

IV.7.1. Взаимодействие производных азанорборнена с фенилселенбромидом

Общая методика

К раствору диена (1.5 ммоль) в 20 мл абсолютированного CH_2Cl_2 при интенсивном перемешивании и 0 °C в токе сухого аргона медленно добавляли по каплям раствор фенилселенбромида в 10 мл того же растворителя (мольное соотношение диен : PhSeBr = 1 : 1). Перемешивание продолжали до полного протекания реакции (контроль TCX). Реакционную смесь упаривали в вакууме. Очистку продуктов проводили методом колоночной хроматографии (μ 5/40, "Silica gel 60"). Выходы продуктов реакций приведены в таблице 10 (обсуждения результатов).

<u>2-Трет-бутоксикарбонил-экзо-6-бром-анти-7-фенилселенил-2-азабицикло[2.2.1]гептан (79) и 2-</u> <u>трет-бутоксикарбонил-экзо-6-бром-экзо-5-фенилселенил-2-азабицикло[2.2.1]гептан</u> (80) были выделены в смеси с выходом 55% в соотношении **79:80** = 61:39.

Соединение **79** выделено в виде бесцветного масла. Спектр ЯМР ¹Н (δ , м.д., *J*/Гц) соединения **79**: 1.43 (с, 3.6H, CH₃), 1.47 (с, 5.4H, CH₃), 2.37 (ддд, 1H, эндо-HC⁵), *J*₁=13.7, *J*₂=8.2, *J*₃=1.6), 2.65-2.76 (м, HC⁴, экзо-HC⁵), 2.98 (д, 0.4H, эндо-HC³, *J*=9.5), 3.05 (д, 0.6H,

эндо-НС³, *J*=9.7), 3.25 (дт, 1Н, экзо-НС³, *J*₁=9.7, *J*₂=2.8), 3.42 (уш.с, 0.4H, HC⁷), 3.45 (уш.с 0.6H, HC⁷), 3.97 (м, 0.6H, HC⁶), 4.03 (м, 0.4H, HC⁶), 4.42 (уш.с, 0.6H, HC¹), 4.55 (уш.с, 0.4H, HC¹), 7.30 (м, 3H, HC_{аром}), 7.58 (м, 3H, HC_{аром}). Соединение **80** выделено с примесью соединения **79**. Спектр ЯМР ¹H (δ, м.д., *J*/Гц) соединения **80**: 1.42 (с, 3.6H, CH₃), 1.49 (с, 5.4H, CH₃), 1.69 (д, 0.4H, *cuн*-HC⁷, *J*=10.6), 1.74 (д, 1H, *cuн*-HC⁷, *J*=10.6), 2.47 (д, 1H, *aнmu*-HC⁷, *J*=10.6), 2.57 (уш.с, 1H, HC⁴), 2.82 (д, 0.4H, эндо-HC³, *J*=9.8), 2.90 (д, 0.6H, эндо-HC³, *J*=9.8), 3.24 (дд, 1H, экзо-HC³), *J*₁=9.8, *J*₂=2.7), 3.76 (д, 1H, HC⁵, *J*=7.2), 4.27 (с, 0.6H, HC¹), 4.38-4.45 (м, 0.6H (HC⁶ + 0.4H HC¹), 4.50 (д, 0.4H, HC⁶, *J*=7.2). 7.30 (м, 2H, HC_{аром}), 7.51 (м, 3H, HC_{аром}). Для смеси изомеров **79** и **80** найдено, (%): C, 47.23; H, 5.03; N 3.17. C₁₇H₂₂BrNO₂Se. Вычислено, (%): C, 47.33; H, 5.10; N, 3.25.

Этил-2-метоксикарбонил-экзо-6-бром-*анти*-7-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-3карбоксилат (**81a**)

SePh

 R_f 0.40 (элюент - AcOEt:петролейный эфир, 1:2). Спектр ЯМР ¹H (δ , м.д., *J*/Гц) конформеров *Z*:*E* = 3:2: 1.13 (т, 3H, OCH₂<u>CH₃</u>, *J*=6.9), 2.43 (дд, 1H, эндо-HC⁵, *J*₁=14.2, *J*₂=8.0), 2.79 (1H, экзо-HC⁵ перекрывается с HC⁴), 2.82 (уш.с, 1H, HC⁴), 3.65 (с, 1.2H, OCH₃), 3.74 (с, 1.8H, OCH₃), 3.82 (с, 0.4H, HC³), 3.84 (c, 0.4H, HC⁷), 3.86 (c, 0.6H, HC⁷), 3.88 (c, 0.6H, HC³), 3.96 (дд, 0.6H, HC⁶, J_1 =8.3, J_2 =4.2), 4.04 (дд, HC⁶, J_1 =8.3, J_2 =4.2), 4.12 (м, 2H, OCH₂), 4.55 (уш.с, 0.6H, HC¹), 4.65 (уш.с, 0.4H, HC¹), 7.26 (м, 3H, HC_{apom}), 7.49 (м, 2H, HC_{apom}). Спектр ЯМР ¹H (C₆D₆, δ, м.д., J/Γ ц): 0.82 (м, 0.96H, OCH₂<u>CH₃</u>), 0.87 (т, 2.04H, OCH₂<u>CH₃</u>), 1.83 (дд, 1H, *эндо*-H(5), J_1 =12.2, J_2 =5.9), 2.54-2.59 (м, 1H, H(4)), 2.61-2.70 (м, 1H, *экзо*-H(5)), 3.39 (с, 2.04H, OCH₃), 3.47 (с, 0.96H, OCH₃), 3.60 (м, 0.62H, H(6)), 3.67 (с, 0.38H, H(3)), 3.82 (м, 0.38H, H(6)), 3.87 (с, 0.62H, H(3)), 3.84-3.97 (м, 2H, OCH₂), 4.07 (с, 0.38H, H(7)), 4.24 (с, 0.62H, H(7)), 4.61 (с, 0.62H, H(1)), 4.92 (с, 0.38H, H(1)), 6.98-7.05 (м, 3H, HC_{apom}), 7.44 (м, 0.76H, HC_{apom}), 7.50 (м, 1.24H, HC_{apom}). Спектр ЯМР ¹³C (δ, м.д.): *Z*-конформер 14.1 (OCH₂<u>C</u>H₃), 39.4, 45.0, 45.6, 48.6, 53.2, 61.6, 62.3, 64.9 C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂, OCH₃, 127.6, 129.3, 131.4, 132.8 (C_{apom}), 154.1, 169.6 (C=O); *E*-конформер 14.1 (OCH₂<u>C</u>H₃), 39.4, 45.0 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂, OCH₃), 127.6, 129.3, 131.4, 132.8 (C₁, C³, C⁴, C⁵, C⁶, C⁷, OCH₂, OCH₃), 127.6, 129.3, 131.4, 132.8 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂, OCH₃), 127.6, 129.3, 131.5, 132.9 (C_{apom}), 154.1, 169.7 (C=O). Haйдено: C 43.98, H 4.15, N 2.98. C₁₇H₂₀BrNO₄Se. Bычислено: C 44.25, H 4.34, N 3.04.

<u>Этил-2-*трет*-бутоксикарбонил-экзо-6-бром-*анти*-7-фенилселенил-2-азабицикло[2.2.1]гептанэкзо-3-карбоксилат (81b)</u>

R_f 0.56 (элюент – AcOEt : петролейный эфир, 1:3). Спектр ЯМР ¹Н (δ, м.д., *J*/Гц) конформеров *Z*:*E* = 52:48: 1.13 (т, 1.56H, OCH₂<u>CH₃</u>, *J*=7.2), 1.15 (т, 1.44H, OCH₂<u>CH₃</u>, *J*=7.2), 1.39 (с, 4.42H, CH₃ (Bu^t)), 1.48 (с, 4.68H, CH₃ (Bu^t)), 2.43 (д.д, 1H, эндо-HC⁵, *J*₁=14.0, *J*₂=7.7), 2.74-2.83 (м, 2H, HC⁴, экзо-HC⁵), 3.76 (с, 0.48H, HC³), 3.85 (с, 0.52H, HC³), 3.87 (с, 0.52H, HC⁷), 3.89 (с,

0.48H, HC⁷), 3.96 (м, 0.52H, HC⁶), 4.00 - 4.18 (м, 0.48H + 2H, HC⁶, OCH₂), 4.49 (уш.с, 0.52H, HC¹), 4.63 (уш.с, 0.48H, HC¹), 7.25 (м, 3H, HC_{apom}), 7.50 (м, 2H, HC_{apom}). Спектр ЯМР ¹H (C₆D₆, δ , м.д., *J*/Гц): 0.86, 0.89 (оба т, в сумме 3H, OCH₂<u>CH₃</u>), 1.42 (с, 4.68H, CH₃ (Bu^{*t*})), 1.48 (с, 4.32H, CH₃ (Bu^{*t*})), 1.69-1.82 (м, 1H, эндо-HC⁵), 2.51 (д, 0.48H, HC⁴, *J*=4.1), 2.57 (д, 0.52H, HC⁴, *J*=4.1), 2.57-2.70 (м, 1H, экзо-HC⁵), 3.66 (с, 0.48H, HC³), 3.89 (с, 0.52H, HC³), 3.81-3.99 (м, HC⁶, OCH₂), 4.11 (с, 0.48H, HC⁷), 4.25 (с, 0.52H, HC⁷), 4.70 (с, 0.52H, HC¹), 4.93 (с, 0.48H, HC¹), 6.99-7.05 (м, 3H, HC_{apom}), 7.44 (м, 0.96H, HC_{apom}), 7.47 (м, 1.04H, HC_{apom}). Спектр ЯМР ¹³С (δ , м.д.): 14.1, 14.2 (OCH₂<u>C</u>H₃ мажор), 28.2, 28.3 (OC(<u>C</u>H₃)₃), 39.5, 39.7, 45.0, 45.2, 45.4, 45.6, 48.7, 49.3, 61.3, 61.4, 62.0, 62.6, 63.8, 65.3 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 81.2, 81.5 (O<u>C</u>(CH₃)₃), 127.50, 127.53, 129.25, 129.29, 131.6, 131.7, 132.7, 132.8 (C_{apom}), 151.9, 152.8, 169.9, 170.1 (C=O). Найдено: C 47.55, H 5.35, N 2.79. C₂₀H₂₆BrNO₄Se. Вычислено: C 47.71, H 5.17, N 2.78.

Этил 2-метоксикарбонил-экзо-6-бром-экзо-5-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-3карбоксилат (83а)

коричневого масла. Спектр ЯМР ¹Н (δ , м.д., J/Γ ц) соотношение конформеров Z:E = 57:43: 1.19 (т, OCH₂CH₃, J=7.1), 1.97-2.07 (м, 1H, *син*-HC⁷), 2.39 (д, 1H, *анти*-HC⁷, $J_1=11.1$), 2.74 (с, 1H, HC⁴), 3.64 (с, 1.29H,

Rf 0.33 (элюент - AcOEt:петролейный эфир, 1:3) выделен в виде

О<u>СН₃</u>), 3.66 (с, 0.43H, HC³), 3.73 (с, 0.57H, HC³), 3.74 (с, 1.71H, О<u>СН₃</u>), 3.77 (дд, 1H, HC⁵, J_1 =7.2, J_2 =2.2), 4.12, 4.13 (оба кв, ОСН₂, J=7.1), 4.44 (уш.с, 0.57H, HC¹), 4.47 (д, 0.57H, HC⁶ перекрывается с сигналом 4.44 м.д.), 4.52 (д, 0.43H, HC⁶ перекрывается с сигналом 4.54 м.д.), 4.54 (уш.с, 0.43H, HC¹), 7.33 (м, 3H, HC_{аром}), 7.58 (м, 3H, HC_{аром}). Спектр ЯМР ¹H (C₆D₆, δ , м.д., J/Γ ц) соотношение конформеров Z:E = 62:38: 0.87 (т, ОСН₂<u>СН₃</u>, J=7.1), 1.95 (д, 0.38H, cuh-HC⁷, J=11.0), 2.12 (д, 0.62H, cuh-HC⁷, J=10.8), 2.35 (д, 0.38H, ahmu-HC⁷, J=11.0), 2.40 (д, 0.62H, ahmu-HC⁷, J=10.8), 2.71 (с, 0.38H, HC⁴), 2.73 (с, 0.62H, HC⁴), 3.35 (д, 0.38H, HC⁶, J=7.2), 3.40 (д, 0.62H, HC⁶, J=7.2), 3.44 (с, 1.86H, О<u>СН₃</u>), 3.50 (с, 1.14H, О<u>СН₃</u>), 3.58 (с, 0.38H, HC³), 3.84 (с, 0.62H, HC³), 3.80-3.95 (м, OCH₂), 4.05 (д, 0.62H, HC⁵, J=7.2), 4.25 (д, 0.38H, HC⁵, J=7.2), 4.42 (уш.с, 0.62H, HC¹), 4.71 (уш.с, 0.38H, HC¹), 7.10 (м, 3H, HC_{аром}), 7.47 (м, 3H, HC_{аром}). Спектр ЯМР ¹³С (δ , м.д.): 14.1 (OCH₂<u>C</u>H₃), 26.7, 30.4, 49.1, 49.3, 49.6, 49.9, 52.8, 52.9, 53.1, 53.4, 61.4, 61.5, 63.5, 63.8, 64.2 (сигналы каркаса, OCH₂ и OCH₃), 128.1, 129.5, 133.8, 134.0 (С_{аром}), 154.7, 164.0 (С=O). Найдено: C 43.98, H 4.27, N 2.49. C₁₇H₂₀BrNO₄Se. Вычислено: C 44.25, H 4.34, N 3.04.

<u>Смесь</u> этил-2-метоксикарбонил-эндо-5-бром-экзо-6-фенилселенил-2-азабицикло[2.2.1]гептанэкзо-3-карбоксилата (84a) и этил-2-метоксикарбонил-эндо-6-бром-экзо-5-фенилселенил-2азабицикло[2.2.1]гептан-экзо-3-карбоксилат (**85a**)

Соотношение **84а** : **85а** = 64:36, $R_f 0.44$ (элюент -АсОЕt:петролейный эфир, 1:1) выделены в виде светло-коричневого масла. Спектр ЯМР ¹Н (δ , м.д., *J*/Гц) соединения **84а** (соотношение конформеров

Z:E = 60:40) и соединения **85a** (соотношение конформеров Z:E = 60:40): 1.25-1.33 (м, 3H, OCH₂<u>CH₃</u> **85a** и **84a**), 1.91 (д, 0.64H, *анти*-HC⁷ **84a**, *J*=11.1), 2.03-2.13 (м, 0.64H *син*-HC⁷ **84a** + 0.36H *анти*-HC⁷ **85a**), 2.18 (д.кв, 0.14H, *син*-HC⁷ **85a**, *J*₁=11.0, *J*₂=1.7), 2.24 (д.кв, 0.22H, *син*-HC7 **85a**, *J*₁=11.0, *J*₂=1.7), 2.92-2.97 (м, 1H, HC⁴ **84a** и **85a**), 3.42 (т, 0.38H, HC⁶ **84a**, *J*=3.4), 3.58 (т, 0.26H, HC⁶ **84a**, *J*=3.4), 3.62 (с, 1.14H, O<u>CH₃</u> **84a**), 3.69 (с, 0.78H, O<u>CH₃</u> **84b**), 3.71 (с, 0.42H, O<u>CH₃</u> **85b**), 3.72 (с, 0.66H, O<u>CH₃</u> **85b**), 3.80 (т, 0.14H, HC⁵) **85a**, *J*=2.8), 3.86 (т, 0.22H, HC⁵ **85a**, *J*=2.8), 3.89 (с, 0.14H, HC³ **85a**), 3.95 (с, 0.22H, HC³ **85a**), 3.98 (т, 0.22H, HC⁶ **85a**, *J*=2.7), 4.01 (т,

0.14H, HC⁶ **85a**, *J*=2.7), 4.14 (уш.с, 0.64H, HC¹ **84a**), 4.17-4.23 (м, 2.64H, HC⁵ **84a**, OCH₂ **84a**+**85a**), 4.30 (уш.с, 0.22H HC¹ **85a**), 4.50 (уш.с, 0.26H, HC¹ **84a**), 4.55 (с, 0.26H, HC³ **84a**), 4.61 (уш.с, 0.38H HC³ **84a** + 0.14 HC¹ **85a**), 7.30 (м, 3H, HC_{аром}), 7.55 (м, 1.72H, HC_{аром}), 7.70 (м, 0.28H, HC_{аром}). Найдено: С 43.99, H 4.50, N 2.51. С₁₇H₂₀BrNO₄Se. Вычислено: С 44.25, H 4.34, N 3.04.

