МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. Ломоносова

ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Ильин Дмитрий Юрьевич

Термодинамические свойства производных фурана и его гидрированных аналогов

1.4.4 – физическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата химических наук

Научный руководитель:

к.х.н., доц. Дружинина А.И.

Москва – 2023

Введение	4
1 Литературный обзор	9
1.1 Краткий анализ современного получения и исполн	зования
исследованных соединений	9
1.1.1 2-Метилфуран	
1.1.2 2-Фурфуриламин	
1.1.3 Тетрагидрофурфурол	12
1.1.4 2-Метилтетрагидрофуран	15
1.2 Современное состояние физико-химических исследований из	ученных
соединений	17
1.2.1 2-Метилфуран	17
1.2.2 2-Фурфуриламин	19
1.2.3 Тетрагидрофурфурол	19
1.2.4 2-Метилтетрагидрофуран	
2 Методы исследования	23
2.1 Классификация фазовых переходов	
2.2 Вакуумная адиабатическая установка	
2.2.1 Измерение теплоемкости	
2.2.2 Определение характеристик фазовых переходов и чистоты об	разца 31
2.2.3 Обработка экспериментальных данных, расчет из	менения
термодинамических функций	
2.3 Калориметрия сгорания	
2.3.1 Описание установки	
2.3.2 Калибровка калориметрической системы	
2.3.3 Расчет поправок и определение энтальпии сгорания	39
2.4 Расчет термодинамических функций в стандартных условиях	45
3 Результаты и обсуждение	
3.1 2-Метилфуран	
3.1.1 Очистка	
3.1.2 Теплоемкость	
3.1.3 Характеристики плавления	50
3.1.4 Расчет термодинамических функций образования в стан	дартных
условиях 52	

3.1.5	Квантовохимические расчеты термодинамических функций 54
3.2 2-0	Фурфуриламин
3.2.1	Очистка
3.2.2	Теплоемкость
3.2.3	Характеристики фазовых переходов
3.2.4	Калориметрия сгорания 60
3.2.5	Расчет термодинамических функций образования в стандартных
условиях	62
3.3 Te	трагидрофурфурол63
3.3.1	Теплоемкость
3.3.2	Расчет термодинамических функций образования в стандартных
условиях	64
3.4 2-1	Метилтетрагидрофуран
3.4.1	Очистка
3.4.2	Теплоемкость
3.4.3	Характеристики плавления 70
3.4.4	Калориметрия сгорания71
3.4.5	Расчет термодинамических функций образования в стандартных
условиях	73
3.4.6	Псевдовращение 2-метилтетрагидрофурана75
Заключени	
Рекоменда	ции и дальнейшие пути разработки темы диссертации
Выводы	
Литератур	a
Приложени	ие
1П Кал	ибровочные данные
2П Таб.	лицы
2П.1	2-Метилфуран
2П.2	2-Фурфуриламин106
2П.3	Тетрагидрофурфурол 117
2П.4	2-Метилтетрагидрофуран 126
3П К	алориметрия сгорания

Введение

Получение достоверных, взаимно согласованных данных по термодинамическим характеристикам соединений в широкой области температур является одной из важнейших задач физической химии. Надежные физикохимические характеристики позволяют делать правильные оценки и достоверные выводы при изучении свойств веществ, решении материаловедческих задач, разработке методов синтеза и очистки индивидуальных соединений.

В качестве объектов исследования диссертационной работы были выбраны производные фурана и его гидрированные аналоги, что связано с их широким применением в различных областях науки и техники. Соединения фурана используют для получения специальных твердых смол, необходимых в производстве и изготовлении литейных форм, композитных упрочненных материалов для автомобильной и авиационной промышленности, пластификаторов полимерных материалов. Растворители на основе фурана применяют в промышленности для экстракции органических веществ, растворения полимерных материалов, лаков и красителей; их используют при производстве лекарственных препаратов и инсектицидов. Многочисленные публикации свидетельствуют о перспективности использования фурана и его производных в качестве биотоплива, а также в качестве экологичных высокооктановых добавок к топливу для повышения его качества. Привлекательность фурана, тетрагидрофурана и их производных также определяется легкостью их получения переработкой растительной биомассы, что важно ввиду сокращения доступности ископаемого топлива и снижения экономической целесообразности разработки его месторождений.

Хотя производные фурана и его гидрированных аналогов широко применяются в промышленности их физико-химические характеристики часто отсутствуют, исследованы в узком температурном интервале или требуют принципиального уточнения. Ограниченность существующих термодинамических данных для фуранов и тетрагидрофуранов обусловлена их повышенной реакционной способностью, что приводит к образованию нежелательных примесей и затрудняет получение прецизионных термодинамических характеристик.

В связи с этим актуальной задачей является получение комплекса прецизионных термодинамических данных для ряда производных фурана и тетрагидрофурана для которых термодинамические данные до сих пор неполны.

Цели и задачи работы

Целью диссертационной работы является получение комплекса прецизионных, взаимно согласованных термодинамических характеристик четырех 2-метилзамещенных производных фурана и тетрагидрофурана в широкой области параметров состояния.

В соответствии с поставленной целью были сформулированы следующие задачи.

- Оценка чистоты индивидуальных исследованных образцов методами ГЖХ, фракционного плавления и анализа продуктов сгорания.
- Определение теплоемкости в области температур 5–350 К, а также характеристик фазовых переходов соединений (температуры, энтальпии, энтропии) методом вакуумной адиабатической калориметрии.
- Определение энтальпии сгорания соединений методом бомбовой калориметрии сжигания при 298.15 К.
- 4) Получение на основании экспериментальных и расчетных данных основных термодинамических функций, $S_m^0(T)$, $\Delta_0^T H_m^0$, $\Delta_0^T G_m^0$, в области температур 5–350 К и функций образования $\Delta_f H_m^0$, $\Delta_f S_m^0$, $\Delta_f G_m^0$ в конденсированном и газообразном состояниях при 298.15 К.
- 5) Анализ полученных и имеющихся в литературе данных.

Методология и методы исследования

Комплекс взаимосогласованных термодинамических данных для исследуемых соединений был получен совместным использованием двух методов экспериментальной калориметрии. Методом вакуумной адиабатической калориметрии измерены низкотемпературная теплоемкость в области 5-350 К и термодинамические характеристики фазовых переходов. Методом бомбовой калориметрии определены энергии сгорания соединений в кислороде. Для получения надежных термодинамических величин принципиальное значение имеет чистота исследуемого вещества, поэтому использованные в работе коммерческие образцы были подвергнуты дополнительной очистке. Чистоту образцов контролировали методом фракционного плавления, ГЖХ-анализом и количественным элементным анализом продуктов сгорания.

Предмет исследования: энтальпии образования при 298.15 К и температурные зависимости теплоемкости от 5 до 350 К 2-метилзамещенных

производных фурана и тетерагидрофурана. Объекты исследования: 2-метилфуран, 2-фурфуриламин, 2-метилтетрагидрофуран и 2-тетрагидрофурфурол, строение которых представлено ниже.

2-фурфуриламин

2-метилтетрагидрофуран

2-тетрагидрофурфурол

Научная новизна

- Впервые определены низкотемпературные молярные теплоемкости в широком интервале температур (5–350 К) 2-фурфуриламина, 2-метилтетрагидрофурана и 2-тетрагидрофурфурола.
- Впервые определены характеристики фазовых переходов 2-фурфуриламина,
 2-метилтетрагидрофурана и 2-тетрагидрофурфурола уточнены температура,
 энтальпия и энтропия плавления 2-метилфурана.
- 3) Для 2-фурфуриламина, 2-тетрагидрофурфурола и 2-метилтетрагидрофурана впервые рассчитаны абсолютные энтропии, S⁰_m(T), получены термодинамические функции изменения энтальпий, Δ^T₀H⁰_m, и энергий Гиббса, Δ^T₀G⁰_m в конденсированном состоянии в интервале температур от 5 до 350 К.
- Впервые определены энтальпии сгорания 2-метилтетрагидрофурана и 2фурфуриламина при 298.15 К.
- 5) Для всех изученных в работе гетероциклических соединений получены функции образования Δ_fH⁰_m, Δ_fS⁰_m, Δ_fG⁰_m в конденсированном состоянии; для 2метилфурана, 2-тетрагидрофурфурола и 2-метил-тетрагидрофурана получены функции образования в газообразном состоянии.
- 6) Полученный на основании экспериментальных данных групповой вклад C-(H)₂(N)(C_d) в Δ_fH⁰_m(l), отсутствующий в аддитивной схеме Бенсона, позволяет прогнозировать энтальпии образования соединений, содержащих эту группу.

Теоретическая и практическая значимость

Полученные в работе физико-химические характеристики являются справочными величинами, имеют приоритет по достоверности и точности определения, а также существенно дополняют известные данные.

Определенные в работе значения энергии Гиббса четырех гетероциклических соединений позволяют судить об их термодинамической стабильности в широком температурном интервале, что важно при разработке новых и оптимизации существующих технологий производства, где задействованы данные соединения.

Полученные в работе экспериментальные значения термодинамических функций позволили прояснить причины расхождения между интерпретациями псевдовращения пятичленного кольца 2-метилтетрагидрофурана, а также подтвердить димеризацию 2-фурфуриламина в газовой фазе и оценить степень димеризации.

Основные положения, выносимые на защиту

1. Абсолютные энтропии четырех гетероциклических соединений (2 -2метилфурана, 2-фурфуриламина, 2-тетрагидрофурфурола И метилтетрагидрофурана), полученные основании низкотемпературной на теплоемкости, позволяют рассчитать энтропии образования этих соединений.

2. Полученный на основании экспериментальных данных групповой вклад $\Delta_f H^0_m(l)$ на группу С–(H)₂(N)(C_d), отсутствующий в схеме Бенсона, позволяет прогнозировать энтальпии образования соединений, содержащих эту группу.

3. Твердофазный переход в 2-фурфуриламине вызывается началом внутримолекулярного осевого вращения вокруг С-С связи.

Степень достоверности

Достоверность полученных в работе результатов обеспечивается применением комплекса современного экспериментального оборудования и апробированной многолетними исследования прецизионной калориметрической техники, использованием современных программ обработки а данных, также полученных термодинамических Согласование согласованностью данных. полученных в настоящей работе экспериментальных значений термодинамических величин с величинами, рассчитанными теоретическими методами, подчеркивает достоверность приводимых характеристик. Результаты работы выносились на

открытое обсуждение в научном сообществе и опубликованы в авторитетных рецензируемых международных журналах.

Апробация работы и публикации

Материалы диссертации изложены в четырех статьях, опубликованных в рецензируемых научных журналах, индексируемых в Web of Science, Scopus, RSCI и рекомендованных для защиты в диссертационном совете МГУ по специальности 1.4.4 – «физическая химия». Основные результаты работы докладывались на международных научных конференциях: Ломоносовские чтения 2020, секция «Химия» (Россия, Москва, 2020), XVI International Conference on Thermal Analysis and Calorimetry in Russia (Россия, Москва, 2020), Международный молодежный научный форум «Ломоносов-2021» (Россия, Москва, 2021).

- D. Yu. Ilin, S.V. Tarazanov, A.I. Druzhinina, O.V. Dorofeeva, V.A. Lukyanova, S.M. Pimenova, Thermodynamic properties of 2-methylfuran // J. Chem. Thermodyn. – 2021. – Vol. 158. – P. 106447 (JIF: 3.269 WoS).
- S.V. Tarazanov, V.A. Lukyanova, **D.Yu. Ilin**, O.V. Dorofeeva, A.I. Druzhinina, S.M. Pimenova, Enthalpy of formation of 2-methyltetrahydrofuran: Experimental and computational study // J. Chem. Thermodyn. 2022. Vol. 165. P. 106651 (JIF: 3.269 WoS).
- D.Yu. Ilin, S. V. Tarazanov, V. V. Andreychev, V.A. Lukyanova, A.I. Druzhinina, S.M. Pimenova, O. V. Dorofeeva, Low-temperature heat capacity and pseudorotation in 2-methyltetrahydrofuran // Phys. Chem. Chem. Phys. – 2022. – Vol. 24. – P. 5437– 5447(JIF: 3.676 WoS).
- V.A. Lukyanova, S.V. Tarazanov, O.V. Dorofeeva, A.I. Druzhinina, D.Yu. Ilin. Enthalpy of formation and hydrogen bonded dimerization of furfurylamine: Experimental and computational study // Thermochimica Acta. – 2023 - Vol. – 725. -P. 179536 (JIF: 3.378 WoS).

Личный вклад автора

В работе представлены результаты исследований, выполненных соискателем в лаборатории термохимии кафедры физической химии химического факультета МГУ имени М.В. Ломоносова. На всех этапах работы автор принимал непосредственное участие в разработке и планировании исследования, сборе, анализе и систематизации литературных данных по теме диссертации, выполнении экспериментов, анализе и интерпретации результатов, формулировании выводов. Квантово-химические расчеты, результаты которых использованы в работе, выполнены д.х.н. Дорофеевой О.В.

По результатам исследований, проведенных в работе, автором были подготовлены материалы для докладов на конференциях и для публикаций. В этих работах, опубликованных в соавторстве, вклад соискателя является определяющим и составляет от 55 до 80 %. Анализ и обсуждение полученных результатов, подготовка материалов к печати проводилась соискателем совместно с научным руководителем к.х.н. Дружининой А.И. и д.х.н. Дорофеевой О.В.

Структура и объем диссертации

Диссертационная работа состоит из введения, обзора литературы (глава 1), экспериментальной части (глава 2), результатов и их обсуждения (глава 3), заключения, списка цитируемой литературы, приложения. Текст диссертации изложен на 136 страницах машинописного текста, содержит 35 рисунков и 43 таблиц. Список цитируемой литературы включает 109 работ.

1 Литературный обзор

В данной главе кратко отражены основные направления получения и применения изученных героциклических соединений, а также имеющиеся в настоящее время литературные данные по их физико-химическим свойствам.

1.1 Краткий анализ современного получения и использования исследованных соединений

В настоящее время перспективным направлением получения различных органических веществ и материалов является переработка растительной биомассы, поскольку биомасса является возобновляемым сырьем, в отличие от ископаемых видов сырья, таких, как газ, нефть, уголь [1], [2]. Важными продуктами, получаемыми при переработке биомассы, являются гетероциклические соединения, такие, как фуран, его производные и их гидрированные аналоги. Эти соединения имеют широкое применение в науке, а также в ряде отраслей промышленности, что требует знания их достоверных физико-химических характеристик.

1.1.1 2-Метилфуран

Все возрастающая необходимость в достоверных термодинамических данных прослеживается для 2-метилфурана (2-MeF), который является одним из основных продуктов процесса дегидратации и гидрогенолиза фруктозы [1]. На Рис. 2 (цитата из [1]) изображена схема последовательных превращений фруктозы, приводящая к количественному получению важных органических веществ. Рядом со структурными формулами соединений, указаны температуры кипения, октановое число (RON), растворимость в воде в г/л.

Анализ эксплуатационных свойств бензинов позволяет выделить 2-метилфуран в качестве одной из наиболее перспективных высокооктановых добавок [1], [3], [4].

Он показывает высокие результаты по способности повышать детонационную стойкость бензина [1], [5], [3], [6], а так же, обладает рядом других преимуществ при использовании его в качестве топлива или топливных присадок [7]. Так, в работе [7] изучали два соединения семейства фуранов, такие как 2-метилфуран (MeF) и 2,5диметилфуран (DMF), установили, что они могут быть использованы как потенциальная альтернатива топлива на основе биоэтанола или нефти, и эти фурановые гетероциклы могут быть получены из целлюлозной биомассы.

Рисунок 1. Увеличение значений температур кипения соединений в зависимости от числа атомов кислорода в молекуле [1].

В работе [1] подробно изучались и сравнивались характеристики нескольких видов топлив: 2-МеF, этанола, DMF(диметилфурана) и бензина. Плотность энергии 2-МеF сравнима с DMF и бензином [1], [8]. В статье [1] исследуются результаты одноцилиндрового двигателя с непосредственным впрыском и искровым зажиганием (DISI) с распылителем, работающим на 2-МеF, в сравнении с бензином, этанолом и DMF. Были измерены и изучены регулируемые выбросы (CO, NO_x и HCl), а также сопутствующие выбросы формальдегида и ацетальдегида. Рисунок 2 (цитата из [1]) отображает концентрацию формальдегида и ацетальдегида в выбросах отработанных газообразных продуктов после завершения такта работы двигателя. Эксперименты

Рисунок 2 Выбросы ацетальдегида (a) и формальдегида при сгорании этилового спирта, диметилфурана, 2-метилфурана и бензина [1]

проводились при стехиометрическом соотношении воздух-топливо при частоте вращения двигателя 1500 об/мин и нагрузках от 3.5 до 8.5 бар с использованием оптимального времени зажигания для конкретного топлива. Результаты испытаний показывают, что способность 2-MeF подавлять детонацию аналогична DMF и превосходит бензин. Характеристики горения 2-МеF существенно отличаются от характеристик DMF. В пределах испытанного диапазона нагрузок 2-MeF неизменно обеспечивает более высокий тепловой КПД, примерно на 3% по сравнению с бензином и DMF. Это увеличение объясняется высокой скоростью горения и заметно более высокой способностью подавления детонации. Использование 2-MeF привело к снижению удельного расхода топлива примерно на 30% по сравнению с этанолом. Общие регулируемые выбросы от 2-MeF сопоставимы с другими протестированными видами топлива, тогда как выбросы альдегидов намного ниже, чем у бензина и биоэтанола [1].

Таким образом, можно заключить, что 2-метилфуран ввиду ряда своих особенностей и необходимого набора физико-химических свойств имеет большую

перспективу для дальнейшего использования в качестве октаноповышающей добавки к автомобильному топливу и сможет занять свою нишу на топливном рынке, а термодинамические свойства, полученные для него в этой работе, помогут систематизировать уже имеющуюся информацию.

1.1.2 2-Фурфуриламин

Разнообразные фурановые производные, получаемые из возобновляемого растительного сырья, рассматриваются в настоящее время как перспективные высокооктановые компоненты бензинов. Исследование окислительной стабильности растворов 2-фурфуриламина (2-FAm) в прямогонном бензине показало, что среди фурановых производных он обладает наиболее выраженными антидетонационными свойствами – способностью топлива противостоять самовоспламенению при сжатии [9]. Так же, 2-фурфуриламин используют в углеродных материалах, легированных ионами переходных металлов. В силу каталитической активности этих ионов полученные материалы имеют широкое применение. Например, их можно использовать В качестве электролизёров восстановления кислорода В протоннообменных мембранных топливных элементах. [10].

Во многих технологических процессах монозамещённые фурфуриламины являются исходными реагентами органического синтеза важных соединений [11]. Так, фурфуриламин используют в одной из стадий синтеза 5-6-5 аза-трициклических соединений, обладающих широким спектром биологической активности. Они проявляют жаропонижающие, гипотензивные, противоопухолевые И противовоспалительные свойства.[12]. Синтезируемый из фурфурола и 2фурфуриламин, тиоамид, может быть использован в качестве компонента для снижения кольцевой полимеризации 1,3-бензоксазинов. Каталитические свойства тиоамида можно улучшить при смешении с бензоатом меди (II). [13]. 2-Фурфуриламин, так же, используется для синтеза третичного амина, который в свою очередь служит хиральным лигандом для катиона лития И магния R обеспечивающего стереоселективность металлоорганических соединениях, В реакциях с альдегидами и кетонами.[14]. В ряде работ [15] [16], [17] было показано, что производные 2-фурфуриламина являются привлекательными субстратами для реакций Дильса-Альдера с образованием функционализированных производных тетрагидроизоиндолина.

1.1.3 Тетрагидрофурфурол

Тетрагидрофурфуриловый спирт или тетрагидрофурфурол (2-THFAlc) является одним из производных фурфурола, который получают путем кислотного разложения

гемицеллюлозы, в изобилии содержащейся в сельскохозяйственном сырье. [18]. После чего необходима стадия каталитического гидрирования фурфурола для получения 2-THFAlc (см Рисунок 3, цитата из работы [19] и Рисунок 1) [19], [20],[21],[22],[23], эта стадия является ключевой в переработке биомассы [24], для этого необходимо использовать металлические катализаторы, особенно катализаторы из благородных металлов [23], реакцию проводят в присутствии сильных кислот[24].

Рисунок 3 Стадии переработки фурфурола. Один из важных продуктов – фурфуриловый спирт. [19]

Так же гидрирование возможно в электрокаталитическом мембранном реакторе (см Рисунок 4, цитата из [20]), преимуществом такого метода является получение большого количества ценных побочных продуктов таких как водород, фурфуриловый спирт, 2-метилфуран и др. [20].

Рисунок 4 Схема электрокаталитического мембранного реактора. [20]

Тетрагидрофурфурол получают из диолов путем внутримолекулярной дегидратации под действием сильных минеральных кислотам, алюмосиликатами и ионообменными смолами. [25]. При этом, в качестве растворителя в этих реакциях используется вода при высокой температуре и давлении; либо смесь воды и углекислого газа, что является удачной альтернатива неэкологичным органическим растворителям. Соответствующие диолы могет быть получены из углеводов, которые представляют собой полиспиртовые соединения, такие как фруктоза, сорбит и глицерин [25], [26].

Тетрагидрофурфурол может быть использован для получения различных полиолов, в частности терминальных диолов, таких как 1,2-пентадиол и 1,5пентадиол с высокой конверсией и селективностью[18], [26],[27]. Терминальные диолы, которые имеют линейную углерод-углеродную цепь и углероды на обоих концах с группой ОН, использовались в качестве мономеров для производства сложных полиэфиров [18], после окисления и аминирования [28] диолы могут служить прекурорами для получения полиамидов и полиуретанов. [26]. Так же, 2-THFAlc используют в качестве реагента для получения дигидропирана, который является важным промежуточным продуктом в органическом синтезе и часто используется в качестве защитного реагента для гидроксильной группы в спиртах и фенолах [29]. Существуют методы синтеза пиридина из тетрагидрофурфурола с использованием различных катализаторов [30]. Реакция идет с хорошим выходом и может быть использована промышленностью, важность пиридина в качестве органического растворителя широко известна.

Тетрагидрофурфурол вступает в реакцию гидроциклоприсоединения с фурфурилацетоном, что может быть использовано в каталитическом процессе превращения биомассы в высококачественное сырьё для нефтепереработки: мазут, дизельное топливо, бензин, топливо для реактивных двигателей [31]. Данный спирт может быть использован в качестве антикристализационных присадок к ракетным топливам [32], [33], [34], чтобы исключить ряд проблем, связанных с появлением твёрдых кристаллов в жидком топливе, в частности предотвратить забивание фильтров топливных систем летательных аппаратов кристалликами льда [33].

Интересно отметить, что имеются, штамы микроорганизмов, которые могу перерабатывать тетрагидрофурфурол и фурфуриловый спирт и другие вещества в цикле переработки биомассы, что говорит о способности этих веществ к биоразложению [35]. Вообще, тетрагидрофурфурол проявляет биологическую активность и способен участвовать в различных биохимических процессах о чем свидетельствуют работы [36], [37] и др. В [37], изучается высокоэффективная гидрофобная хроматография в качестве нового инструмента для ренатурации белка, и отмечается тот факт, что тетрагидрофурфурол повышает эффективность ренатурации денатурированного α-цитопсина. Из тетрагидрофурфурола могут быть

получены сложные эфиры, есть так же работы, в том числе, не только с использованием традиционных катализаторов, но и с использованием биокатализаторов, в частности, липазы [38].

Тетрагидрофурфурол – важный промышленный растворитель для многих индивидуальных органических веществ и полимерных материалов, лаков, красителей [32]. Сложные эфиры тетрагидрофурилового спирта входят в состав пластифицирующих композиций для поливинилхлорида – широко используемого в промышленности полимера [39], [40], THFAlc может быть использован в качестве компонента растворителя для очистки нефти экстракцией [23], в реакциях высокоэнантиоселективного боргидридного восстановления карбонильных соединений[23] и др.

1.1.4 2-Метилтетрагидрофуран

2-Метилтетрагидрофуран (2-МеТНF) находит все возрастающее применение в качестве специального растворителя во многих технологических процессах. Здесь мы отметим несколько путей промышленного синтеза этого соединения.

Одним из способов промышленного получения 2-MeTHF является двухэтапный процесс гидрирования для превращения фурфурола в 2-метилфуран, а затем в 2-MeTHF. Фурфурол производится из сельскохозяйственных отходов, таких как кукурузные початки или жмых. [41]

$$\mathbb{Q}_{O} \mathbb{Q}_{CHO} \rightarrow \mathbb{Q}_{O} \mathbb{Q}_{CH_{3}} \rightarrow \mathbb{Q}_{O} \mathbb{Q}_{CH_{3}}$$

Рисунок 5 Схема получения 2-метилтетрагидрофурана [41].

В работе [42] описано получение 2-MeTHF из моносахарида с использованием различных катализаторов (Рисунок 6, цитата из работы [42]). Так, одним из наиболее актуальных и популярных методов производства 2- MeTHF является получение из левулиновой кислоты [42]. (см Рисунок 6). Левулиновая кислота подвергается гидрированию с образованием гидроксипентановой кислоты. Гидропентановая кислота подвергается дегидратации с образованием 5метилгидрофурана и воды. 5-метилгидрофуран подвергается гидрированию с образованием пентан-1,4-диола, а пентан-1,4-диол вступает в реакцию дегидратации с образованием 2-MeTHF [43].

Рисунок 6. Получение 2-MeTHF из моносахарида [42].

2-Метилтетрагидрофуран находит широкое применение в органическом синтезе в качестве коммерчески доступного апротонного растворителя (например, в реакциях Гриньяра, Реформатского и др) [41], благодаря низкой температуре плавления и вязкости (1,85 сП при 228,15 К) 2-метилтетрагидрофуран является хорошим растворителем для низкотемпературных реакций [41].

2-Метилтетрагидрофуран обладает рядом других преимуществ перед альтернативными растворителями: по сравнению с тетрагидрофураном - он не смешивается с водой, по сравнению с диэтиловым эфиром – у него более высокая температура кипения, он стабилен к действию агрессивных сред [41], [43],[44].

Имеется информация об использовании 2-MeTHF в качестве компонента растворителя при синтезе ингибиторов тирозинкиназы на основе хиназолина, хинолина или пиримидопиримидина [45]. 2-MeTHF используют в качестве компонентов растворов – протекторов на раны и кожу [46]. Используют в качестве одного из компонентов электролитов [47], в реакции полимеризации, для улучшения модификации полимеров [48]. В качестве компонента в синтезе темозоломида [49], в качестве компонента в составе для отпугивания членистоногих. [50] и во многих других технологических процессах.

Несмотря на широкое использование 2-метилтетрагидрофурана в промышленности, технологии и науке, данных по физико-химическим характеристикам этого соединения практически нет.

1.2 Современное состояние физико-химических

исследований изученных соединений

Широкое использование производных фурана и их гидрированных аналогов требовало интенсивного определения их физико-химических свойств. Почти для всех этих соединений имеются разной степени достоверности литературные данные этих свойств [51].