<u>Этил 2-трет-бутоксикарбонил-экзо-6-бром-анти-7-фенилселенил-2-азабицикло[2.2.1]гептан-</u> <u>эндо-3-карбоксилат</u> (82b)

Выделен в смеси с **83b** и **85b** Спектр ЯМР ¹Н (δ , м.д., J/Γ ц): 1.24-1.30 (м, OCH₂<u>CH₃</u>, перекрывается с сигналом **85b**), 1.36 (с, 5.13H, CH₃(Bu^t)), 1.46 (с, CH₃ (Bu^t) перекрывается с сигналами **83b** и **85b**), 2.37 (ддд, 1H, Эндо-HC⁵, J_1 =14.7, J_2 =8.1, J_3 =1.0), 2.67 (дт, 1H, экзо-HC⁵, J_1 =14.7,

J₂=3.9), 2.87 (уш.с, 1H, HC⁴), 3.43 (с, 1H, HC⁷), 4.05-4.31 (м, HC³, HC⁶, OCH₂ перекрывается с сигналами **83b** и **85b**), 4.63 (с, 0.57H, HC¹), 7.27-7.33 и 7.54-7.61 (HC_{аром}, перекрывается с сигналами **83b** и **85b**), HC¹ (0.43H) лежит в области 4.46-4.52 и перекрывается с сигналами **83b**. Для смеси соединений **82b**, **83b** и **85b** найдено: С 47.17, H 4.56, N 2.64. C₂₀H₂₆BrNO₄Se. Вычислено: С 47.71, H 5.17, N 2.78.

<u>Этил 2-третбутоксикарбонил-экзо-6-бром-экзо-5-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-</u> <u>3-карбоксилат</u> (83b)

R_f 0.38 (элюент - AcOEt:петролейный эфир, 1:1) выделен в виде коричневого масла. Спектр ЯМР ¹Н (δ, м.д., *J*/Гц): 1.15-1.24 (м, 3H, OCH₂<u>CH₃</u>), 1.37 (с, 5.04H, CH₃ (Bu^t)), 1.46 (с, 3.96H, CH₃ (Bu^t)), 2.02 (д, 1H, HC⁷, *J*=10.4), 2.35 (д, 1H, HC⁷, *J*=10.4), 2.71 (с, 1H, HC⁴), 3.60 (с,

0.56H, HC³), 3.70 (с, 0.44H, HC³), 3.77 (м, 1H, HC⁵), 4.05-4.17 (м, 2H, OCH₂), 4.35 (с, 0.44H, HC¹), 4.42 (д, 0.44H, HC⁶, *J*=6.6), 4.48-4.52 (уш.с, 1H, 1.12H, HC¹ + HC⁶), 7.35 (м, 3H, HC_{аром}), 7.60 (м, 2H, HC_{аром}).

<u>Этил</u> 2-третбутоксикарбонил-эндо-5-бром-экзо-6-фенилселенил-2-азабицикло[2.2.1]гептанэкзо-3-карбоксилат (**85b**)

3.86 (т, 0.43H, HC⁵, J=2.6), 3.90 (с, 0.43H, HC³), 4.01 (т, 0.43H, HC⁶, J=2.6), 4.03 (т, 0.57H, HC⁶,

J=2.6), 4.15-4.25 (м, 0.43H HC¹ + 2H OCH₂, перекрывается с сигналами **83b**), 4.55 (с, 0.57H, HC¹), 7.21-7.33, 7.54-7.61 (оба м, HC_{аром}, перекрываются с сигналами **83b**), 7.71 (м, 0.8H, HC_{аром}), *анти*-HC⁷ лежит в области 1.98-2.13 и перекрывается с сигналами **83b**.

<u>Этил 2-ацетил-экзо-6-бром-экзо-5-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-3-карбоксилат</u> (83с)

 $\begin{array}{c} PhSe \\ Br \\ \hline \\ 83c \\ Ac \end{array} \begin{array}{c} CO_2Et \\ H \\ \hline \\ Ac \end{array}$

R_f 0.36 (элюент - AcOEt:петролейный эфир, 1:1) выделен в виде белого кристаллического вещества т.пл. 83 °C. Спектр ЯМР ¹Н: (δ, м.д., *J*/Гц) конформеров *Z*:*E* = 71:29: *Z*-конформер 1.21 (т, OCH₂<u>CH₃</u>, *J*=7.0), 2.15 (с, 3H, C(O)CH₃), 2.20 (д, 1H, *син*-HC⁷, *J*=10.9), 2.47 (д, *анти*-HC⁷, *J*=10.9),

2.76 (с, 1H, HC⁴), 3.79 (д, 1H, HC⁶, *J*₁=7.3), 3.87 (с, 1H, HC³), 4.10-4.25 (м, 2H, OCH₂), 4.37 (уш.с, 1H, HC¹), 4.44 (д, HC⁵ мажор, *J*₁=7.3), 7.32-7.36 (м, 3H, HC_{аром}), 7.56-7.64 (м, 2H, HC_{аром}); *E*-конформер 1.24 (т, OCH₂<u>CH₃</u>, *J*=6.9), 1.89 (с, 3H, C(O)<u>CH₃</u>), 1.92 (*син*-HC⁷ перекрывается с C(O)<u>CH₃</u>), 2.43 (*анти*-HC⁷ перекрывается с соответствующим сигналом *Z*-конформера), 2.87 (с, 1H, HC⁴), 3.72 (с, 1H, HC³), 4.50 (д, 1H, HC⁶, *J*=7.3), 4.80 (уш.с, HC¹), сигналы протонов HC⁵ и OCH₂ перекрываются с соответствующими сигналами *Z*-конформера. Спектр ЯМР ¹³С (δ, м.д.): *Z*-конформер 14.0 (OCH₂<u>C</u>H₃), 22.1 (C(O)<u>C</u>H₃), 31.0, 48.8, 49.2, 53.5, 61.4 63.5, 65.40 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 128.1, 129.56, 133.9 (С_{аром}), 168.5, 168.7 (C=O); *E*-конформер 14.1 (OCH₂<u>C</u>H₃), 29.3, 49.7, 50.5, 52.6, 61.9, 62.7, 65.44 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 128.2, 129.51, 134.2 (С_{аром}). Найдено, (%): C, 45.93; H, 4.49; Br 17.99; Se, 17.78. C₁₇H₂₀BrNO₃Se. Вычислено, (%): C, 45.86; H, 4.53; Br 17.95; Se, 17.74.

<u>Этил 2-ацетил-эндо-5-бром-экзо-6-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-3-карбоксилат</u> (84c)

R_f 0.54 (элюент - AcOEt:петролейный эфир, 1:1) выделен в виде белого кристаллического вещества т.пл. 84 °C. Спектр ЯМР ¹Н (δ, м.д., *J*/Гц) конформеров *Z*:*E* = 60:40: 1.28 (т, 1.8H, OCH₂<u>CH₃</u>, *J*=7.0), 1.32 (т, 1.2H, OCH₂<u>CH₃</u>, *J*=7.0), 1.71 (с, 1.8H, C(O)<u>CH₃</u>), 1.95-2.00 (м, 0.8H, H₂C⁷), 1.99 с

(c, 0.4H, C(O)<u>CH₃</u>), 2.02 (д, 0.6H, *анти*-HC⁷, J_1 =11.2), 2.25 (д, 0.6H, *син*-HC⁷, J_1 =11.2), 2.93 (д, 0.6H, HC⁴, J=2.6), 3.08 (д, 0.4H, HC⁴, J=2.9), 3.34 (т, 0.6H, HC⁶, J=3.5), 3.60 (м, 0.4H, HC⁶), 3.96 (уш.с, 0.6H, HC¹), 4.15-4.24 (м, 0.6H+0.8H, HC⁵, OCH₂), 4.27 (кв, 1.2H, OCH₂, J=7.0), 4.31 (т, 0.4H, HC⁵ минор, J=4.1), 4.57 (уш.с, 0.4H, HC¹), 4.64 (с, 0.4H, HC³), 4.69 (с, 1H, HC³), 7.26-7.41 (м, 3H, HC_{аром}), 7.66 (д, 0.8H, HC_{аром}, J=7.8), 7.62 (д, 1.2H, HC_{аром}, J=7.8). Спектр ЯМР ¹H (C₆D₆, δ , м.д., J/Γ ц) конформеров Z:E = 67:33: Z-конформер 1.03 (т, 3H, OCH₂<u>CH₃</u>, J=7.0), 1.40 (с, 3H, C(O)<u>CH₃</u>), 1.60 (д, 1H, *анти*-HC⁷, J_1 =10.9), 2.25 (д, 1H, *cun*-HC⁷, J_1 =10.9), 2.53 (д, 1H, HC⁴,

J=3.3), 3.39 (т, 1H, HC⁶, *J*=3.5), 3.60 (уш.с, 1H, HC¹), 3.69 (т, 1H, HC⁵, *J*=4.1), 4.06 (м, OCH₂), 5.14 (с, 1H, HC³), 6.93 (т, 2H, HC_{аром}, *J*=6.8), 7.00 (т,1H, HC_{аром}, *J*=7.1), 7.40 (д, 2H, HC_{аром}, *J*=6.8); *E*-конформер 0.94 (т, 3H, OCH₂<u>CH₃</u>, *J*=7.0), 1.51 (д, 1H, *анти*-HC⁷, *J*₁=11.8), 1.75 (д, 1H, *син*-HC⁷, *J*₁=11.8), 1.87 с (с, 3H, C(O)<u>CH₃</u>), 2.62 (д, 1H, HC⁴, *J*=3.1), 3.86 (т, 1H, HC⁶ минор, *J*=3.4), 3.91 (т, 1H, HC⁵, *J*=4.1), 3.93 (кв, OCH₂, *J*=7.1), 4.65 (с, 1H, HC³), 4.76 (уш.с, 1H, HC¹), 7.05 (т, 2H, HC_{аром}, *J*=7.3), 7.18 (т, 2H, HC_{аром}, *J*=7.5), 7.75 (д, 2H, HC_{аром}, *J*=7.5). Спектр ЯМР ¹³С (δ, м.д.): Z-конформер 14.15 (OCH₂<u>C</u>H₃), 21.6 (C(O)<u>C</u>H₃), 33.4, 49.1, 52.8, 54.4, 58.8, 61.5, 63.0 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 127.7, 128.91, 129.7, 135.3, (С_{аром}), 167.7, 169.9 (C=O); *E*-конформер 14.21 (OCH₂<u>C</u>H₃), 22.2 (C(O)<u>C</u>H₃), 32.1, 50.0, 51.4, 54.1, 60.7, 61.2, 62.0 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 127.9, 128.87, 129.4, 132.9 (С_{аром}), 169.5, 170.3 (C=O). Найдено, (%): C, 45.93; H, 4.49; Br 18.05; Se, 17.83. C₁₇H₂₀BrNO₃Se. Вычислено, (%): C, 45.86; H, 4.53; Br 17.95; Se, 17.74

<u>Этил 2-ацетил-эндо-6-бром-экзо-5-фенилселенил-2-азабицикло[2.2.1]гептан-экзо-3-карбоксилат</u> (85c)

 R_f 0.44 (элюент - AcOEt:петролейный эфир, 1:1) выделен в виде коричневого масла. Спектр ЯМР ¹H (δ , м.д., *J*/Гц) конформеров *Z*:*E* = 85:15: 1.29 (т, 3H, OCH₂<u>CH₃</u>, *J*=7.2), 1.95 с (с, 0.45H, C(O)<u>CH₃</u>), 2.18 (с, 2.55H, C(O)CH₃), 2.19 (д, 1H, *анти*-HC⁷, сигнал перекрывается с

сигнадом 2.18 м.д.), 2.40 (д, 1H, *син*-HC⁷, *J*₁=11.0), 2.92 (уш.с, 0.85H, HC⁴), 3.03 (уш.с, 0.15H, HC⁴ минор), 3.86 (т, 0.15H, HC⁵, *J*=2.7), 3.88 (т, 0.85H, HC⁵, *J*=2.6), 3.98 (уш.с, 0.85H, HC³), 4.00 (уш.с, 0.15H, HC³), 4.06 (т, 0.85H, HC⁶, *J*=2.7), 4.08 (т, 0.15H, HC⁶), 4.15-4.30 (м, 2H, OCH₂), 4.39 (уш.с, 0.85H, HC¹), 5.00 (уш.с, 0.15H, HC¹), 7.29-7.36 (м, 3H, HC_{apom}), 7.57 (м, 1.7H, HC_{apom}), 7.71 (м, 0.3H, HC_{apom}). Спектр ЯМР ¹³С (δ, м.д.): *Z*-конформер 14.1 (OCH₂<u>C</u>H₃), 22.1 (C(O)<u>C</u>H₃), 34.2, 50.9, 54.9, 58.3, 61.5, 61.6, 63.2 (C¹, C³, C⁴, C⁵, C⁶, C⁷, OCH₂), 128.1, 128.4, 129.5, 133.7 (C_{apom}), 168.2, 168.6 (C=O); *E*-конформер 14.2 (OCH₂<u>C</u>H₃), 32.6, 55.0, 57.3, 60.0, 62.2 (сигналы каркаса и OCH₂.), 128.20, 128.24, 129.2, 135.2 (C_{apom}), положение сигналов каркаса и C=O-групп, имеющих малую интенсивность, не определено. Найдено, (%): C, 45.95; H, 4.71; Br 17.61; Se, 17.40. C₁₇H₂₀BrNO₃Se. Вычислено, (%): C, 45.86; H, 4.53; Br 17.95; Se, 17.74

IV.8. Синтез тетрагидропиридазинов

IV.8.1. Синтез α-галогенгидразонов

2-Бром-1-фенилэтанон (бромацетофенон)

К раствору ацетофенона 2.5 г (0.02 моль) в 15 мл этанола по каплям Вг добавляли 3.2 г (0.02 моль) брома при температуре 40-50 °С. После обесцвечивания реакционной массы ее охлаждали до комнатной температуры и при перемешивании добавляли 20 мл воды, предварительно охлажденной до 10-15 °С. Выпавший кристаллический осадок отфильтровали и промыли водой. Получили 3.2 г (80%) желтых кристаллов. Т_{пл}. = 47 °С (лит.[152]: Т_{пл}. = 47-48 °С). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 4.47 (с, 2H, CH₂Br), 7.49 (т, 2H, HC_{аром}, *J* = 7.8), 7.61 (т, 1H, HC_{аром}, *J* = 7.8). Физико-химические характеристики совпали с опубликованными ранее [152].

2-Хлор-1-фенилэтанон

К раствору ацетофенона (4 г, 0.033 моль) в 30 мл ацетонитрила добавили N-хлорсукцинимид (4.4 г, 0.033 моль) и моногидрат *n*-толуолсульфокислоты (6.3 г, 0.033 моль). Реакционную смесь кипятили 7 часов, затем охладили до

комнатной температуры, разбавили диэтиловым эфиром (30 мл), промыли водой. Органический слой отделили, высушили, растворитель упарили. Получили 3 г (58%) в виде светлокоричневых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 4.71 (с, 2H, CH₂), 7.47 (т, 2H, HC_{аром}, J = 7.5), 7.59 (т, 1H, HC_{аром}, J = 7.4), 7.93 (д, 2H, HC_{аром}, J = 7.2). Физико-химические характеристики совпали с опубликованными ранее [185].

Бензогидразид (бензоилгидразин)

К раствору этилбензоата 2 г (13 ммоль) в 5 мл этанола добавили гидразин гидрат 3.3 г (67 ммоль). Реакционную смесь кипятили в течение суток. Затем растворитель упарили, добавили хлороформ, водный слой отделили, органическую вытяжку высушили над безводным Na₂SO₄, упарили. Получили 1 г (58%) белых кристаллов. Спектр ЯМР ¹Н (DMSO-d₆, δ , м.д., J/Γ ц): 7.54 (т, 2H, HC_{аром}, J = 7.6), 7.64 (т, 1H, HC_{аром}, J = 7.6), 7.89 (д, 2H, HC_{аром}, J = 7.6). Физико-химические характеристики совпали с опубликованными ранее [186]. 2-(2-Бром-1-фенилэтилиден)гидразид бензойной кислоты (86а)

К раствору бромацетофенона 1 г (5 ммоль) в 2.5 мл метанола при 0°С добавили бензогидразид 1 г (7.6 ммоль) в 2.5 мл метанола. Затем прибавили 0.13 мл концентрированной соляной кислоты. Реакционную смесь перемешивали при охлаждении 4 часа. Выпавший осадок отфильтровали, промыли диэтиловым эфиром. Получили 1.6 г (76%) белых кристаллов.

Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 4.38 (с, 0.82H, CH₂Br), 4.47 (с, 1.18H, CH₂Br), 7.40 – 7.60 (м, 8H, HC_{аром}), 7.80 – 7.95 (м, 2H, HC_{аром}), 9.10 (уш.с., 0.59H, NH), 9.48 (уш.с., 0.41H, NH). Физико-химические характеристики аналогичны опубликованным ранее для хлор-производного [187].

Ацетогидразид

О Этилацетат 4.5 г (50 ммоль) смешали с 3.3 г (67 ммоль) гидрата гидразина. _{H₃C} NH₂ Реакционную смесь кипятили 5 часов, упарили. Получили 3.4 г (90%) бесцветных кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.82 (с, 3H, CH₃),

3.74 (уш.с, 2H, NH₂), 8.31 (уш.с, 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [188].

2-(2-Бром-1-фенилэтилиден)гидразид уксусной кислоты (86b)

СН₃ К охлажденному до 0°С раствору 1.8 г (9 ммоль) бромацетофенона в 4.5 мл метанола. Затем мл метанола добавили 1 г (14 ммоль) ацетогидразида в 4.5 мл метанола. Затем Вг к реакционной смеси прибавили концентрированную HCl (0.23 мл). Реакционную смесь перемешивали 4 часа, поддерживая температуру 0°С. Далее выпавший осадок отфильтровали, промыли диэтиловым эфиром. Получили 1.2 г (53%) белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.33 (с, 0.75H, CH₃), 2.43 (с, 2.25H, CH₃), 4.30 (с, 0.5H, CH₂Br), 4.34 (с, 1.5H, CH₂Br), 7.28-7.30 (м, 0.5H, HC_{аром}), 7.48 – 7.54 (м, 0.5H, HC_{аром}), 7.74 – 7.81 (м, 1.5H, HC_{аром}), 8.40 (уш.с., 0.3H, NH), 9.57 (уш. с., 0.7H, NH). Физико-химические характеристики совпали с опубликованными ранее [189].

Фуран-2-карбонил хлорид

К раствору пирослизевой кислоты 3 г (27 ммоль) в 6 мл сухого бензола добавили 3.8 г (32 ммоль) SOCl₂. Реакционную смесь кипятили 6 часов, растворитель упарили. Получили 3 г (76%) желтой жидкости. Спектр ЯМР ¹Н

(CDCl₃, δ , м.д., J/Γ ц): 6.63 (дд, 1H, HC_{фур}, $J_1 = 3.6$, $J_2 = 1.7$), 7.50 (д, 1H, HC_{фур}, J = 3.6), 7.75 (д, 1H, HC_{фур}, J = 0.9). Физико-химические характеристики совпали с опубликованными ранее [190].

Фуран-2-карбогидразид

К раствору фуран-2-карбонил хлорида 3.8 г (26 ммоль) в 30 мл сухого метанола порциями добавили Et₃N 5.3 г (52 ммоль). Перемешивали в течение часа. Затем добавили гидразин гидрат 3.1 г (62 ммоль). Реакционную смесь кипятили 3 часа. Растворитель упарили, остаток экстрагировали этилацетатом (3×15 мл). Объединенную органическую вытяжку высушили над безводным Na₂SO₄, растворитель упарили. Получили 1.4 г (46%) белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 4.40 (с, 2H, NH₂), 6.57 (с, 1H, HC_{фур}), 7.05 (с, 1H, HC_{фур}), 7.78 (с, 1H, HC_{фур}), 9.61 (с, 1H, NH). Физикохимические характеристики совпали с опубликованными ранее [191].

2-(2-Бром-1-фенилэтилиден)гидразид 2-фуранкарбоновой кислоты (86с)

К охлажденному до 0°С раствору бромацетофенона 1.5 г (7.6 ммоль) в 4 мл метанола добавили 1.4 г (11.4 ммоль) фуран-2-карбогидразида в 4 мл метанола. Затем добавили 0.2 мл соляной кислоты. Реакционную смесь перемешивали при охлаждении в течение 4 часов. Осадок отфильтровали, промыли диэтиловым эфиром. Получили 2.3 г (71%) желтых кристаллов.

Циклопропанкарбонил хлорид

К циклопропанкарбоновой кислоте (5.4 г, 63 ммоль) добавили хлористый тионил (11.3 г, 95 ммоль). Реакционную смесь кипятили 4 часа, избыток хлористого тионила удалили на роторном испарителе. Получили 4.5 г (70%) в виде зеленой

жидкости. Без выделения ввели в следующую стадию [192].

Циклопропанкарбогидразид

К раствору хлорангидрида циклопропанкарбоновой кислоты (4.5 г, 0.043 NH₂ моль) в 54 мл CH₃OH добавили Et₃N (8.7 г, 0.086 моль), реакционную смесь перемешивали час. Затем добавили гидразин гидрат (6.5 г, 0.129 моль),

кипятили 4 часа. Реакционную смесь охладили до комнатной температуры, органический растворитель упарили, остаток экстрагировали этилацетатом (3×15 мл). Объединенные органические вытяжки высушили над безводным Na₂SO₄, растворитель упарили. Получили 1.26 г (30%) белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.74-0.78 (м, 2H, HC_{циклопропил}),

0.95 - 0.99 (м, 2H, HC_{циклопропил}), 1.32-1.38 (м, 1H, HC_{циклопропил}), 3.90 (уш.с, 2H, NH₂), 7.47 (с, 1H, NH). Физико-химические характеристики совпали с опубликованными ранее [193].

<u>2-(2-Бромо-1-фенилэтилиден)гидразид циклопропанкарбоновой кислоты (86d)</u>

К раствору бромацетофенона (1.66 г, 0.0084 моль) в 4 мл метанола при 0 °С добавили циклопропанкарбогидразид (1.26 г, 0.0126 моль) в 4 мл метанола и 0.2 мл HCl (конц.). Реакционную смесь перемешивали 4 часа при охлаждении. Затем выпавший осадок отфильтровали, промыли диэтиловым эфиром. Получили 2.36 г (68%) белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ,

м.д., *J*/Гц): 0.94-1.01 (м, 2H, CH₂, мин+макс), 1.08-1.11 (м, 0.8H, CH₂, мин), 1.18-1.22 (м, 1.4H, CH₂, макс), 2.67-2.74 (м, 0.3H, мин), 2.77-2.83 (м, 0.7H, макс), 4.34 (с, 0.7H, мин), 4.37 (с, 1.3H, макс), 7.30-7.33 (м, 0.6H, мин, HC_{аром}), 7.42-7.44 (м, 2H, мин+макс, HC_{аром}), 7.49-7.53 (м, 1H, мин+макс, HC_{аром}), 7.79-7.82 (м, 1.4H, макс, HC_{аром}), 8.53 (уш.с., 0.3H, мин), 9.85 (уш.с., 0.7H, макс).

<u>N'-[(1Z)-2-Бром-1-фенилэтилиден]-4-метилбензолсульфоногидразид</u> (86е)

^{Ts} К раствору бромацетофенона (1.75 г, 0.0089 моль) в 15 мл диэтилового эфира добавили тозилгидразид (1.5 г, 0.008 моль). Реакционную смесь эфира добавили 4 часа при комнатной температуре. Затем осадок отфильтровали, промыли холодным диэтиловым эфиром. Получили 1.6 г (55%) в виде белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.42 (с, 1.6H, CH₃), 2.46 (с, 1.4H, CH₃), 4.18 (с, 1H, CH₂), 4.22 (с, 1H, CH₂), 7.20 – 7.22 (м, 1H, HC_{аром}), 7.33 (т, 2H, *J* = 8.3, HC_{аром}), 7.38 – 7.42 (м, 1H, HC_{аром}), 7.48 – 7.52 (м, 2H, HC_{аром}), 7.64 – 7.67 (м, 1H, HC_{аром} + 0.5H NH), 7.80 (д, 1H, *J* = 8.3, HC_{аром}), 7.90 (д, 1H, *J* = 8.3, HC_{аром}), 7.99 (уш.с, 0.5H, NH).

<u>N'-[(1Z)-2-Хлор-1-фенилэтилиден]-4-метилбензолсульфоногидразид</u> (86f)

К раствору хлорацетофенона (1.5 г, 0.0097 моль) в 20 мл диэтилового уфира добавили тозилгидразид (1.64 г, 0.0088 моль). Реакционную смесь отфильтровали, промыли холодным диэтиловым эфиром. Получили 1.35 г (43%) в виде белых кристаллов. Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 2.42 (с, 1H, CH₃), 2.46 (с, 2H, CH₃), 4.34 (с, 1.2H, CH₂), 4.39 (с, 0.8H, CH₂), 7.20 – 7.22 (м, 1H, HC_{аром}), 7.34 (т, 2H, *J* = 8.0, HC_{аром}), 7.37 – 7.42 (м, 1H, HC_{аром}), 7.48 – 7.54 (м, 2H, HC_{аром}), 7.62 – 7.67 (м, 1H, HC_{аром}), 7.69 (с, 0.6H, NH), 7.80 (д, 2H, *J* = 8.3, HC_{аром}), 7.90 (д, 0.8H, HC_{аром}), 8.09 (уш.с, 0.4H, NH). Физикохимические характеристики совпали с опубликованными ранее [194].

IV.8.2. Взаимодействие с норборненом

Общая методика

К трем эквивалентам норборнена в хлористом метилене добавили один эквивалент αбромгидразона и два эквивалента основания. Реакционную смесь перемешивали в течение 24 ч, осадок отфильтровали, фильтрат упарили, остаток хроматографировали.

Реакция с 2-(2-бромо-1-фенилэтилиден)гидразидом бензойной кислоты

В результате реакции 0.09 г (0.9 ммоль) норборнена, 0.1 г (0.3 ммоль) α -бромгидразона и 0.2 г (0.6 ммоль) Cs₂CO₃ в 3 мл CH₂Cl₂ было получено 0.041 г (41%) <u>3-бензоил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2.7}]ундец-4-ена</u> (87а) в виде белых кристаллов. R_f 0.36 (CHCl₃). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 1.08 (дт, HC¹¹_{антии}, *J*₁ = 10.8, *J*₂ = 1.2), 1.31 – 1.41, 1.44 – 1.64 (оба м по 1Н и 4Н (соответственно) HC⁹, HC¹⁰), 1.48 (д, 1H, HC¹¹_{син}, *J* = 10.8), 2.17 (с, 1H, HC⁸), 2.51 (дддд, 1H, HC⁷, *J*₁ = 9.0, *J*₂ = 8.0, *J*₃ = 3.8, *J*₄ = 1.2), 2.61 (дд, 1H, HC⁶, *J*₁ = 17.2, *J*₂ = 8.0), 2.67 (дд, 1H, HC⁶, *J*₁ = 17.2, *J*₂ = 3.8), 2.76 (уш.с, 1H, HC¹), 4.28 (дд, 1H, HC², *J*₁ = 9.0, *J*₂ = 1.0), 7.30 – 7.38 (м, 3H, HC_{аром}), 7.38 – 7.42 (м, 2H, HC_{аром}), 7.42 – 7.47 (м, 1H, HC_{аром}), 7.58 – 7.61 (м, 2H, HC_{аром}), 7.68 – 7.72 (м, 2H, HC_{аром}). Физико-химические характеристики совпали с опубликованными ранее [141].

Реакция с 2-(2-бром-1-фенилэтилиден)гидразидом уксусной кислоты

В результате реакции 0.1 г (1.2 ммоль) норборнена, 0.1 г (0.4 ммоль) α-бромгидразона и 0.1 г (0.8 ммоль) К₂СО₃ было получено 0.06 г (55%) 3ацетил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2,7}]ундец-4-ена (**87b**) в виде светло-желтого масла. Rf 0.2 (CHCl₃). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 0.99 (дд, 1H, HC_{ahmu}^{11} , $J_1 = 10.5$, $J_2 = 1.0$), 1.21 - 1.28, 1.30 - 1.41, 1.42 - 1.54 (все м, по 1H, 2H, 2H (соответственно), H_2C^9 , H_2C^{10} , HC^{11}_{CUH}), 2.06 (с, 1H, HC⁸), 2.35 – 2.40 (м, перекрывается с CH₃, HC^{7}), 2.38 (c, 3H, CH₃), 2.47 (дд, 1H, HC^{6} , $J_{1} = 17.3$, $J_{2} = 8.8$), 2.52 (уш.с, 1H, HC^{1}), 2.57 (дд, 1H, HC⁶, *J*₁ = 17.3, *J*₂ = 2.4), 4.10 (д, 1H, HC², *J* = 9.2), 7.32 – 7.45 (м, 3H, HC_{аром}), 7.68 – 7.78 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 22.43 (CH₃), 25.04 , 26.34, 29.15, 34.31, 39.51, 44.62, 45.28, 54.85 (C¹, C², C⁶, C⁷, C⁸, C⁹, C¹⁰, C¹¹), 125.37, 128.46, 129.31, 137.35 (C_{apon}), 150.35 (C=N), 172.78 (C=O). ESI-MS (m/z): Вычислено для С₁₇Н₂₁N₂O 269.1645 [M+1], найдено 269.1645. В результате реакции 0.1 г (1.2 ммоль) норборнена, 0.1 г (0.4 ммоль) α-бромгидразона и 0.26 г (0.8 Cs_2CO_3 было 0.074 3-ацетил-5-фенил-3,4ммоль) получено Г (74%) диазатрицикло[6.2.1.0^{2,7}]ундец-4-ена (**87b**).