1.2.1 2-Метилфуран

По определению энтальпий образования и испарения 2-МеF имеется хорошая современная экспериментальная работа [52]. Стандартная мольная энтальпия образования 2-МеF в конденсированной фазе получена из стандартной мольной энергии сгорания, измеренной с помощью бомбовой статической калориметрии. Использовался изопериболическомий калориметр с изотермической оболочкой, в котором мерой количества теплоты является изменение температуры калориметра. В этой работе коммерческий образец 2-МеF очищен фракционной перегонкой, чистота его, найденная из данных по газовому анализу продуктов сгорания, составляла 99.974 масс. %. Градуировка калориметра проводилась по бензойной кислоте, погрешность градуировки составила 0.02%. Образец 2-МеF сжигался в ампулах из полиэтиленовой плёнки. Для поджигания образца, в качестве запала использовалась хлопковая нить. Проведено 7 опытов, погрешность определения энергии сгорания составила 0.02%. Полученная энтальпия образования составила $\Delta_f H_m^0(1) = -108.3 \pm 1.1 Дж моль^{-1}$.

Для измерения энтальпии испарения использовали теплопроводящий изотермический микрокалориметр Кальве. Полученное значение энтальпии фазового перехода позволило рассчитать величину энтальпии образования 2-метилфурана в газовой фазе при температуре 298.15 К, (-76.4 ± 1.2) Дж·моль⁻¹. Следует отметить, что рассчитанная квантово-химическим методом в работе [53] величина энтальпии образования 2-МеF в газовой фазе, (-80.3 ± 5) Дж·моль⁻¹, достаточно хорошо согласуется с величиной определенной в [52].

Теплоемкость 2-МеF была определена в двух работах: в области температур 293.15–323.15 К [7] и в области температур 5–300 К [54]. В работе [7], изобарные удельные теплоемкости измерялись с помощью ДСК-микрокалориметра Calpresdat (Польша). Основная часть микрокалориметра Calpresdat представляет собой

полупроводниковый дифференциальный детектор теплового потока, помещенный в металлический блок, температура которого контролируется цифровым способом в пределах \pm 0.5 мК. Калориметрический блок окружен нагревательно-охлаждающим экраном, температура которого контролируется другим цифровым контуром управления в пределах \pm 10 мК. Охлаждение осуществляется с помощью элементов Пельтье и теплоносителя (Huber M90), циркулирующих с насосом (LIQUIPORT NF 1.100). Контрольный и измерительный сосуды были изготовлены из хастеллоя C22 с постоянным объемом около 3 мл, герметизированным виттоном, и толщиной стенок 0.2 мм. Объединенная расширенная неопределенность с интервалом достоверности 0.95 изобарических измерений удельной теплоемкости была оценена в 2%. В эксперименте использовался коммерческий образец 2-метилфурана (Sigma Aldrich) без дальнейшей очистки; чистота образца составляла 99%, содержание воды – 223 ррт (определено с помощью титратора Карла Фишера).

В работе [54], низкотемпературная теплоемкость 2-МеF определена в области температур 5–310К. Измерения проводились в адиабатическом вакуумном криостате с автоматическим регулированием адиабатического экрана. Разница температур калориметром и адиабатическим экраном между контролировалась медьконстантановой дифференциальной термопарой. Термометр-нагреватель вставлен в цилиндрический серебряный контейнер. Герметизация контейнера осуществлялась с помощью клапана, закрытого небольшим золотым диском, прижатым к острому отверстию разъемным клапанным узлом. Macca исследованного образца, приведенная к вакууму, составляла 57.634 г. На кривой теплоемкости обнаружен фазовый переход I рода – плавление. В эксперименте использовался образец 2метилфурана с чистотой 99.16 мол. %, приготовленный повторным фракционированием коммерческого образца. Чистота образца была определена методом фракционного плавления. В предположении идеальности растворов 2метилфурана и примеси, а также с учётом мольной доли примеси, равной 0.0084, определена температура плавления чистого 2-метилфурана $T_{nn} = 181.70$ K. Энтальпия и энтропия данного фазового превращения составили, соответственно, 8552 Дж·моль⁻¹ и 47.03 Дж·моль⁻¹· K^{-1} [54]. Экспериментальные значения теплоемкости аппроксимированы полиномиальными уравнениями, коэффициенты которых найдены методом наименьших квадратов. Термодинамические функции были получены интегрированием этих уравнений. Точность измерений теплоемкости в работе характеризуется вероятной погрешностью менее 0.1 %. Значения

теплоемкости 2-метилфурана при 298.15 К, полученные в этих работах различаются на 3.8 % (138.33 Дж·моль⁻¹·К⁻¹ [7] и 143.72 Дж·моль⁻¹·К⁻¹ [54]).

Изучена структура 2-МеF [55]. Кристаллографические данные (пространственная группа, параметры кристаллической решетки, тип упаковки и т.д.) получены на дифрактометре Bruker AXS Apex II. Капилляр охлаждали до 100 К в потоке холодного газообразного азота с помощью охладителя CryoStream 700 (Oxford Cryosystems, Великобритания) В каждом случае жидкость сначала втягивали в стеклянный капилляр диаметром 0.2 мм, прикрепленный к шприцу, а затем вводили в открытый капилляр длиной 1 см и диаметром 0.5 мм. Данные были интегрированы с использованием SAINT и масштабированы с помощью SADABS. Чистота исследованного образца не указывается. Вещество было приобретено в компании Сигма Алдрич и использовано без дополнительной очистки.

В последнее время уделяется большое внимание квантовохимическому моделированию, используются различные схемы расчета энтальпий образования производных фурана, в основе которых лежат ключевые термодинамические свойства [3],[53],[56],[57]. Так в работе [3] используются высокоуровневые композитные вычислительные методы, G4 и CBS-QB3, для определения энергий диссоциации связи С–Н в 2-MeF, а также энтальпии реакции и высоты барьера некоторых из известных возможных путей реакции атмосферного окисления 2-метилфурана.

1.2.2 2-Фурфуриламин

Термодинамические данные для 2-фурфуриламина в литературе отсутствуют, однако, имеются работы, посвященные изучению структуры этого соединения [58] и [59]. На основании результатов, полученных в этих работах методами газофазной электронной дифракции, микроволновой и колебательной спектроскопии, а также расчетами молекулярных орбиталей установлено, что это соединение имеет два основные возможные конформации *гош* и *антигош*.

Таким образом, в настоящей работе термодинамические исследования для 2фурфуриламина проведены впервые.

1.2.3 Тетрагидрофурфурол

В справочнике Cox and Pilcher [60] приводится стандартная энтальпия образования тетрагидрофурилового спирта. Недавно хорошее экспериментальное определение энтальпий образования тетрагидрофурфурилового спирта в жидком и газообразном состояниях проведено в работе [61]. Энтальпия сгорания определена методом бомбовой калориметрии для образца чистотой более 0.99 масс долей.

Энтальпия испарения найдена из данных по давлению пара, определенных в работе методом переноса. Полученные значение энтальпии образования в газовой фазе квантово-химическими расчетами (G4) хорошо согласуются с экспериментом.

Единственное значение теплоемкости этого соединения при температуре 298.15 К получено в работе [62] при изучении молярных теплоемкостей растворов в H_2O и D_2O некоторых веществ, в том числе тетрагидрофурфурилового спирта. Погрешность этой величины, скорее всего, весьма значительна. Таким образом, определения низкотемпературной теплоемкости тетрагидрофурфурилового спирта, проведены в настоящей работе впервые.

Молекулярная структура и конформационный состав тетрагидрофурфурилового спирта в газовой фазе были изучены методом электронной дифракции и дополнены квантово-химическими расчетами с использованием пакета программ G4. Было обнаружено, что тетрагидрофурфуриловый спирт существует в виде двух конформеров. Высоты барьера для псевдовращения в разных конформерах были оценены на основе расчетов ab initio. [63]

1.2.4 2-Метилтетрагидрофуран

Данные по энтальпиям образования 2-метилтетрагидрофурана в литературе отсутствуют. Данные по характеристикам его фазовых переходов малочисленны [64], [65].

По определению теплоемкости 2-MeTHF имеются работы в основном в температурной области от 280 К и выше, проведенные методом ДСК. Однако в работе теплоемкость измерена методом вакуумной алиабатической [66] калориметрии а области температур 13-310 К. Подготовка образцов проводилась, достаточно, тщательно. Коммерческий образец 2-MeTHF (Wako Pure Chemical Industries, Ltd., чистотой >98%) был очищен фракционной перегонкой при пониженном давлении. Образец загружали в ячейку калориметра в атмосфере газообразного гелия. Масса используемого образца составляла 11.924 г (~ 0.13844 моль). Теплоемкость измерялась методом прерывистого ввода энергии. Погрешность теплоемкости ранее оценивалась тестированием калориметра [67] и составляла 0.3% для интервала 13-35 К, и 0.2% выше 35 К. Температура измерялась платиновым термометром сопротивления (Minco Products 81059, США), проградуированном в температурной шкале ITS-90. Температуру плавления и чистоту образца определяли фракционным плавлением. Температура плавления составила (137,25 ± 0,01) К, чистота молярной доли образца – 0.9998 ± 0.0001. Однако, ни в самой работе, ни в приложениях не приведены экспериментальные данные и не рассчитаны

термодинамические функции, что снижает ценность данной работы с точки зрения термодинамического исследования.

В работах [68],[69] выполненных одними и теми же авторами, область определения теплоемкости составляла (288.15–323.15) К [68] и (293.15–313.15) К [69]. Измерения проводились методом ДСК с помощью калориметра Perkin-Elmer Pyris Difmond. Исследовался коммерческий образец 2-метилтетрагидрофурана (Fluka) чистотой >99% (без дальнейшей очистки). Полученные в обеих работах значения совпадают в пределах погрешности определения.

Теплоемкость коммерческого образца 2-MeTHF (Fluka, чистотой >99%) измерена методом ДСК в работе [70] при двух температурах 298.15 К и 313.15 К Погрешность полученных значений не указывается.

В работе [71] авторы, используя дифференциальный сканирующий калориметр DSC 204 F1 Phoenix (Netzsch, Germany), измерили теплоемкость коммерческого образца 2-MeTHF (Sigma-Aldrich, чистотой >99 %) в области температур 289.15–303.15 К при атмосферном давлении. Погрешность определения температуры составляла 0.1 К, теплоемкости 2%.

Из проведенного анализа современного состояния исследований теплофизических свойств 2-MeTHF следует, что определение его термодинамических характеристик является актуальной задачей.

1.3 Заключение литературного обзора

Поведенный обзор литературы по физико-химическим свойствам производных фурана и его гидрированных аналогов показал, что, несмотря на широкое использование этих соединений в ряде отраслей промышленности, медицины, науки, физико-химические характеристики их имеются в очень узких температурных интервалах, часто отсутствуют, а в ряде случаев требуют уточнения и исправления.

В Таблице 1 представлены термодинамические характеристики для изученных в работе соединений, имевшиеся в литературе на момент начала исследований.

Таблица 1 Термодинамические характеристики соединений, которые имелись в литературе до исследований настоящей работы

ТД функции	2-Метил	2-Фурфурил	Тетрагидро	2-Метил
	фуран	амин	фурфурол	тетрагидрофуран
С _{р,т} / <u>Дж</u> К∙моль	143.72±0.14 [54]	-	190 [62]	$\begin{array}{c} 160{\pm}3 \ \ [71]\\ 156.9{\pm}0.2 \ \ [68]\\ 157.0{\pm}0.2 \ \ [69]\\ 156.89 \ \ [64] \end{array}$
$S^0_m(\mathbf{l}) rac{\mathcal{I} arkappa}{K \cdot \mathcal{M} o \pi b}$	213.9±0.4 [54]	-	-	-
$\Delta_f S_m^0(\mathbf{l}) / \frac{\mathcal{A}\mathcal{H}}{K \cdot \mathcal{M} \mathcal{O} \mathcal{I} \mathcal{K}}$	-	-	-	-
$\Delta_{f}H_{m}^{0}(l)$ / $\frac{\kappa \mathcal{A} \kappa}{MOJE}$	-108.3±1.1 [52]	-	-435.6 ± 5.9 [60] -435.3 ±1.3 [61]	-
$\Delta_f G_m^0(\mathbf{l}) / \frac{\kappa \Xi \pi}{MO \Pi h}$	-	-	-	-
$\Delta_{vap}H_m^0/rac{\kappa \exists \pi}{M}$ моль	31.9±0.5 [52]	-	57.4± 0.3 [61]	-
$\Delta_{vap}S_m/rac{\mathcal{A}_{\mathcal{H}}}{K\cdot_{MOЛb}}$	107.0±1.7 [52]	-	133.7±5 [61]	-
$\Delta_{com}S_m/rac{\mathcal{A}_{\mathcal{H}}}{K\cdot MOR}$	-	-	-	-
$S_m^0(g) \frac{\mathcal{A}\mathcal{H}}{K \cdot \mathcal{M} \mathcal{A} \mathcal{A}}$	-	-	-	-
$\Delta_f S_m^0(\mathbf{g}) / \frac{\mathcal{I}\mathcal{H}}{K \cdot \mathcal{M} \mathcal{O} \mathcal{I} \mathcal{K}}$	-	-	-	-
$\Delta_f H_m^0(\mathrm{g}) / \frac{\kappa \Delta_k}{\mathrm{MOJE}}$	-76.4±1.2 [54]	-	-	-
$\Delta_f \overline{G_m^0(g)} / \frac{\kappa \Delta \pi}{MOJL}$	-	_	-	_
$\Delta_{\rm fus} H_{\rm m}^0 / \frac{\kappa Д \pi}{MO \Lambda b}$	8.55 [54]	-	-	_
T _{fus} /K	181.70±0.02 [54]	-	330±3 [65]	$\begin{array}{c} 135.95 \ [65] \\ 137.25 \pm 0.01 \ [66] \end{array}$

2 Методы исследования

Экспериментальные исследования в работе проведены калориметрическими методами, в которых измерению подлежит процесс выделения или поглощения тепла в системе. В работе использованы два прецизионных метода: бомбовая калориметрия сгорания и вакуумная адиабатическая калориметрия.

Принцип измерения методом бомбовой калориметрии состоит в сжигании навески исследуемого вещества в калориметрической бомбе, наполненной чистым кислородом (~30 атм). Реакция сгорания очень удобна для калориметрических измерений, достоинством этого метода является быстрое протекание реакции и, как правило, полное сгорание вещества: весь содержащийся в веществе углерод переходит в CO₂, водород – в H₂O, а азот в N₂ (часть азота окисляется до азотной кислоты). При обнаружении неполного сгорания вещества подбирают специальные условия сожжения: изменяют навеску, начальное давление или используют вспомогательное вешество. Современная аппаратура позволяет проволить прецизионные определения энтальпии сгорания веществ чистотой 99.9 мол. % с точностью 0.02 %.

Адиабатическая калориметрия является одним из методов измерения теплоемкости И тепловых эффектов превращений вещества. Высокая чувствительность И точность измерений (~0.2 %) достигаются благодаря адиабатическим условиям проведения калориметрического опыта, которые минимизируют теплопотери, обусловленные теплообменом калориметра со средой. Этим методом в работе определены низкотемпературная теплоемкость в области 5-350 К и изучены фазовые переходы.

2.1 Классификация фазовых переходов

Как известно, термодинамике существует способы В различные классифицировать фазовые переходы. Один из подходов – подход Эренфеста заключается в классификации переходов на основании непрерывности энергии Гиббса и её производных. Однако множество экспериментальных данных не может быть удовлетворительно классифицировано по методу Эренфеста. Ряд авторов (Яфри, Мак-Лоуглин И Фишер) подробно рассмотрели вариацию термодинамических свойств и их производных в переходной области. Они

обнаружили, что характер перехода зависит в основном от того, каким образом кривые свободной энергии встречаются в точке перехода. Отклонения от идеализированных переходов первого и второго рода объясняются рядом факторов, в частности флуктуациями гетерофаз, эффектами загрязнений, внутренними напряжениями либо невозможностью достичь равновесия в эксперименте. Под влиянием этих факторов реальные твердофазные переходы часто происходят в интервале температур. При этом концепция двух различных фаз может оказаться непригодной для переходной области [72], [73].

Мак-Каллаф предложил феноменологический подход, согласно которому на основе анализа экспериментальных данных выделяют несколько типов превращений веществ в твердом состоянии. Далее представлен ряд типов переходов, рассмотренных Мак-Каллафом (Рисунок 7).

I переход. Или переход первого порядка происходит изотермически, аналогично плавлению чистых веществ. Обе кристаллические фазы, участвующие в переходе термодинамически различимы. На практике высокотемпературная фаза переохлаждается, а низкотемпературная, иногда, перегревается.

21 переход. Данное превращение характеризуется резким подъемом кривой теплоемкости ниже температуры перехода, но само превращение происходит изотермически. Теплоемкость кристалла I может быть выше или ниже теплоемкости кристалла II в точке перехода. Если переход типа I напоминает плавление чистого вещества, то переход типа 2I - плавление загрязненного вещества.

ЗІ переход. Переход типа ЗІ переход отличается от перехода 2І тем, что кроме подъема кривой теплоемкости ниже точки изотермического перехода наблюдается также изменение теплоемкости кристалла I, указывающее на некий процесс превращения, идущий выше точки перехода.

2N переход. Неизотермический переход типа 2N имеет кажущееся сходство с изотермическим переходом типа 2I. Теплоемкость в точке перехода может достигать очень высоких значений.

Н переход. Переход типа Н соответствует неизотермическому превращению «порядок-беспорядок» в кристаллической решетке органических молекул. Концепция «порядок-беспорядок» широко использовалась при исследовании внутреннего вращения молекул и твердофазных превращений в пластических кристаллах.

Рисунок 7 Фазовые переходы по Мак-Каллафу.[73].

G переход. Стеклоподобный переход вещества из стеклообразного состояния в переохлажденную жидкость. При быстром охлаждении некоторые жидкости с многоатомными молекулами «застекловываются» – переходят в стеклообразное (метастабильное) состояние. При нагревании переохлажденной жидкости до температуры, при которой кинетическая энергия молекул становится равной энергии активации процесса кристаллизации, происходит самопроизвольная кристаллизация жидкости с выделением энергии.

Конечно, данный список фазовых переходов не охватывает всего спектра возможным аномалий на кривых теплоёмкости. Например, для некоторых органических веществ наблюдает небольшой экстремум (минимум) на кривой теплоёмкости после температуры плавления и т.д. [73].

2.2 Вакуумная адиабатическая установка

Теплоемкость соединений измерялась с помощью автоматизированного вакуумного адиабатического калориметра (Рисунок 8). Исследуемый образец загружался в цилиндрический титановый контейнер объемом 1 см³ (12), и герметизировался прокладкой из индия. Контейнер в калориметрической ячейке вставлялся в медную манжетку-гильзу (13) с нагревателем ($R \sim 300$ Oм), окруженную экранами: адиабатическим (3), радиационными и тепловыми. Температура калориметра измерялась термометром сопротивления (родий + железо) ($R_{273. 1} \sim 51$ Oм) (20), который был откалиброван в ITS-90 [74] в диапазоне температур от (5 до 350) К. Разность температур между контейнером и адиабатической оболочкой измерялась дифференциальной термопарой с одиннадцатью спаями (медь + 0.1 мас. % железа)-хромель (17).

Адиабатические характеристики калориметра поддерживались цифровым управлением с использованием компьютерной измерительной системы с точностью $\pm 3 \cdot 10^{-3}$ К. Высокий вакуум внутри калориметрической ячейки поддерживается с помощью криосорбции, обеспечиваемой эффективным угольным адсорбером (2).

Рисунок 8. Схема криостата и устройство калориметрической ячейки. 1. Вакуумная рубашка. 2. Угольный адсорбер. 3. Адиабатическая оболочка с нагревателем. 4. Разъемрозетка. 5. Разъем для подключения к вакуумному насосу. 6. Стальные трубки. 7. Гайка и резиновый уплотнитель для закрепления криостата в горловине сосуда Дьюара. 8. Вентиль для откачки криостата. 9. Дополнительный радиационный экран. 10. Резьба для крепежа и герметизации вакуумной рубашки с помощью пасты КПТ-8. 11. Текстолитовая трубка. 12. Титановый контейнер. 13. Медная муфта-гильза с нагревателем. 14. Нейлоновые нити. 15. Отверстие для стальной иглы, используемой для фиксации гильзы в адиабатической оболочке при смене контейнера. 16. Втулка для крепежа калориметра и вакуумной рубашки к криостату. 17. 11-ти спайная термопара (Cu+0.1%Fe)/хромель. 18. Дополнительная Зхспайная термопара. 19. Дополнительный манганиновый нагреватель. 20. Железо-родиевый термометр сопротивления.

2.2.1 Измерение теплоемкости

Теплоемкость вещества измерялась в процессе нагрева образца, методом калориметрических ступеней, с «шагом» по температуре 0.1–1.0 К в области 5–80 К, и 1.0–2.0 К – выше 80 К или «шагом» по вводимому в эксперименте теплу, *Q*. Каждый калориметрический эксперимент состоит из шести периодов (Рисунок 9). В первый период калориметрическая ячейка нагревается до требуемой температуры. Во втором периоде достигается устойчивое температурное равновесие. В третьем периоде измеряется температурный ход калориметра, т. е. температура калориметра

контролируется в течение выбранного промежутка времени, чтобы получить информацию о скорости дрейфа температуры. В течение четвертого (главного) периода электрическая энергия, Q, подается на калориметр. Пятый период совпадает со вторым, шестой – с третьим. Время установления температурного равновесия после ввода тепла (второй и пятый периоды) составляет 60-400 сек. (в зависимости от диапазона температур). Время измерения температурного дрейфа (третий и шестой периоды) составляет 40-270 сек. Температуры начала, T_{1} И T_{2} , нагревания конца, калориметрической ячейки с веществом В опыте находятся экстраполяцией температурных ходов, измеренных в третьем и шестом периодах, на середину четвертого периода (главного).

Рисунок 9. Периоды калориметрического эксперимента (τ_m — время середины главного периода; T_1 и T_2 — температуры калориметра в начале и в конце главного периода калориметрического опыта)

Теплоемкость находится как

$$C = \frac{Q}{(T_2 - T_1)} \tag{1}$$

Измерение теплоемкости выполняется автоматически с помощью специальной программы, которая включает в себя первоначальную настройку некоторых параметров процесса в диалоговом режиме. Когда будет выполнено первое определение, программа начинает регулярно выполнять последующие измерения. Программой контролируется время установления температурного равновесия и время измерения дрейфа. Отчеты, которые генерируются при работе программы, представляют собой обычные текстовые файлы, вид которых делает их удобными. для импорта в электронную таблицу Microsoft Excel.

Молярная теплоемкость исследуемого вещества в программе рассчитывается по формуле:

$$C_{s,m} = \frac{M}{m} \cdot \left(\frac{\int_0^\tau U I d\tau}{(T_2 - T_1)} - C_{\text{конт}} \right)$$
(2)

где $\int_0^{\tau} UId\tau$ – количество электрической энергии, введенной в нагреватель калориметра; τ – время протекания тока в главном периоде; T_1 , и T_2 – температуры калориметра в начале и в конце главного периода калориметрического опыта; $C_{\text{конт.}}$ – теплоемкость пустого калориметра; m – масса исследуемого вещества; M - молярная масса.

Исследованные в работе соединения – жидкости. Измеряемые теплоемкости этих соединений относятся к теплоемкости при давлении их насыщенного пара, $C_{s,m}$. Однако при температурах, при которых проводили измерения, разница между теплоемкостью при давлении насыщенного пара, $C_{s,m}$ и теплоемкостью при постоянном давлении, $C_{p,m}$, пренебрежимо мала, т.к. мала величина $\frac{dp_s}{dT}$, поэтому мы полагали $C_{s,m} \approx C_{p,m}$.

Масса вещества, *m*, находится путем взвешивания на весах марки *Mettler* с точностью ±5·10⁻⁵ г. Молярная масса, *M*, рассчитывается согласно рекомендации [75]. Теплоемкость пустого контейнера определена его предварительной градуировкой и обработана уравнением:

$$\ln C_p = \sum_{n=0}^{N} A_n \cdot \ln \left(\frac{T - A_k}{B_k}\right)^n \tag{3}$$

где A_k и B_k - масштабирующие коэффициенты, n – степень полинома, A_n – коэффициенты, вычисленные МНК в программе Excel.

Калориметр был протестирован с использованием высокочистой меди (массовая доля 0.9995) и хроматографически чистого *н*-гептана. Зависимость δC_{*p*,*m*} от литературы представлена на графиках.

$$\delta C_{p,m} = \frac{C_{p,m,\exists KC\Pi} - C_{p,m,\Pi UT}}{C_{p,m,\Pi UT}} \times 100, \qquad \%$$
(4)

где δC_{p,m} – относительное отклонение экспериментальных значений теплоёмкости от литературных. Экспериментальные значения приведены в приложении (Таблица 21, Таблица 22)

Рисунок 10 Отклонение экспериментальной кривой теплоёмкости чистой меди от литературных значений в гелиевой области.

Рисунок 11 Отклонение экспериментальной кривой теплоёмкости чистой меди от литературных значений в азотной области.

Рисунок 12 Отклонение экспериментальной кривой н-гептана от литературных значений [78] в азотной области.

Полученные средние отклонения являются экспериментальными погрешностями устройства для определения теплоемкости. Неопределенность определения температуры контейнера оценивалась в $\pm 2 \cdot 10^{-2}$ К во всем диапазоне температур (5–350) К.

2.2.2 Определение характеристик фазовых переходов и чистоты образца

2.2.2.1 Плавление одной точкой

Описанная выше калориметрическая установка позволяет определять температуры фазовых переходов, энтальпию плавления, температуру тройной точки и чистоту исследуемых веществ.

Энтальпию плавления вещества определяли калориметрическим методом непрерывного ввода электрической энергии, необходимой для фазового перехода образца, с учетом энтальпий нагревания нормального (невозмущенного) кристалла от начальной температуры перехода, T_{h} , до температуры перехода – T_{tp} и от T_{tp} до конечной температуры, T_{κ} , и изменения энтальпии пустого контейнера в температурном интервале $\Delta T = T_{\kappa} - T_{\mu}$. Расчет энтальпий плавления, $\Delta_{fus} H_m$, проводили по уравнению:

$$\Delta_{fus}H_m = \frac{\left(\Delta H_{\text{ofull}} - \Delta H_{\text{конт}}\right)M}{m} - \Delta_{T_{\text{H}}}^{T_{tp}}H_m(cr) - \Delta_{T_{tp}}^{T_{\kappa}}H_m(l)$$
(5)

где T_{tp} – тройная точка вещества; ΔH_{obm} – энтальпия нагревания контейнера с веществом от T_{H} до T_{κ} ; $\Delta_{T_{H}}^{T_{tp}}H_{m}(cr) = \int_{T_{H}}^{T_{tp}}C_{p,m}(cr)dT$ – энтальпия нагревания нормального (невозмущенного) кристалла от T_{H} до T_{tp} ; $\Delta_{T_{tp}}^{T_{\kappa}}H_{m}(l) = \int_{T_{tp}}^{T_{\kappa}}C_{p,m}(l)dT$ – энтальпия нагревания жидкой фазы после перехода от T_{tp} до T_{κ} ; здесь $C_{p,m}(cr)$ и $C_{p,m}(l)$ – теплоемкости кристаллической и жидкой фаз $\frac{Д \pi}{K \cdot MODE}$.

Нормальную (невозмущенную) часть тепла кристаллического вещества, $\Delta_{T_{\rm H}}^{T_{tp}}H_m(cr)$, и жидкой фазы, $\Delta_{T_{tp}}^{T_{\rm K}}H_m(l)$, до и после перехода находили интегрированием линейных экстраполяций значений $C_{p,m}(cr)$ и $C_{p,m}(l)$ в небольших интервалах температур до и после перехода, соответственно.

Рисунок 13 Теплоёмкость в зависимости от температуры в близи точки плавления

Величину энтальпии плавления определяли из серии опытов. Погрешность выражали доверительным интервалом с вероятностью 95 %.

2.2.2.2 Фракционное плавление

Температуру тройной точки и чистоту исследованных веществ определяли методом фракционного плавления, который и до настоящего времени остается одним из самых точных методов определения чистоты и общего количества примесей в веществах. Метод позволяет определить количество примесей с точностью до сотых долей процента.

Плавление образца проводится дискретным введением тепла небольшими порциями, Q_j , выравнивая каждый раз температуру, T_i . Мольную долю расплавленного вещества, F_i , находят по соотношению количества энергии, $Q_{\text{введён},i}$, пошедшей на расплавление *i*-ой доли вещества к общему количеству энергии, $Q_{\text{общ}}$, затраченной на плавление всего образца:

$$F_{i} = \frac{Q_{\text{BBC}, eH, i}}{Q_{\text{o} \text{G} \text{II}}}$$

$$F_{i} = \frac{Q_{\text{BBC}, eH, i}}{Q_{\text{o} \text{G} \text{II}}}$$

$$P_{\text{BBC}, eH, i} = \sum_{j=1}^{i} Q_{j}$$

$$F_{i} = \frac{Q_{\text{BBC}, eH, i}}{Q_{\text{o} \text{G} \text{II}}}$$

Рисунок 14 Зависимость температуры от введенного тепла на і-м шаге

Если примесь и исследуемое вещество при кристаллизации не образуют твердых растворов, а в жидкой фазе представляют идеальный или бесконечно разбавленный раствор, подчиняющийся закону Рауля, зависимость равновесной температуры, T_i , от обратной величины мольной доли расплава, $1/F_i$, линейна [82]. Обработкой экспериментальных данных методом наименьших квадратов (МНК) по линейному уравнению получается зависимость:

$$T_i = T_{tp}^0 - \Delta T \cdot 1/F_i \tag{7}$$

где T_{tp}^0 – температура тройной точки чистого вещества при $1/F_i = 0$, T_i – температура тройной точки исследуемого образца при доле расплава $1/F_i = 1$ и ΔT – депрессия точки плавления вещества. Графически, депрессия точки плавления отвечает тангенсу угла наклона в координатах T_i от $1/F_i$, а прямая, отсекаемая на оси ординат – температуре тройной точки (она же, в данном случае, температура плавления) чистого вещества (Рисунок 15).

Рисунок 15 Зависимость температуры в системе от обратной доли расплава

Мольную долю примеси выводят в рамках классической термодинамики, приравнивая химические потенциалы раствора и твёрдой фазы. Количество примесей в образце рассчитывали по известному термодинамическому уравнению:

$$N_2 = \frac{\Delta_{fus} H_m^0 \cdot \Delta T}{R \cdot \left(T_{tp}^0\right)^2} \tag{8}$$

 $\Delta_{fus} H_m^0$ – энтальпия плавления, определенная по уравнению (4); ΔT – депрессия точки плавления (см формулу (7) и Рисунок 15); T_{tp}^0 – температура плавления чистого образца.

Погрешность находили по закону накопления ошибок. Вообще, понятие чистоты образца, в ряде случае, может рассматриваться по-разному [73]: согласно классическим представлениям, образец химического соединения называется чистым, если он содержит молекулы только одного сорта. Но, например, смесь кетоенольных таутомеров можно рассматривать как «чистое соединение», если в некоторой реакции все вещество реагирует как в одной, так и в другой форме. Однако с физической точки зрения такая система, очевидно, содержит более одного сорта молекул и не является «чистой». Аналогично положение и с оптически активными изомерами.

К сожалению, многие основные химические методы, такие, как элементарный анализ, функциональный групповой анализ и др., недостаточно точны, чтобы с их помощью можно было установить чистоту соединения с большей чувствительностью, чем 0.1 мольн. % примеси. Калориметрический метод является

одним из немногих методов, который дает «некомпаративный критерий» полной чистоты независимо от количества и вида примесей. [73]

2.2.3 Обработка экспериментальных данных, расчет изменения термодинамических функций

Основные термодинамические функции рассчитывались по известным уравнениям:

$$H(T_n) - H(T_0) = \sum_{k=1}^n \int_{T_{k-1}}^{T_k} C_p(T) \, dT + \sum_{k=1}^{n-1} \Delta_{trs} H_{k.}$$
(9)

где $H(T_n)$ и $H(T_0)$ – энтальпия вещества при температуре T_n и T_0 ; $T_0 = 0$ К, T_n – значение температуры, для которой рассчитывают функции состояния, T_k – температуры фазовых переходов {k=1,..n-1}, здесь n – число фазовых переходов, $\Delta_{trs}H_k$ – энтальпия фазового перехода.

$$S(T_n) = \sum_{k=1}^n \int_{T_{k-1}}^{T_k} \frac{C_p(T)}{T} dT + \sum_{k=1}^{n-1} \Delta_{trs} S_{k.}$$
(10)

где $S(T_n)$ – энтропия вещества при температуре T_n , $\Delta_{trs}S_{k.}$ – энтропия фазового перехода.

$$\Delta_0^T G = \Delta_0^T H - TS(T) \tag{11}$$

Для этого полученные экспериментальные теплоемкости каждого исследованного соединения аппроксимировали степенными полиномами вида:

$$C_{p,m}(T) = \sum_{n=0}^{N} A_n \cdot T^n \tag{12}$$

где *n* – степень полинома, *A_n* – коэффициенты, вычисленные МНК в программе Excel.

Экстраполяция экспериментальных данных к 0 К проводилась по уравнению Дебая:

$$C_{p,m}(T) = AT^3 \tag{13}$$

или с использованием подгоночных коэффициентов:

$$C_{p,m}(T) = n' D \left[\frac{\Theta'_D}{T} \right]$$
(14)

где D – функция Дебая, n' и Θ'_D – подгоночные параметры, которые находили в области температур не выше 12 К.

2.3 Калориметрия сгорания

2.3.1 Описание установки

Определение энергия сгорания исследуемого вещества проводили в прецизионном калориметре типа Диккинсона [83]. Схема калориметра с погруженной в калориметрический сосуд бомбой изображена ниже (см. Рисунок 16).

Рисунок 16. Калориметр типа Диккинсона (разрез): 1 – калориметрический сосуд; 2 – пропеллерная мешалка; 3 – крышка калориметрического сосуда; 4 – термометр сопротивления; 5 – нагреватель калориметра, используемый для подогрева воды в калориметрическом сосуде; 6 – водяная оболочка калориметра; 7 - откидная крышка; 8 и 9 – мешалки оболочки; 10 – нагреватель оболочки; 11 – контактный термометр.

Калориметрический сосуд (1) емкостью около 3 л с дистиллированной водой (3355.00 ± 0.02 г) устанавливали на эбонитовых подставках в водяную оболочку
(воздушный зазор ~ 10 мм). Сосуд плотно закрывали прилегающей к нему крышкой (3), имеющей отверстия для термометра, нагревателя и проводов, идущих от бомбы. Оболочка (6) и закрывающая ее откидная крышка (7) с двумя отверстиями представляют единую систему, в которой циркулирует вода с помощью работы двух мешалок (мешалка (8) гонит воду вниз, а (9) – вверх). Температура воды в оболочке калориметра термостатируется с помощью ртутного контактного термометра (11), включенного в цепь электронного реле (точность термостатирования составляет ± 0.003 K).

В работе использовалась самоуплотняющаяся калориметрическая бомба емкостью 0.271 л, сконструированная в лаборатории термохимии МГУ (Рисунок 17) [83].

Рисунок 17. Калориметрическая бомба: 1 — игольчатый вентиль для впуска газа; 2 — игольчатый вентиль для выпуска газа; 3 — накидная гайка для уплотнения бомбы; 4, 5 — электроды для зажигания.

Герметичность бомбы обеспечивается давлением введенного в нее газа и накидной гайкой (3). Изолированным электродом для зажигания вещества является стержень (5). Вентили (1) и (2) для впуска и выпуска газа вынесены за пределы массивного тела бомбы и поэтому очень незначительно прогреваются. Вследствие чего уменьшается общая тепловая инертность бомбы.

Бомба устанавливается в калориметр на специальной металлической подставке. Такая конструкция позволила значительно уменьшить вес и снизить термическую инертность бомбы. Поджигание вещества производилось при разрядке конденсатора на платиновую проволочку толщиной 0.1 мм. Энергия поджигания во всех опытах была постоянной и не учитывалась в расчетах.

Подъем температуры определяется ~50 Ом медным термометром сопротивления, включенным в качестве четвертого плеча моста. Схема моста изображена на Рис. 12 [84]. Плечи R_1 , R_2 и R_3 изготовлены из одного куска манганиновой проволоки в виде отдельного прибора. Два плеча моста R_1 и R_2 имеют одинаковое сопротивление $R_1 = R_2 = 16$ Ом, третье плечо $R_3 = 52.5$ Ом, параллельно присоединено к магазину сопротивления R_M .

Рисунок 18. Мостовая схема для измерения температуры с помощью медного термометра сопротивления.

Равновесие моста (равенство потенциалов в точках 1 и 2) достигается регулировкой сопротивления на магазине R_M . Нуль-прибором служит микровольтмикроамперметр Ф-116/1. В условиях равновесия моста сопротивление термометра определяется по формуле:

$$R_T = \frac{R_3 \cdot R_M}{R_3 + R_M} \tag{15}$$

Подъём температуры в опытах составляет ~0.2 Ом (~1 град) при силе тока 5 мА, проходящей через $R_{\rm T}$, чувствительность измерения температуры составляет $8 \cdot 10^{-6}$ Ом или $4 \cdot 10^{-5}$ К.

2.3.2 Калибровка калориметрической системы

Энергетический эквивалент калориметра, $\varepsilon_{f(Cont.)}$, определялся сожжением эталонной бензойной кислоты, энергия сгорания которой в сертификатных условиях равна $\Delta_{cu_{\delta,\kappa.}} = -26432.5 \text{ Дж} \cdot r^{-1}$. Для приведения энергии сгорания бензойной кислоты

к реальным условиям сожжения, $\Delta_c u$ (P = 30 атм, $m_{6.\kappa.} = 0.53$ г, $m_{H_20} = 1.00$ г, $V_{60M6bl} = 0.271$ л, "сертификатное" значение $\Delta_b u$ умножали на фактор f=0.999976, который вычисляли по формуле, рекомендованной Джессупом [84]:

$$f = 1 + 10^{-6} \cdot \left[20(P - 30) + 42\left(\frac{m_{6.K.}}{V_{60M6bi}} - 3\right) + 30\left(\frac{m_{H_20}}{V_{60M6bi}} - 3\right) - 45(t - 25) \right]$$
(16)

где P – начальное давление кислорода в бомбе в атмосферах; $m_{6.K.}$ и m_{H_2O} – массы бензойной кислоты и введенной в бомбу воды в граммах; $V_{\delta OM\delta b }$ – объем бомбы в литрах; t – температура, к которой относится изотермическая реакция сгорания, в градусах Цельсия.

Для определения энергетического эквивалента $\varepsilon_{f(Cont.)}$ калориметра было проведено 7 опытов по сожжению бензойной кислоты, среднее значение составило 67.51±0.07 Дж·Ом⁻¹, эта величина была использована при расчете энергии сгорания.

2.3.3 Расчет поправок и определение энтальпии сгорания

2.3.3.1 Поправка на теплообмен

Важной поправкой в данном эксперименте является поправка на теплообмен. Как известно, в калориметрическая бомба находится в изотермической оболочке, соответственно, существует теплообмен между оболочкой и калориметрической системой. Изменение температуры от времени определяется законом охлаждения Ньютона [83]:

$$\frac{dT}{dt} = K(T - T_0) \tag{17}$$

Т – температура калориметрической системы, К

*T*₀ – постоянная во времени температура оболочки, К

K – константа охлаждения калориметра, с⁻¹

В протоколе калориметрического опыта с постоянным временным шагом $\tau=10$ с, фиксируют значения температуры системы T_i , К. И строят график зависимости температуры от времени. Нахождение константы охлаждения из характеристик начального и конечного опыта, и интегрирование уравнения (17) приводит нас к формуле Реньо-Пфаундлера-Усова для вычисления поправки на теплообмен (δ):

$$\delta = \frac{V_n - V_0}{\Theta_n - \Theta_0} \cdot \left(\frac{T_n + T_0}{2} - n\Theta_0 + \sum_{i=1}^{n-1} T_i\right) + nV_0$$
(18)

где n – число отсчётов в главном периоде опыта; V_0 – средний ход температуры за один отсчёт в начальном периоде; V_n – средний ход температуры за один отсчёт в конечном периоде; Θ_0 – средняя температура калориметрической системы в начальном периоде; Θ_n – средняя температура калориметрической системы в конечном периоде; T_0 – последнее значение температуры в начальном периоде; T_n – последнее значение температуры в начальном периоде; T_n – последнее значение температуры в главном периоде; T_i – значения температуры в главном периоде; T_i – значения температуры в главном периоде; (i=1..n-1).

В свою очередь, истинный подъём температуры:

$$\Delta T = \Delta T' + \delta \tag{19}$$

 $\Delta T'$ – подъём температуры без учета поправки на теплообмен;

 ΔT – подъём температуры с учетом поправки на теплообмен.

2.3.3.2 Поправка на образование азотной кислоты

Для определения поправки на азотную кислоту, в конце опыта необходимо тщательно промыть все внутренние поверхности бомбы дистиллированной водой, смывы собрать в коническую колбу для титрования, довести до кипения (для удаления растворённого CO_2) и оттитровать ~ 0,1 М раствором NaOH. Тогда через концентрацию, c_{NaOH} , М, и объём, V_{NaOH} , л, пошедшего на титрование гидроксида натрия находится количество выделившейся HNO_3 , n_{HNO_3} , моль:

$$n_{HNO_3} = c_{NaOH} \cdot V_{NaOH} \tag{20}$$

Зная количества сжигаемых веществ, из уравнений реакций можно найти количество выделившейся воды, $\Delta n(H_2O)$, моль. Известно также начальное количество воды в системе – оно вводится вручную – $n^{(1)}(H_2O)$, моль. Учитывая стехиометрию реакции образования азотной кислоты в бомбе:

$$\frac{1}{2}N_2 + \frac{5}{4}O_2 + \frac{1}{2}H_2O \to HNO_3$$
(21)

находим конечное количество H_2O в бомбе, $n^{(II)}(H_2O)$, моль:

$$n^{(II)}(H_20) = n^{(I)}(H_20) + \Delta n(H_20) - \frac{1}{2}n_{HNO_3}$$
(22)

Избыточное количество теплоты, выделяющееся в бомбе за счёт образования в ней раствора азотной кислоты, соответствует следующей реакции:

$$\frac{1}{2}N_{2(gas)} + \frac{5}{4}O_{2(gas)} + \left(n + \frac{1}{2}\right)H_2O_{(liq)} \to HNO_3 \cdot nH_2O_{(soln)}$$
(23)

$$\Delta_r U_m^0 = \Delta_r H_m^0 + \frac{7}{4} RT \tag{24}$$

В справочной таблице [85] приведены значения стандартной энтальпии образования азотной кислоты в растворе, $\Delta_f H^{\circ}_{HNO_3 \cdot nH_2O_{(soln)}}$, эта величина относится к следующей реакции:

$$\frac{1}{2}H_{2(gas)} + \frac{1}{2}N_{2(gas)} + \frac{3}{2}O_{2(gas)} + nH_2O_{(liq)} \to HNO_3 \cdot nH_2O_{(soln)}$$
(25)

Нужную нам теплоту рассчитываем, используя закон Гесса:

$$-n_{HNO_{3}} \cdot \Delta_{r} U^{\circ} = -n_{HNO_{3}} \left(\Delta_{f} H^{\circ}_{HNO_{3}} \cdot n_{H_{2}O_{(soln)}} - \frac{1}{2} \Delta_{f} H^{\circ}_{H_{2}O_{(liq)}} + \frac{7}{4} RT \right)$$
(26)

Число *п* находится из следующего соотношения:

$$n = \frac{n^{(II)}(H_2 0)}{n_{HNO_3}} \tag{27}$$

В приложении (Таблица 42), приводятся справочные значения величины $\Delta_f H^{\circ}_{HNO_3 \cdot nH_2O_{(soln)}}$. Значение стандартной энтальпии образования воды при 298.15 К [85]: $\Delta_f H^{\circ}_{H_2O_{(liq)}} = -285.830 \pm 0.012 \frac{\kappa \Delta \pi}{MODE}$

2.3.3.3 Поправка на приведение к стандартному состоянию

Далее, необходимо ввести поправку на приведение к стандартному состоянию. Основную идею расчета можно проиллюстрировать следующей схемой:

Рисунок 19 Схема, иллюстрирующая приведение энергии сгорания к стандартному состоянию [83]

Точками В и С обозначены, соответственно, начальные и конечные состояния веществ в процессе сгорания одного моля данного вещества в стандартных условиях при температуре 298.15 K, а переходу из точки В в точку С отвечает величина $\Delta_c U^0 = \Delta_c U(p_0, T_0)$. Точками А и D обозначены, соответственно, начальное и конечное состояния в процессе сгорания моля данного вещества в бомбе, а переходу из A в D отвечает величина $\Delta_c U$. Поскольку реальные условия отличаются от стандартных необходимо внести поправки на пересчет к стандартному давлению и температуре 298.15 K.

Для поправки на температуру необходимо знать величины вида $\left(\frac{\partial U}{\partial T}\right)_p$, вычисление которых можно свести к теплоёмкостям веществ, находящихся в системе. В результате получаются выражения:

$$\left[n^{(in)}(O_2) \cdot C_V(O_2) + n^{(in)}(H_2O) \cdot C_p(H_2O) + \sum n_i C_{p,i}\right] \cdot (T_{in} - 298.15)$$
(28)

Для реагентов и:

$$[n^{(f)}(O_2 + N_2) \cdot C_V(O_2) + n^{(f)}(CO_2) \cdot C_V(CO_2) + (n^{(f)}(H_2O) + n_{HNO_3}) \cdot C_p(H_2O)] \cdot (298.15 - T_f)$$
(29)

Где, индекс *in* обозначает начальное состояние веществ (до сжигания), индекс f – конечное состояние (после проведения реакции сгорания). Две эти поправки в литературе, суммарно, обозначают – $\Delta U_{(I.B.P.)}$ (isothermal bomb process).

Далее, необходимо учесть пересчет к стандартному давлению, оценивая слагаемые вида $\left(\frac{\partial U}{\partial p}\right)_{T}$, как известно:

$$\left(\frac{\partial U}{\partial p}\right)_{T} = -p \cdot \left(\frac{\partial V}{\partial p}\right)_{T} - T \cdot \left(\frac{\partial V}{\partial T}\right)_{p}$$
(30)

В случае записи соответствующих соотношений для газов можно использовать уравнение состояния; для конденсированной фазы:

$$\left(\frac{\partial U}{\partial p}\right)_T \approx -T \cdot \left(\frac{\partial V}{\partial T}\right)_p = -T V \alpha_V \tag{31}$$

Необходимо знать величины мольного объёма (или плотности), и изобарный коэффициент термического расширения. Так же, необходимо введение поправки на теплоту, отвечающую растворению газов в воде, и изменение количественного соотношения жидкость-пар для чистой воды; суммарно все эти поправки в литературе обозначают ΔU_{Σ} и называют поправкой Уошборна. Следует отметить, что расчет поправки приведения к стандартному состоянию на современном уровне является нетривиальной задачей. Подробно, методика расчета этой поправки рассмотрена в [86] и [87]. В лаборатории термохимии имеется собственная программа, которая автоматически позволяет рассчитывать эту величину, вводя необходимые данные. Полученные результаты обработки данных по этой программе хорошо согласуются с результатами, вычисленными с использованием программного пакета на сайте NIST [87].

2.3.3.4 Поправка на неполноту сгорания

В некоторых случаях, имеет место недогорание вещества, и образование следовых количеств сажи. В таком случае полученную сажу отжигают, и по разнице в массах тигля до и после отжига, находят поправку на недогорание вещества и образование остатка сажи.

В настоящей работе изменение внутренней энергии для процесса изотермической бомбы (- ΔU_(I.В.Р.)) рассчитывается в соответствии с [86]:

$$\left(-\Delta U_{(\text{I.B.P.})}\right) = \left[\varepsilon_{(\text{Calor.})} + \varepsilon_{f(\text{Cont.})}\right] \cdot \Delta R_{\text{kopp}}$$
(32)

ε_{f (Cont.)} – энергетический эквивалент(теплоёмкость) содержимого бомбы в конечном состоянии;

ε_(Calor.) – энергетический эквивалент (теплоёмкость) пустого калориметра;

 $\Delta R_{\text{корр}}$ – скачок температуры с учетом поправки на теплообмен (в Ом);

- ΔU_(I.В.Р.) – энергия сгорания в реальных условиях бомбы при постоянной температуре.

Значение, $(-\Delta_{c}u^{0})_{i}$, было найдено на основании массы образца по формуле:

$$(-\Delta_{\rm c} u^0)_i = [(-\Delta U_{(\rm I.B.P.)}) - \Delta U_{(\rm 6.K.)}) + q_s - \Delta U_{HNO_3} - \Delta U_{\Sigma}] \cdot m^{-1}$$
(33)

 $-\Delta U_{(6.к.)}$ – энергия сгорания бензойной кислоты;

- Δ*U*_{HNO3} - поправка на образование азотной кислоты;

*q*_s – поправка на образование сажи;

 ΔU_{Σ} – поправка Уошборна.

Касательно формул (32)-(33) следует отметить пару моментов. Первое, эксперимент организован таким образом, что за начальное состояние принимают температуру 298.15 К, для этого оболочка специально термостатируется, поэтому поправку вида (28) для приведения реагентов к стандартной температуре не вводят. Второе, вместо непосредственных значений температур для вычислений берутся им пропорциональные изменения электрического сопротивления (измеряемые в омах). В принципе, на основании известной зависимости электрического сопротивления от температуры для данного термометра сопротивления можно получить значения температуры в градусах Кельвина. Однако этого не делают, так как при калибровке калориметра (определения энергетического эквивалента) и в самом эксперименте удобнее использовать любые величины пропорциональные температуре [83]. В третьих, в некоторых случаях организовать сожжение чистого исследуемого вещества в бомбе невозможно по тем или иным причинам, поэтому сжигание проводят в присутствии вспомогательного вещества. Одним из наиболее удобных является бензойная кислота, она используется при калибровке калориметра, и значение теплоты её сгорания хорошо известно; при вычислении окончательного результата, следует учесть теплоту сгорания соответствующей навески бензойной кислоты, эту величину обозначают $\Delta U_{(6,\kappa)}$.

Мольную энергию сгорания $\Delta_c U_m^0(l)$, получают из удельной энергии сгорания $\Delta_c u^0$ по соотношению

44

$$\Delta_c U_m^0(\mathbf{l}) = \Delta_c u^0 \cdot \mathbf{M} \tag{34}$$

где М – молярная масса вещества.

2.3.3.5 Энтальпия сгорания

Стандартная энергия сгорания и энтальпия сгорания связаны соотношением:

$$\Delta_c H^0_m(\mathbf{l}) = \Delta_c U^0_m(\mathbf{l}) + \Delta n \cdot T \cdot R \tag{35}$$

 Δn – изменение количества газообразных продуктов в ходе реакции

2.4 Расчет термодинамических функций в стандартных условиях

Стандартная молярная энтальпия образования в конденсированной фазе, $\Delta_f H_m^0(1)$, находится согласно уравнению сгорания соединения, используя полученную энтальпию сгорания, $\Delta_c H_m^0(1)$, и энтальпии образования $CO_2(g)$, $H_2O(1)$ и) $N_2(g)$ (если исследуемое соединение содержит атомы азота). [88]

Для определения энтальпии образования в газовой фазе используют соотношение:

$$\Delta_f H_m^0(\mathbf{g}) = \Delta_f H_m^0(\mathbf{l}) + \Delta_{vap} H_m^0 \tag{36}$$

 $\Delta_f H_m^0(\mathbf{g})$ – энтальпия образования в газовой фазе;

 $\Delta_f H_m^0(\mathbf{l})$ – энтальпия образования в жидкой фазе;

 $\Delta_{vap}H_m^0$ - энтальпия испарения.

Энтальпия испарения практически не зависит от давления. Так что можно принять, что эти величины одинаковые для испарения при давлении насыщенного пара и при стандартном давлении 1 бар $\Delta_{vap}H_m^{\text{hac.nap}} = \Delta_{vap}H_m^0 = \Delta_{vap}H_m$. Погрешность рассчитывали по закону накопления ошибок с доверительной вероятностью 95%.

Стандартная мольная энтропия образования соединения в конденсированной фазе, $\Delta_f S_m^0(l)$, рассчитывается по реакции образования вещества из простых веществ. Для такого расчета необходимо записать уравнение реакции образования, из которой следует выражение вида:

$$\Delta_f S_m^0(\mathbf{l}) = S_m^0(\mathbf{l}) - \sum_{i=1}^{N_R} v_i S_m^0(R_i)$$
(37)

где $\Delta_f S_m^0(l)$ – энтропия образования вещества в конденсированной фазе, $S_m^0(R_i)$ – энтропия каждого *i*-го реагента R_i в своей стандартной модификации при 298.15 К [88], N_R – общее число реагентов, $S_m^0(l)$ – энтропия вещества при 298.15 К в конденсированном состоянии, которая определяется из данных по теплоемкости (см. 2.2.3), υ_i - стехиометрические коэффициенты в уравнении реакции образования перед *i*-м реагентом.

Для перехода в газовую фазу необходимо учесть мольную энтропию испарения, $\Delta_{vap}S_m^0$, которую рассчитывают на основании экспериментального значения мольной энтальпии испарения, $\Delta_{vap}H_m$, по формуле:

$$\Delta_{vap} S_m^{\text{Hac.nap}} = \frac{\Delta_{vap} H_m}{T_b}$$
(38)

где $\Delta_{vap}H_m$ – мольная энтальпия испарения вещества, T_b - температура кипения при 10^5 Па.

Так как энтальпию и энтропию испарения определяют в условиях, отвечающих давлению насыщенного пара, p(298.15), а стандартные условия предполагают температуру равную 298.15 К и давление $p_0(298.15) = 10^5$ Па, необходимо при расчете $\Delta_f S_m^0(g)$ учесть зависимость энтропии от давления. Из уравнения, связывающего зависимость энтропии от давления при постоянной температуре и зависимость объема от температуры при постоянном давлении:

$$\left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p \tag{39}$$

$$dS = -\left(\frac{\partial V}{\partial T}\right)_p dp \tag{40}$$

Для конечного изменения энтропии вещества от $p_{\text{нас.пар}}(298.15)$ до $p_0(298.15)$:

$$S(p_0) - S(p(298.15)) = -\int_{p(298.15)}^{p_0} \left(\frac{\partial V}{\partial T}\right)_p dp$$
(41)

Допустив, что газ идеальный, т.е.

$$pV = RT, \left(\frac{\partial V}{\partial T}\right)_p = \frac{R}{p}$$
 (42)

$$S(p_0) - S(p(298.15)) = \Delta_{com}S = R \cdot ln\left(\frac{p(298.15)}{p_0}\right)$$
 (43)

где $\Delta_{com}S_m$ – энтропия сжатия от давления насыщенного пара до стандартного, p(298.15) – давление насыщенного пара при стандартной температуре, p_0 стандартное давление, равное 10^5 Па.