Реакция с 2-(2-бром-1-фенилэтилиден)гидразидом 2-фуранкарбоновой кислоты

В результате реакции 0.09 г (0.9 ммоль) норборнена, 0.1 г (0.3 ммоль) α-бромгидразона и 0.09 г (0.6 ммоль) К₂CO₃ было получено 0.07 г (73%) <u>3-</u> <u>фур-2-илкарбонил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2,7}]ундец-4-ена</u> (**87c**)

в виде кристаллизующегося желтого масла. R_f 0.3 (CHCl₃). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.03 (д, 1H, HC¹¹_{антин}, *J* = 10.8), 1.24 – 1.36, 1.41 – 1.60 (все м, по 1H и 4H (соответственно), H₂C⁹, H₂C¹⁰, HC¹¹_{син}), 2.10 (с, 1H, HC⁸), 2.51 (т, 1H, HC⁷, *J* = 8.9), 2.59 (дд, 1H, HC⁶, *J*₁ = 16.7, *J*₂ = 8.7), 2.71 (уп.с, 1H, HC¹), 2.71 (дд, 1H, HC⁶, *J*₁ = 16.7, *J*₂ = 2.3), 4.29 (д, 1H, HC², *J* = 9.0), 6.47 (дд, 1H, HC_{фурил}, *J*₁ = 3.5, *J*₂ = 1.7), 7.18 (дд, 1H, HC_{фурил}, *J*₁ = 3.5, *J*₂ = 0.6), 7.61 (дд, 1H, HC_{фурил}, *J*₁ = 1.7, *J*₂ = 0.6), 7.41 – 7.48 (м, 3H, HC_{аром}), 7.72 – 7.77 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 25.66, 26.37, 29.33, 34.55, 40.31, 44.78, 45.12, 55.94 (C¹, C², C⁶, C⁷, C⁸, C⁹, C¹⁰, C¹¹), 111.49 (С_{фурил}), 119.80 (С_{фурил}), 125.79 (С_{аром}), 128.68 (С_{аром}), 129.55 (С_{аром}), 137.36 (С_{аром}), 145.02 (С_{фурил}), 147.14 (С_{фурил}), 153.61 (C=N), 159.51 (C=O). ESI-MS (m/z): Вычислено для С₂₀H₂₁N₂O₂ 321.1598 [M+1], найдено 321.1601. В результате реакции 0.09 г (0.9 ммоль) норборнена, 0.1 г (0.3 ммоль) α-бромгидразона и 0.2 г (0.6 ммоль) Сs₂CO₃ было получено 0.09 г (91%) <u>3-фур-2-</u> илкарбонил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2.7}]ундец-4-ена (**87с**).

Реакция с 2-(2-бромо-1-фенилэтилиден)гидразидом циклопропанкарбоновой кислоты

В результате реакции 0.1 г (1 ммоль) норборнена, 0.1 г (0.35 ммоль) а-

бромгидразона и 0.1 г (0.7 ммоль) K_2CO_3 было получено 0.041 г (41%) <u>3-</u> <u>пиклопропилкарбонил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2.7}]ундец-4-ена</u> (87d) в виде кристаллизующегося желтого масла. R_f 0.26 (CHCl₃). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 0.80 – 0.92, 1.00 – 1.06, 1.10 – 1.16, 1.25 – 1.31, 1.34 – 1.44, 1.45 – 1.56 (все м по 2H, 2H, 1H, 1H, 2H, 2H (соответственно), H_2C^9 , H_2C^{10} , H_2C^{11} , $H_2C_{циклопропил,}$ $H_2C_{циклопропил,}$ 2.09 (с, 1H, HC⁸), 2.43 (тд, 1H, HC⁷, J_I = 8.8, J_2 = 2.0), 2.55 (дд, 1H, HC⁶, J_I = 17.4, J_2 = 8.4), 2.52 (уш.с, 1H, HC¹), 2.63 (дд, 1H, HC⁶, J_I = 17.4, J_2 = 3.1), 2.88 (тт, 1H, HC⁶, J_I = 17.4, J_2 = 4.8), 4.14 (дд, 1H, HC², J_I = 9.2, J_2 = 0.5), 7.36 – 7.44 (м, 3H, HC_{аром}), 7.74 – 7.80 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 8.75, 11.18 (С_{циклопропил}), 25.98, 26.45, 29.06, 34.37, 39.79, 39.81, 44.74, 44.79, 45.29, 55.33, 55.37 (C¹, C², C⁶, C⁷, C⁸, C⁹, C¹⁰, C¹¹), 125.43 (С_{аром}), 128.45 (С_{аром}), 129.23 (С_{аром}), 137.58 (С_{аром}), 150.85 (C=N), 175.38 (C=O). ESI-MS (m/z): Вычислено для C₁₉H₂₃N₂O 295.1805 [M+1], найдено 295.1808. В результате реакции 0.1 г (1 моль) норборнена, 0.1 г (0.35 ммоль) α-бромгидразона и 0.23 г (0.7 ммоль) Cs₂CO₃ было получено 0.089 г (90%) <u>3-</u> <u>пиклопропилкарбонил-5-фенил-3,4-диазатрицикло[6.2.1.0^{2.7}]ундец-4-ена</u> (87d). Реакция с N'-[(1Z)-2-Бром-1-фенилэтилиден]-4-метилбензолсульфоногидразидом

В результате реакции 0.08 г (0.9 ммоль) норборнена, 0.1 г (0.3 ммоль) α-бромгидразона и 0.09 г (0.6 ммоль) К₂СО₃ в 3 мл CHCl₃ было получено 0.08 Г (80%) 3-тозил-5-фенил-3,4диазатрицикло[6.2.1.0^{2,7}]ундец-4-ена (87е) в виде белых кристаллов. R_f 0.45 (CHCl₃). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.14 – 1.26, 1.51 – 1.71 (оба м, по 3Н и 2Н (соответственно), H₂C⁹, H_2C^{10} , $HC^{11}_{a\mu\mu\mu}$, 1.96 (g, 1H, J = 10.7, $HC^{11}_{cu\mu}$), 2.12 (g, 1H, J = 3.1, HC^8), 1.88 (m, 1H, HC^7), 2.03 (дд, 1H, HC⁶, $J_1 = 14.9$, $J_2 = 10.3$), 2.43 (с, 3H, CH₃), 3.31 (д, 1H, HC¹, J = 4.2), 2.83 (дд, 1H, HC⁶, J_1 = 14.9, *J*₂ = 6.8), 2.89 (д, 1H, HC², *J* = 8.1), 7.32 – 7.39 (м, 5H, HC_{аром}), 7.63 – 7.67 (м, 2H, HC_{аром}), 7.94 (д, 2Н, НС_{аром}, *J* = 8.3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 21.64 (CH₃), 25.53, 27.16, 28.65, 32.98, 42.95, 43.01, 43.81, 63.70 (C¹, C², C⁶, C⁷, C⁸, C⁹, C¹⁰, C¹¹), 125.81 (C_{apom}), 128.39 (C_{apom}), 129.20 (Саром), 129.50 (Саром), 129.68 (Саром), 132.61 (Саром), 136.17 (Саром), 144.00 (Саром), 157.43 (C=N). ESI-MS (m/z): Вычислено для C₂₂H₂₅N₂O₂S 381.1631 [M+1], найдено 381.1631. В результате реакции 0.08 г (0.9 ммоль) норборнена, 0.1 г (0.3 ммоль) α-бромгидразона и 0.09 г (0.6 ммоль) Cs₂CO₃ в 3 мл CH₂Cl₂ было получено 0.074 г (74%) 3-тозил-5-фенил-3,4диазатрицикло[6.2.1.0^{2,7}]ундец-4-ена (**87e**).

IV.8.3. Взаимодействие с 2-азапроизводными

Реакция с тозил-2-азабицикло[2.2.1]гепт-5-еном

К 2-(2-бром-1-фенилэтилиден) гидразид уксусной кислоты (0.3 г, 1.2 ммоль) в 8 мл хлористого метилена добавили тозил-2-азабицикло[2.2.1] гепт-5-ен (0.2 г, 0.8 ммоль). Затем к реакционной смеси прибавили K₂CO₃ (0.2 г, 1.6 ммоль). Реакцию перемешивали ночь, осадок отфильтровали, фильтрат упарили, затем хроматографировали. После хроматографического разделения (этилацетат – петролейный эфир 1:1) выделили в порядке вымывания:

<u>3-Ацетил-9-тозил-5-фенил-3,4,9-триазатрицикло[6.2.1.0^{2,7}]ундец-4-ен</u> (**88b**) в виде желтых

кристаллов. R_f 0.4. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 0.80 (д, 1H, HC¹¹_{анти}, J = 11.0), 1.25 (д, 1H, HC¹¹_{син}, J = 11.0), 2.38 (с, 3H, CH₃), 2.41 (с, 3H, CH₃), 2.45 (дд, 1H, HC⁶, $J_I = 18.5$, $J_2 = 3.0$), 2.61 (дд, 1H, HC⁶, $J_I = 18.5$, $J_2 = 10.0$), 2.76 (уш.с., 1H, HC¹), 2.97 (т, 1H, HC⁷, J = 9.4), 3.01 (дд, 1H, HC¹⁰₂₄₃₀, $J_I = 9.5$, $J_2 = 3.6$), 3.25 (дд, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC², J = 18.5, $J_2 = 10.0$), 2.76 (дд, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC², J = 18.5, $J_2 = 10.0$), 2.76 (дд, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC², J = 18.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 10.0$), 2.76 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC², J = 18.5, $J_2 = 3.6$), 3.25 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 10.0$), 2.76 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 3.6$), 3.25 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 10.0$), 2.76 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 3.6$), 3.25 (д, 1H, HC¹⁰₂₄₄₀, J = 9.5), 4.01 (с, 1H, HC⁸), 4.26 (д, 1H, HC²), J = 18.5, $J_2 = 10.0$), J = 10.0, J = 10.0

9.4), 7.30 (д, 2H, HC_{аром}, J = 7.9), 7.38 – 7.44 (м, 3H, HC_{аром}), 7.67 – 7.73 (м, 4H, HC_{аром}). ESI-MS (m/z): Вычислено для C₂₃H₂₆N₃O₃S 424.1689 [M+1], найдено 424.1695.

(д, 2H, HC_{аром}, *J* = 8.1), 7.37 – 7.43 (м, 3H, HC_{аром}), 7.66 – 7.72 (м, 2H, HC_{аром}), 7.84 (д, 2H, HC_{аром}, *J* = 8.1). ESI-MS (m/z): Вычислено для C₂₃H₂₆N₃O₃S 424.1689 [M+1], найдено 424.1694.

IV.8.4. Взаимодействие с 7-азабензнорборнадиеном

Общая методика

К указанному количеству 7-азабензнорборнадиена в хлористом метилене добавили αбромгидразон и основание. Реакционную смесь перемешивали, осадок отфильтровали, фильтрат упарили, остаток хроматографировали.

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.4 г (1.2 ммоль) α-бромгидразона и 0.17 г (1.2 ммоль) карбоната калия получили 0.15 г (75%) <u>15-трет-бутоксикарбонил-3-бензоил-5-фенил-3,4,15-</u>триазатетрацикло[6.6.1.0^{2,7}]пентадека-4,10,12,14-тетраена (**90a**) в виде

белых кристаллов. R_f 0.23 (CHCl₃). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 1.23 (с, 9H, C(CH₃)₃), 2.48 – 2.59 (м, 1H, HC⁷), 2.85 (дд, HC⁶, *J*₁ = 17.0, *J*₂ = 6.1), 3.12 (дд, HC⁶, *J*₁ = 17.0, *J*₂ = 7.7), 4.14 (уш.с, 1H, HC²), 5.09 (уш.с, 1H, HC⁸), 5.48 (с, 1H, HC¹), 7.21 (тд, 1H, HC_{аром}, *J*₁ = 7.6, *J*₂ = 1.4), 7.24 (тд, 1H, HC_{аром}, *J*₁ = 7.6, *J*₂ = 1.4), 7.31 – 7.37 (м, 4H, HC_{аром}), 7.41 – 7.53 (м, 3H, HC_{аром}), 7.56 (д, 1H, HC_{аром}, *J* = 6.7), 7.61 – 7.66 (м, 2H, HC_{аром}), 7.81 (д, 2H, HC_{аром}, *J* = 7.4). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 25.26, 28.09 (C(<u>C</u>H₃)₃), 35.62, 55.40, 66.81, 67.23, 80.54 (<u>C</u>(CH₃)₃), 120.37, 120.92, 125.70, 127.20, 127.26, 127.45, 128.46, 129.48, 130.17, 130.68, 135.31, 136.40, 143.44, 144.09 (C=N), 150.64, 155.20, 172.84. Вычислено для C₃₀H₃₀N₃O₃ 480.2290 [M+1], найдено 480.2282. Спектр ЯМР ¹H (DMSO-d₆, T = 333 K, δ , м.д., *J*/Гц): 1.10 (с, 9H, C(CH₃)₃), 2.67 (тд, 1H, HC⁷, *J* = 8.3, 4.1), 2.97 (дд, 1H, HC⁶, *J* = 17.2, 4.0), 3.05 (дд, 1H, HC⁶, *J* = 17.2, 8.4), 4.16 (д, 1H, HC², *J* = 8.7), 5.10 (с, HC⁸), 5.30 (с, HC¹), 7.22 – 7.27 (м, 2H, HC¹¹, HC¹²), 7.33 – 7.40 (м, 3H, HC_{аром}), 7.42 – 7.44 (м, 1H, HC¹⁰ (или HC¹³)), 7.45 – 7.48 (м, 3H, HC_{аром}, HC¹³ (или HC¹⁰)), 7.52 (тт, 1H, HC_{аром}, *J* = 7.6, 1.3), 7.60 – 7.63 (2H, HC_{аром}).

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.2 г (0.8 ммоль) α-бромгидразона и 0.3 г (0.8 ммоль) карбоната цезия получили 0.11 г (67%) <u>15-трет-бутоксикарбонил-3-ацетил-5-фенил-3,4,15-</u>триазатетрацикло[6.6.1.0^{2,7}]пентадека-4,10,12,14-тетраена (**90b**) в виде

желтого кристаллизующегося масла. R_f 0.33 (MeOH – CHCl₃, 1:100). Спектр ЯМР ¹H (CDCl₃, δ, м.д., *J*/Гц): 1.25 (с, 9H, C(CH₃)₃), 2.45 (м, 1H, HC⁷), 2.50 (с, 3H, CH₃), 2.81 (дд, 1H, HC⁶, *J*₁ = 17.4, *J*₂ = 4.9), 2.98 (дд, 1H, HC⁶, *J*₁ = 17.4, *J*₂ = 8.6), 3.98 (уш.с, 1H, HC²), 5.02 (уш.с, 1H, HC⁸), 5.30 (с, 1H, HC¹), 7.18 (тд, 1H, HC_{аром}, *J*₁ = 7.6, *J*₂ = 1.6), 7.21 (тд, 1H, HC_{аром}, *J*₁ = 7.6, *J*₂ = 1.6), 7.31 (м, 1H, HC_{аром}), 7.38 – 7.45 (м, 3H, HC_{аром}), 7.48 (м, 1H, HC_{аром}), 7.75 – 7.81 (м, 2H, HC_{аром}). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 22.47 (CH₃), 25.09, 28.10 (C(<u>C</u>H₃)₃), 35.61, 53.37, 67.08, 67.53, 80.47 (<u>C</u>(CH₃)₃), 120.26, 121.06, 125.56, 127.12, 127.17, 128.46, 129.43, 136.87, 143.97, 154.84, 174.29. Вычислено для C₂₅H₂₈N₃O₃ 418.2130 [M+1], найдено 418.2125.