Поскольку сжатие газа ведет к увеличению его упорядоченности, следовательно при возрастании давления от p(298.15) до 10^5 Па энтропия газа уменьшается на величину $\Delta_{com}S_m$:

$$\Delta_f S_m^0(\mathbf{g}) = \Delta_f S_m^0(\mathbf{l}) + \Delta_{vap} S_m^{\text{Hac.nap}} + \Delta_{com} S_m$$
(44)

Погрешность $\Delta_f S_m^0(g)$ рассчитывали по закону накопления ошибок с доверительной вероятностью 95%. Величиной погрешности энтропии сжатия $(\Delta_{com}S_m)$ пренебрегают.

Расчет энергии Гиббса проводили по известному соотношению. Для конденсированной фазы

$$\Delta_f G_m^0(\mathbf{l}) = \Delta_f H_m^0(\mathbf{l}) - T_0 \cdot \Delta_f S_m^0(\mathbf{l})$$
⁽⁴⁵⁾

где $\Delta_f G_m^0(l)$ – энергия Гиббса образования в жидкой фазе. Для газообразной фазы:

$$\Delta_f G_m^0(\mathbf{g}) = \Delta_f H_m^0(\mathbf{g}) - T_0 \cdot \Delta_f S_m^0(\mathbf{g})$$
⁽⁴⁶⁾

где $\Delta_f G_m^0(g)$ – энергия Гиббса образования в газовой фазе, $\Delta_f S_m^0(g)$ – энтропия образования в газовой фазе, T_0 - стандартная температура, равная 298.15 *K*.

Таким образом, используя экспериментальные данные, полученные с помощью описанных методов, и литературных данных для изученных в работе производных фурана и его гидрированных аналогов определены характеристики фазовых переходов и термодинамические функции для твердого, жидкого и газообразного состояния.

3 Результаты и обсуждение

3.1 2-Метилфуран

Результаты, описанные в этом разделе, опубликованы в работе [89]¹

3.1.1 Очистка

Для определения термодинамических свойств использовался коммерческий 2-метилфурана (TCI образец Tokyo Chemical Industry Co., LTD. https://www.tcichemicals.com/OP/en/product/index; чистота ~ 98 %) с последующей очисткой. Вещество перегоняли на ректификационной колонке высотой 100 см с коэффициентом дефлегмации 25-30 единиц в течение 12 часов. Затем дистиллят осушался над хлоридом кальция и пропускался через слой силикагеля (25 мл) с частицами 0.5-0.25 мм в диаметре. Все экспериментальные операции проводились в атмосфере сухого инертного газа аргона, т.к. исследуемое соединение – легковоспламеняющиеся летучая жидкость, которое легко образует взрывоопасные пероксиды при контакте с кислородом. После очистки чистота полученного образца была охарактеризована хроматографическим методом, методом фракционного плавления и газовым анализом продуктов сгорания. Окончательная чистота: ω = 99.95 масс. % ГЖХ; $x \equiv N = 99.94$ мол. % – фракционное плавление (в рамках эксперимента на адиабатическом калориметре).

3.1.2 Теплоемкость

Теплоемкость, $C_{p,m}/(Дж \cdot K^{-1} \cdot моль^{-1})$, 2-метилфурана измеряли в диапазоне температур от 8.14 К до 353.51 К с шагом по температуре ~ (1.0 – 1.5) К с использованием жидкого азота и жидкого гелия в качестве хладагентов. Масса образца (приведенного к вакууму) была равна 0.72157 г. Плотность 2-метилфурана,

¹ При описании данного раздела диссертации использованы следующие публикации, выполненные автором в соавторстве: D. Yu. Ilin, S.V. Tarazanov, A.I. Druzhinina, O.V. Dorofeeva, V.A. Lukyanova, S.M. Pimenova, Thermodynamic properties of 2-methylfuran, J. Chem. Thermodyn. 158 (2021) [89] Подготовка полученных результатов проводилась совместно с соавторами, причем вклад Ильина Д.Ю. составил 70 %. Согласно Положению о присуждении ученых степеней в МГУ, в публикациях отражены основные результаты, положения и выводы исследования.

ρ(298.15К) = 0.90779 г⋅см⁻³, была взята из работы [90]. Образец 2-метилфурана охлаждали от комнатной температуры до температуры жидкого гелия со скоростью ~(1-8)·10⁻³ К⋅с⁻¹. На кривой теплоемкости был обнаружен фазовый переход (плавление) (Рисунок 20). Воспроизводимость кривой теплоемкости 2-метилфурана составляла 0.03–0.2 %. Полученные экспериментальные значения теплоемкости приведены в приложении (Таблица 23). Образование метастабильной фазы при охлаждении образца 2-метилфурана не наблюдали.

Рисунок 20 Молярная теплоемкость 2-метилфурана.

Кристаллическая структура 2-метилфурана изучена в работе [59] с помощью *in situ* криокристаллографии. На основании полученных результатов установлено, что это соединение кристаллизуется в тетрагональной системе с полярной осью, как показано ниже (Рисунок 21 цитата из [59]).

Стоит отметить, что при таком расположении атом водорода метильной группы, лежащий в плоскости фуранового кольца, занимает в кристалле положение непосредственно над центром фуранового кольца соседней молекулы, авторы [59] не исключают возможность существования очень слабых водородных связей.

Рисунок 21 Кристаллическая упаковка 2-метилфурана из работы [59]

3.1.3 Характеристики плавления

Для определения термодинамических характеристик плавления 2-метилфурана методом дробного плавления проведено три опыта (см. Приложение Таблица 24). На их основании найдена температурная зависимость равновесных температур, T_i , от обратной величины доли расплава, $1/F_i$ (Рисунок 22). Получены депрессия точки плавления, $\Delta T = 0.030$ К и температура тройной точки 2-метилфурана, $T_{tp} = 184.36\pm0.03$ К.

Рисунок 22 Зависимость равновесной температуры плавления, T_i, от обратной величины доли расплава, 1/F_i, для трех опытов 2-метилфурана (Таблица 24).

Методом плавления образца одной точкой проведено пять опытов (Таблица 2), на основании которых получены энтальпия, $\Delta_{fus}H_m^0$, и энтропия, $\Delta_{fus}S_m^0$, плавления 2-метилфурана. Используя полученные характеристики плавления, по формуле (8) рассчитана чистота исследованного образца 2-метилфурана (99.97 мол.%).

В литературе имеются две работы по определению низкотемпературной теплоемкости 2-метилфурана: методом вакуумной адиабатической калориметрии в области 5–310 К [91] и методом ДСК в диапазоне температур 293.15–323.15 К [7]. В

[91] также были определены характеристики плавления 2-метилфурана. Сравнение данных, полученных в этой работе, со значениями, доступными в литературе, приведено далее (Рисунок 23 и Таблица 3). Кривые теплоемкости жидкости 2-метилфурана, полученные в настоящей работе и в работе [91], совпадают в пределах неопределенностей определения.

$T_{\rm H}^{\ a}$	$T_{\kappa}^{\ b}$	$\Delta H_{ m o 6 m}^{ m c}$	$\Delta_{T_{\mathrm{H}}}^{T_{tp}}H_m(cr)^{\mathrm{d}}$	$\Delta_{T_{tp}}^{T_{\kappa}}H_m(\mathbf{l})^{\mathrm{d}}$	ΔH_{Koht}	$\Delta_{fus}H_m^0$	$\Delta_{fus}S_m^0$
I	K		Дж·моль ⁻¹				
171.063	189.720	13197	1115	690	2374	9018	48.92
169.733	190.468	13664	1223	787	2637	9017	48.91
166.726	189.290	13976	1464	635	2856	9021	48.93
166.583	189.767	14128	1475	697	2934	9022	48.94
169.430	192.616	14282	1247	1064	2955	9016	48.90
				(Среднее	9019 ^d	48.92 ^d

Таблица 2 Энтальпия и энтропия, плавления 2-метилфурана^а

^а Молярные массы соединения рассчитывали с использованием относительных атомных масс, рекомендованных IUPAC [75]; стандартное отклонение u(M) = 0.002 г·моль⁻¹; u($m_{\text{вакуум}}$) = 5·10⁻⁵ г; u(T_{tp}) = 0.02 K. ^b T_{H} и T_{K} – начальная и конечная температуры, относительная стандартная погрешность $u_r(\text{T}) = 0.02$ K. ^c $\Delta H_{\text{общ}}$ – энергия, необходимая для нагревания 1 моль вещества от T_{H} до T_{K} , стандартная погрешность u($\Delta H_{\text{общ}}$) =70 Дж·моль⁻¹. ^d Расширенные стандартные неопределенности U_c: (U_c($\Delta_{T_{tp}}^{T_{tp}}H_m(cr)$) = 7 Дж·моль⁻¹, U_c($\Delta_{T_{tp}}^{T_{\kappa}}H_m(1)$) = 8 Дж·моль⁻¹, U_c($\Delta_{fus}H_m^0$) = 3 Дж·моль⁻¹и U_c($\Delta_{fus}S_m^0$) = 0.02 (Дж·K⁻¹·моль⁻¹) (с доверительной вероятностью 0.95).

🛡 - Данная работа; 🔺 - [91]; 🌢 - [7]

Рисунок 23 Сравнение значений теплоёмкости, полученных в данной работе и литературных значений.

Таблица 3 Термодинамические характеристики 2-метилфурана

Ссылка	Чистота	Методика анализа чистоты	С _{р,m} (298.15) / Дж·К ⁻¹ ·моль ⁻¹	T _{tp} / K	∆ _{fus} H ⁰ _m (l)/ кДж∙моль ⁻¹	∆ _{fus} S ⁰ _m (l) / Дж•К ⁻¹ •моль ⁻¹
[91]	99.16	Фракционное	143.72±0.14	181.90 ± 0.02	8.552	47.01
	(моль. %)	плавление				
[7]	99 (масс. %)	сертификат	138.325±0.002	—	-	-
		Сигма-Алдрич				
	99.95±0.02	ГЖХ				
Данная	(масс. %)	Дробное				
работа	99.937±0.003	плавление	142 79+0 42	194 26 0 02	0.010+0.002	48.02+0.02
	(моль. %)		143.78 ± 0.43	184.30 ± 0.03	9.019 ± 0.003	48.92±0.02

Расхождения экспериментальных значений теплоемкости и характеристик плавления с полученными в [91] и [7] можно объяснить наличием большого количества неидентифицированных примесей в образцах 2-МеF исследованных в этих работах, а также значительной погрешностью метода ДСК.

Чтобы вычислить основные термодинамические функции, полученные экспериментальные данные аппроксимированы степенными полиномами (формула (12), Таблица 25) и по формулам (9),(10) рассчитаны сглаженные основные термодинамические функции – Таблица 26.

3.1.4 Расчет термодинамических функций образования в стандартных условиях

В настоящей работе значения стандартной мольной энтальпии образования 2метилфурана в конденсированной фазе и стандартной энтальпии испарения использованы из работы [52], где они определены с высокой степенью точности для хорошо очищенного образца. Результаты определения данных термодинамических характеристик этой работы представлены в таблице:

Таблица 4 Результаты измерения стандартных мольных энтальпий сгорания, испарения, энтальпий образования в конденсированной и газовой фазах для 2-метилфурана при температуре 298.15 К и давлении $10^5 \, \Pi a \, \text{s} \, [52]$.

<u></u> Δ _c H ⁰ _m ,	Δ _f H ⁰ _m (l)	Δ _{vap} H ⁰	Δ _f H ⁰ _m (g)
кДж∙моль ⁻¹	кДж∙моль⁻¹	кДж·моль ⁻¹	кДж∙моль⁻¹
-2716.7±0.9	-108.3 ± 1.1	31.9±0.5	$-76.4{\pm}1.2$

Расчет стандартной энтропии образования жидкого 2-метилфурана при 298.15 К был проведен на основе абсолютных энтропий 2-метилфурана (Приложение Таблица 26), C(graph), H₂(g) и O₂(g) [88] в соответствии с реакцией:

$$5 C(graph) + 3 H_2(g) + 0.5 O_2(g) = C_5 H_6 O(l)$$
 (47)

Была рассчитана энтропия образования исследуемого вещества, $\Delta_f S_m^0(\mathbf{l})$, в жидкой фазе:

$$\Delta_{f} S_{m}^{0}(l) = S_{m}^{0} (C_{5} H_{10} O(l)) - 3 \cdot S_{m}^{0} (H_{2}(g)) - 5 \cdot S_{m}^{0} (C(graph)) - 0.5 \cdot S_{m}^{0} (O_{2}(g))$$
(48)

 $S_m^0(C_5H_6O(1))$ – абсолютное мольное значение энтропии 2-МеF определенные из опытов на адиабатическом калориметре (Таблица 26), $S_m^0(H_2(g))$ – абсолютное мольное значение энтропии водорода в газообразном состоянии, $S_m^0(C(graph))$ – абсолютное мольное значение энтропии углерода (полиморфная модификация – графит), $S_m^0(O_2(g))$ – абсолютное мольное значение энтропии газообразного кислорода.

Погрешность определяется, на основание закона накопления ошибок:

$$\left(\Delta \{ \Delta_f S_m^0(\mathbf{l}) \} \right)^2 = \left(\Delta \{ S_m^0(C_5 H_6 O(\mathbf{l})) \} \right)^2 + \left(3 \cdot \Delta \{ S_m^0(H_2(\mathbf{g})) \} \right)^2 + \left(5 \cdot \Delta \{ S_m^0(C(\mathrm{graph})) \} \right)^2 + (0.5 \cdot \Delta \{ S_m^0(O_2(\mathbf{g})) \})^2$$

$$(49)$$

 $\Delta{\{\Delta_f S_m^0(l)\}}$ – погрешность величины мольной энтропии образования 2-МеF в жидкой фазе, $\Delta{\{S_m^0(C_5H_6O(l))\}}$ – погрешность величины абсолютного значения мольной энтропии 2-метилфурана (определено на основании известной погрешности теплоемкости) в жидкой фазе, $\Delta{\{S_m^0(H_2(g))\}}$ – погрешность справочной величины абсолютного значения мольной энтропии водорода в газообразном состоянии, $\Delta{\{S_m^0(C(graph))\}}$ – погрешность справочной величины абсолютного значения мольной энтропии водорода в газообразном состоянии мольной энтропии углерода (полиморфная модификация – графит), $\Delta{\{S_m^0(O_2(g))\}}$ – погрешность справочной величины абсолютного значения мольной значения мольной энтропии углерода (полиморфная модификация – графит), $\Delta{\{S_m^0(O_2(g))\}}$ – погрешность справочной величины абсолютного значения мольной энтропии кислорода в газообразном состоянии.

Для перехода в газовую фазу использовали уравнения (44). Данные по давлению насыщенного пара для расчета энтропии сжатия 2-МеF получены из [51]. Расчет энергии Гиббса образования проводили по известному соотношению (формулы (45)). Полученные в работе термодинамические функции 2-метилфурана при 298.15 К приведены далее (Таблица 5).

Термодинамическая функция	2-Метилфуран
$S_m^0(l) rac{\mathcal{A} st}{K \cdot \mathrm{моль}}$	243.4±2.8
$\Delta_{\!f} S^0_m({ m l}) / rac{{\cal L}_{\!$	-310.7± 0.8
$\Delta_{f}H_{m}^{0}(\mathbf{l})$ / $\frac{\kappa\mathcal{A}\mathcal{K}}{_{\mathrm{MOЛb}}}$	-108.3 ± 1.1^{a}
$\Delta_{f}G_{m}^{0}(\mathbf{l})$ / $rac{\kappa \Delta \kappa}{ m моль}$	-15.7± 1.1
$\Delta_{vap} H^0_m / rac{\kappa Д \pi}{_{ m MOЛЬ}}$	31.9 ± 0.5^{a}
$\Delta_{vap}S_m/rac{{\cal A}{f imes}}{K\cdot$ моль	107.0 ± 1.7
$\Delta_{com} S_m / rac{\mathcal{A} lpha}{K \cdot \mathrm{моль}}$	-12.30
$S_m^0({ m g})rac{{ m Д}{ m w}}{K\cdot{ m моль}}$	307.4 ± 1.8
$\Delta_{f}S^{0}_{m}(\mathrm{g})$ / $rac{\mathcal{A} arkappa}{K \cdot \mathrm{моль}}$	-216.0 ± 1.9
$\Delta_{f}H_{m}^{0}(\mathrm{g})/rac{\kappa\mu\pi}{\mathrm{MOJE}}$	-76.4 ± 1.2^{a}
$\Delta_f G_m^0(\mathrm{g}) \ / \ rac{\kappa \mathcal{I} \varkappa}{_{\mathrm{MODE}}}$	-12.0± 1.3

Таблица 5 Термодинамические функции 2-метилфурана при 298.15 К

^а Согласно данным работы [52].

3.1.5 Квантовохимические расчеты термодинамических функций

Научной группой д.х.н. Дорофеевой О.В. проведены квантовохимические расчеты термодинамических функций образования в газообразном состоянии, $\Delta_f H_m^0(\mathbf{g}), \Delta_f S_m^0(\mathbf{g}), \Delta_f G_m^0(\mathbf{g})$. Для получения теоретической энтальпии образования для 2-MeF были использованы два квантово-химических метода высокого уровня, G4 и DLPNO-CCSD(T1)/CBS//B3LYP-D3(BJ)/def2-TZVPP. В работе [92] показано, что для циклических соединений наиболее точные результаты могут быть получены при использовании метода DLPNO-CCSD(T1)/CBS в сочетании с различными реакциями. Основываясь на этих результатах, для расчета энтальпий образования 2-MeF использовался метод DLPNO-CCSD(T1) [93]. Для расчетов DLPNO была использована программа ORCA 4.2.1 [94], включая процедуру экстраполяции [95], реализованную в ORCA. Оптимизация геометрии на уровне B3LYP-D3(BJ)/def2-TZVPP была выполнена с использованием пакета программ Gaussian 16 [96].

Термодинамические функции могут быть получены как для газовой фазы, так и для конденсированной, так как в литературе были представлены значения энтальпии испарения, после этого, было проведено сравнение полученных данных с результатами квантовохимических расчетов. Хорошее совпадение

термодинамических величин, полученных в данной работе экспериментально и рассчитанных с помощью высокоуровневых квантовохимических моделей подтверждает, согласованность и точность их определения (Таблица 6).

Таблица 6 Энтальпии образования газообразного 2-метилфурана, рассчитанные из различных рабочих реакций с использованием энергий DLPNO-CCSD (T1) / CBS // B3LYP-D3 (BJ) / def2-TZVPP

N⁰	Тип	Реакция	$\Delta_{\mathbf{r}} \boldsymbol{H}_{\boldsymbol{m}}^{\circ}$	$\Delta_{\mathbf{f}} \boldsymbol{H}_{\boldsymbol{m}}^{\circ}$	Exp-Calc	
			ŀ	сДж молі	ь ⁻¹	
1	AR	$2\text{-MeF} + 3 \text{ H}_2 \rightarrow \text{C}_2\text{H}_4 + \text{C}_2\text{H}_2 + \text{CH}_4 + \text{H}_2\text{O}$	39.6	-75.3	-1.1	
2	AR	$2-\text{MeF} + \text{H}_2 \rightarrow mpahc-\text{H}_2\text{C}=\text{CHCH}=\text{CH}_2 + \text{H}_2\text{CO}$	8.1	-76.5	0.1	
3	AR	2-MeF + CH ₄ → циклопентадиен + CH ₃ OH	82.6	-75.3	-1.1	
4	ID	2-MeF + CH ₄ \rightarrow Фуран + C ₂ H ₆	32.2	-76.3	-0.1	
5	HD	$2-\text{MeF} + \text{C}_2\text{H}_6 \rightarrow \Phi\text{ypaH} + \text{C}_3\text{H}_8$	21.2	-77.0	0.6	
6	HD	2-MeF + CH₃CH₂OH → Фурфуриловый спирт + С₂H ₆	8.3	-78.8	2.4	
7	HD	2-MeF + CH ₃ C(O)CH ₃ → 2-ацетилфуран + C ₂ H ₆	2.7	-77.2	0.8	
8	HD	2-MeF + CH ₃ C(O)OH \rightarrow 2-фуранкарбоксильная кислота+ C ₂ H ₆	17.2	-78.5	2.1	
		Среднее -76.9 ± 2.6^{d}				
		Эксперименте		-76.4 ± 1	.2	

^а Тип реакции – реакция атомизации (AR), изодесмические реакции (ID), гомодесмические реакции (HD). ^d Погрешности оцениваются как удвоенное стандартное отклонение. ^е Согласно данным работы [52].

3.2 2-Фурфуриламин

Результаты, описанные в этом разделе, опубликованы в работе [97]²

3.2.1 Очистка

Коммерческий образец 2-фурфуриламина (2-FAm, TCI) был предварительно очищен. На роторном испарителе образец был разделен на три части. Выделенная средняя часть чистотой 99.81 масс. % (по ГЖХ-анализу) была дополнительно очищена ректификацией при отборе 1 капля в 30 секунд (флегмовое число 15 капель). Полученный образец по данным ГЖХ анализа имел чистоту 99.97 масс. %, что подтверждалось также данными анализа продуктов сгорания, полученных после сгорания образца в бомбе при определении энергии сгорания методом бомбовой

² При описании данного раздела диссертации использованы следующие публикации, выполненные автором в соавторстве: Lukyanova V.A., Tarazanov S.V., Dorofeeva O.V., Druzhinina A.I., Ilin D.Yu. Enthalpy of formation and hydrogen bonded dimerization of furfurylamine: Experimental and computational study // Thermochimica Acta. 725 (2023) [97] Подготовка полученных результатов проводилась совместно с соавторами, причем вклад Ильина Д.Ю. составил 55 %. Согласно Положению о присуждении ученых степеней в МГУ, в публикациях отражены основные результаты, положения и выводы исследования.

калориметрии. В газообразных продуктах сгорания определяли $CO_2(\Gamma)$ гравиметрическим методом Россини [86] и проводили качественный анализ на $CO(\Gamma)$ и $NO(\Gamma) + NO_2$ (Γ) с помощью индикаторных трубок с точностью $6 \cdot 10^{-6}$ Γ и $1.6 \cdot 10^{-6}$ Γ соответственно. Сведение баланса в продуктах сгорания по CO_2 показало, что в подобранных условиях вещество сгорает полностью, $m(CO_2)_{\text{найд.}}/m(CO_2)_{\text{теор.}} = 99.98\pm0.02$ масс.%, где $m(CO_2)_{\text{найд.}} -$ количество CO_2 найденное после сгорания образца, $m(CO_2)_{\text{теор.}} -$ рассчитанное по уравнению горения.

3.2.2 Теплоемкость

Теплоемкость 2-фурфуриламина измерена в области температур 5–357 К. На кривой теплоемкости обнаружены два перехода: плавление при $T_{tp} = 228.14 \pm 0.04$ К ($\Delta H_{fus} = 13113\pm38$ Дж·моль⁻¹; $\Delta S_{fus} = 57.47\pm0.46$ Дж ·K⁻¹·моль⁻¹) и энантиотропный твердофазный переход при $T_{tr} = 180.6 \pm 0.1$ К ($\Delta H_{tr} = 482\pm45$ Дж·моль⁻¹; $\Delta S_{tr} = 2.72\pm0.26$ Дж ·K⁻¹·моль⁻¹) (Рисунок 24). Образования метастабильной фазы при охлаждении 2-FAm не наблюдалось. Энантиотропный твердофазный переход хорошо воспроизводился. В области перехода (173–195 К) было проделано четыре независимых прохода с различными «шагами» по температуре и по вводимому в каждой экспериментальной точке количеству тепла.

Рисунок 24 Экспериментальная кривая теплоёмкости 2-фурфуриламина

3.2.3 Характеристики фазовых переходов

Температуру плавления 2-фурфуриламина и мольную долю примесей в образце определяли методом фракционного плавления [82]. Проведено три опыта (Таблица 29).

Рисунок 25 Дробное плавление 2-фурфуриламина

Кривые зависимости $T_i = f(1/F_i)$ имели линейный вид (Рисунок 25), получено уравнение: $T_i = -0.0390 * F_i^{-1} + 228.1410$. Найдены депрессия точки плавления, $\Delta T = 0.04$ К и температура тройной точки 2-фурфуриламина, $T_{tp} = 228.14 \pm 0.04$ К.

Структура 2-фурфуриламина хорошо изучена в газовой фазе методами газовой электронографии, микроволновой и колебательной спектроскопии [58] и в конденсированной фазе методом PCA [98]. На основании результатов, полученных в этих работах установлено, что это соединение имеет две основные возможные конформации: *гош* и *анти*. На основе данных электронографии установлено, что 2-фурфуриламин в газовой фазе при комнатной температуре существует в виде смеси двух форм: 87% *гош* и 13% *анти* конформеров, при этом разница энергий между конформерами *анти* и *гош*, 5.4 ± 2.1 кДж/моль [58]. Из данных PCA [98] установлено, что 2-фурфуриламина кристаллизуется в виде двух кристаллографически различимых *гош* и *анти* конформеров, которые связаны водородными связями NH...N (Рисунок 26), образуя димер.

Рисунок 26 Две конформации 2-фурфуриламина, полученные из данных РСА для молекулярного кристалла [98]

Энтальпию плавления 2-фурфуриламина определяли методом плавления одной точкой. Результаты пяти опытов (Таблица 7) приведены далее. Расчет проводили по уравнению (5).

,							
T _H	Т _к	$\Delta \boldsymbol{H}_{\mathrm{o}\mathrm{b}\mathrm{H}}$	$\Delta_{T_{\rm H}}^{T_{tp}}H_m(cr)$	$\Delta_{T_{tp}}^{T_{\kappa}}H_{m}(\mathbf{l})$	$\Delta \boldsymbol{H}_{\mathrm{KOHT}}$	$\Delta_{fus}H_m^0$	$\Delta_{fus} S_m^0$
ŀ	K			Дж · моль	1		Дж · К ^{−1} · моль ^{−1}
203.87	241.33	216.75	2909.66	2337.42	43.29	13060.73	57.17
204.30	241.30	215.73	2863.48	2332.49	42.77	13059.33	57.16
206.57	243.00	215.73	2617.99	2643.23	42.23	13050.72	57.12
203.50	240.69	215.73	2949.09	2221.81	42.95	13064.54	57.18
202.93	240.26	215.68	3009.09	2141.66	43.07	13067.59	57.20
					Спелиее	13060.6	57.16

Таблииа 7 Плавление одной точкой 2-фурфуриламина

Обнаруженный на кривой теплоемкости 2-фурфуриламина энантиотропный твердофазный переход хорошо воспроизводится. В области перехода (173-195 К) было проделано четыре независимых прохода с различными «шагами» по вводимому в каждой экспериментальной точке количеству тепла, q_i (Таблица 30). Из построенных на основании полученных данных кривых $Q_{\text{введн},n} = f(T_n)$, (где $Q_{\text{введн},n} = \sum_{i=1}^n q_i$), учтя тепло на нагревание пустого контейнера, определили изменение энтальпии твердофазного перехода, $\Delta_{trs}H$ (скачок на кривой). Величину $\Delta_{trs}H$ отнесли к средней температуре перехода, полученной из этих четырех проходов. Энтропию перехода нашли как $\Delta_{trs}S =$ $\Delta_{trs}H/T_{tst}$ (Таблица 8).

Среднее

Δ

15.0

0.07

фурфуриламина				
Проход	T _{tst} / K	∆ _{trs} н / Дж•моль ⁻¹	∆ _{trs} S Дж ·К ⁻¹ ·моль ⁻¹	/
Ι	182.303	447.2	2.67	
II	181.062	490.1	2.71	
III	180.421	556.5	3.08	
IV	180.597	436.4	2.42	
Среднее	180.6±0.1	482±45	2.72±0.26	
Твердофазные	переходы вы	званы, обычно,	молекулярными	И

Таблица 8 Термодинамические характеристики твердофазного перехода 2фурфуриламина

внутримолекулярными движениями в молекулярной кристаллической решетке. Мы попытались на основании полученных калориметрических данных интерпретировать твердофазный переход 2-фурфуриламина в терминах концепции «порядокбеспорядок» [91], [99] Этот подход широко использовался Веструмом и Маккалоу [91] при изучении ориентационного и конформационного беспорядка в некоторых молекулярных кристаллах. У 2-фурфуриламина интервал температур между твердофазным переходом и плавлением (область существования кристалла I, Рисунок 24) составляет 46.8 К. Этот переход кристалла I в кристалл II нельзя отнести к переходам, происходящем в пластических кристаллах, т.к. пластические ориентационно неупорядоченные кристаллы, где доминирует изотропное вращение, имеют низкую энтропию плавления, обычно менее 20 Дж·К⁻¹·моль⁻¹ [100]. Энтропия плавления нашего кристалла I равна 57.51 ± 0.07 Дж·К⁻¹·моль⁻¹. Для пластических кристаллов соотношение $\Delta_{trs}S/\Delta_{fus}S$ колеблется в основном от 2 до 6 [101]. Для 2фурфуриламина, это соотношение равно 0.05, что характерно для неупорядоченных по оси кристаллов, для которых это соотношение обычно меньше 1 [101]. Небольшое значение энтропии перехода ($\Delta_{trs}S = 2.72 \pm 0.26 \ \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$) указывает на довольно незначительную степень беспорядка в кристалле I, что также подтверждается небольшим скачком теплоемкости ($\Delta C_{\rm p} = -7.08$ Дж ·K⁻¹·моль⁻¹) при температуре перехода кристалла II в кристалл I. Из анализа полученных для твердофазного перехода 2-фурфуриламина термодинамических характеристик предположение, что обнаруженный твердофазный можно сделать переход вызывается нарушением ориентации относительно одной из молекулярных осей, началом внутреннего вращения около связи С-С, что подтверждается результатами работ [58] и [59]. Экспериментальные данные по теплоемкости аппроксимированы степенными уравнениями и экстраполированы к 0 К [102]. Это позволило нам рассчитать основные термодинамические функции $S_m^0(T)$, $\Delta_0^T H_m^0$, $\Delta_0^T G_m^0$, в области температур 5-350 (Таблица 32 в приложении) и энтропию образования при 298.15 К 2-фурфуриламина.

3.2.4 Калориметрия сгорания

Определение энергии сгорания 2-фурфуриламина представляло определённую трудность, так как вещество является легколетучим, токсичным и легковоспламеняющимся. Опытным путём были установлены оптимальные условия сожжения. Эти условия заключались в: 1) подборе минимальной навески вещества; 2) использовании вспомогательного вещества – бензойной кислоты; 3) подборе оптимального начального давления

Образец 2-фурфуриламина хранили в эксикаторе над Р₂О₅ в атмосфере осушенного аргона. При отборе навески эксикатор промывали осушенным током аргона. Перед наполнением уплощённую с двух сторон стеклянную ампулу массой ~0.14 – 0.18 г продували аргоном и заполняли веществом одномоментно с помощью пипетки, также продутой инертным газом. Затем из капилляра ампулы отбирали избыток вещества и запаивали её с помощью микрогорелки при охлаждении над жидким N₂. В течение 30 - 40 минут проверяли герметичность запаянной ампулы, после чего брикетировали 2 таблетки бензойной кислоты общим весом ~ 0.5 г для обеспечения подъёма температуры в опыте на 1 градус (~0.2 Ом). Сначала взвешивали ампулу с веществом на весах Mettler с точностью ± 2·10⁻⁶ г. Две таблетки бензойной кислоты взвешивали в платиновом тигле, причём одну клали на дно тигля, а другую, с большим весом, ставили вертикально. Затем в тигель на нижнюю таблетку бензойной кислоты помещали ампулу и на неё опрокидывали вторую таблетку. Таким образом ампула находилась между двух таблеток. На верхнюю таблетку бензойной кислоты клали платиновую проволочку в виде спирали, присоединённую к электродам бомбы. Над тиглем располагали плоский платиновый экран, который крепился на центральном электроде. В последнюю очередь в бомбу вводили 1 мл воды.

Собранную бомбу наполняли кислородом до 5 атм, уплотняли накидной гайкой (см. Рисунок 17), и, выпустив газ, продували кислородом с чистотой φ =99.999% об. в течение 30 минут, после чего её наполняли кислородом до *P* = 3.04 МПа. Опыт проводили при начальной температуре 298.15 К.

После проведения калориметрического опыта в продуктах сгорания определяли CO_2 гравиметрическим методом и контролировали отсутствие CO с помощью индикаторной трубки; отношения $m(CO_{2,3\kappa\pi c})/m(CO_{2,\taueop}) = 99.93 \pm 0.02\%$. Результаты опытов по определению энергии сгорания 2-фурфуриламина приведены в таблице 9.

60

Эксперимент	1	2	3	4	5
$m_{\scriptscriptstyle m BaK}/\Gamma$	0.019320	0.014553	0.012511	0.013699	0.016213
т(б.к.)/Г	0.510722	0.520995	0.518628	0.509578	0.525306
ΔR_{kopp} Om	0.241287	0.243428	0.241446	0.237893	0.246304
$\epsilon_{f(Cont.)}$ /Дж·Ом ⁻¹	88.7	88.8	88.7	88.6	88.8
- ΔU _(I.B.P.) / Дж	14072.8	14197.6	14082.1	13874.8	14365.3
ΔU(б.к.)/ Дж	13489.2	13760.5	13698.0	13459.0	13874.4
∆U(сажа)/ Дж	-	5.8	-	-	-
$q_{ m HNO3}$ / Дж	3.6	2.0	3.5	0.8	1.2
$\Delta U_{\Sigma}/$ Дж	11.7	11.9	11.7	11.6	12.0
$-\Delta_{c}u_{i}^{0}/\left(\mathrm{Д}\mathrm{w}\cdot\mathrm{r}^{-1} ight)^{\mathrm{b}}$	29415.1	29478.4	29470.1	29447.4	29470.2
-Δ _c u ⁰ / (Дж·г ⁻¹)			29456 ± 32		
$\left(m(\mathcal{CO}_{2,\Im K\Pi C})/m(\mathcal{CO}_{2,\operatorname{Teop}})\right)_{i}^{c}$	1.0006	1.0006	1.0006		
$m(CO_{2,3\kappa\Pi c})/m(CO_{2,Teop})$		().9999±0.0004		

Таблица 9 Результаты опытов по сгоранию 2-фурфуриламина^а

^a Стандартное отклонение u(M) = 0.001 г·моль⁻¹, u(p_0)= 0.5 кПа, u(T) = 0.01 K; $m_{\text{вак}}$ – масса сгоревшего образца; m(б.к.) – масса бензойной кислоты; стандартное отклонение u(m) = 0.002 мг; m(сажа) – масса сажи; $\Delta R_{\text{корр}}$ увеличение сопротивления термометра с поправкой на теплообмен, стандартное отклонение u(ΔR corr) = 1·10⁻⁵ Ом; $\varepsilon_{f(Cont.)}$ - энергетический эквивалент содержимого бомбы в конечном состоянии, расширенная неопределенность U_c($\varepsilon_{f(Cont.)}$) = 0.1 Дж[·]Ом⁻¹ (с доверительной вероятностью 0.95); $-\Delta U_{(I.B.P.)}$ – изменение энергии для изотермической реакции горения в реальных условиях бомбы, расширенное стандартное отклонение $U_c(-\Delta U_{(I.B.P.)})$ = 7.2 Дж (с доверительной вероятностью 0.95); $\Delta U(6.к.)$ – поправка на энергию сгорания бензойной кислоты, она рассчитывается с использованием значения $-\Delta_c u^0$ =26412.0 ± 1.9 Дж·г⁻¹ сертифицированной бензойной кислоты путем внесения поправки на приведение к стандартному состоянию, стандартное отклонение ΔU_{Σ} =0.08 Дж; ^b $-\Delta_c u^0$ стандартная удельная энергия сгорания образца; (- $\Delta_c u^0$) – среднее значение стандартной удельной энергии сгорания, расширенная неопределенность U_c(($-\Delta_c u^0$)) = 22 Дж·г⁻¹ (с доверительной вероятностью 0.95); с ($m(CO_{2,якпс})/m(CO_{2,reop})$)_i – отношение массы СО₂, определенной экспериментально, к массе, рассчитанной теоретически; в опытах 3 и 4 с учетом образования СО₂ из сажи; расширенная неопределенность U_c($m(CO_{2,sknc})/m(CO_{2,reop})$)=2·10⁻⁴

Результаты определения энергии сгорания, $\Delta_c U_m^0(l)$, и энтальпий сгорания, $\Delta_c H_m^0(l)$,и образования, $\Delta_f H_m^0(l)$, при 298.15 К приведены далее (Таблица 10). На основании экспериментальной величины энтальпии образования при 298.15 К 2фурфуриламина рассчитан групповой вклад $\Delta_f H_m^0(l)$ на группу (С – (H)₂(N)(C_d)) = -82.9 ± 6.0 кДж моль⁻¹, отсутствующий в схеме Бенсона, что позволит прогнозировать энтальпии образования целого ряда соединений, содержащих эту группу.

Таблица 10 Стандартные молярные энергия, $\Delta_c U_m^0(l)$, и энтальпия, $\Delta_c H_m^0(l)$, сгорания и энтальпия образования в жидком состоянии, $\Delta_f H_m^0(l)$, 2-фурфуриламина при 298.15 K^a

$\Delta_c U_m^0(\mathbf{l})$	$\Delta_c H_m^0(\mathbf{l})$	$\Delta_f H_m^0(\mathbf{l})$				
кДж·моль-1						
-2860.7	-2862.5	-105.4				

^а Комбинированные расширенные неопределенности, U, (0.95 уровня значимости) составляют: $U(\Delta_c U_m^0(l)) = 3.1 \text{ кДж моль}^{-1}, U(\Delta_c H_m^0(l)) = 8.6 \text{ кДж моль}^{-1}, U(\Delta_f H_m^0(l)) = 8.6 \text{ кДж моль}^{-1}$

Использование полученного в работе экспериментального значения энтальпии образования позволило квантово-химическим методом доказать димеризацию 2фурфуриламина в газовой фазе [103].

3.2.5 Расчет термодинамических функций образования в стандартных условиях

По уравнению реакции образования 2-фурфуриламина (53) была рассчитана энтропия образования в жидкой фазе и $\Delta_f S_m^0(l)$ при 298.15 К:

$$5 C(\text{graph}) + 3,5H_2(g) + 0.5 O_2(g) + 0.5 N_2(g) = C_5H_7NO(l)$$
 (50)

Энергии Гиббса 2-фурфуриламина в конденсированном состоянии рассчитаны согласно (45), (46) – (Таблица 11).

Таким образом, для фурфуриламина были получены термодинамические функции образования только в конденсированной фазе. В литературе отсутствуют данные по энтальпии испарения и давлению пара этого соединения.

Термодинамические функции в газовой фазе были получены методом квантовохимических расчетов [92] (квантово-химические расчеты выполнены в группе О.В. Дорофеевой).

Термодинамические функции	2-Фурфуриламин
S_m^0 (1) $\frac{\mathcal{Д}_{\mathcal{K}}}{K\cdot$ моль	230.8±2.9
$\Delta_{\!f} \mathcal{S}_m^0(\mathbf{l})$ / $rac{\mathcal{Д}_{\!\mathcal{K}}}{K\cdot$ моль	-453.6± 2.9
$\Delta_f H_m^0(l) / \frac{\kappa \Delta \pi}{MOJE}$	-105.4 ± 8.6
$\Delta_{\!f}G^0_m(\mathbf{l})$ / $rac{\kappa\!$	29.8± 3.5

Таблица 11 Термодинамические функции образования 2-фурфуриламина при 298.15 К

3.3 Тетрагидрофурфурол

3.3.1 Теплоемкость

Теплоемкость коммерческого образца тетрагидрофурфурилового спирта (тетрегидрофурфурол, 2-THFAlc, Сигма Алдрич) измерили в диапазоне температур от 6 К до 350 К. Чистота образца (согласно сертификату фирмы) составляла >99 мас.%. Масса навески образца (приведенного к вакууму) была равна 0.92379 г. Вне зависимости от скорости охлаждения образец стекловался; образец охлаждали от комнатной температуры до температуры жидкого азота со скоростью ~ $(5-8)\cdot10^{-3}$ К·c⁻¹ и ~ $(1-4)\cdot10^{-3}$ К·c⁻¹. На кривой теплоемкости был обнаружен *G*-переход (Рисунок 27). Воспроизводимость экспериментальных точек кривой теплоемкости тетрегидрофурфурола составляла 0.03–0.4%. Добиться кристаллизации образца 2-THF-Alc не удалось. *G*-переход происходил в интервале температур 112.25–151.96 К и сопровождался скачком теплоемкости $\Delta C_{p,m} = 75.86\pm0.15$ Дж·K⁻¹·моль⁻¹. Было сделано три прохода, которые воспроизвелись.

Рисунок 27 Экспериментальная кривая теплоёмкости тетрегидрофурфурола

Рисунок 28 Энтропийноя диаграмма 2-THFAlc в области G перехода

Температура перехода найдена как пересечение кривых энтропии до G-перехода и после (*Рисунок 28*), она равна *T*_g = 134 K.

Поскольку кристаллический 2-THFAlc получить не удалось, мы рассчитали остаточную энтропию как разницу между неравновесным состоянием (стеклом) и кристаллическим состоянием этого соединения при температуре близкой к абсолютному нулю, она составила 0.08 Дж K^{-1} моль⁻¹. Предположив, что $S(0) = S_{octat}$. мы оценили энтропию, при 298.15 К, используя полученные данные теплоемкости стекла и переохлажденной жидкости, т.к. энтропия, являясь функцией состояния системы, не зависит от пути, каким система пришла в это состояние. Затем оценили энтропию образования тетрегидрофурфурола (*Таблица 12*).

3.3.2 Расчет термодинамических функций образования в стандартных условиях

По уравнению реакции образования тетрегидрофурфурола (53) была рассчитана энтропия образования в жидкой фазе и $\Delta_f S_m^0(l)$ при 298.15 К:

$$5 C(graph) + 5H_2(g) + O_2(g) = C_5 H_{10}O_2(l)$$
(51)

$$\Delta_f S_m^0(l) = S_m^0(C_5 H_{10} O_2(l)) - 5 \cdot S_m^0(H_2(g)) - 5 \cdot S_m^0(C(\text{graph})) - S_m^0(O_2(g))$$
(52)

 $S_m^0(C_5H_{10}O(l))$ – абсолютная мольная энтропия тетрегидрофурфурола, определенная из опытов на адиабатическом калориметре, рассчитанная для стеклообразной фазы (Таблица 36 в Приложении).

Погрешность определяется, на основании закона накопления ошибок. Величина энтропии образования, $\Delta_f S_m^0(l)$, приведена далее (Таблица 12).

Энергии Гиббса тетрагидрофурфурилового спирта в конденсированном и газообразном состояниях рассчитаны согласно (45), (46) – (Таблица 12), используя литературные данные по энтальпии образования и энтальпии и энтропии испарения [61]. Ниже приведена таблица, в которой представлены все термодинамические функции тетрегидрофурфурола, которые удалось рассчитать из имеющихся экспериментальных данных.

ТД функции	Тетрегидрофурфурол
$S_m^0(l) \frac{\mathcal{A}_{\mathcal{K}}}{K \cdot \text{моль}}$	227.1±3.0
$\Delta_{f}S_{m}^{0}(\mathbf{l})$ / $rac{\mathcal{Д} st}{K \cdot \mathrm{моль}}$	-660.1± 5.0
$\Delta_{f}H_{m}^{0}(l)$ / $\frac{\kappa$ Дж}{моль}	-435.3 ± 1.3^{c}
$\Delta_{\!f}G^0_m({ m l})$ / $rac{\kappa\!$	-238.5± 2.0
$\Delta_{oldsymbol{ u} a p} H^0_m / rac{\kappa \mathcal{A} arkappa}{моль}$	57.4 ± 0.3^{c}
$\Delta_{oldsymbol{vap}}S_m^0/rac{\mathcal{A}arkappa}{K\cdot ext{моль}}$	133.7±5.0 ^{<i>c</i>}
$S_m^0(g) rac{\mathcal{A} \varkappa}{K \cdot \mathrm{моль}}$	360.8±2.9
$\Delta_{\!f} S^0_m(\mathrm{g}) \ / rac{\mathcal{L}_{\!\!\mathcal{K}}}{K\cdot_{\!\!\mathrm{MOJL}}}$	-526.4±5.0
$\Delta_{f}H_{m}^{0}(g)$ / $\frac{\kappa_{}_{}}{_{MOЛЬ}}$	-377.9 ± 1.3
$\Delta_f G^0_m(\mathrm{g}) \ / \ rac{\kappa \mathcal{A} \varkappa}{_{\mathrm{MOЛЬ}}}$	-220.95 ± 2.0

Таблица 12 Основные термодинамические функции тетрегидрофурфурола

^с Литературные данные взяты из работы[61].

3.4 2-Метилтетрагидрофуран

Результаты, описанные в этом разделе, опубликованы в работах [103,108]³

³ При описании данного раздела диссертации использованы следующие публикации, выполненные автором в соавторстве: S.V. Tarazanov, V.A. Lukyanova, D.Yu. Ilin, O.V. Dorofeeva, A.I. Druzhinina, S.M. Pimenova, Enthalpy of formation of 2-methyltetrahydrofuran: Experimental and computational study, J. Chem. Thermodyn. 165 (2022) [103] и D.Yu. Ilin, S. V. Tarazanov, V. V. Andreychev, V.A. Lukyanova, A.I. Druzhinina, S.M. Pimenova, O. V. Dorofeeva, Low-temperature heat capacity and pseudorotation in 2-methyltetrahydrofuran, Phys. Chem. Chem. Phys. 24 (2022) [108]. Подготовка полученных результатов проводилась совместно с соавторами, причем вклад Ильина Д.Ю. составил 60 % в каждой публикации. Согласно Положению о присуждении ученых степеней в $M\Gamma Y$, в публикациях отражены основные результаты, положения и выводы исследования.

3.4.1 Очистка

Коммерческий образец 2-метилтетрагидрофурана (2-МеТНF, $C_5H_{10}O$, CAS: 96-47-9), приобретенный у компании Т.С.І., очищали ректификацией при атмосферном давлении на колонне высотой 100 см с коэффициентом дефлегмации 25–30 единиц. Для получения образца оптимальной чистоты проводили ректификацию непрерывно в течение 12 часов. Дистиллят сушили над хлоридом кальция, а затем пропускали через слой силикагеля (25 мл) с частицами диаметром 0.5–0.25 мм. Все экспериментальные операции проводились в атмосфере сухого инертного газа (Ar).

Чистоту очищенного образца определяли методом ГЖХ и калориметрическим методом фракционного плавления, а также анализом газообразных продуктов сгорания на содержание СО₂. Чистота образца: $\omega = 99.95\%$, согласно данным ГЖХ; N = 99.87%, согласно результатам фракционного плавления (в рамках эксперимента на адиабатическом калориметре); $\omega = 99.98\%$, согласно количественному анализу продуктов сгорания на СО₂ (в рамках эксперимента по калориметрии сгорания).

3.4.2 Теплоемкость

Теплоемкость 2-метилтетрагидрофурана была измерена в области температур 7.5–354.0 К (Рисунок 29), (Таблица 37 и Таблица 38 в Приложении). Для охлаждения калориметрической ячейки в области от 4 до 85 К использовалась ванна с жидким гелием, в области от 80 до 360 К – ванна с жидким азотом. Измерение теплоемкости проводилось в режиме нагревания, методом калориметрических ступеней с шагом по температуре ~1.0 К. Масса образца 2-метилтетрагидрофурана, приведенная к вакууму, составляла 0.749593 г. Плотность 2-метилтетрагидрофурана при 298.15 К равна 0.8540 г см⁻³. Взвешивание проводили на весах марки Mettler с точностью $\pm 5 \cdot 10^{-2}$ мг.

При охлаждении образца 2-метилтетрагидрофурана от комнатной температуры до температуры жидкого азота со скоростью ~ $(5-8)\cdot10^{-3}$ К·с⁻¹ он легко стекловался. Общей причиной образования стекла обычно является конфигурационный беспорядок в жидкости, перестройка которого требует преодоления потенциального барьера, а тепловая энергия k_BT оказывается недостаточной для его преодоления и перестройки жидкости в кристалл [66]. Это взывает медленную установку теплового равновесия между сосуществующими фазами.

66

Рисунок 29 Значение молярной теплоёмкости 2-метилтетрагидрофурана (T_g – температура стеклования; T_{tp} – температура тройной точки)

Если равновесие достигается, то, ЭТО приводит образованию не к метастабильных фаз, которые могут существовать в широком диапазоне температур. Метастабильные фазы в основном образуются при переохлаждении жидкости. Уменьшением скорости охлаждения до ~(1-4)·10⁻³ К·с⁻¹ добиться кристаллизации образца 2-метилтетрагидрофурана не удалось. Обе кривые переохлажденной жидкости совпали в пределах погрешности определения. Теплоемкость вещества в стеклообразном состоянии измеряли в области температур 79.19 – 100.95 К (Таблица 38 в Приложении). G-Переход происходил в интервале температур 87.24 – 92.43 К и сопровождался скачком теплоемкости (Рисунок 30) $\Delta C_{p,m} = 71.38 \pm 0.14 \ \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$.

Рисунок 30 Теплоёмкость 2-метилтетрагидрофурана в области G-перехода

Рисунок 31 Энтропийная диаграмма для G-перехода 2-метилтетрагидрофурана

Температура перехода найдена как пересечение кривых энтропии до Gперехода и после (Рисунок 31), она равна T_g = 90 К. На кривой теплоемкости в изученной области обнаружено 2температур так же плавление метилтетрагидрофурана. Получить образец в кристаллическом состоянии удалось при выдерживании его в течение 7 суток при температуре ниже температуры плавления на 10-12 град. При этом наблюдалось выделение тепла и уменьшение величины теплоемкости, которую мы время от времени контролировали. По окончанию процесса выделения тепла и установлению постоянного значения теплоемкости во времени, образец в контейнере нагревали и подплавляли на ~20 %. Затем еще 8-9 часов выдерживали при температуре ниже температуры плавления на 10-12 град и осторожно охлаждали до температуры жидкого азота (77.4 К). Далее проводили измерения теплоемкости полученной кристаллической фазы.

Рисунок 32 Молярная теплоемкость кристаллического 2-метилтетрагидрофурана в области (80–85) К, измеренная в ванне с жидким азотом (кружки) и в ванне с жидким гелием (треугольники)

Кристаллизацию проводили несколько раз, кривая теплоемкости хорошо воспроизводилась с точностью 0.05–0.1%. Теплоемкость кристаллического 2метилтетрагидрофурана, измеренная в разных охлаждающих ваннах (жидком гелии и жидком азоте), совпадает в пределах погрешности измерения (Рисунок 32). Экспериментальные теплоемкости аппроксимированы степенными полиномами (ур. (12), Таблица 40). По формулам (9),(10) рассчитаны сглаженные основные термодинамические функции (*Таблица 41*).

Рисунок 33 показывает сравнение молярных теплоемкостей 2-MeTHF в температурном интервале 285–355 К, в котором имеются литературные данные, с полученными в нашей работе. Расхождение составляет 1–2 % (Таблица 13).

Рисунок 33 Молярная теплоёмкость 2-метилтетрагидрофурана в интервале 285–355 К.

С _{р,m} (298.15) / Дж•К ⁻¹ •моль ⁻¹	Источник	Метод очистки	Чистота	Метод анализа чистоты	Метод измерения	Ссылка
156.9±0.2	Алдрич	Без доп. очистки	>99 %	Сертификат Алдрич	ДСК	[68]
157.0±0.2	Алдрич	Без доп. очистки	>99 %	Сертификат Алдрич	ДСК	[69]
156.89	Флука	Без доп. очистки	>99 %	Сертификат Флука	ДСК	[71]
160±3	Алдрич	Без доп. очистки	>99 %	Сертификат Алдрич	ДСК	[64]
155.23±0.31	Компания Т.С.І.	Дополнительно очищен	99.95±0.02 (масс. %) 99.88±0.01 (мольн. %)	ГЖХ Фракционное плавление	АК	Данная работа

Таблица 13 Сравнение молярных теплоёмкостей 2-метилтетрагидрофурана

3.4.3 Характеристики плавления

Затем для 2-метилтетрагидрофурана, были получены термодинамические характеристики процесса плавления. Методом дробного плавления проведено три опыта (Таблица 39), на основании которых найдена температурная зависимость равновесных температур, T_i , от обратной величины доли расплава, $1/F_i$. (Рисунок 34).

Рисунок 34 Зависимость равновесной температуры плавления, T_i, от обратной величины доли расплава, 1/F_i, для трех опытов 2-метилтетрагидрофурана (Таблица 39).

Обработкой по методу Россини [82] получены депрессия точки плавления, $\Delta T = 0.034$ К и температура тройной точки 2-метилтетрагидрофурана, $T_{tp} = 137.20 \pm 0.03$ К.

Методом плавления образца 2-метилтетрагидрофурана одной точкой проведено пять опытов, Таблица 14, на основании которых получены энтальпия, $\Delta_{fus}H_m^0 = 6203\pm240$ Дж·K⁻¹, и энтропия, $\Delta_{fus}S_m^0 = 45.21\pm1.7$ Дж ·K⁻¹·моль⁻¹, плавления 2-метилтетрагидрофурана.

Используя полученные характеристики плавления, по формуле (8) рассчитана чистота исследованного образца 2-метилтетрагидрофурана, которая составила по методу Россини 0.9987 мол. долей.

Сравнение характеристик фазовых переходов, полученных в настоящей работе с имеющимися в литературе приведены далее (Таблица 15). Можно заключить, что результаты настоящего исследования позволили значительно уточнить и расширить имеющиеся в литературе данные по теплоемкости и фазовым переходам 2-метилтетрагидрофурана.