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.38 г (1.2 ммоль) α-бромгидразона и 0.17 г (1.2 ммоль) карбоната калия получили 0.14 г (70%) <u>15-*трет*-бутоксикарбонил-3-(фур-2-илкарбонил)-5-фенил-</u><u>3,4,15-триазатетрацикло[6.6.1.0^{2,7}]пентадека-4,10,12,14-тетраена</u> (**90с**) в виде оранжевых кристаллов. R_f 0.24 (MeOH – CHCl₃, 1:50). Спектр ЯМР

¹H (CDCl₃, δ , м.д., J/Γ ц): 1.20 (с, 9H, C(CH₃)₃), 2.52 (уш.с, 1H, HC⁷), 2.90 (дд, 1H, HC⁶, $J_I = 17.0$, $J_2 = 5.6$), 3.07 (дд, 1H, HC⁶, $J_I = 17.0$, $J_2 = 7.9$), 4.14 (уш.с, 1H, HC²), 5.03 (уш.с, 1H, HC⁸), 5.43 (с, 1H, HC¹), 6.54 (с, 1H, HC_{фурил}), 7.19 (тд, 1H, HC_{фурил}, $J_I = 7.7$, $J_2 = 1.3$), 7.22 (тд, 1H, HC_{фурил}, $J_I = 7.7$, $J_2 = 1.3$), 7.30 – 7.37 (м, 2H, HC_{аром}), 7.41 – 7.48 (м, 3H, HC_{аром}), 7.52 (д, 1H, HC_{аром}, J = 6.7), 7.66 (с, 1H, HC_{аром}), 7.74 – 7.80 (м, 2H, HC_{аром}). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 25.33, 27.63 (C(CH₃)₃), 35.89, 54.19, 66.71, 67.29, 80.15 (C(CH₃)₃), 111.35, 120.02, 120.51, 125.59, 126.80, 126.87, 128.26, 129.23, 136.57, 143.15, 145.10, 146.43, 151.13, 155.12, 160.56, 171.03. Вычислено для C₂₈H₂₈N₃O₄ 470.2078 [M+1], найдено 470.2074.

В результате взаимодействия 0.1 г (0.4 ммоль) алкена, 0.45 г (1.2 ммоль) α-бромгидразона и 0.17 г (1.2 ммоль) карбоната калия получили 0.07 г (73%) <u>15-трет-бутоксикарбонил-3-тозил-5-фенил-</u><u>3,4,15-триазатетрацикло[6.6.1.0^{2,7}]пентадека-4,10,12,14-тетраена</u> в

виде бежевых кристаллов. R_f 0.34 (этилацетат – петролейный эфир, 1:3). Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц): 1.39 (c, 3H, C(CH₃)₃), 2.11 (дт, 1H, HC⁷, $J_1 = 10.2$, $J_2 = 7.2$), 2.39 (c, 3H, CH₃), 2.57 (дд, 1H, HC⁶, $J_1 = 15.1$, $J_2 = 10.3$), 3.17 (дд, 2H, HC⁶+ HC², $J_1 = 15.1$, $J_2 = 6.4$), 5.04 (уш.с, 1H, HC⁸), 5.96 (c, 1H, HC¹), 7.17 (тд, 1H, HC_{аром}, $J_1 = 6.9$, $J_2 = 1.0$), 7.23 (тд, 1H, HC_{аром}, $J_1 = 7.0$, $J_2 = 1.2$), 7.26 (д, 1H, HC_{аром}, J = 7.1), 7.32 (д, 2H, HC_{аром}, J = 8.1), 7.35 – 7.40 (м, 3H, HC_{аром}),

7.47 (д, 1Н, HC_{аром}, *J* = 7.3), 7.62 – 7.68 (м, 2Н, HC_{аром}), 7.93 (д, 2Н, HC_{аром}, *J* = 8.1). Вычислено для C₃₀H₃₂N₃O₄S 530.2100 [M+1], найдено 530.2108.

V. ЗАКЛЮЧЕНИЕ

Полученные в работе результаты позволяют сделать следующие выводы:

1. Изучено 1,3-диполярное циклоприсоединение нитрилоксидов и нитрилиминов к производным 2-азабицикло[2.2.1]гептена и 3-аза-2-окса-бицикло[2.2.1]гептена с электроноакцепторными заместителями у атома азота. Показано, что реакция протекает нерегиоселективно с образованием продуктов с *экзо*-расположением изоксазолинового и пиразолинового кольца независимо от типа защитной группы у атома азота.

2. Найдено, что 1,3-циклоприсоединение нитрилоксидов и нитрилиминов к производным 7-азабензнорборнадиена протекает стереоспецифично с *экзо*-стороны. Показано, что образующиеся пиразолины медленно разлагаются с образованием пиразолов.

3. Найдено, что 1,3-циклоприсоединение нитрилоксидов и нитрилиминов к 2,3диалкоксикарбонил-7-азабицикло[2.2.1]гепт-2,5-диенам протекает преимущественно по связи, содержащей электроноакцепторные заместители. При этом присоединение сопровождается реакцией ретро-Дильса-Альдера, что приводит к образованию моноциклических пиразолов и пирролов.

4. Изучены возможные пути и разработан метод синтеза новых конденсированных изоксазолов, содержащих азабициклический фрагмент.

5. Найдены оптимальные условия проведения реакции циклоприсоединения 1,2-диаза-1,3диенов, генерируемых *in situ* из соответствующих α-бромо гидразонов, к производным норборнена. Впервые синтезированы тетрагдропиридазины, конденсированные с азабициклическим каркасом

6. Показано, что выход изоксазолинов в реакциях электрофильного нитрозирования циклопропанов снижается при введении в молекулу объёмных заместителей, способных участвовать в превращениях образующегося на первом этапе карбокатиона.

7. Найдено, что образование перегруппированных продуктов и продуктов 1,2-*цис*присоединения при бромселененировании производных 2-азанорборнена вызвано участием атома азота в стабилизации карбокатиона и зависит от нуклеофильности азота и полярности растворителя.

VI. СПИСОК ЛИТЕРАТУРЫ

- Singh R., Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical profile of a versatile synthetic building block and its impact on the development of therapeutics. // Chem. Rev. 2012. V. 112. №8. P. 4642–4686.
- Wojaczyńska E., Wojaczyński J., Kleniewska K., Dorsz M., Olszewski T.K. 2-Azanorbornane a versatile chiral aza-Diels-Alder cycloadduct: Preparation, applications in stereoselective synthesis and biological activity. // Org. Biomol. Chem. – 2015. – V. 13. – №22. – P. 6116– 6148.
- Chen Z., Trudell M.L. Chemistry of 7-azabicyclo[2.2.1]hepta-2,5-dienes, 7azabicyclo[2.2.1]hept-2-enes, and 7-azabicyclo[2.2.1]heptanes. // Chem. Rev. – 1996. – V. 96. – №3. – P. 1179–1193.
- Krow G.R., Johnson C., Boyle M. Heterodienophiles 9. On the preference for *exo*-orientation in aldimine cycloadditions. // Tetrahedron Lett. 1978. V. 19. №23. P. 1971–1974.
- McKay W.R., Proctor G.R. Removal of Toluene-*p*-sulphonyl Groups from Sulphonamides. Part
 Reactions of Phenylglyoxal lmines and some Tosylimines. // J.C.S. Perkin I. 1981. P. 2443–2450.
- Larsen S.D., Grieco P.A. Aza Diels-Alder Reactions in Aqueous Solution: Cyclocondensation of Dienes with Simple Iminium Salts Generated under Mannich Conditions. // J. Am. Chem. Soc. – 1985. – V. 107. – №6. – P. 1768–1769.
- Marchand-Brynaert J., Ghosez L. [2+4] Cycloadditions of tetramethylketeneimmonium ion to *cis*-fixed dienes. // Tetrahedron Lett. – 1974. – V. 15. – №4. – P. 377–380.
- Kasyan A., Wagner C., Maier M.E. Regiochemistry of the reductive heck coupling of 2-Azabicyclo[2.2.1]hept-5-ene. Synthesis of epibatidine analogues. // Tetrahedron. – 1998. – V. 54. – №28. – P. 8047–8054.
- Kobayashi T., Ono K., Kato H. A Novel Skeletal Rearrangement of 2-Azabicyclo[2.2.1]hept-5ene-3-carboxylic Acid Derivatives into 2-Oxabicyclo[3.3.0]oct-7-en-3-ones under Acidic Conditions. // Bull. Chem. Soc. Jpn. – 1992. – V. 65. – P. 61–65.
- Grieco P.A., Larsen S.D., Fobare W.F. Aza Diels-Alder reactions in water: Cyclocondensation of C-acyl iminium ions with cyclopentadiene. // Tetrahedron Lett. – 1986. – V. 27. – №18. – P. 1975–1978.
- Hursthouse M.B., Malik K.M.A., Hibbs D.E., Robert S.M., Seago A., Sikh V., Storer R. Reactions of ethyl 2-acetyl-2-azabicyclo[2.2.1]hept-5-ene-3- carboxylate and 4-acetylamino-2oxabicyclo[3.3.0]oct-7-en-3-one with some electrophiles. // J. Chem. Soc. Perkin Trans. I. – 1995. – P. 2419–2425.
- Jagt J.C., van Leusen A.M. Diels-Alder Cycloadditions of Sulfonyl Cyanides with Cyclopentadiene. Synthesis of 2-Azabicyclo[2.2.1]hepta-2,5-dienes. // J. Org. Chem. – 1974. – V. 39. – №4. – P. 564–566.
- Malpass J. R., Tweddle N.J. Reaction of Chlorosulphonyl Isocyanate with 1,3-Dienes. Control of 1.2- and 1.4-Addition Pathways and the Synthesis of Aza- and Oxa-bicyclic Systems. // J.C.S. Perkin I. 1977. P. 874–884.
- Id. Justice D.E., Malpass J.R. Total synthesis of scopine, pseudoscopine, and nor-derivatives. // Tetrahedron. – 1996. – V. 52. – №36. – P. 11977–11994.
- Li F., Warshakoon N.C., Miller M.J. Synthetic application of acylnitroso Diels-Alder derived aminocyclopentenols: Total synthesis of (+)-streptazolin. // J. Org. Chem. – 2004. – V. 69. – №25. – P. 8836–8841.
- Malpass J.R., Hemmings D.A., Wallis A.L., Fletcher S.R., Patel S. Synthesis and nicotinic acetylcholine-binding properties of epibatidine homologues: Homoepibatidine and dihomoepibatidine. // J. Chem. Soc. Perkin 1. 2001. №9. P. 1044–1050.
- Memeo M.G., Bovio B., Quadrelli P. RuO₄-catalyzed oxidation reactions of isoxazolino-2azanorbornane derivatives: A short-cut synthesis of tricyclic lactams and peptidomimetic γamino acids. // Tetrahedron. – 2011. – V. 67. – №10. – P. 1907–1914.
- Lee W., Miller M.J. Concise synthesis of 4-acylamino analogues of 2aminobicyclo[3.1.0]hexane- 2,6-dicarboxylic acids (LY354740) from an acylnitroso Diels-Alder cycloadduct. // J. Org. Chem. – 2004. – V. 69. – №13. – P. 4516–4519.
- Jiang M.X., Warshakoon N.C., Miller M.J. Chemoenzymatic Asymmetric Total Synthesis of Phosphodiesterase Inhibitors : Preparation of a Polycyclic Pyrazolo [3,4-*d*]pyrimidine from an Acylnitroso Diels - Alder Cycloadduct-Derived Aminocyclopentenol. // J. Org. Chem. – 2005. – V. 70. – №4. – P. 2824–2827.
- 20. Kresze G., Schulz G. Additionsreaktionen der nitrosogruppe-II. Diels-Alder-Reaktion mit cyclischen dienen; synthese einiger *cis*-4-phenylaminocyclanole. // Tetrahedron. 1961. V.

12. – P. 7–12.

- Kresze G., Schulz G., Walz H. Substituierte Cyclopentadiene und ihre Diels-Alder-Reaktionen.
 // Justus Liebigs Ann. Chem. 1963. V. 666. №1. P. 45–53.
- Ahmad M., Hamer J. The Addition of Aromatic Nitroso Compounds to Conjugated Dienes. III.
 Effect of Solvent on Reaction Rates and Equilibrium Constant. // J. Org. Chem. 1966. V. 31.
 №9. P. 2831–2833.
- Ranganathan D., Ranganathan S., Rao C.B., Raman K. The Preparation And Transformations Of 2-Aza-3-Oxabicyclo[2.2.1]heptene Hydrocloride. // Tetrahedron. – 1981. – V. 37. – P. 629– 635.
- Møller E.R., Jørgensen K.A. A molybdenum-catalyzed oxidative system forming oxazines (hetero-Diels-Alder adducts) from primary aromatic amines, hydrogen peroxide, and conjugated dienes. // J. Org. Chem. – 1996. – V. 61. – №17. – P. 5770–5778.
- 25. Dao L.H., Dust J.M., Mackay D., Watson K.N. The formation and interconversion of oxazines and dioxazines from the reaction of nitrosocarbonyl compounds with cyclopentadienes. // Can.J.Chem. – 1979. – V. 57. – №3. – P. 1712–1719.
- Miller A., Paterson T., Procter G. Stereoselective cycloadditions of chiral acyl-nitroso compounds. // Synlett. 1989. V. 1989. №1. P. 32–34.
- Iwasa S., Tajima K., Tsushima S., Nishiyama H. A mild oxidation method of hydroxamic acids: Efficient trapping of acyl nitroso intermediates. // Tetrahedron Lett. – 2001. – V. 42. – №34. – P. 5897–5899.
- Jenkins N.E., Ware R.W., Atkinson R.N., King S.B. Generation of Acyl Nitroso Compounds by the Oxidation of N-Acyl Hydroxylamines with the Dess-Martin Periodinane. // Synth. Commun. - 2000. - V. 30. - №5. - P. 947–953.
- 29. Davey M.H., Lee V.Y., Miller R.D., Marks T.J. Synthesis of aryl nitroso derivatives by *tert*butyl hypochlorite oxidation in homogeneous media. Intermediates for the preparation of highhyperpolarizability chromophore skeletons. // J. Org. Chem. – 1999. – V. 64. – №13. – P. 4976– 4979.
- Wood W.W., Wilkin J.A. A convenient synthesis of aryl nitroso compounds. // Synth. Commun.
 1992. V. 22. №12. P. 1683–1686.

- Quadrelli P., Invernizzi G.A., Caramella P. A mild oxidation of nitrile oxides: A new synthetic route to nitroso carbonyl intermediates. // Tetrahedron Lett. 1996. V. 37. №11. P. 1909–1912.
- Martin S.F., Hartmann M., Josey J.A. Diastereoselective [4+2] Cycloadditions of Acyl Nitroso Compounds. // Tetrahedron Lett. – 1992. – V. 33. – №25. – P. 3583–3586.
- Sato K., Aoki M., Takagi J., Noyori R. Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide. // J. Am. Chem. Soc. 1997. V. 119. №8. P. 12386–12387.
- 34. Iwasa S., Fakhruddin A., Tsukamoto Y., Kameyama M., Nishiyama H. Iridium(I)-catalyzed hydrogen peroxide oxidation of hydroxamic acids and hetero Diels-Alder reaction of the acyl nitroso intermediates with cyclopentadiene. // Tetrahedron Lett. – 2002. – V. 43. – №35. – P. 6159–6161.
- 35. Christie C.C., Kirby G.W., McGuigan H., Mackinnon J.W. C-nitrosoformamides, a new class of transient dienophiles formed by oxidation of N-hydroxyureas. // J. Chem. Soc. Perkin Trans. 1.
 1985. №6. P. 2469-2473.
- 36. Heuchel J.M., Albrecht S., Strehler C., Defoin A., Tarnus C. Chiral Diels-Alder reaction between cyclopentadiene and nitroso derivatives: Thermal isomerisation/racemisation of the adducts. // Tetrahedron Asymmetry. – 2012. – V. 23. – №20–21. – P. 1467–1473.
- 37. Ware R.W., King S.B. P-nitrosophosphate compounds: New N-O heterodienophiles and nitroxyl delivery agents. // J. Org. Chem. 2000. V. 65. №25. P. 8725–8729.
- King S.B., Ganem B. Enentioselective Synthesis of Mannostatin A: A New Glycoprotein Processing Inhibitor. // J. Am. Chem. Soc. – 1991. – V. 113. – P. 5089–5090.
- Lin W., Virga K.G., Kim K.H., Zajicek J., Mendel D., Miller M.J. Diastereoselective synthesis of a spironoraristeromycin using an acylnitroso Diels-Alder reaction. // J. Org. Chem. 2009. V. 74. №16. P. 5941–5946.
- Mackay D., Watson K.N., Dao L.H. Evidence for the reaction of nitrosocarbonyl compounds as heterodienes in the Diels-Alder reaction. // J. Chem. Soc. Chem. Commun. – 1977. – №20. – P. 702–703.
- 41. Quadrelli P., Mella M., Legnani L., Al-Saad D. From cyclopentadiene to isoxazolinecarbocyclic nucleosides; Synthesis of highly active inhibitors of influenza a virus H1N1. //

European J. Org. Chem. – 2013. – №21. – P. 4655–4665.