			,		- ,								
метилтетрагидрофурана													
$T_{\rm H}^{\ a}$	Т _к	Δ Н _{общ} ^с	$\Delta_{T_{\rm H}}^{T_{tp}}H_m(cr)^{\rm d}$	$\Delta_{T_{tp}}^{T_{\kappa}}H_{m}(\mathbf{l})^{\mathbf{d}}$	$\Delta m{H}_{ m koht}$	$\Delta_{fus}H_m^0$	$\Delta_{fus} S_m^0$						
K			Дж·К ⁻¹ ·моль ⁻¹										
122.628	144.849	11079.0	1284.3	1014.9	2396.9	6383.0	46.523						
125.372	147.446	11077.5	1052.3	1359.0	2409.8	6256.4	45.601						
124.194	146.899	11158.2	1152.5	1286.5	2469.1	6250.2	45.555						
119.911	144.81	11239.8	1509.4	1009.7	2667.8	6052.8	44.117						
121.842	145.945	11238.6	1349.9	1160.1	2601.2	6127.4	44.660						
					Среднее	6203 ^d	45.21 ^d						

Таблица 14 Мольная энтальпия, $\Delta_{fus} H_m^0$, и энтропия, $\Delta_{fus} S_m^0$, плавления 2-

Молярные массы соединения рассчитывали с использованием относительных атомных масс, рекомендованных ИОПАК [75]; стандартное отклонение u(M) = 0.002 г·моль⁻¹; $u(m_{\text{вакуум}}) = 5 \cdot 10^{-1}$ ⁵ г; стандартная погрешность и равно $u(T_{tp}) = 0.02$ К. ^b $T_{\rm H}$ и $T_{\rm K}$ - начальная и конечная температуры, относительная стандартная погрешность $U_c(T) = 0.02$ К. ^с $\Delta H_{oбщ}$ - энергия, необходимая для нагревания 1 моль вещества от T_{in} до T_f , стандартная погрешность и ($\Delta H_{oбщ}$) =22 Дж·моль⁻¹. ^d Расширенные стандартные неопределенности U_c: U_c($\Delta_{T_H}^{T_{tp}}H_m(cr)$) = 2.5 Дж·моль⁻¹, U_c($\Delta_{T_{tp}}^{T_{\kappa}}H_m(l)$) = 2.3 Дж·моль⁻¹, U_c($\Delta_{fus}H_m^0$) = 240 Дж·моль⁻¹ и U_c($\Delta_{fus}S_m^0$) = 1.7 Дж·К⁻¹·моль⁻¹ (с доверительной вероятностью 0.95).

Таблица 15 Сравнение характеристик фазовых переходов 2-метилтетрагидрофурана

T _g / K	$\Delta \mathbf{C}_{\mathbf{p},\mathbf{m}}(\boldsymbol{T}_{\boldsymbol{g}})$ $\frac{\mathcal{J}_{\mathcal{K}}}{\boldsymbol{K}\cdot \mathrm{моль}}$	T _{tp} / K	Δ _{fus} H ⁰ _m <u>кДж</u> моль	∆ _{fus} S ⁰ _m / Дж К ∙ моль	Источник	Чистота	Метод анализа чистоты	Методика изучения	Ссылка
91±1	97±5	-	-	-	Алдрич White Label	-	-	ДТА	[64]
-	-	135.95 (T _m)	-	-	-	-	-	-	[65]
90	71.38±0.14	137.20 ± 0.03 (T_{tp})	6.2±0.2	45.2±1.7	Компания Т.С.І.	99.95±0.02 (масс. %) 99.87±0.01 (моль. %)	ГЖХ фракционное плавление	Адиабатическая калориметрия	Данная работа

3.4.4 Калориметрия сгорания

2-Метилтетрагидрофуран легковоспламеняющаяся летучая жидкость, которая легко полимеризуется, а также легко образует взрывоопасные пероксиды при контакте с кислородом. Все это потребовало проведения всех подготовительных операций в атмосфере сухого аргона, а также тщательного подбора условий сгорания. Чтобы добиться полноты сгорания образца были решены следующие задачи:

1) Найдено оптимальное соотношение навески 2-МеТНГ и вспомогательного вещества (в среднем, 15-30 мг вещества на 0.5 г бензойной кислоты, Таблица 16); при других соотношениях образца и бензойной кислоты сгорание

происходило с образованием значительных количеств сажи не только в тигле, но и на стенках бомбы;

- найдено оптимальное расположение ампулы с образцом и вспомогательного вещества в тигле;
- 3) использование тонкостенного платинового экрана.
- 4) найдено оптимальное начальное давление кислорода в бомбе (3.04 МПа).

При подборе этих условий мы провели 10-12 предварительных опытов по сгоранию. В результате жидкий 2-метилтетрагидрофуран (около 0.01-0.04 г) запаивали в плоские стеклянные ампулы в сухой атмосфере аргона. Взвешивание проводилось на весах фирмы Меттлер; стандартная погрешность составляет 0.002 мг. Затем, ампулу с веществом помещали в тигель между двумя таблетками бензойной кислоты (общий вес ~ 0.5 г). Над тиглем находилась платиновая перегородка (экран), установленная на центральном электроде. Горение осуществлялось в чистом кислороде при давлении в бомбе 3.04 МПа. В этих условиях удалось добиться полного сгорания вещества (эксперименты 1, 2, 5) или сжечь его с небольшим образованием сажи в тигле (~ 1 × 10⁻⁴ г) (эксперименты 3 и 4) (Таблица 16). Около 91-96% всего количества выделяющегося тепла в эксперименте принадлежит вспомогательному веществу (бензойной кислоте).

Для обеспечения равновесия в конечном состоянии в бомбу добавляли 1 мл воды. Температура, при которой происходило воспламенение, составляла (298.15 ± 0.03) К во всех экспериментах. Возможность зажигания обеспечивалась с помощью платиновой проволоки (диаметром 0.1 мм), нагреваемой разрядом конденсатора. Энергия воспламенения в экспериментах с бензойной кислотой и 2метилтетрагидрофурана была одинаковой и не учитывалась в расчетах.

После проведения калориметрического опыта в продуктах сгорания определяли CO_2 гравиметрическим методом и контролировали отсутствие CO с помощью индикаторной трубки; отношения $m(CO_{2, 3 \text{ кпс}})/m(CO_{2, \text{теор}})$ составляло 99.98±0.02%. Результаты определения – $\Delta_c u^0(l)$ для пяти опытов приведены в Таблица 16.

По формулам (34) – (35) получаем энтальпию сгорания вещества. – $\Delta_c H^0(l) = 3140.8 \pm 1.9 \frac{\kappa \Delta \pi}{MODE}$. На основании результатов определения энергии сгорания из пяти удачных опытов найдена энергия и энтальпия сгорания 2-метилтетрагидрофурана, а также его энтальпия образования (Таблица 17). Полученные в работе данные опубликованы в статье [103].

72
Эксперимент	1	2	3	4	5	
$m_{\scriptscriptstyle m Bac}/\Gamma$	0.032791	0.014693	0.034080	0.038264	0.012106	
т(б.к.)/Г	0.485258	0.521370	0.490964	0.483207	0.522223	
$\Delta R_{ m kopp}$ / Ом	0.0	0.0	0.000168	0.000149	0.0	
$\epsilon_{f(Cont.)}/Дж \cdot Om^{-1}$	0.240822	0.245907	0.244146	0.243234	0.244683	
- ΔU _(I.B.P.) / Дж	67.5	67.5	67.5	67.5	67.5	
ΔU(б.к.)/ Дж	14019.7	14315.8	14213.2	14160.2	14244.5	
∆U(сажа)/ Дж	1.3	1.3	1.3	1.3	1.3	
$q_{ m HNO3}$ / Дж	0.0	0.0	5.5	4.9	0.0	
$\Delta U_{\Sigma}/$ Дж	10.0	10.5	10.2	10.0	10.5	
$-\Delta_{c}u_{i}^{0}/\left(\mathrm{Д}\mathrm{w}\cdot\mathrm{\Gamma}^{\mathrm{-1}} ight)^{\mathrm{b}}$	36385.0	36405.1	36420.2	36394.5	36428.2	
-Δ _c u ⁰ / (Дж·г ⁻¹)	36407 ± 22					
$\left(m(\mathcal{CO}_{2,\Im K\Pi C})/m(\mathcal{CO}_{2,\operatorname{Teop}})\right)_{i}$	0.9996		1.0003	0.9995	0.9997	
$m(CO_{2,3 \text{KIIC}})/m(CO_{2,\text{Teop}})$			0.9998±0.0002	2		

Таблица 16 Энергия сгорания 2-метилтетрагидрофурана^а

^а Стандартное отклонение u(M) = 0.001 г·моль⁻¹, u(p_0)= 0.5 кПа, u(T) = 0.01 K; $m_{\text{вак}}$ – масса сгоревшего образца; m(б.к.) – масса бензойной кислоты; стандартное отклонение u(m) = 0.002 мг; m(сажа) – масса сажи; $\Delta R_{\text{корр}}$ увеличение сопротивления термометра с поправкой на теплообмен, стандартное отклонение u($\Delta R_{\text{корр}}$) = 1·10⁻⁵ Ом; $\varepsilon_{f(\text{Cont.})}$ энергетический эквивалент содержимого бомбы в конечном состоянии, расширенная неопределенность U_c($\varepsilon_{f(\text{Cont.})}$) = 0.1 Дж·Ом⁻¹ (с доверительной вероятностью 0.95); $-\Delta U_{(\text{LB.P.})}$ изменение энергии для изотермической реакции горения в реальных условиях бомбы, расширенное стандартное отклонение $U_c(\Delta U_{(\text{LB.P.})})$ = 7.2 Дж (с доверительной вероятностью 0.95); $\Delta U(6.\kappa.)$ – поправка на энергию сгорания бензойной кислоты, она рассчитывается с использованием значения $-\Delta_c u^0 = 26412.0 \pm 1.9$ Дж·г⁻¹ сертифицированной бензойной кислоты путем внесения поправки на приведение к стандартному состоянию, стандартное отклонение $\Delta U_{\Sigma} = 0.08$ Дж; ^b $-\Delta_c u^0$ стандартная удельная энергия сгорания образца; (- $\Delta_c u^\circ$) – среднее значение стандартной удельной энергии сгорания, расширенная неопределенность U_c((- $\Delta_c u^\circ$)) = 22 Дж·г⁻¹ (с доверительной вероятностью 0.95); ^c ($m(CO_{2,3кпс})/m(CO_{2,reop})$) – отношение массы CO₂, определенной экспериментально, к массе, рассчитанной теоретически; в опытах 3 и 4 с учетом образования CO₂ из сажи; расширенная неопределенность U_c($m(CO_{2,sкпс})/m(CO_{2,sкпс})/m(CO_{2,sкпс})$)

Таблица 17 Стандартные молярные энергия, $\Delta_c U_m^0(l)$, и энтальпия, $\Delta_c H_m^0(l)$, сгорания и энтальпия образования в жидком состоянии, $\Delta_f H_m^0(l)$, 2-метилтетрагидрофурана при 298.15 K^a

$\Delta_c U_m^0(\mathbf{l})$	$\Delta_c H_m^0(\mathbf{l})$	$\Delta_f H^0_m(\mathbf{l})$					
кДж·моль-1							
-3135.8	-3140.8	-255.9					

^а Комбинированные расширенные неопределенности, U, (0.95 уровня значимости) составляют: $U(\Delta_c U_m^0(l)) = 1.9 \ \kappa \exists w \cdot \text{моль}^{-1}, U(\Delta_c H_m^0(l)) = 1.9 \ \kappa \exists w \cdot \text{моль}^{-1}, U(\Delta_f H_m^0(l)) = 2.0 \ \kappa \exists w \cdot \text{моль}^{-1}$

3.4.5 Расчет термодинамических функций образования в стандартных условиях

Величина энтальпии образования в конденсированной фазе определен методом калориметрии сгорания, энтальпия образования в газовой фазе рассчитана по соотношению (36), значения приведены далее (*Таблица 18*). Следует отметить несколько завышенную величину погрешности в энтальпии образования 2-

метилтетрагидрофурана ($\pm 6.0 \frac{\kappa \#}{MOЛЬ}$) по сравнению с погрешностью в энтальпии образования 2-метилфурана ($\pm 1.1 \frac{\kappa \#}{MOЛЬ}$), что обусловлено сложностью в работе с этим веществом, о которых было сказано ранее.

По уравнению реакции образования 2-метилтетрагидрофурана (53) была рассчитана энтропия его образования в жидкой фазе, $\Delta_f S_m^0(l)$ при 298.15 К:

$$5 C(graph) + 5 H_2(g) + 0.5 O_2(g) = C_5 H_{10}O(l)$$
 (53)

$$\Delta_f S_m^0(l) = S_m^0(C_5 H_{10}O(l)) - 5 \cdot S_m^0(H_2(g)) - 5 \cdot S_m^0(C(graph)) - 0.5 \cdot S_m^0(O_2(g))$$
(54)

 $S_m^0(C_5H_{10}O(I))$ – абсолютная мольная энтропия 2-метилтетрагидрофурана, определенная из опытов на адиабатическом калориметре (*Таблица 41* в Приложении). Погрешность находится, на основании закона накопления ошибок. Величина энтропии образования, $\Delta_f S_m^0(I)$, приведена ниже (*Таблица 18*). Для перехода в газовую фазу использовали литературные данные по энтальпии испарения и давлению насыщенного пара [104]. Расчет проведен по уравнению (44).

Энергии Гиббса 2-метилтетрагидрофурана для конденсированного и газообразного состояний рассчитаны согласно (45), (46) (*Таблица 18*).

Таблица 18	8 Основные	термодинам	лические	функции	2-метилтет	рагидроф	<i>урана</i>
,		1			1		~ 1

Термодинамические функции	2-Метилтетрагидрофуран
$S_m^0(l) rac{\mathcal{A} lpha}{K \cdot ext{моль}}$	212.68±2.8
$\Delta_f S_m^0(\mathbf{l}) \ / \ rac{\mathcal{A}_{arkappa}}{K \cdot \mathrm{моль}}$	-541.2± 2.9
$\Delta_{f}H_{m}^{0}(\mathbf{l})$ / $\frac{\kappa \Delta \pi}{_{ m MOJE}}$	-255.9 ± 2.0
$\Delta_{f}G_{m}^{0}(\mathbf{l})$ / $\frac{\kappa\mathcal{A}\kappa}{_{ m MOЛL}}$	-94.5 ± 6.1
$\Delta_{m{vap}} H_m^0 / rac{\kappa Д lpha}{_{ m MOJE}}$	$33.63 \pm 0.05^{\circ}$
$\Delta_{vap}S_m/rac{\mathcal{A}_{\mathcal{K}}}{K\cdot MOJE}$	112.80±0.17
$\Delta_{com}S_m/rac{\Delta_{\kappa}}{K\cdot$ моль	-17.15
$S_m^0(g) rac{\mathcal{A} \varkappa}{K \cdot \mathrm{моль}}$	339.1±2.9
$\Delta_f S^0_m(\mathrm{g}) \ / rac{\mathcal{A}_{\mathcal{K}}}{K \cdot \mathrm{MODE}}$	-445.5±2.9
$\Delta_{f}H_{m}^{0}(\mathrm{g})$ / $\frac{\kappa \mathcal{I} \varkappa}{_{\mathrm{MOЛE}}}$	-222.3 ± 2.0
$\Delta_f G^0_m(\mathrm{g}) \ / \ rac{\kappa \mathcal{A} \varkappa}{моль}$	-89.4 ± 6.1

^с Литературные данные взяты из работы [104].

3.4.6 Псевдовращение 2-метилтетрагидрофурана

Полученное экспериментальное значение энтропии 2-метилгидрофурана в газообразном состоянии, $S_{\rm m}^{\circ}(g)(298.15 \, K) = 339.1 + 2.9 \, Дж \cdot K^{-1} \cdot моль^{-1}$ (*Таблица* 18) было использовано для прояснения некоторых аспектов расхождений между интерпретациями псевдовращения в 2-MeTHF (квантово-химические расчеты выполнены в группе О.В. Дорофеевой). Тетрагидрофурановое кольцо, также, как и другие насыщенные пятичленные циклы, обычно характеризуется внутримолекулярной подвижностью, т.н. псевдовращением, в результате которого конформационные изменения. Концепция псевдовращения была происходят предложена Питцером и др. [105] Чтобы объяснить расхождение между экспериментальной величиной энтропии циклопентана и значением, рассчитанным по известным молекулярным постоянным предполагая, что циклопентан имеет конформацию конверта (C_s симметрия) или твист форму (C₂ симметрия). Питцер и др. предположили, что в циклопентане происходит последовательная перестройка $C_s \rightarrow C_2$ конформаций, которая практически не сопровождается изменением энергии. Эта перестройка, была названа псевдовращением. Модель циклопентана со свободным псевдовращением позволила получить хорошее согласование рассчитанных по молекулярным постоянным и экспериментальных величин энтропии и теплоемкости.

Молекула 2-метилтетрагидрофурана является конформационно гибкой благодаря псевдовращению пятичленного кольца. Точное предсказание структуры наиболее стабильных конформеров является сложной задачей, чувствительной к выбору метода квантовохимического моделирования. Чтобы получить дополнительное представление о конформационных особенностях молекулы, были выполнены расчеты различными квантовохимическими методами (Таблица 19). Вклад псевдовращения в энтропию был рассчитан с использованием потенциалов, полученных для различных теоретических моделей.

Оптимизация геометрии десяти пробных структур 2-метилтетрагидрофурана привела к обнаружению восьми стационарных точек, пять из которых соответствуют стабильным конформерам и три являются переходными состояниями Рисунок 35.

Анализ теоретических результатов показывает, что минимальной энергией обладает конформер I 2-метилтетрагидрофурана, в то время как вторым по относительной энергии конформер зависит от выбранного теоретического уровня. Тем не менее можно с уверенностью сказать, что два стабильных конформера близки

по энергии. Что касается переходных состояний, то наиболее вероятным считается путь псевдовращения через переходное состояние TS1.

Таблица 19 Относительные энергии стабильных конформеров I–V 2метилтетрагидрофурана и переходных состояний TS1–TS3, определенные различными вычислительными методами (в кДж:моль⁻¹)^a

вычислин	ислополми метооим	и (в кдэк моле	, ,		
Конфор	· B3LYP-D3(BJ)	B3LYP	MP2	MP2(full)	CCSD(T)
мер	/def2-TZVPP	/cc-pVTZ	/6-311++G(d,p)	/cc-pVTZ	/def2-SVP ^c
Ι	0.10	0.20		0.00	0.00
II	0.00	0.00	0.94		
III				0.62	1.25
IV			0.00	0.25	
V			4.36		
TS1	5.49 (III)	7.11 (III)) 6.88 (IVII)	6.15 (III	I)
TS2			4.47 (IVV)		
TS3				0.96 (IIV	7)

^а Для вычисления этих значений использовались энергии, полученные в результате квантовохимических расчетов; конформеры, связанные с данным переходным состоянием, указаны в скобках. ^ь Конформеры и переходные состояния показаны ниже (Рисунок 35). ^с Переходные состояния не были определены на этом уровне теории.

Рисунок 35 Пять стабильных конформера и три переходных состояния 2-MeTHF, полученных на основании результатов различных вычислительных методов

Для теоретических моделей, приведенных в последней таблице, были определены соответствующие им потенциалы псевдовращения $V(\varphi) = \frac{1}{2}V_1(1 - \cos\varphi) + \frac{1}{2}V_2(1 - \cos2\varphi)$, которые вместе с рассчитанным потенциалом внутреннего вращения группы CH₃, $V(\varphi) = \frac{1}{2}V_3(1 - \cos3\varphi)$, были использованы для расчета энтропии. Расчет теоретического значения энтропии 2-MeTHF в газообразном состоянии был выполнен в приближении «жесткий ротатор-гармонический осциллятор» с поправкой на псевдовращение тетрагидрофуранового кольца и внутреннее вращение группы CH₃. Экспериментальное значение энтропии наилучшим образом согласуется с внутримолекулярным превращением между двумя низкоэнергетическими конформерами, барьер которого составляет около 4 кДж·моль⁻¹. Этой теоретической модели отвечает значение $S_m^{\circ}(g, 298.15 \text{ K}) = 338.8 \text{ Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$, что совпадает в пределах погрешности с экспериментальным значением $S_m^{\circ}(g, 298.15 \text{ K}) = 339.1 \pm 2.9 \text{ Дж} \cdot \text{K}^{-1}$ моль⁻¹, полученным в настоящей работе. Это убедительно подтверждает путь псевдовращения через переходное состояние TS₁, исключая таким образом ранее предложенные в литературе механизмы псевдовращения, предполагающие или свободное псевдовращение, или псевдовращение с заметно более высоким барьером [106], [107]. Результаты этого исследования 2-метилтетрафурана опубликованы в статье [108].

Заключение

В работе были определены прецизионными методами термодинамические 2-метилфурана, 2-метилтетрагидрофурана, 2-фурфуриламина функции И 2тетрагидрофурфурилового спирта. Были описаны и отработаны методики работы с этими веществами (подготовка к эксперименту, способы и подходы к проведению опытов на адиабатическом калориметре и калориметре Дикенсона). Отдельно хотелось бы отметить нетривиальный, нестандартный подход к проведению опытов по сожжению 2-фурфуриламина и 2-метилтетрагидрофурана, подбор условий представлял особую трудность, результаты многих опытов не вошли в окончательную работу. Однако каждый опыт является трудно затратным и занимает несколько дней (включая подготовку и анализ данных).

В работе получены низкотемпературные теплоемкости, изучены фазовые переходы всех четырёх веществ в области температур 5-350 К. Обнаруженные переходы разнообразны по своей природе и характеристикам, что представляет научный интерес и даёт базу для дальнейшего практического исследования и теоретического описания этих переходов. Следует отметить, что стеклование наблюдалось лля насыщенных гетероциклических соединений (2 метилтетрагидрофурана и 2-тетрагидрофурфурилового спирта). Это связано с природой этих соединений: как известно, многие насыщенные углеводороды склонны к переохлаждению, получить кристаллическую фазу для них крайне затруднительно. Для 2-MeTHF удалось получить кристаллическую фазу, а для 2-THFAlc – нет. Обычно корреляция между температурой расстеклования и температурой тройной точки для стекол составляет $\frac{T_g}{T_{tr}} = \frac{2}{3}$, у 2-метилтетрагидрофурана это отношение составляет 0.66, что является типичным для стеклообразной формы.[73]

Наличие гетероатома в метильном заместителе существенно влияет на свойства веществ. Для спирта (2-THFAlc) получить кристаллическую фазу не удалось, однако, для 2-фурфуриламина показано, что наличие аминогруппы приводит к аномалиям его свойств: энантиатропный фазовый переход на кривой теплоёмкости, наличие димеров в газовой и кристаллической фазах и, как следствие, аномальные энтальпии испарения. Нами была впервые определена энтальпия образования 2-фурфуриламина в конденсированном состоянии при 298.15 К. Это позволило оценить величину группового вклада C – $(H)_2(N)(C_d)$ в энтальпию, которая отсутствует в схеме Бенсона, используя для

других групповых вкладов литературные значения (Таблица 43 [109]). Величина вклада составила: $\Delta_f H_m^0 (C - (H)_2(N)(C_d)) = -82.9 \pm 6.0 \frac{\kappa \Delta \pi}{MOR}$.

Полученные в работе данные можно использовать для оценки термодинамической стабильности исследованных гетероциклических соединений в широком температурном интервале, что важно при разработке новых и оптимизации существующих технологий производства, где задействованы данные соединения. На основе полученных данных определены стандартные энергии Гиббса образования при 298.15 К четырех исследованных гетероциклических соединений (Таблица 20). Как видно из таблицы, термодинамическая стабильность изученных соединений уменьшается в ряду: 2-THFAlc > 2-MeTHF > 2-MeF > 2-FAm.

Соединение	∆ _f G ⁰ _m (l, 298. 15 K) / ^{кДж} _{моль}
2-Фурфуриламин (2-FAm)	29.84± 3.51
2-метилфуран (2-MeF)	-15.7 ± 1.1
2-метилтетрагидрофуран (2-MeTHF)	-94.5 ± 6.1
Тетрагидрофурфуриловый спирт (2-THFAlc)	-238.48 ± 2

Таблица 20 Сравнение термодинамической стабильности исследованных соединений

Из полученных данных (Таблица 20) видно, что наибольшей термодинамической стабильностью обладает тетрагидрофурфуриловый спирт, наименьшей – фурфуриламин. Значение $\Delta_f G_m^0(1)$ для фурфуриламина – величина положительная, что указывает на то, что данное вещество будет менее устойчиво с термодинамической точки зрения, чем смесь простых веществ (исходных элементов) в своих стандартных состояниях. Однако, естественно, из этого не следует, что данное вещество не может существовать, напротив, для многих известных органических веществ $\Delta_f G_m^0$ может быть положительной величиной.

Рекомендации и дальнейшие пути разработки темы диссертации

Проведенные в работе калориметрические исследования производных фурана и гидрированных фундаментальные его аналогов показали, что полученные взаимосогласованные прецизионные физико-химические данные для этого класса соединений могут использоваться при решении многих вопросов теоретической и Так. впервые полученные исследовании прикладной химии. В этом 2-метилтетрагидрофурана 2термодинамические характеристики для И

фурфуриламина совместно с данными квантовохимического моделирования позволили выявить закономерности конформационных превращений 2-метилтетрагидрофурана и подтвердить димеризацию 2-фурфуриламина в газовой фазе.

Другим результатом работы стало обнаружение ряда закономерностей термического поведения исследованных соединений, которые мы связываем с особенностями их молекулярного строения. Однако эти наблюдения пока носят предварительный характер и требуют дальнейшей проверки в ряду лишь соединений. В частности, (1) родственных при одинаковых термических воздействиях производные с фурановым кольцом не склонны к образованию метастабильных фаз в отличие от тетрагидрофурановых производных, но на данный момент слишком мало изучено соединений, чтобы это утверждать, хотя некоторая закономерность прослеживается; (2) полученные результаты для 2-фурфуриламина, в молекулах которого происходит внутримолекулярное осевое вращение, и который легко образует димеры, интересно сравнить с результатами для 2тетрагидрофурфуриламина, термодинамика которого еще не изучена. В рамках работы перспективным дальнейшего развития темы видится исследовать термодинамику родственных 2-замещенных производных фурана И его гидрированных Накопление прецизионных аналогов. термодинамических характеристик позволит выявить корреляции типа «структура-свойства» как в рядах фурана и его гидрированных аналогов, а также между производными этих рядов, в т. ч. генерализировать обнаруженные в настоящей работе закономерности.

Выводы

- 1) Получены данные по низкотемпературным теплоемкостям в области температур 5–350 К, стандартным функциям образования ($\Delta_f H_m^o, \Delta_f S_m^o, \Delta_f G_m^o$) при 298.15 К, энтальпиям, энтропиям, температурам фазовых превращений четырех производных 2-метилфурана, 2-фурфуриламина, 2-тетрагидрофурфурола и 2-метилтетрагидрофурана, которые легли в основу системы фундаментальных термодинамических данных, необходимых для проведения расчетов и анализа химических процессов с участием этих соединений.
- Определен характер внутримолекулярного вращения в твердой фазе 2фурфуриламина на основании калориметрического исследования теплоемкости.
- 3) Рассчитан групповой вклад $(C (H)_2(N)(C_d))$ в энтальпию образования, $\Delta_f H_m^0(l)$, отсутствующий в аддитивной схеме Бенсона, что позволит прогнозировать энтальпии образования целого ряда соединений, содержащих эту группу.