- 42. Нечаев М. А. Новые реакции халькогенирования и галогенирования циклоолефинов и азабицикло[2.2.1]гептенов // Дисс...канд.хим.наук, М. 2016. 217 с.
- 43. Carpino L.A., Barr D.E. 7-Azabenzonorbornadiene. // J. Org. Chem. 1966. V. 31. №3. P. 764–767.
- 44. Lautens M., Fagnou K., Zunic V. An expedient enantioselective route to diaminotetralins: Application in the preparation of analgesic compounds. // Org. Lett. – 2002. – V. 4. – №20. – P. 3465–3468.
- Long Y., Yang D., Zhang Z., Wu Y., Zeng H., Chen Y. Iridium-catalyzed asymmetric ring opening of azabicyclic alkenes by amines. // J. Org. Chem. 2010. V. 75. №21. P. 7291–7299.
- 46. Yang D., Hu P., Long Y., Wu Y., Zeng H., Wang H., Zuo X. Iridium-Catalyzed Asymmetric Ring-Opening Reactions of N-Boc-azabenzonorbornadiene with Secondary Amine Nucleophiles. // Org. Lett. – 2008. – V. 10. – №21. – P. 4723–4726.
- 47. Carroll F.I., Robinson T.P., Brieaddy L.E., Atkinson R.N., Mascarella S.W., Damaj M.I., Martin B.R., Navarro H.A. Synthesis and nicotinic acetylcholine receptor binding properties of bridged and fused ring analogues of epibatidine. // J. Med. Chem. 2007. V. 50. №25. P. 6383–6391.
- 48. Devaraj K., Ingner F.J.L., Sollert C., Gates P.J., Orthaber A., Pilarski L.T. Arynes and Their Precursors from Arylboronic Acids via Catalytic C-H Silylation. // J. Org. Chem. 2019. V. 84. №9. P. 5863–5871.
- 49. Ikawa T., Sun J., Takagi A., Akai S. One-Pot Generation of Functionalized Benzynes from Readily Available 2-Hydroxyphenylboronic Acids. // J. Org. Chem. 2020. V. 85. №5. P. 3383–3392.
- Long Yuhua, Yang Dingqiao Z.H. Rhodium-catalyzed Asymmetric Ring-opening Reactions of N-Boc-azabenzonorbornadiene with N-Substituted Piperazine Nucleophiles. // Chin. J. Chem. – 2010. – V. 28. – P. 235–242.
- 51. Cabrera S., Carretero J.C. Copper-Catalyzed *Anti*-Stereocontrolled Ring-Opening of Azabicyclic Alkenes with Grignard Reagents. // Org. Lett. 2005. V. 7. №2. P. 219–221.

- 52. Cho Y.H., Fayol A., Lautens M. Enantioselective synthesis of chiral 1,2-diamines by the catalytic ring opening of azabenzonorbornadienes: Application in the preparation of new chiral ligands. // Tetrahedron Asymmetry. 2006. V. 17. №3. P. 416–427.
- 53. Hodgson D.M., Bebbington M.W.P., Willis P., Road S.P., Ox O., Charnwood D., Road B., Le L. 2-Azabenzonorbornanes from 7-Azabenzonorbornanols by a Nitrogen-Directed Neophyl-Type Radical Rearrangement. // Org. Lett. 2002. V. 4. №24. P. 4353–4356.
- Lautens M., Dockendorff C. Palladium(II) catalyst systems for the addition of boronic acids to bicyclic alkenes: New scope and reactivity. // Org. Lett. – 2003. – V. 5. – №20. – P. 3695–3698.
- 55. Spande T.F., Garraffo H.M., Edwards M.W., Yeh H.J.C., Pannell L., Daly J.W. Epibatidine: A Novel (Chloropyridy1)azabicycloheptane with Potent Analgesic Activity from an Ecuadoran Poison Frog. // J. Am. Chem. Soc. – 1992. – V. 114. – №9. – P. 3475–3478.
- 56. Hodgson D.M., Bebbington M.W.P., Willis P. Development of two processes for the synthesis of bridged azabicyclic systems: Intermolecular radical addition-homoallylic rearrangements leading to 2-azanorborn-5-enes and neophyl-type radical rearrangements to 2-azabenzonorbornanes. // Org. Biomol. Chem. 2003. V. 1. №21. P. 3787–3798.
- 57. Remy D.E., Bissett F.H., Bornstein J. Benz[*f*]isoindole. // J. Org. Chem. 1978. V. 43. №23. P. 4469–4472.
- 58. Wilcox C.F., Talwar S.S. Two syntheses of dibenzo[*b*,*h*]biphenylene. // J. Chem. Soc. 1970. –
 P. 2162–2167.
- 59. Pandey G., Varkhedkara R., Tiwari D. An Efficient Access to Enantiopure 1,3- disubstituted Isoindolines from Selective Catalytic Fragmentation of Original Desymmetrized Rigid Overbred Template. // Org. Biomol. Chem. – 2015. – V. 13. – №15. – P. 4438–4448.
- Memeo M.G., Mantione D., Bovio B., Quadrelli P. RuO₄-catalyzed oxidation reactions of Nalkylisoxazolino-2- azanorbornane derivatives: An expeditious route to tricyclic γ-lactams. // Synthesis. – 2011. – №13. – P. 2165–2174.
- Quadrelli P., Piccanello A., Martinez N.V., Bovio B., Mella M., Caramella P. Isoxazolinecarbocyclic aminols for nucleoside synthesis through aza-Diels-Alder reactions. // Tetrahedron. - 2006. - V. 62. - №31. - P. 7370-7379.
- 62. Memeo M.G., Mella M., Quadrelli P. The chemoselective reduction of isoxazoline γ -lactams through iminium aza-Diels-Alder reactions: A short-cut synthesis of aminols as valuable

intermediates towards nucleoside derivatives. // Sci. World J. - 2012. - V. 2012. - P. 1-10.

- Quadrelli P., Bovio B., Piccinini A., Caramella P., De Sarlo F., Machetti F. Conversion of a nitrosocarbonyl hetero Diels-Alder cycloadduct to useful isoxazoline-carbocyclic aminols. // Tetrahedron. 2009. V. 65. №51. P. 10679–10684.
- 64. Wade P.A., Bereznak J.F. Sulfonylisoxazolines: Reliable Intermediates for the Preparation of β-Hydroxy Nitriles. // J. Org. Chem. – 1987. – V. 52. – №14. – P. 2973–2977.
- 65. Brandi A., De Sarlo F. Trimethylsilanecarbonitrile oxide. // Synthesis. 1982. P. 719–721.
- Moerch G. W., Wittle E. L., Neuklis W.A. The Decarboxylation of 3-Carboxy-2-isoxazolines.
 3β,17α-Dihydroxypregn-5-en-20-one-16α-carbonitrile. // Trans Farad Soc. 1933. V. 32. N^o3. P. 1387–1391.
- 67. Savion M., Memeo M.G., Bovio B., Grazioso G., Legnani L., Quadrelli P. Synthesis and molecular modeling of novel dihydroxycyclopentane- carbonitrile nor-nucleosides by bromonitrile oxide 1,3-dipolar cycloaddition. // Tetrahedron. 2012. V. 68. №7. P. 1845–1852.
- 68. Keck G.E., Fleming S., Nickell D., Weider P. Mild and Efficient Methods for the Reductive Cleavage of Nitrogen-Oxygen Bonds. // Synth. Commun. 1979. V. 9. №4. P. 281–286.
- Memeo M.G., Lapolla F., Bovio B., Quadrelli P. Three-dimensional heterocycles: New uracil-based structures obtained by nucleophilic substitution at the sp² carbon of bromoisoxazoline. // Molecules. 2014. V. 19. №6. P. 8661–8678.
- Coutouli-Argyropoulou E., Pilanidou P. An entry to new isoxazoline analogues of dideoxynucleosides by bromonitrile oxide 1,3-dipolar cycloaddition. // Tetrahedron Lett. 2003. V. 44. №19. P. 3755–3758.
- Keana J. F., Suk H.G., Mann J. S., Faith L., Ferguson G. Synthesis and Chemistry of N-Oxygenated Pyrroles: Crystal and Molecular Structure of a Highly Stable N-Hydroxypyrrole 18-Crown Ether Hydrate. // J. Org. Chem. 1988. V. 53. №10. P. 2268–2274.
- Nagireddy J.R., Carlson E., Tam W. 1,3-Dipolar cycloadditions of nitrile oxides with 7-oxa-and
 7-azabenzonorbornadienes. // Can. J. Chem. 2014. V. 92. №7. P. 635–639.
- Malpass J.R., Belkacemi D., Griffith G.A., Robertson M.D. Cycloaddition of phenylazide to unsymmetrical azabicyclic alkenes. // Arkivoc. – 2002. – P. 164–174.

- 74. Bodnar B.S., Miller M.J. Reactions of nitroso hetero-Diels-Alder cycloadducts with azides: Stereoselective formation of triazolines and aziridines. // J. Org. Chem. – 2007. – V. 72. – №10. – P. 3929–3932.
- 75. Stout D.M., Takaya T., Meyers A.I. An Unequivocal Synthesis of N-Substituted 1,4-Dihydropyridines. // J. Org. Chem. – 1975. – V. 40. – №5. – P. 563–569.
- Peterson W.R., Arkles B., Washburne S.S. Reaction of trimethylsilyl azide with bridged bicyclic olefins. // J. Organomet. Chem. – 1976. – V. 121. – №3. – P. 285–291.
- 77. Ishikura M., Murakami A., Katagiri N. First synthesis of 2',3'-epimino-carbocyclic nucleosides.
 // Org. Biomol. Chem. 2003. №1. P. 452-453.
- Katagiri N., Yamatoya Y., Ishikura M. The first synthesis of a 2',3'-methano carbocyclic nucleoside. // Tetrahedron Lett. 1999. V. 40. №51. P. 9069–9072.
- 79. Yamatoya Y., Ishikura M., Katagiri N. Synthesis of carbocyclic nucleosides bearing a cyclopropane ring. // Nucleic Acids Symp. Ser. 1999. №42. P. 23–24.
- Ji C., Miller M.J. Cyclopropanation of nitroso Diels-Alder cycloadducts and application to the synthesis of a 2',3'-methano carbocyclic nucleoside. // Tetrahedron Lett. 2010. V. 51. №29. P. 3789–3791.
- Carlson E., Duret G., Blanchard N., Tam W. Synthesis of cyclopropanated [2.2.1] heterobicycloalkenes: An improved procedure. // Synth. Commun. – 2016. – V. 46. – №1. – P. 55–62.
- Kaupp G., Perreten J., Leute R., Prinzbach H. Photochemische Isomerisierung anellierter 7-Azanorbornadiene. // Chem.Ber. – 1970. – V. 103. – P. 2288–2301.
- 83. Carlson E., Tam W. Synthesis of Cyclopropanated 7-Azabenzonorbornadienes. // Synthesis. –
 2016. V. 48. №15. P. 2449–2454.
- Roberts S.M., Smith C., Thomas R.J. Some Reactions of 2-Azabicyclo[2.2.1]hept-5-enes with Diphenylketene: Preparation of Polysubstituted Piperidin-2-ones. // J. Chem. Soc. Perkin Trans.
 1. 1990. №3. P. 1493–1495.
- 85. Cid M.M., Eggnauer U., Weber H.P., Pombo-Villar E. Synthesis of (-)-δ-N-Normethylskytanthine. // Tetrahedron Lett. – 1991. – V. 3. – №49. – P. 7233–7236.
- 86. Potter R.A., Bowser A.M., Yang Y., Madalengoitia J.S., Ziller J.W. Structure-reactivity

relationships of zwitterionic 1,3-diaza-Claisen rearrangements. // J. Org. Chem. – 2013. – V. 78. – №23. – P. 11772–11782.

- 87. Baxter E.W., Labaree D., Chao S., Mariano P.S. Model Studies Probing the Amino-Claisen Rearrangement Approach to Hydroisoquinoline Synthesis. Development of Methods for Stereocontrolled Introduction of Reserpine E Ring Type Functionality. // J. Org. Chem. 1989. V. 54. №12. P. 2893–2904.
- 88. Nasirova D.K., Malkova A. V., Polyanskii K.B., Yankina K.Y., Amoyaw P.N.A., Kolesnik I.A., Kletskov A. V., Godovikov I.A., Nikitina E. V., Zubkov F.I. Rearrangement of 2-azanorbornenes to tetrahydrocyclopenta[c]pyridines under the action of activated alkynes A short pathway for construction of the alternicidin core. // Tetrahedron Lett. 2017. V. 58. №46. P. 4384–4387.
- Sançon J., Sweeney J.B. A low-temperature ammonium ylid rearrangement: Enhanced reactivity engendered by rigidity. // Synlett. – 2008. – №14. – P. 2213–2214.
- 90. Blazejewski J.C., Cantacuzéne D., Wakselman C. Condensation Thermique D'Amines Heterocycliques avec le Perfluorobutyne. // Tetrahedron Lett. 1975. V. 6. P. 363–366.
- 91. Ando K., Kankake M., Suzuki T. New Building Blocks, 3,5-Dihydro-1H-thieno[3,4-*c*]pyrrole
 2,2-Dioxides; Preparation and their Diels-Alder reaction with Dimethyl Acetylenedicarboxylate.
 // J. Chem. Soc., Chem. Comm. 1992. P. 1100–1102.
- 92. Alonso D.A., Bertilsson S.K., Johnsson S.Y., Nordin S.J.M., Södergren M.J., Andersson P.G. New expedient route to both enantiomers of nonproteinogenic α-amino acid derivatives from the unsaturated 2-aza-bicyclo moiety. // J. Org. Chem. 1999. V. 64. №7. P. 2276–2280.
- 93. Muxworthy J.P., Wilkinson J.A., Procter G. Stereoselective cycloadditions of chiral acyl-nitroso compounds; hydrolytic reactions of a clyclopentadiene adduct. // Tetrahedron Lett. 1995. V. 36. №41. P. 7535–7538.
- 94. Ashburn S.P., Coates R.M. Preparation of Oxazoline N-Oxides and Imidate N-Oxides by Amide Acetal Condensation and Their [3+2] Cycloaddition Reactions. // J. Org. Chem. 1985. V. 50. №17. P. 3076–3081.
- 95. Miller A., Procter G. Stereoselective cycloadditions of chiral acyl-nitroso compounds; synthetically useful reactions of the adducts. // Tetrahedron Lett. – 1990. – V. 31. – №7. – P. 1043–1046.

- 96. Bodnar B.S., Miller M.J. Brønsted acid-mediated opening of nitroso cycloadducts under anhydrous conditions. // Tetrahedron Lett. – 2009. – V. 50. – №7. – P. 796–798.
- 97. Mulvihill M.J., Surman M.D., Miller M.J. Regio- and Stereoselective Fe(III) and Pd(0)-Mediated Ring Openings of 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene Systems. // J. Org. Chem. – 1998. – V. 63. – №15. – P. 4874–4875.
- 98. Surman M.D., Miller M.J. Regio- and stereochemically controlled formation of hydroxamic acid containing *anti* or *syn*-1,4-cycloalkenols from acylnitroso-derived Diels-Alder adducts. // J. Org. Chem. 2001. V. 66. №7. P. 2466–2469.
- 99. Surman M.D., Mulvihill M.J., Miller M.J., Dame N. Novel 1,4-Benzodiazepines from Acylnitroso-Derived Hetero-Diels Alder Cycloadducts. // Org. Lett. 2002. V. 4. №1. P. 139–141.
- 100. Sternbach L.H. The Benzodiazepine Story. // J. Med. Chem. 1979. V. 22. №1. P. 1–7.
- 101. Leimgruber W., Stefanovie V., Schenker F., Karr A., Berge J. The Structure of Anthrarnycin. // J. Am. Chem. Soc. – 1965. – V. 87. – №24. – P. 5793–5795.
- 102. Bayless J. H., Mendicino F. D., Friedman L. Isolation and Characterization of Anthramycin, a New Antitumor Antibiotic. // J. Am. Chem. Soc. – 1965. – V. 87. – №24. – P. 5791–5793.
- 103. Bose D. E., Thurston D.S. Synthesis of DNA-Interactive Pyrrole[2,1-c][1,4]benzodiazepines. // Chem. Rev. – 1994. – V. 94. – P. 433–465.
- 104. Kukla M. J., Breslin H. J., Diamond C. J., Grous P. P., Ho C. Y., Milton M., Rodgem J. D., Sherrill R.G. Synthesis and Anti-HIV-1 Activity of 4,5,6,7-Tetrahydro-5-methylimidazo[4,5,1-*jk*] [1,4]benzodiazepin-2(1H)-one (TIBO) Derivatives. // J. Med. Chem. 1991. V. 34. №3. P. 3187–3197.
- 105. Parker K.A., Coburn C.A. Regioselectivity in Intramolecular Nucleophilic Aromatic Substitution. Synthesis of the Potent Anti HIV-1 8-Halo TIBO Analogues. // J. Org. Chem. – 1992. – V. 57. – №1. – P. 97–100.
- 106. Ding C.Z., Batorsky R., Bhide R., Chao H.J., Cho Y., Chong S., Gullo-Brown J., Guo P., Kim S.H., Lee F., Leftheris K., Miller A., Mitt T., Patel M., Penhallow B.A., Ricca C., Rose W.C., Schmidt R., Slusarchyk W.A. Discovery and structure-activity relationships of imidazole-containing tetrahydrobenzodiazepine inhibitors of farnesyltransferase. // J. Med. Chem. 1999. V. 42. №25. P. 5241–5253.

- 107. Surman M.D., Mulvihill M.J., Miller M.J. Regio- and stereoselective ring openings of 3-aza-2-oxabicyclo[2.2.1]hept-5-ene systems with copper catalyst-modified grignard reagents: Application to the synthesis of an inhibitor of 5-lipoxygenase. // J. Org. Chem. 2002. V. 67. №12. P. 4115–4121.
- 108. Surman M.D., Mulvihill M.J., Miller M.J. Novel α-substituted β-amino diesters from acylnitroso-derived hetero-Diels – Alder cycloadducts. // Tetrahedron Lett. – 2002. – V. 43. – P. 1131–1134.
- 109. Cox C.D., Malpass J.R. Synthesis of epibatidine isomers: Reductive Heck coupling of 2azabicyclo[2.2.1]hept-5-ene derivatives. // Tetrahedron. – 1999. – V. 55. – №40. – P. 11879– 11888.
- Limburg D.C., Thomas B.E., Li J.H., Fuller M., Spicer D., Chen Y., Guo H., Steiner J.P., Hamilton G.S., Wu Y.Q. Synthesis and evaluation of chiral bicyclic proline FKBP12 ligands. // Bioorganic Med. Chem. Lett. 2003. V. 13. №21. P. 3867–3870.
- 111. Link J.O., Taylor J.G., Xu L., Mitchell M., Guo H., Liu H. Discovery of ledipasvir (GS-5885):
 A potent, once-daily oral NS5A inhibitor for the treatment of hepatitis C virus infection. // J.
 Med. Chem. 2014. V. 57. №5. P. 2033–2046.
- 112. Xue Z.Y., Xiong Y., Wang C.J. Catalytic asymmetric construction of azabicyclo[2.2.1]heptanes bearing two quaternary stereogenic centers via silver(I)-catalyzed 1,3-dipolar cycloaddition of cyclic azomethine ylides. // Synlett. – 2014. – V. 25. – №19. – P. 2733–2737.
- 113. Slama J.T., Mehta N., Skrzypczak-Jankun E. Carbocyclic ribosylamines: Synthesis of 5substituted carbocyclic β-ribofuranosylamines. // J. Org. Chem. – 2006. – V. 71. – №20. – P. 7877–7880.
- 114. Garner P., Sunitha K., Shanthilal T. An approach to the 3,8-diazabicyclo[3.2.1]octane moiety of naphthyridinomycin and quinocarcin via 1,3-dipolar cycloaddition of photochemically generated azomethine ylides. // Tetrahedron Lett. – 1988. – V. 29. – №29. – P. 3525–3528.
- 115. Zhang D., Suling C., Miller M.J. The Hetero Diels-Alder reactions between D-mannose-derived halonitroso compounds and cyclopentadiene: Scope and limitations. // J. Org. Chem. 1998. V. 63. №3. P. 885–888.
- 116. Bansal R.C., McCulloch A.W. Influence of Lewis acids on the Diels-Alder reaction. Part I. An improved synthesis of 7-azanorbornadiene, 3-azaquadricyclane, and azepine derivatives. // Can.

J. Chem. – 1969. – V. 47. – №2. – P. 2391–2394.

- 117. Kozikowski A.P. The Isoxazoline Route to the Molecules of Nature. // Acc. Chem. Res. 1984.
 V. 17. №12. P. 410-416.
- 118. Тиханушкина В.Н. Новые электрофильные реагенты нитрозирующего и галогенирующего действия в реакциях с циклопропанами // Дисс... канд. хим. наук. М. – 2007. 174 с.
- Mizuno K., Ichinose N., Otsuji Y., Tamai T. Insertion of Nitrogen Oxide and Nitrosonium Ion into the Cyclopropane Ring: A New Route to 2-Isoxazolines and Its Mechanistic Studies. // J. Org. Chem. 1992. V. 57. №17. P. 4669–4675.
- 120. Bondarenko O.B., Gavrilova A.Y., Saginova L.G., Zyk N. V., Zefirov N.S. Δ²-isoxazolines from arylcyclopropanes: III. Phenylcyclopropanes substituted in three-membered ring in reaction with nitrosyl chloride activated with oxides of sulfur(IV, VI). // Russ. J. Org. Chem. – 2009. – V. 45. – №2. – P. 218–225.
- 121. Zyk N. V., Nesterov E.E., Khlobystov A.N., Zefirov N.S., Barnhurst L.A., Kutateladze A.G. Reactions of nitrosonium ethyl sulfate with olefins and dienes: An experimental and theoretical study. // J. Org. Chem. 1999. V. 64. №19. P. 7121–7128.
- 122. De Sarlo F., Brandi A., Guarna A., Goti A., Corezzi S. Simple *in situ* preparation of fulmimic acid. // Tetrahedron Lett. 1983. V. 24. №17. P. 1815–1816.
- Becker K.B., Hohermuth M.K. 1,3-Dipolar Cycloadditions to Strained Olefins. // Helv. Chim. Acta. – 1979. – V. 62. – №6. – P. 2025–2036.
- 124. Tranmer G.K., Tam W. Molybdenum-mediated cleavage reactions of isoxazoline rings fused in bicyclic frameworks. // Org. Lett. – 2002. – V. 4. – №23. – P. 4101–4104.
- 125. Mayo P., Hecnar T., Tam W. 1,3-Dipolar cycloaddition of nitrile oxides with unsymmetrically substituted norbornenes. // Tetrahedron. 2001. V. 57. №28. P. 5931–5941.
- Feuer H. Nitrile oxides, nitrones & nitronates in organic synthesis : novel strategies in synthesis.
 // A John Wiley & Sons, Inc., New Jersey. 2008. 768 p.
- 127. Хмельницкий Л.И., Новиков С.С., Годовикова Т.И. Химия фуроксанов. Строение и свойства. // М.: Наука. 1996. 383 с.
- 128. Гордон А., Форд Р. Спутник химика // М.: Химия. 1976. 543 с.

- 129. Korablina D.D., Vorozhtsov N.I., Sviridova L.A., Kalenikova E.I., Medvedev O.S. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review). // Pharm. Chem. J. 2016. V. 50. №5. P. 281–295.
- 130. Jamieson C., Livingstone K. The nitrile imine 1,3-dipole: Properties, reactivity and applications
 // Springer, Glasgow. 2020. 152 p.
- 131. Shybanov D. E., Filkina M. E., Kukushkin M. E., Grishin Yu. K., Roznyatovsky V. A., Zyk N. V., Beloglazkina E.K. Diffusion mixing with a volatile tertiary amine as a very efficient technique for 1,3-dipolar cycloaddition reactions proceeding via dehydrohalogenation of stable precursors of reactive dipoles. // New J. Chem. 2022. V. 46. №38. P. 8575–18586.
- Adiloğlu Y., Şahin E., Tutar A., Menzek A. Cycloaddition Reactions of Benzonorbornadiene and Homonorbornadiene: New Isoxazoline and Pyridazine Derivatives. // J. Heterocycl. Chem. - 2018. - V. 55. - №8. - P. 1917-1925.
- 133. Cristina D., De Amici M., De Micheli C., Gandolfi R. Site selectivity in the reactions of 1,3dipoles with norbornadiene derivatives. // Tetrahedron. – 1981. – V. 37. – №7. – P. 1349–1357.
- 134. Галенко А.В., Хлебников А.Ф., Новиков М.С., Пакальнис В.В., Ростовский Н.В. Последние достижения химии изоксазола. // Успехи химии. – 2015. – Т. 84. – №4. – С. 335–377.
- 135. Vilela G.D., Da Rosa R.R., Schneider P.H., Bechtold I.H., Eccher J., Merlo A.A. Expeditious preparation of isoxazoles from Δ²-isoxazolines as advanced intermediates for functional materials. // Tetrahedron Lett. 2011. V. 52. №49. P. 6569–6572.
- 136. Simoni D., Grisolia G., Giannini G., Roberti M. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. // J. Med. Chem. – 2005. – V. 48. – №3. – P. 723–736.
- 137. Yadav P.P., Ahmad G., Maurya R. An efficient route for commercially viable syntheses of furan- and thiophene-anellated β-hydroxychalcones. // Tetrahedron Lett. – 2005. – V. 46. – №34. – P. 5621–5624.
- Gavrilova A. Yu., Nechaev M.A., Aparshov D.A., Arkhipenko S.Yu., Antipin R.L., Bondarenko O.B., Zyk N.V. 7-Azabicyclo[2.2.1] heptadienes in electrophilic chalcogenation reactions. // Russ. Chem. Bull. Int. Ed. 2017. V. 66. №3. P. 511–522.
- 139. Palmer C. F., Parry K. P., Roberts S. M., Sik V. Rearrangement of 2-Azabicyclo[2.2.1] hept-5-

en-3-ones: Synthesis of *cis*-3- Aminocyclopentane Carboxylic Acid Derivatives. // J. Chem. Soc. Perkin Trans. 1. – 1992. – №8. – P. 1021–1028.

- 140. Антипин Р.Л. Галогенселененирование алкенов, алкинов и диенов арилселененамидами в присутствии оксогалогенидов фосфора (V) и серы (IV) // Дисс... канд. хим. наук. М. – 2005. 118 с.
- 141. Zhong X., Lv J., Luo S. Cycloaddition of *in situ* generated 1,2-diaza-1,3-dienes with simple olefins: Facile approaches to tetrahydropyridazines. // Org. Lett. 2015. V. 17. №6. P. 1561–1564.
- 142. Arakawa Y., Yasuda M., Ohnishi M., Yoshifuji S. Stereospecific Synthesis of *cis*-2,4-Pyrrolidinedicarboxylic Acid and *cis*-2,5-Piperidinedicarboxylic Acid. // Chem. Pharm. Bull. – 1997. – V. 45. – №2. – P. 255–259.
- 143. Bailey P.D., Smith P.D., Pederson F., Clegg W., Rosair G.M., Teat S.J. A high yielding route to substituted piperidines via the aza-Diels-Alder reaction. // Tetrahedron Lett. 2002. V. 43. N
 ^o6. P. 1067–1070.
- 144. Dauvergne J., Happe A.M., Jadhav V., Justice D., Matos M.C., McCormack P.J., Pitts M.R., Roberts S.M., Singh S.K., Snape T.J., Whittall J. Synthesis of 4-azacyclopent-2-enones and 5,5dialkyl-4-azacyclopent-2-enones. // Tetrahedron. – 2004. – V. 60. – №11. – P. 2559–2567.
- 145. Zhang G., Cui Y., Zhao Y., Cui Y., Bao S., Ding C. A Practical Approach to Ureas and Thiocarbamates: SO₂F₂-Promoted Lossen Rearrangement of Hydroxamic Acid. // ChemistrySelect. – 2020. – V. 5. – №26. – P. 7817–7821.
- 146. Uraoka S., Shinohara I., Shimizu H., Noguchi K., Yoshimura A. Hetero Diels Alder Reaction and Ene Reaction of Acylnitroso Species *in situ* Generated by Hypoiodite Catalysis. // Eur. J. Org. Chem. – 2018. – V. 2018. – №45. – P. 6199–6203.
- 147. Acheson R.M., Vernon J.M. Addition Reactions of Heterocyclic Compounds. Part VIII. Methyl Pyrrole-1-carboxylate and Dimethyl Acetylenedicarboxylate. // J. Chem. Soc. – 1961. – P. 457– 459.
- 148. Basso A., Banfi L., Guanti G., Riva R. A novel intramolecular Ugi reaction with 7azabicyclo[2.2.1]heptane derivatives followed by post-condensation acylations: A new entry to azanorbornyl peptidomimetics. // Org. Biomol. Chem. – 2009. – V. 7. – №2. – P. 253–258.
- 149. Cho Y.H., Zunic V., Senboku H., Olsen M., Lautens M. Rhodium-catalyzed ring-opening

reactions of N-Boc-azabenzonorbornadienes with amine nucleophiles. // J. Am. Chem. Soc. – 2006. – V. 128. – №21. – P. 6837–6846.