Литература

- Wang C. et al. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine // Fuel. Elsevier, 2013. Vol. 103. P. 200–211.
- Mosier N. et al. Features of promising technologies for pretreatment of lignocellulosic biomass // Bioresour. Technol. Elsevier Ltd, 2005. Vol. 96, № 6. P. 673-686.
- Davis A.C., Sarathy S.M. Computational study of the combustion and atmospheric decomposition of 2-methylfuran // J. Phys. Chem. A. American Chemical Society, 2013. Vol. 117, № 33. P. 7670–7685.
- Feller D., Simmie J.M. High-Level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran, 2-Methylfuran, and Furan // J. Phys. Chem. A. 2012. Vol. 116, № 47. P. 11768–11775.
- Thewes M. et al. Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine // Energy and Fuels. American Chemical Society, 2011. Vol. 25, № 12. P. 5549–5561.
- 6. Tarazanov S. et al. Assessment of the chemical stability of furfural derivatives and the mixtures as fuel components // Fuel. Elsevier Ltd, 2020. Vol. 271. P. 117594.
- Jężak S., Dzida M., Zorębski M. High pressure physicochemical properties of 2methylfuran and 2,5-dimethylfuran – second generation biofuels // Fuel. Elsevier Ltd, 2016. Vol. 184. P. 334–343.
- Yan K. et al. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid // RSC Adv. 2013. Vol. 3, № 12. P. 3853.
- Tarabanko V.E. et al. Synthesis and Anti-Knock Properties of Furfural Derivatives
 // J. Sib. Fed. Univ. Chem. 2016. Vol. 9, № 2. P. 221–229.
- Fretz S.J. et al. Influence of Iron Salt Anions on Formation and Oxygen Reduction Activity of Fe/N-Doped Mesoporous Carbon Fuel Cell Catalysts // ACS Omega.

2019. Vol. 4, № 18. P. 17662–17671.

- Sepay N. et al. An efficient three-component synthesis of coumarin-3-carbamides by use of Ni-NiO nanoparticles as magnetically separable catalyst // RSC Adv. The Royal Society of Chemistry, 2015. Vol. 5, № 87. P. 70718-70725.
- Gouse S., Reddy N.R., Baskaran S. A Domino Aza-Piancatelli Rearrangement/Intramolecular Diels-Alder Reaction: Stereoselective Synthesis of Octahydro-1 H -cyclopenta[cd]isoindole // Org. Lett. 2019. Vol. 21, № 10. P. 3822-3827.
- Coban Z.G., Yagci Y., Kiskan B. Catalyzing the Ring-Opening Polymerization of 1,3-Benzoxazines via Thioamide from Renewable Sources // ACS Appl. Polym. Mater. 2021. Vol. 3, № 8. P. 4203-4212.
- Maktouf L. Ben et al. Polyimides based on furanic diamines and aromatic dianhydrides: synthesis, characterization and properties // Polym. Bull. 2011. Vol. 67, № 7. P. 1111–1122.
- Murali R., Prakash Rao H.S., Scheeren H.W. Intra-molecular Diels-Alder reactions of citraconamic acids from furfurylamines and citraconic anhydride: effects of substitution in the furan ring on regioselectivity // Tetrahedron. Pergamon, 2001. Vol. 57, № 15. P. 3165-3174.
- Oliver Kappe C., Shaun Murphree S., Padwa A. Synthetic applications of furan Diels-Alder chemistry // Tetrahedron. 1997. Vol. 53, № 42. P. 14179–14233.
- Brickwood A.C. et al. Synthetic approaches towards phorbols via the ultra-highpressure mediated intramolecular Diels-Alder reaction of furans (IMDAF): effect of furan substitution // J. Chem. Soc. Perkin Trans. 1. 1999. № 8. P. 913-922.
- Koso S. et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5pentanediol // Chem. Commun. 2009. № 15. P. 2035.
- Yang Y. et al. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts // Green Chem. 2013. Vol. 15, № 7. P. 1932.
- 20. Green S.K. et al. The electrocatalytic hydrogenation of furanic compounds in a

continuous electrocatalytic membrane reactor // Green Chem. 2013. Vol. 15, № 7. P. 1869.

- Khromova S.A. et al. Furfural Hydrogenation to Furfuryl Alcohol over Bimetallic Ni-Cu Sol-Gel Catalyst: A Model Reaction for Conversion of Oxygenates in Pyrolysis Liquids // Top. Catal. 2016. Vol. 59, № 15-16. P. 1413-1423.
- 22. Ohyama J., Satsuma A. Reductive Conversion of 5-Hydroxymethylfurfural in Aqueous Solutions by Furan Ring Opening and Rearrangement. 2017. P. 159–185.
- Shirvani S. et al. Influence of catalyst additives on vapor-phase hydrogenation of furfural to furfuryl alcohol on impregnated copper/magnesia // Biomass Convers. Biorefinery. 2018. Vol. 8, № 1. P. 79–86.
- Nakagawa Y., Tamura M., Tomishige K. New Reaction Schemes for the Production of Biomass-Based Chemicals Created by Selective Catalytic Hydrogenolysis: Catalysts with Noble Metal and Tungsten. 2016. P. 203–225.
- 25. Yamaguchi A. et al. Enhancement of cyclic ether formation from polyalcohol compounds in high temperature liquid water by high pressure carbon dioxide // Green Chem. 2009. Vol. 11, № 1. P. 48–52.
- Chatterjee M. et al. An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide // Catal. Sci. Technol. 2011. Vol. 1, № 8. P. 1466.
- Tomishige K., Nakagawa Y., Tamura M. Production of Diols from Biomass. 2017.
 P. 343–373.
- Kliger G.A. et al. Reaction of tetrahydrofurfuryl alcohol with dimethylamine and/or hydrogen // Bull. Acad. Sci. USSR Div. Chem. Sci. 1987. Vol. 36, № 12. P. 2644– 2645.
- 29. Xuanzhen J., Zhenlu S. Preparation of 3,4-dihydro-2H-pyran catalyzed by modified gamma alumina // J. Wuhan Univ. Technol. Sci. Ed. 2005. Vol. 20, № 1. P. 92–94.
- Choi J.H., Kim H.D., Lee W.Y. The kinetics of pyridine formation from tetrahydrofurfuryl alcohol over Pd/γ-Al2O3 // Korean J. Chem. Eng. 1993. Vol. 10,

№ 3. P. 135–139.

- Olcay H. et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams // Energy Environ. Sci. 2013. Vol. 6, № 1. P. 205-216.
- 32. Likhterova N.M. et al. Effect of aqueous solutions of antiicing additive on Thiokol sealants // Chem. Technol. Fuels Oils. 1993. Vol. 29, № 2. P. 67–70.
- Uryanskaya N.I. et al. Surface activity of anti-icing additives // Chem. Technol. Fuels Oils. 1989. Vol. 25, № 3. P. 162–167.
- Bedrik B.G., Golubushkin V.N., Likhterova N.M. Influence of vibration on content of antiwater-crystallization fluid in jet fuel // Chem. Technol. Fuels Oils. 1989. Vol. 25, № 1. P. 37–39.
- Wang P., Brenchley J.E., Humphrey A.E. Screening microorganisms for utilization of furfural and possible intermediates in its degradative pathway // Biotechnol. Lett. 1994. Vol. 16, № 9. P. 977–982.
- Drews G. Untersuchungen ober Granulabildung und Phosphateinbau in wachsenden Kulturen von Mycobacterium phlei // Arch. Mikrobiol. 1958. Vol. 31, № 1. P. 16– 27.
- 37. Shen Y. et al. Effect of ligand structure of stationary phase of high performance hydrophobic interaction chromatography on renaturation efficiency of GuHCldenatured α-chymotrypsin // Sci. China Ser. B Chem. 2005. Vol. 48, № S1. P. 33– 36.
- Satyawali Y. et al. Lipase-Catalyzed Solvent-Free Esterification of Furan Containing Components // Waste and Biomass Valorization. 2019. Vol. 10, № 2. P. 311-317.
- Hough E.W., Mason D.M., Sage B.H. Heat Capacities of Several Organic Liquids 1
 // J. Am. Chem. Soc. 1950. Vol. 72, № 12. P. 5775–5777.
- 40. Parks G.S. et al. Thermal Data on Organic Compounds. XXVI. Some Heat Capacity, Entropy and Free Energy Data for Seven Compounds Containing Oxygen // J. Am.

Chem. Soc. 1956. Vol. 78, № 1. P. 56–59.

- 41. Aycock D.F. Solvent applications of 2-methyltetrahydrofuran in organometallic and biphasic reactions // Org. Process Res. Dev. American Chemical Society, 2007. Vol. 11, № 1. P. 156–159.
- 42. Phanopoulos A. et al. Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium - N-Triphos Complexes // ACS Catal. American Chemical Society, 2015. Vol. 5, № 4. P. 2500–2512.
- 43. Patankar S.C., Yadav G.D. Cascade Engineered Synthesis of γ-Valerolactone, 1,4-Pentanediol, and 2-Methyltetrahydrofuran from Levulinic Acid Using Pd-Cu/ZrO2Catalyst in Water as Solvent // ACS Sustain. Chem. Eng. American Chemical Society, 2015. Vol. 3, № 11. P. 2619–2630.
- 44. Yadav V.K., Fallis A.G. Regioselective Cleavage of 2-Methyltetrahydrofuran: A Versatile Synthesis of 1-Halo-4-pentanols and 4-Halo-1-pentanols // J. Org. Chem. American Chemical Society, 1986. Vol. 51, № 17. P. 3372–3374.
- 45. Juncheng ZHENG et al. Process for the manufacture of (£)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors. 2014. P. 21–25.
- 46. Daniel Perlman. Method and composition for coating wounds and protecting skin using a polyether polyurethane solution. 2007.
- 47. Hee Jung Kim, Won Sil Lee. Method and composition for coating wounds and protecting skin using a polyether polyurethane solution. 2007. P. 56.
- 48. Ulrich Steinbrenner et al. Method for producing polytetrahydrofuran. 2006. P. 2–3.
- 49. Olga Etlin et al. Process for preparing temozolomide. 2006. P. 5–8.
- 50. Krause Pham Christine, Boyle Sean Michael, Ray Anandasankar. Anthropod repellent chemicals. 2016.
- 51. NIST Chemistry WebBook [Electronic resource]. 2022. URL: http://webbook.nist.gov/chemistry/.

- Ribeiro Da Silva M.A.V., Amaral L.M.P.F. Standard molar enthalpies of formation of some methylfuran derivatives // J. Therm. Anal. Calorim. Springer, 2010. Vol. 100, № 2. P. 375–380.
- Feller D., Simmie J.M. High-level ab initio enthalpies of formation of 2,5dimethylfuran, 2-methylfuran, and furan // J. Phys. Chem. A. American Chemical Society, 2012. Vol. 116, № 47. P. 11768–11775.
- Carlson H.G., Westrum E.F. 2-Methylfuran-Heat Capacity and Thermodynamic Properties from 5° to 31 OK // J. Chem. Eng. Data. American Chemical Society, 1965. Vol. 10, № 2. P. 134–135.
- Seidel R.W. et al. In situ cryocrystallization and solid-state structures of furfural and some derivatives // CrystEngComm. Royal Society of Chemistry, 2019. Vol. 21, N
 № 21. P. 3295–3303.
- 56. Simmie J.M. et al. Substituent effects in the thermochemistry of furans: A theoretical (CBS-QB3, CBS-APNO and G3) study // J. Chem. Thermodyn. 2013. Vol. 58. P. 117–128.
- 57. Pino N., López D., Espinal J.F. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products // J. Mol. Model. 2019. Vol. 25, № 1. P. 26.
- 58. Hagen K., Postmyr L. Structure and Conformation of Furfurylamine Determined by Gas-Phase Electron Diffraction, Microwave Spectroscopy Data, and ab Initio Molecular Orbital Calculations // J. Phys. Chem. A. 1999. Vol. 103, № 51. P. 11460–11464.
- Seidel R.W. et al. In situ cryocrystallization and solid-state structures of furfural and some derivatives // CrystEngComm. Royal Society of Chemistry, 2019. Vol. 21, N
 № 21. P. 3295–3303.
- 60. Cox J.D., Pilcher G. Thermochemistry of Organic and Organometallic Compounds.
 // Academic Press. 1970. 636 p.
- 61. Verevkin S.P., Siewert R., Pimerzin A.A. Furfuryl alcohol as a potential liquid organic hydrogen carrier (LOHC): Thermochemical and computational study //

Fuel. Elsevier Ltd, 2020. Vol. 266.

- 62. Bonner O.D., Cerutti P.J. The partial molar heat capacities of some solutes in water and deuterium oxide // J. Chem. Thermodyn. 1976. Vol. 8, № 2. P. 105–112.
- 63. Borisenko K.B. et al. Molecular structure and conformations of tetrahydrofurfuryl alcohol from a joint gas-phase electron diffraction and ab initio molecular orbital investigation // J. Mol. Struct. 1998. Vol. 448, № 1. P. 29–41.
- 64. Hager S.L., Willard J.E. Heats of reaction of trapped intermediates in γ-irradiated organic glasses and relaxation processes in unirradiated glasses measured by low temperature differential thermal analysis // J. Chem. Phys. American Institute of PhysicsAIP, 1975. Vol. 63, № 2. P. 942–952.
- 65. Stephenson R.M., Malanowski S. Handbook of the Thermodynamics of Organic Compounds // Handbook of the Thermodynamics of Organic Compounds. Dordrecht: Springer Netherlands, 1987.
- 66. Mizukami M., Fujimori H., Oguni M. Glass Transitions and the Responsible Molecular Motions in 2-Methyltetrahydrofuran // Prog. Theor. Phys. Suppl. Oxford Academic, 1997. Vol. 126, № 0. P. 79–82.
- Fujimori H., Oguni M. Construction of an adiabatic calorimeter at low temperatures and glass transition of crystalline 2-bromothiophene // J. Phys. Chem. Solids. Pergamon, 1993. Vol. 54, № 2. P. 271–280.
- 68. Comelli F. et al. Molar heat capacities, densities, viscosities, and refractive indices of dimethyl sulfoxide + tetrahydropyran and + 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K // J. Chem. Eng. Data. American Chemical Society , 2007. Vol. 52, № 2. P. 639–644.
- 69. Francesconi R. et al. Molar heat capacities, densities, viscosities, and refractive indices of polyethylene glycols + 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K // J. Chem. Eng. Data. American Chemical Society, 2007. Vol. 52, № 5. P. 2020–2025.
- 70. Rodríguez S. et al. Densities, speeds of sound, and isentropic compressibilities of a cyclic ether with chlorocyclohexane, or bromocyclohexane at the temperatures

298.15 K and 313.15 K // J. Chem. Thermodyn. Academic Press, 1999. Vol. 31, № 1. P. 139–149.

- Nikitin E.D. et al. Critical temperatures, pressures, heat capacities, and thermal diffusivities of three furanic biofuels // J. Chem. Thermodyn. Academic Press, 2021. Vol. 161. P. 106539.
- 72. Druzhinina A.I. et al. The low-temperature heat capacity and ideal gas thermodynamic properties of isobutyl tert-butyl ether // J. Chem. Thermodyn. 2006. Vol. 38, № 1. P. 10–19.
- Пентин Ю.А. Физика и химия твёрдого состояния органических соединений. Мир. Москва, 1967.
- 74. Preston-Thomas H. The International Temperature Scale of 1990 (ITS-90) // Metrologia. IOP Publishing, 1990. Vol. 27, № 1. P. 3.
- Prohaska T. et al. Standard atomic weights of the elements 2021 (IUPAC Technical Report) // Pure Appl. Chem. 2022. Vol. 94, № 5. P. 573–600.
- Stevens R., Boerio-Goates J. Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry // J. Chem. Thermodyn. 2004. Vol. 36, № 10. P. 857–863.
- 77. White G.K., Collocott S.J. Heat Capacity of Reference Materials: Cu and W // J. Phys. Chem. Ref. Data. 1984. Vol. 13, № 4. P. 1251–1257.
- 78. Bissengaliyeva M.R. et al. Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter) // J. Chem. Eng. Data. 2011. Vol. 56, № 2. P. 195–204.
- 79. Blokhin A. V., Paulechka Y.U., Kabo G.J. Thermodynamic Properties of [C 6 mim][NTf 2] in the Condensed State // J. Chem. Eng. Data. 2006. Vol. 51, № 4. P. 1377–1388.
- 80. Holste J.C., Cetas T.C., Swenson C.A. Effects of Temperature Scale Differences on the Analysis of Heat Capacity Data: The Specific Heat of Copper from 1 to 30 K //

Rev. Sci. Instrum. 1972. Vol. 43, № 4. P. 670-676.

- 81. Furukawa G.T., Saba W.G., Reilly M.L. Critical analysis of the heat-capacity data of the literature and evaluation of thermodynamic properties of copper, silver, and gold from 0 to 300 oK. Gaithersburg, MD, 1968.
- Mair B.J., Glasgow Jr. A.R., Rossini F.D. Determination of freezing points and amounts of impurity in hydrocarbons from freezing and melting curves. // J. Res. Natl. Bur. Stand. 1941. Vol. 26.
- 83. Скуратов С.М., Колесов В.П., Ф. В.А. Термохимия // 2 / еd. МГУ. Москва, 1966. Р. 434.
- 84. Колесов В. П. Основы термохимии. Издательст / еd. МГУ. Москва, 1996. 205 р.
- 85. Глушко П.В. Термические константы веществ. Москва, 1968.
- 86. Experimental Thermochemistry / ed. Rossini F.D. New York: Interscience, 1956.
- 87. Paulechka E. et al. Corrections to standard state in combustion calorimetry: An update and a web-based tool // J. Chem. Thermodyn. 2021. Vol. 158. P. 106425.
- Cox J.D., Wagman D.D., Medvedev V.A. Key Values for Thermodynamics // CODATA. 1989. Vol. 94, № 1. P. 93.
- B. Yu. Ilin, S.V. Tarazanov, A.I. Druzhinina, O.V. Dorofeeva, V.A. Lukyanova, S.M. Pimenova, Thermodynamic properties of 2-methylfuran // J. Chem. Thermodyn. 2021. Vol. 158. P. 106447 (JIF: 3.269 WoS).
- 90. Murakami S., Koyama M., Fujishiro R. Heats of Mixing for Binary Mixtures. V // Bull. Chem. Soc. Jpn. The Chemical Society of Japan, 1968. Vol. 41, № 7. P. 1540– 1545.
- Westrum E.F., McCullough J.P., M.M. L. Physics and Chemistry of the Organic Solid State. New York, 1963.
- 92. Dorofeeva O. V. Accurate prediction of norbornadiene cycle enthalpies by <scp>DLPNO-CCSD</scp> (<scp> T 1 </scp>)/ <scp>CBS</scp> method // J.

Comput. Chem. 2020. Vol. 41, № 27. P. 2352–2364.

- 93. Guo Y. et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)] // J. Chem. Phys. 2018. Vol. 148, № 1. P. 011101.
- 94. Neese F. et al. The ORCA quantum chemistry program package // J. Chem. Phys. 2020. Vol. 152, № 22. P. 224108.
- 95. Zhong S., Barnes E.C., Petersson G.A. Uniformly convergent n-tuple-ζ augmented polarized (nZaP) basis sets for complete basis set extrapolations. I. Self-consistent field energies // J. Chem. Phys. 2008. Vol. 129, № 18. P. 184116.
- 96. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson H.N. Gaussian 16, Revision B.01 // Gaussian, Inc. Wallingford, 2016.
- 97. S.V. Tarazanov, V.A. Lukyanova, D.Yu. Ilin, O.V. Dorofeeva, A.I. Druzhinina, S.M. Pimenova, Enthalpy of formation of 2-methyltetrahydrofuran: Experimental and computational study // J. Chem. Thermodyn. 2022. Vol. 165. P. 106651 (JIF: 3.269 WoS).
- 98. Seidel R.W. et al. In situ cryocrystallization and solid-state structures of furfural and some derivatives // CrystEngComm. Royal Society of Chemistry, 2019. Vol. 21, N
 21. P. 3295–3303.
- 99. Parsonage N.G., Stavely L.A. Disorder in Crystals. Oxford. Clarendon, 1978. 511 p.
- 100. Timmermans J. Plastic crystals: A historical review // J. Phys. Chem. Solids. 1961.
 Vol. 18, № 1. P. 1–8.
- 101. Kolesov V.P. The order-disorder transitions in some organic crystals // Thermochim. Acta. 1995. Vol. 266. P. 129–145.
- Kelley K.K., Parks G.S., Huffman H.M. No Title // J. Phys. Chem. 1929. Vol. 33. P. 1802–1804.

- 103. D.Yu. Ilin, S. V. Tarazanov, V. V. Andreychev, V.A. Lukyanova, A.I. Druzhinina, S.M. Pimenova, O. V. Dorofeeva, Low-temperature heat capacity and pseudorotation in 2-methyltetrahydrofuran // Phys. Chem. Chem. Phys. – 2022. – Vol. 24. – P. 5437–5447(JIF: 3.676 WoS).
- 104. Lepori L., Matteoli E., Gianni P. Vapor pressure and its temperature dependence of 28 organic compounds: Cyclic amines, cyclic ethers, and cyclic and open chain secondary alcohols // J. Chem. Eng. Data. American Chemical Society, 2017. Vol. 62, № 1. P. 194–203.
- 105. Acree W., Chickos J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010 // J. Phys. Chem. Ref. Data. American Institute of Physics Inc., 2010. Vol. 39, № 4. P. 519.
- 106. Van V., Stahl W., Nguyen H.V.L. The heavy atom microwave structure of 2methyltetrahydrofuran // J. Mol. Struct. 2016. Vol. 1123. P. 24–29.
- 107. Faizullin M.G., Galeev R. V., Mamleev A.K. Microwave spectrum of 2methyltetrahydrofuran // Russ. J. Phys. Chem. A. Maik Nauka-Interperiodica Publishing, 2017. Vol. 91, № 11. P. 2275–2278.
- 108. V.A. Lukyanova, S.V. Tarazanov, O.V. Dorofeeva, A.I. Druzhinina, D.Yu. Ilin. Enthalpy of formation and hydrogen bonded dimerization of furfurylamine: Experimental and computational study // Thermochimica Acta. - 2023 - Vol. - 725. - P. 179536 (JIF: 3.378 WoS).
- 109. Cohen N., Benson S.W. Estimation of heats of formation of organic compounds by additivity methods // Chem. Rev. 1993. Vol. 93, № 7. P. 2419–2438.

Приложение

1П Калибровочные данные *Таблица 21 Экспериментальные молярные теплоемкости меди*

T/K	$C_{p,m}^0$	T/K	$C_{p,m}^0$	T / K	$C_{p,m}^0$
	/(Дж·К ⁻¹ ·моль ⁻¹)		/(Дж·К ⁻¹ ·моль ⁻¹)		/(Дж·К ⁻¹ ·моль ⁻¹)
	Кристалл	17.18	0.28646	43.80	4.6473
7.89	0.028473	17.44	0.29883	44.59	4.8388
8.06	0.029605	17.70	0.31298	45.39	5.0340
8.25	0.031323	17.95	0.32808	46.19	5.2253
8.41	0.034293	18.21	0.34427	48.59	5.8091
8.57	0.032803	18.47	0.36148	49.39	5.9995
8.72	0.040212	18.73	0.37527	50.19	6.1929
8.88	0.039849	19.00	0.39337	50.99	6.3923
9.03	0.036276	19.26	0.40971	51.79	6.5951
9.18	0.040439	19.52	0.43033	52.59	6.8045
9.33	0.048787	19.78	0.44948	53.39	7.0205
9.47	0.049997	20.04	0.46917	54.20	7.2329
9.62	0.04723	20.58	0.50891	55.00	7.4476
9.76	0.05019	21.33	0.57045	55.80	7.6648
9.90	0.05345	22.07	0.63768	56.61	7.8686
10.04	0.05707	22.82	0.71039	57.41	8.0523
10.23	0.05999	23.57	0.78912	58.22	8.2219
10.47	0.05928	24.33	0.87548	59.03	8.3720
10.71	0.06662	25.08	0.96834	59.84	8.5014
10.95	0.07322	25.84	1.0702	60.66	8.6478
11.19	0.07592	26.60	1.1687	61.46	8.8633
11.44	0.08290	27.37	1.2755	62.27	9.1968
11.68	0.08716	28.13	1.3900	63.08	9.4052
11.92	0.09226	28.90	1.5134	63.89	9.5875
12.17	0.09807	29.68	1.6391	64.70	9.7630
12.41	0.10229	30.45	1.7738	65.51	9.9412
12.65	0.10932	31.22	1.9107	66.32	10.123
12.90	0.11839	32.00	2.0552	67.13	10.306
13.14	0.12535	32.78	2.2044	67.95	10.472
13.39	0.13520	33.56	2.3581	68.76	10.643
13.64	0.14148	34.34	2.5114	69.57	10.812
13.89	0.14827	35.12	2.6721	70.39	10.985
14.14	0.15351	35.90	2.8354	71.20	11.142
14.39	0.16462	36.69	3.0026	72.01	11.309
14.64	0.17444	37.47	3.1710	72.82	11.471
14.90	0.18282	38.26	3.3419	73.62	11.635
15.15	0.19406	39.05	3.5217	74.43	11.793
15.40	0.20077	39.84	3.7014	75.24	11.946
15.66	0.21271	40.63	3.8881	76.05	12.098
15.91	0.22338	41.42	4.0715	76.86	12.245
16.16	0.23218	42.21	4.2630	77.66	12.389
16.42	0.24597	43.00	4.4518	78.47	12.530
16.67	0.25857	46.99	5.4214	79.28	12.673
16.93	0.27194	47.79	5.6197	80.09	12.817

T / K	$C_{p,m}^0$	T / K	$C_{p,m}^0$	T / K	$C_{p,m}^0$
	/(Дж·К ¹ ·моль ¹)	•	/(Дж·К '·моль ')		/(Дж·К ¹ ·моль ¹)
	V nuono HH	A		107 11	22.54
78.26	12.56	134.90	19.51	197.11	22.34
70.50	12.30	130.20	19.39	198.30	22.30
80.79	12.78	137.45	19.08	200.85	22.58
82.01	13.00	130.07	19.70	200.85	22.00
83.23	13.25	141 17	19.05	202.07	22.05
84.45	13.65	147.40	20.02	203.34	22.09
85.68	13.86	143 64	20.02	207.09	22.80
86.90	14.12	144.88	20.19	208.34	22.83
88.13	14.32	146.12	20.26	209.59	22.86
89.35	14.51	147.36	20.33	210.84	22.89
90.58	14.71	148.60	20.41	212.09	22.92
91.80	14.89	149.84	20.48	213.34	22.95
93.03	15.08	151.08	20.55	214.58	23.01
94.26	15.26	152.32	20.63	215.83	23.02
95.48	15.43	153.56	20.69	217.10	23.06
96.71	15.61	154.80	20.77	218.35	23.08
97.95	15.78	156.04	20.83	219.60	23.55
99.18	15.94	157.30	20.89	220.85	23.12
100.41	16.11	158.54	20.95	222.10	23.17
101.64	16.26	159.78	21.01	223.35	23.20
102.87	16.41	161.02	21.08	224.60	23.23
104.10	16.56	162.26	21.14	225.85	23.25
105.33	16.72	163.51	21.20	227.09	23.29
106.56	16.86	164.75	21.26	228.34	23.32
107.79	17.01	165.99	21.32	229.59	23.35
109.02	17.15	167.23	21.38	230.84	23.38
110.25	17.28	169.72	21.50	232.08	23.40
111.48	17.42	170.96	21.56	233.33	23.88
112.72	17.54	172.20	21.60	234.58	23.48
113.95	17.68	1/3.45	21.66	212.09	22.92
115.18	17.80	1/4.69	21./1	213.34	22.95
110.41	17.92	1/5.93	21.75	214.58	23.01
11/.00	18.04	179 14	21.81	215.85	23.02
110.09	10.10	1/0.44	21.00	217.10	23.00
120.15	18.20	180.92	21.95	218.55	23.08
121.30	10.37	102.17	21.99	220.83	23.12
122.00	10.JU	103.41	22.05	222.10	23.17
125.03	10.01	185 00	22.00	223.33	23.20
125.07	18.87	187.14	22.13	224.00	23.25
120.30	18.02	188 30	22.17	223.83	23.25
127.34	19.03	189.63	22.21	227.07	23.27
130.01	19.03	192.12	22.35	229.59	23.35