- Papadopoulos E.P., Haidar N.F. 1-Arenesulfonylpyrroles. // Tetrahedron Lett. 2002. V. 14. –
 P. 1721–1723.
- 151. Vivek K., Sundaravel B., Punniyamurthy S. Rh-Catalyzed C-C/C-N bond formation: Via C-H activation: Synthesis of 2H-indazol-2-yl-benzo[a]carbazoles. // Org. Chem. Front. 2019. V. 6. №23. P. 3885–3890.
- 152. Теренин В. И.; Ливанцов М. В.; Ливанцова Л. И.; Матвеева Е. Д.; Ивченко П. В.; Нифантьев И. Э. Практикум по органической химии под ред. Зефирова Н. С. М.:БИНОМ. 2012. 568 с.
- 153. Hammond G.S., Todd R.W. The Low Reactivity of Cyclopropane Derivatives toward Free Radicals. // J. Am. Chem. Soc. – 1954. – V. 76. – №16. – P. 4081–4083.
- 154. Zhou Y.Y., Uyeda C. Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes.
 // Angew. Chemie Int. Ed. 2016. V. 55. №9. P. 3171–3175.
- 155. Davidson D., Feldman J. The Action of Sulfuric Acid on 1-Phenyl-2-alkylcyclopropane. // J. Am. Chem. Soc. – 1944. – V. 66. – №3. – P. 488–489.
- 156. Wagner R.B., Moore J.A. The Rearrangement of α, α '-Dibromoketones. // J. Am. Chem. Soc. 1950. – V. 72. – No. 2. – P. 974–977.
- 157. Шабаров Ю.С., Потапов В.К., Колоскова Н.М., Подтеребкова А.А., Свирина В.С. Л.Р.. Циклопропаны и циклобутаны. XXXVIII. О нитровании 2-замещенных фенилциклопропанов. // ЖОХ. – 1964. – Т. 34. – №9. – С. 2829–2832.
- 158. Li X., Li L., Tang Y., Zhong L., Cun L., Zhu J., Liao J., Deng J. Chemoselective conjugate reduction of α,β-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media. // J. Org. Chem. – 2010. – V. 75. – №9. – P. 2981–2988.
- 159. Vo Q. V., Trenerry C., Rochfort S., Wadeson J., Leyton C., Hughes A.B. Synthesis and antiinflammatory activity of aromatic glucosinolates. // Bioorganic Med. Chem. – 2013. – V. 21. – №19. – P. 5945–5954.
- 160. Jain N., Kumar A., Chauhan S. Metalloporphyrin and heteropoly acid catalyzed oxidation of C=NOH bonds in an ionic liquid:biomimetic models of nitric oxide synthase. // Tetrahedron

Lett. - 2005. - V. 46. - P. 2599-2602.

- 161. Castellano S., Kuck D., Viviano M., Yoo J., López-Vallejo F., Conti P., Tamborini L., Pinto A., Medina-Franco J.L., Sbardella G. Synthesis and biochemical evaluation of Δ²-isoxazoline derivatives as DNA Methyltransferase 1 inhibitors. // J. Med. Chem. – 2011. – V. 54. – №21. – P. 7663–7677.
- 162. Orth R., Böttcher T., Sieber S.A. The biological targets of acivicin inspired 3-chloro- and 3bromodihydroisoxazole scaffolds. // Chem. Commun. – 2010. – V. 46. – №44. – P. 8475–8477.
- 163. Kozikowski A.P., Adamczyk M. Methods for the Stereoselective *Cis* Cyanohydroxylation and Carboxyhydroxylation of Olefins. // J. Org. Chem. – 1983. – V. 48. – №3. – P. 366–372.
- 164. Xu Y., Liang P., Rashid H., Wu L., Xie P., Wang H., Zhang S., Wang L., Jiang J. Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents. // Med. Chem. Res. – 2019. – V. 28. – №10. – P. 1618–1627.
- 165. Hisler K., Commeureuc A.G., Zhou S., Murphy J.A. Synthesis of indoles via alkylidenation of acyl hydrazides. // Tetrahedron Lett. – 2009. – V. 50. – №26. – P. 3290–3293.
- 166. Patel H. V., Vyas K.A., Pandey S.P., Fernandes P.S. Facile synthesis of hydrazonyl halides by reaction of hydrazones with N-halosuccinimide-dimethyl sulfide complex. // Tetrahedron. – 1996. – V. 52. – №2. – P. 661–668.
- 167. Wang G., Liu X., Huang T., Kuang Y., Lin L., Feng X. Asymmetric catalytic 1,3-dipolar cycloaddition reaction of nitrile imines for the synthesis of chiral spiro-pyrazoline-oxindoles. // Org. Lett. 2013. V. 15. №1. P. 76–79.
- 168. Joseph B., Rollin P. Synthesis of aza-analogs of natural and artificial desulfoglucosinolates. // J. Carbohydr. Chem. 1993. V. 12. №8. P. 1127–1138.
- 169. Garve L.K.B., Petzold M., Jones P.G., Werz D.B. [3+3]-Cycloaddition of donor-acceptor cyclopropanes with nitrile imines generated *in situ*: Access to tetrahydropyridazines. // Org. Lett. 2016. V. 18. №3. P. 564–567.
- 170. Bondarenko O.B., Gavrilova A.Y., Kazantseva M.A., Tikhanushkina V.N., Nifant'ev E.E., Saginova L.G., Zyk N.V. 4,5-dihydroisoxazoles from arylcyclopropanes: II. Reaction of arylcyclopropanes with nitrosyl chloride activated by sulfur(VI) oxide. // Russ. J. Org. Chem. – 2007. – V. 43. – №4. – P. 564–570.

- 171. Bondarenko O.B., Gavrilova A.Y., Saginova L.G., Zyk N.V., Zefirov N.S. New aspects of nitrosation of arylcyclopropanes: Nitrosation of phenylcyclopropanes with bulky alkyl substituents in the small ring. // Chem. Heterocycl. Compd. – 2008. – V. 44. – №10. – P. 1275– 1283.
- 172. Tang Y., Fan Y., Zhang Y., Li X., Xu X. Metal-Free tert-Butyl Hydrogenperoxide (TBHP) Mediated Radical Alkylation of Enol Acetates with Alcohols: A New Route to β-Hydroxy Ketones. // Synlett. – 2016. – V. 27. – №12. – P. 1860–1863.
- 173. Yuan R., Zhao D., Zhang L.Y., Pan X., Yang Y. Isopropylmagnesium chloride-promoted unilateral addition of Grignard reagents to β-diketones: One-pot syntheses of β-tertiary hydroxyl ketones or 3-substituted cyclic-2-enones. // Org. Biomol. Chem. – 2016. – V. 14. – №2. – P. 724–728.
- 174. Trogu E., De Sarlo F., Machetti F. Michael additions versus cycloaddition condensations with ethyl nitroacetate and electron-deficient olefins. // Chem. A Eur. J. 2009. V. 15. №32. P. 7940–7948.
- 175. Tang S., He J., Sun Y., He L., She X. Efficient and regioselective one-pot synthesis of 3-substituted and 3,5-disubstituted isoxazoles. // Org. Lett. 2009. V. 11. №17. P. 3982–3985.
- 176. Singhal A., Parumala S.K., Sharma A., Peddinti R.K. Hypervalent iodine mediated synthesis of di- and tri-substituted isoxazoles via [3+2] cycloaddition of nitrile oxides. // Tetrahedron Lett. 2016. V. 57. №7. P. 719–722.
- 177. Wu G.J., Sheng S.R., Li D., Xu L.F., Huang Z.Z. Polymer-supported vinyl sulfone as an efficient reagent for the synthesis of 3-monosubstituted isoxazoles. // Synth. Commun. 2013. V. 43. №22. P. 3034–3043.
- 178. Zhang J., Jia R.P., Wang D.H. Copper-catalyzed C–N cross-coupling of arylboronic acids with N-acylpyrazoles. // Tetrahedron Lett. 2016. V. 57. №32. P. 3604–3607.
- 179. Tang X., Huang L., Yang J., Xu Y., Wu W., Jiang H. Practical Synthesis of Pyrazoles via Copper-Catalyzed Relay Oxidation Strategy. // Chem. Commun. – 2014. – №94. – P. 1–4.
- 180. Kobayashi E., Togo H. Facile One-Pot Transformation of Primary Alcohols into 3-Aryl- and 3-Alkyl-isoxazoles and -pyrazoles. // Synth. – 2019. – V. 51. – №19. – P. 3723–3735.
- 181. Quadrelli P., Mella M., Paganoni P., Caramella P. Cycloadditions of nitrile oxides to the highly

reactive N-acyl-2-oxa-3- azanorborn-5-enes afford versatile cycloadducts and a convenient entry to highly functionalized derivatives. // European J. Org. Chem. – 2000. – №14. – P. 2613–2620.

- 182. Dai D., Venepalli B.R. Regioselective C2-lithiation of N-Boc-3-bromopyrroles: A novel approach towards the synthesis and scale-up of 3-(2-formyl-4-methyl-1H-pyrrol-3-yl)propanoic acid. // Tetrahedron Lett. 2015. V. 56. №19. P. 2402–2405.
- 183. Gao Z.Q., Wei J.F., Shi X.Y., Yu J. A Diels-Alder approach to *trans*trisbicyclo[2.2.1]heptabenzene derivative. // Tetrahedron Lett. – 2008. – V. 49. – №42. – P. 6126–6128.
- 184. Rahman A., Clapp L.B. Thermal Decomposition of the Potassium Salts of Dinitroalkanes. // J. Org. Chem. 1976. V. 41. №1. P. 122–125.
- 185. Lim B., Oh E.T., Im J.O., Lee K.S., Jung H., Kim M., Kim D., Oh J.T., Bae S.H., Chung W.J., Ahn K.H., Koo S. Systematic Synthesis of Diphenyl-Substituted Carotenoids as Molecular Wires. // European J. Org. Chem. – 2017. – V. 2017. – №43. – P. 6390–6400.
- 186. Caneschi W., Enes K.B., Carvalho de Mendonça C., de Souza Fernandes F., Miguel F.B., da Silva Martins J., Le Hyaric M., Pinho R.R., Duarte L.M., Leal de Oliveira M.A., Dos Santos H.F., Paz Lopes M.T., Dittz D., Silva H., Costa Couri M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. // Eur. J. Med. Chem. – 2019. – V. 165. – P. 18– 30.
- 187. Chen J.R., Dong W.R., Candy M., Pan F.F., Jörres M., Bolm C. Enantioselective synthesis of dihydropyrazoles by formal [4+1] cycloaddition of *in situ*-derived azoalkenes and sulfur ylides.
 // J. Am. Chem. Soc. 2012. V. 134. №16. P. 6924–6927.
- 188. Khan K.M., Rasheed M., Ullah Z., Hayat S., Kaukab F., Choudhary M.I., Ur-Rahman A., Perveen S. Synthesis and *in vitro* leishmanicidal activity of some hydrazides and their analogues. // Bioorganic Med. Chem. – 2003. – V. 11. – №7. – P. 1381–1387.
- 189. Hu X., Chen J., Gao S., Feng B., Lu L. [4+3] Cycloaddition of *in situ* generated azoalkenes with C,N-cyclic azomethine imines: efficient synthesis of tetrazepine derivatives. // Chem. Commun. - 2013. - V. 49. - P. 7905-7907.
- 190. Padwa A., Crawford K.R., Rashatasakhon P., Rose M. Several convenient methods for the synthesis of 2-amido substituted furans. // J. Org. Chem. 2003. V. 68. №7. P. 2609–

2617.

- 191. Xie J., Zhu X., Huang M., Meng F., Chen W., Wan Y. Pyrrole-2-carbohydrazides as Ligands for Cu-Catalyzed Amination of Aryl Halides with Amines in Pure Water. // European J. Org. Chem. - 2010. - №17. - P. 3219-3223.
- 192. Kostitsyn A.B., Ruzek H., Heydt H., Regitz M., Nefedov O.M. Synthesis and spectral properties of cyclopropyl-substituted phosphaalkenes. // Russ. Chem. Bull. – 1994. – V. 43. – №4. – P. 635–640.
- 193. Bechara W.S., Khazhieva I.S., Rodriguez E., Charette A.B. One-pot synthesis of 3,4,5trisubstituted 1,2,4-triazoles via the addition of hydrazides to activated secondary amides. // Org. Lett. – 2015. – V. 17. – №5. – P. 1184–1187.
- 194. Hatcher J.M., Coltart D.M. Copper(I)-catalyzed addition of grignard reagents to in situ-derived N -sulfonyl azoalkenes: An umpolung alkylation procedure applicable to the formation of up to three contiguous quaternary centers. // J. Am. Chem. Soc. – 2010. – V. 132. – №13. – P. 4546– 4547.

VII. ПРИЛОЖЕНИЕ

Таблица 1. Кристаллографические данные, детали эксперимента и уточнения структуры соединения **90b**

Брутто-формула	$C_{24}H_{27}N_3O_3$	
Молекулярная масса	405.48	
Сингония	Моноклинная	
Пространственная группа	P21/c	
T/K	295(2)	
λ/Å	1.54186	
a/Å	15.1525(4)	
b/Å	11.2741(2)	
c/Å	138900(4)	
α/град	90	
β/град	110.059(2)	
ү/град	90	
$V/Å^3$	2228.90(10)	
Z	4	
$d_{\scriptscriptstyle m Bbit}/{ m M\Gamma}\cdot{ m M}^{-3}$	1.208	
µ/мм ⁻¹	0.647	
F(000)	864	
Область сканирования, θ/град	3.105 - 66.464	
Область индексов	$-17 \le h \le 17, -12 \le k \le 13, -8 \le l \le 16$	
Число измеренных отражений	14737	
Число отражений с <i>I</i> >2о(<i>I</i>)	3901	
R _{int}	0.0495	
Число уточняемых параметров	289	
GOOF по F ²	0.968	
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0381/0.0870	
R_1/wR_2 по всем отражениям	0.0601/0.0976	
Остаточная электронная плотность	0.182/-0.176	
$(e_{\text{max}}/e_{\text{min}}), e/\text{Å}^{-3}$		

Связь	d/Å	Угол	ω/град
O(1)-C(24)	1.3410(19)	C(24)-O(1)-C(25)	121.34(12)
O(1)-C(25)	1.4783(19)	C(24)-N(1)-C(7)	119.81(12)
N(1)-C(24)	1.3733(19)	C(24)-N(1)-C(14)	123.64(13)
N(1)-C(7)	1.4771(19)	C(7)-N(1)-C(14)	96.66(11)
N(1)-C(14)	1.4809(18)	N(3)-N(2)-C(16)	115.94(12)
N(2)-N(3)	1.3807(17)	N(3)-N(2)-C(15)	126.09(12)
N(2)-C(16)	1.3820(19)	C(16)-N(2)-C(15)	116.88(12)
N(2)-C(15)	1.4607(18)	C(4)-N(3)-N(2)	120.05(12)
N(3)-C(4)	1.2794(18)	N(3)-C(4)-C(5)	125.12(14)
C(4)-C(5)	1.488(2)	N(3)-C(4)-C(18)	116.00(12)
C(4)-C(18)	1.492(2)	C(7)-C(6)-C(15)	101.24(12)
C(5)-C(6)	1.526(2)	C(5)-C(6)-C(7)	110.03(12)
C(6)-C(7)	1.547(2)	N(1)-C(7)-C(6)	98.60(11)
C(6)-C(15)	1.554(2)	N(1)-C(7)-C(8)	101.93(12)
C(6)-H(6)	0.984(16)	C(9)-C(8)-C(7)	132.56(14)
C(7)-C(8)	1.513(2)	N(1)-C(14)-C(15)	99.34(12)
C(13)-C(14)	1.518(2)	N(2)-C(15)-C(14)	112.42(12)
C(14)-C(15)	1.556(2)	C(6)-C(15)-C(14)	102.99(12)
		O(2)-C(24)-N(1)	123.38(15)
		N(3)-N(2)-C(15)-C(6)	2.5(2)
		C(5)-C(6)-C(15)-N(2)	8.96(19)
		C(7)-C(6)-C(15)-N(2)	127.73(13)
		C(5)-C(6)-C(7)-N(1)	82.07(13)
		N(1)-C(14)-C(15)-N(2)	-92.36(13)
		C(5)-C(6)-C(15)-C(14)	-113.48(14)

Таблица 2. Основные межатомные расстояния (*d*) и валентные углы (ω) для соединения **90b**