Таблица 21 (продолжение)

		1		-	
T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С⁰_{p,m}</i> /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)
131.25	19.21	193.36	22.40	230.84	23.38
132.49	19.31	194.61	22.44	232.08	23.40
133.72	19.41	195.85	22.49	234.58	23.48
235.83	23.49	270.72	24.13	299.19	24.51
237.09	23.52	271.96	24.15	302.13	24.52
238.34	23.53	273.21	24.16	304.34	24.55
239.59	23.55	274.45	24.18	306.58	24.54
240.83	23.57	275.69	24.20	308.84	24.55
242.08	23.59	276.95	24.20	311.15	24.57
244.57	23.66	278.20	24.25	313.49	24.59
245.82	23.67	279.43	24.18	315.87	24.62
247.07	23.70	280.67	24.26	318.30	24.64
248.31	23.73	281.91	24.29	320.77	24.68
249.56	23.74	283.15	24.32	323.29	24.67
250.81	23.77	284.39	24.32	325.86	24.68
252.05	23.82	285.63	24.33	328.48	24.70
253.29	23.74	288.07	24.38	331.16	24.72
254.54	23.84	288.07	24.38	333.89	24.77
255.78	23.86	289.30	24.39	336.79	24.79
257.04	23.90	290.54	24.42	339.77	24.81
258.29	23.92	291.78	24.42	343.39	24.89
259.53	23.93	293.01	24.43	346.43	24.91
260.78	23.96	294.25	24.44	349.70	24.98
262.02	23.97	295.49	24.37	353.09	24.97
263.27	23.99	296.72	24.47	356.58	25.00
264.52	24.02	297.95	24.48	360.21	24.99
265.76	23.92	299.19	24.51	363.98	24.99
266.99	23.97	295.49	24.37	367.89	25.07
268.24	24.09	296.72	24.47	371.98	25.13
269.48	24.11	297.95	24.48		

Таблица 21 (продолжение)

Таблица 22 Экспериментальные молярные теплоемкости н-гептана

T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)
		Aa	отная область		
	Кристалл	111.35	100.30	136.39	114.92
79.87	78.219	112.16	100.75	137.20	115.36
80.73	78.893	112.96	101.28	138.01	115.90
81.54	79.558	113.77	101.73	138.82	116.43
82.34	80.162	114.58	102.20	139.62	116.82
83.15	80.807	115.38	102.64	140.43	117.27
83.95	81.357	116.19	103.15	141.24	117.72
84.76	82.061	117.00	103.60	142.05	118.18
85.57	82.599	117.81	104.19	142.86	118.69

86.36	83.170	118.62	104.61	143.66	119.08
87.15	83.787	119.42	105.16	144.47	119.51
87.96	84.381	120.23	105.58	145.28	120.06
88.76	84.948	121.04	106.03	146.09	120.67
89.57	85.593	121.85	106.56	146.89	120.97
90.37	86.196	122.65	107.04	147.70	121.43
91.18	86.799	123.46	107.49	148.51	121.93
91.99	87.371	117.00	103.60	149.32	122.48
92.79	87.945	117.81	104.19	150.13	122.93
93.60	88.510	118.62	104.61	150.93	123.35
94.41	89.136	119.42	105.16	151.74	123.91
95.22	89.710	120.23	105.58	152.55	124.46
96.03	90.273	121.04	106.03	153.35	124.90
96.83	90.795	121.85	106.56	154.16	125.43
97.64	91.331	122.65	107.04	154.97	125.93
98.45	91.893	123.46	107.49	155.78	126.34
99.26	92.409	124.27	107.95	156.58	126.89
100.07	93.030	125.08	108.44	157.39	127.32
100.87	93.490	125.89	108.87	158.19	127.87
101.68	94.025	126.69	109.33	159.00	128.37
102.48	94.585	127.50	109.74	159.81	128.96
103.29	95.140	128.31	110.26	160.61	129.51
104.09	95.615	129.12	110.71	161.42	130.01
104.90	96.025	129.93	111.26	162.22	130.61
105.70	96.659	130.73	111.78	163.03	131.15
106.51	97.147	131.54	112.03	163.84	131.79
107.32	97.670	132.35	112.59	164.64	132.27
108.12	98.183	133.16	113.04	165.45	132.86
108.93	98.669	133.97	113.48	166.25	133.49
109.74	99.211	134.78	113.95	167.05	134.19
110.54	99.708	135.58	114.41	167.86	134.94

Таблица 22 (продолжение)

T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)
168.66	135.54	232.41	208.53	291.19	222.30
169.47	136.22	233.63	205.34	292.43	222.76
170.27	136.79	234.85	205.54	293.66	223.25
171.87	138.49	236.07	205.67	294.90	223.66
172.67	139.88	237.28	205.82	296.14	224.27
173.47	140.87	238.50	206.09	297.38	224.52
174.27	142.13	239.72	206.42	298.63	224.64
175.07	143.56	240.94	206.77	301.32	225.98
175.87	145.35	242.16	207.09	306.19	227.60
176.67	147.77	243.38	207.41	307.82	228.33
	Жидкость	244.60	207.61	309.46	228.91
186.73	202.25	245.82	207.92	302.96	222.23
192.61	201.60	247.04	208.25	304.57	226.06
193.41	201.55	248.26	208.66	306.19	227.60

194.21	201 46	250.69	208.87	307.82	228.33
195.02	201.39	251.90	209.52	309.46	228.91
195.83	201.45	253.12	209.88	311.10	229.55
196.63	201.48	254.34	210.43	312.74	230.18
197.44	201.27	255.56	210.82	314.39	230.08
199.04	201.47	256.79	211.02	316.02	231.19
199.84	201.35	258.01	211.36	317.67	231.82
200.85	201.37	259.24	211.72	319.32	232.57
202.07	201.30	260.46	211.98	320.98	233.13
203.28	201.37	261.69	212.37	322.64	233.86
204.49	201.44	262.91	212.88	325.96	234.83
205.70	201.42	264.14	213.03	327.67	235.96
206.91	201.39	265.37	213.50	329.35	236.37
209.33	201.65	267.82	214.57	331.02	237.14
210.55	201.78	269.05	214.82	332.71	237.20
211.76	201.82	270.28	215.24	334.38	238.49
212.98	201.99	271.50	215.66	336.07	239.09
214.19	202.04	272.73	215.92	337.76	239.64
215.40	202.12	273.96	216.26	339.46	239.86
216.62	202.26	275.19	216.73	341.15	241.37
219.04	202.38	276.42	217.15	342.85	242.25
220.26	202.73	277.65	217.45	344.56	242.65
221.47	202.94	278.88	217.91	346.27	243.39
222.69	203.19	280.12	218.40	347.99	244.41
223.90	203.30	281.35	218.78	349.71	245.25
225.12	203.49	282.58	219.18	351.43	245.97
226.33	203.71	283.82	219.78	353.16	246.59
227.55	203.88	286.28	220.41	354.99	247.58
228.76	204.10	287.51	221.05	356.73	248.10
229.98	204.32	288.71	221.52	358.48	248.87
231.20	204.64	289.95	221.96	360.24	249.38

Таблица 22 (продолжение)

T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
362.00	250.01	367.32	251.67	372.70	253.61
363.77	250.56	369.11	252.60		
365.54	251.01	370.90	253.06		

2П Таблицы

2П.1 2-Метилфуран

Таблица 23 Экспериментальные значения молярной теплоемкости 2-метилфуран

T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)
Кристалл		40.91	29.339	61.00	42.623	76.12	48.856
8.14	0.83204	41.67	30.000	61.43	42.822	76.54	49.104
9.79	1.47337	42.41	30.580	61.87	43.020	76.97	49.345
9.86	1.4970	43.13	31.154	62.30	43.215	77.39	49.515
11.51	2.3710	43.84	31.709	62.72	43.409	77.81	49.692
11.55	2.4014	44.52	32.244	63.15	43.601	78.23	49.867
12.77	3.1844	45.20	32.715	63.57	43.793	78.65	50.085
13.74	3.8853	45.85	33.222	63.98	44.014	79.06	50.176
14.57	4.5208	46.49	33.702	64.40	44.120	79.47	50.406
15.29	5.1067	47.12	34.139	64.81	44.272	79.88	50.581
15.94	5.6523	47.74	34.554	65.21	44.449	80.29	50.694
16.54	6.1680	48.35	34.907	65.62	44.595	80.69	50.877
17.08	6.6669	48.95	35.287	66.02	44.763	81.09	51.057
17.59	7.1298	49.53	35.637	66.42	44.964	81.50	51.172
18.07	7.5822	50.11	36.095	66.82	45.139	81.89	51.330
18.53	7.991	50.68	36.470	67.21	45.285	82.29	51.977
18.95	8.420	51.23	36.872	67.60	45.417	82.69	52.228
19.36	8.855	51.78	37.226	67.99	45.602	83.08	52.381
19.76	9.193	52.33	37.603	68.38	45.811	83.47	52.576
20.13	9.566	52.86	38.007	68.76	45.923	83.86	52.771

21.58	10.979	53.38	38.335	69.14	46.056	84.25	52.951
23.85	13.224	53.90	38.793	69.52	46.211	84.64	53.155
25.74	15.178	54.41	39.116	69.90	46.342	78.56	49.984
27.39	16.788	54.92	39.552	70.32	46.521	79.44	50.388
28.87	18.266	55.42	39.915	70.78	46.710	80.25	50.747
30.22	19.633	55.91	40.274	71.24	46.882	81.06	51.079
31.47	20.887	56.39	40.649	71.70	47.102	81.87	51.490
32.64	22.026	56.87	40.921	72.16	47.244	82.67	52.294
33.73	23.078	57.35	40.962	72.61	47.548	83.48	52.668
34.77	24.059	57.82	41.176	73.05	47.668	84.29	52.983
35.75	25.068	58.28	41.388	73.50	47.783	85.10	53.299
36.69	25.779	58.75	41.598	73.94	48.064	85.91	53.646
37.60	26.533	59.20	41.806	74.38	48.183	86.72	53.994
38.47	27.307	59.66	42.013	74.82	48.370	87.53	54.370
39.31	28.012	60.11	42.218	75.26	48.522	88.34	54.611
40.12	28.708	60.55	42.421	75.69	48.745	89.15	54.951

Таблица 23 (продолжение)

T / K	С ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)
89.96	55.292	119.93	65.207	149.94	74.407	179.76	90.145
90.77	55.606	120.74	65.430	150.75	74.642	180.56	93.471
91.58	55.865	121.55	65.741	151.56	74.936	181.35	99.491
92.39	56.225	122.36	65.992	152.37	75.134	182.11	112.435
93.20	56.512	123.17	66.221	153.18	75.454	182.84	149.585
94.01	56.781	123.98	66.430	153.99	75.706	183.47	283.987

94.82	57.081	124.80	66.661	154.80	75.846	Жидкость	
95.64	57.356	125.61	66.950	155.61	76.115	189.23	128.816
96.45	57.650	126.42	67.220	156.41	76.265	190.17	128.901
97.26	57.886	127.23	67.452	157.22	76.640	190.98	128.886
98.07	58.177	128.04	67.705	158.03	76.871	191.79	128.903
98.88	58.487	128.85	67.905	158.84	77.067	192.60	128.947
99.69	58.801	129.66	68.182	159.65	77.251	193.41	128.943
100.50	59.042	130.47	68.373	160.46	77.556	194.22	128.927
101.31	59.298	131.29	68.674	161.27	77.863	195.03	128.951
102.12	59.584	132.10	68.879	162.08	78.114	195.84	128.984
102.93	59.811	132.91	69.124	162.89	78.292	196.66	128.990
103.74	60.062	133.72	69.313	163.70	78.545	197.47	129.083
104.55	60.360	134.53	69.575	164.50	78.858	198.28	129.046
105.36	60.661	135.34	69.823	165.31	79.116	199.09	129.115
106.17	60.932	136.15	70.160	166.12	79.378	199.90	129.167
106.97	61.203	136.96	70.401	166.93	79.605	200.92	129.295
107.78	61.433	137.77	70.576	167.73	79.918	202.14	129.287
108.59	61.674	138.58	70.868	168.54	80.205	203.36	129.377
109.40	61.917	139.40	71.145	169.34	80.366	204.58	129.451
110.21	62.148	140.21	71.362	170.14	80.793	205.80	129.518
111.02	62.419	141.02	71.656	170.95	81.202	207.02	129.613
111.83	62.713	141.83	71.863	171.75	81.596	208.25	129.653
112.64	62.970	142.64	72.185	172.56	81.968	209.46	129.678
113.45	63.213	143.45	72.347	173.36	82.471	210.68	129.859
114.26	63.450	144.26	72.719	174.16	82.890	211.91	129.905
115.07	63.734	145.07	72.970	174.96	83.444	213.13	129.977
115.88	64.002	145.88	73.151	175.76	84.082	214.35	130.007

116.69	64.182	146.69	73.428	176.57	84.823	215.58	130.136
117.50	64.437	147.50	73.657	177.37	85.785	216.80	130.293
118.31	64.722	148.31	73.974	178.17	86.804	218.02	130.503
119.12	64.988	149.12	74.118	178.96	88.168	219.25	130.503

Таблица 23 (продолжение)

T / K	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)
274.52	138.835	290.51	142.418	311.42	146.718	338.22	152.980
275.75	139.053	292.98	142.692	313.02	147.101	339.77	153.341
276.99	139.359	294.21	142.941	316.20	148.068	341.32	153.684
278.22	139.570	296.67	143.630	319.39	148.500	342.87	154.149
279.45	139.761	297.91	143.813	320.98	148.819	344.42	154.450
280.69	140.000	299.14	144.083	322.57	149.086	347.47	154.862
281.92	140.402	300.37	144.219	325.72	150.150	348.99	155.820
284.38	140.856	301.80	144.596	327.27	150.444	350.52	156.144
285.62	141.126	303.41	144.961	328.85	150.801	351.99	156.666
286.85	141.370	306.61	145.408	330.42	151.067	353.51	156.997
288.04	141.603	308.21	146.032	335.10	151.541		
289.28	141.952	309.81	146.412	336.66	152.558		

^{*a*} Стандартные неопределенности и составляют: u(T) = 0.02 K, u(молярная масса) = 0.002 г·моль⁻¹, $u(p^{\circ}) = 0.5$ и относительные стандартные неопределенности измерений теплоемкости $u_r(C_{p,m})$ составляют 0.02 в диапазоне температур от (7 до 20) K, 0.01 от (20 до 40) K, 0.004 от (40 до 80) K, 0.002 от (80 до 300) К и 0.01 выше 300 К.

^b В диапазоне температур (81-84) К экспериментальные точки измеряли в гелиевой и азотной ваннах. ^c Экспериментальные точки в области предплавления.

^{*d*} Экспериментальные точки, которые были удалены при обработке как промахи.

Таблица 24 Дробное плавление 2-метилфурана^а

		Ι					II			III				
T _i /K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$	T _i /K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$	T _i /K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$
171.424	4.808				171.764	4.808				168.607	3.550			
174.046	9.616				174.382	9.616				170.568	7.100			
176.630	14.424				176.960	14.424				172.509	10.649			
179.169	19.231				179.489	19.232				174.433	14.198			
181.603	24.039				181.896	24.040				176.336	17.747			
183.504	28.848				183.642	28.848				178.216	21.296			
184.076	33.656	4.808	0.062	16.000	184.102	33.657	4.809	0.063	16.000	180.061	24.845			
184.203	38.465	9.617	0.125	8.000	184.212	38.466	9.618	0.125	8.000	181.827	28.394			
184.253	43.274	14.426	0.188	5.333	184.258	43.275	14.427	0.188	5.333	183.296	31.943			
184.280	48.082	19.235	0.250	4.000	184.284	48.084	19.236	0.250	4.000	183.964	35.493	3.550	0.045	22.000
184.297	52.891	24.043	0.313	3.200	184.299	52.893	24.045	0.313	3.200	184.148	39.043	7.100	0.091	11.000
184.309	57.700	28.852	0.375	2.667	184.311	57.702	28.854	0.375	2.667	184.219	42.592	10.649	0.136	7.333
184.319	62.508	33.661	0.438	2.286	184.319	62.511	33.663	0.438	2.286	184.254	46.142	14.199	0.182	5.500
184.327	67.317	38.470	0.500	2.000	184.326	67.320	38.472	0.500	2.000	184.277	49.692	17.749	0.227	4.400
184.330	72.126	43.278	0.562	1.778	184.332	72.129	43.281	0.563	1.778	184.291	53.242	21.299	0.273	3.667
184.332	76.934	48.087	0.625	1.600	184.334	76.938	48.090	0.625	1.600	184.302	56.792	24.849	0.318	3.143
184.332	81.743	52.896	0.688	1.455	184.333	81.747	52.899	0.688	1.455	184.308	60.342	28.399	0.364	2.750
184.334	86.552	57.704	0.750	1.333	184.335	86.557	57.708	0.750	1.333	184.316	63.892	31.949	0.409	2.444
184.335	91.360	62.512	0.813	1.231	184.336	91.365	62.517	0.813	1.231	184.322	67.441	35.498	0.455	2.200
184.334	96.169	67.321	0.875	1.143	184.336	96.174	67.326	0.875	1.143	184.327	70.991	39.048	0.500	2.000
184.336	100.977	72.129	0.938	1.067	184.334	100.983	72.135	0.938	1.067	184.331	74.541	42.598	0.545	1.833
184.337	105.784	76.937	1.000	1.000	184.337	105.791	76.943	1.000	1.000	184.333	78.091	46.148	0.591	1.692
185.340	110.591				185.613	110.598				184.335	81.641	49.698	0.636	1.571
187.454	115.398				187.727	115.405				184.335	85.190	53.247	0.682	1.467
										184.337	88.740	56.797	0.727	1.375
										184.337	92.290	60.347	0.773	1.294
										184.337	95.839	63.896	0.818	1.222
										184.337	99.389	67.446	0.864	1.158

										184.338	102.939	70.996	0.909	1.100
										184.336	106.488	74.545	0.955	1.048
										184.336	110.038	78.095	1.000	1.000
										184.894	113.586			
										186.448	117.134			
										188.004	120.683			
										189.557	124.231			
Таблица 25 Коэффициенты уравнения (12), аппроксимирующих экспериментальную кривую теплоемкости 2-метилфурана														
		_		Ι			II			III			IV	
Температурный интервал/ К		ал/ К	(9.86-39.31			47-67.99		(57.21-84.64		84.2	25-168.54	-
	A0		6.1117	119184821	1E+00	3.574360	29875501I	E+04	-1.7288	652021734	9E+04	4.641823	72897412	2E+02
	A1		-1.7593	247854676	5E+00	-4.855274	98584665	E+03	1.1569	4046302043	3E+03	-2.674611	16020603	3E+01
	A2		1.7946	268883992	3E-01	2.803432	06239270H	E+02	-3.0864	037864391	3E+01	6.209732	21322738	3E-01
	A3		-5.7818	946042968	84E-03	-8.915658	864942734	E+00	4.11113347173070E-01			-8.21583117074420E-03		
	A4		9.4718	593395815	7E-05	1.687011	46305178	E-01	-2.7329	9929241767	5E-03	6.57057077541987E-		7E-05
	A5		-6.5313	583166893	31E-07	-1.899429	944191633	E-03	7.2533	615416027	1E-06	-3.159312	25305836	5E-07
	A6					1.178422	44048323	E-05				8.423263	36759102	7E-10
	A7					-3.108328	867690351	E-08				-9.58122	95027655	2E-13
	RMSa		0.	.021238934	4	0.05	59868009		0.04941018			0.042468016		
	RMS,%			0.17			0.16		0.10			0.06		
				V			VI		VII				VIII	
Температ	урный интерва	ал/ К	15	3.18-169.3	4	189.	23-197.47		19	0.17-246.2	5	242.	.56-353.5	1
•	A0		2.75040	097567165	8E+01	1.236473	329973321	E+02	6.7846	2617938771	E+03	6.110198	46723630)E+02
	A1		3.1106	132444393	5E-01	2.689808	83143704	E-02	-1.5761	7254835793	3E+02	-6.005376	56123713	9E+00
	A2								1.4922	3650302042	2E+00	2.441773	303230394	4E-02
	A3								-7.0600)185672037	E-03 -2.559102101		21013836	5E-05
	A4								1.6686	3268704319	9E-05	-4.984904	42683251	8E-08
	A5								-1.5748	-1.57484033768755E-08 9.53335372		9.53335373127007E-11		7E-11
	RMSa		0.	.06101745	3	0.02	29230206		().04316149		0.0	58086885	
	RMS,%			0.08			0.02			0.03			0.04	

^а RMS — среднеквадратичные отклонения между значениями, рассчитанными с помощью уравнения (5) и экспериментальными значениями

T / K	$C_{p,m}^0(T)/R$	$\Delta \left\{ C_{p,m}^0(T)/R \right\}$	$H_m^0(T) - H_m^0(0)/RT$	$\Delta\{H_m^0(T) - H_m^0(0)/RT\}$	$S_m^0(T)/R$	$\Delta\{S_m^0(T)/R\}$	$-\left(G_m^0(T)-H_m^0(0)\right)/RT$	$\Delta\left\{\frac{G_m^0(T) - H_m^0(0)}{RT}\right\}$
				Кристалл				
5	0.02345	0.00166	0.00601	0.00030	0.00798	0.00056	0.00196	0.00010
10	0.1871	0.0085	0.0474	0.0024	0.0628	0.0031	0.01543	0.00077
15	0.588	0.014	0.1544	0.0047	0.2067	0.0068	0.0523	0.0026
20	1.145	0.024	0.3305	0.0081	0.450	0.012	0.1194	0.0060
25	1.753	0.019	0.5539	0.0096	0.770	0.015	0.217	0.011
30	2.356	0.025	0.804	0.012	1.144	0.019	0.339	0.017
35	2.924	0.030	1.067	0.014	1.550	0.024	0.483	0.024
40	3.420	0.026	1.331	0.016	1.974	0.028	0.643	0.032
45	3.894	0.027	1.591	0.017	2.405	0.031	0.815	0.048
50	4.293	0.028	1.841	0.018	2.836	0.033	0.995	0.051
55	4.730	0.029	2.083	0.019	3.265	0.036	1.182	0.055
60	5.095	0.030	2.320	0.020	3.694	0.039	1.374	0.058
65	5.355	0.030	2.544	0.020	4.112	0.041	1.568	0.061
70	5.633	0.029	2.755	0.021	4.519	0.043	1.764	0.064
75	5.902	0.030	2.955	0.022	4.917	0.045	1.961	0.067
80	6.158	0.026	3.148	0.022	5.306	0.047	2.158	0.069
90	6.639	0.026	3.509	0.022	6.059	0.050	2.550	0.072
100	7.067	0.027	3.844	0.023	6.781	0.053	2.937	0.075
110	7.456	0.028	4.155	0.023	7.473	0.055	3.319	0.078
120	7.827	0.029	4.445	0.024	8.138	0.058	3.693	0.081
130	8.191	0.030	4.719	0.024	8.779	0.060	4.059	0.084
140	8.556	0.031	4.980	0.024	9.399	0.062	4.419	0.087
150	8.924	0.032	5.231	0.025	10.002	0.064	4.771	0.089
160	9.294	0.033	5.474	0.025	10.590	0.067	5.116	0.092
170	9.670	0.034	5.709	0.026	11.165	0.069	5.455	0.094

Таблица 26 Сглаженные значения основных термодинамических функций 2-метилфурана в конденсированном состоянии

180	10.088	0.035	5.941	0.026	11.729	0.071	5.788	0.097
184.36	10.307	0.035	6.041	0.027	11.973	0.071	5.932	0.098
				Жидкость				
184.36	15.480	0.051	11.925	0.037	17.856	0.082	5.93	0.12
190	15.485	0.051	12.030	0.037	18.323	0.084	6.29	0.12
200	15.530	0.051	12.204	0.038	19.118	0.086	6.91	0.12
210	15.603	0.051	12.364	0.039	19.878	0.089	7.51	0.13
220	15.704	0.052	12.514	0.039	20.606	0.091	8.09	0.13
230	15.839	0.052	12.655	0.040	21.307	0.093	8.65	0.13
240	15.993	0.052	12.791	0.040	21.984	0.096	9.19	0.14
250	16.15	0.16	12.922	0.045	22.64	0.10	9.72	0.15
260	16.35	0.16	13.050	0.050	23.28	0.11	10.23	0.16
270	16.57	0.17	13.176	0.054	23.90	0.11	10.72	0.17
280	16.81	0.17	13.302	0.058	24.51	0.12	11.20	0.18
290	17.06	0.17	13.427	0.062	25.10	0.13	11.67	0.19
298.15	17.26	0.17	13.529	0.065	25.58	0.13	12.05	0.20
300	17.31	0.17	13.552	0.065	25.68	0.13	12.13	0.20
310	17.57	0.18	13.678	0.069	26.25	0.14	12.58	0.21
320	17.84	0.18	13.803	0.072	26.82	0.14	13.01	0.22
330	18.11	0.18	13.930	0.076	27.37	0.15	13.44	0.23
340	18.41	0.18	14.057	0.079	27.91	0.16	13.86	0.23
350	18.73	0.19	14.186	0.082	28.45	0.16	14.27	0.24

^a Стандартные неопределенности u(p_o) = 0.5 кПа и u(T) = 0.02 K; комбинированные расширенные неопределенности термодинамических функций $\Delta \{C_{p,m}^0(T)/R\}, \Delta \{H_m^0(T) - H_m^0(0)/RT\}, \Delta \{S_m^0(T)/R\}, \Delta \{\frac{G_m^0(T) - H_m^0(0)}{RT}\}$ (с доверительной вероятностью 0.95)

2П.2 2-Фурфуриламин

T / K	<i>С_{р,m}</i> /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	$C^0_{p,m}$ /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} ∕(Дж·К ⁻¹ ·моль ⁻¹)
Не	Кристалл I	10.97	2.084	20.08	9.803	39.27	28.200
5.35	0.11900	11.21	2.271	20.49	10.138	39.81	28.645
5.50	0.11775	11.46	2.435	21.02	10.662	40.35	29.135
5.61	0.2324	11.71	2.561	21.55	11.177	40.90	29.581
5.74	0.2483	11.95	2.748	22.07	11.718	41.44	30.074
5.88	0.2272	12.20	2.911	22.60	12.245	41.98	30.451
6.00	0.2783	12.45	3.081	23.13	12.758	42.52	30.904
6.16	0.2694	12.69	3.276	23.66	13.319	43.07	31.352
6.35	0.2760	12.95	3.435	24.19	13.861	43.61	31.757
6.52	0.3718	13.20	3.601	24.72	14.423	44.15	32.204
6.70	0.3771	13.45	3.789	25.26	15.006	44.70	32.638
6.87	0.4384	13.70	4.012	25.79	15.562	45.24	33.058
7.04	0.5018	13.95	4.209	26.32	16.068	45.79	33.463
7.20	0.5329	14.21	4.209	26.86	16.599	46.33	33.884
7.37	0.2915	14.45	4.501	27.40	17.117	46.87	34.250
7.53	0.375	14.70	4.779	27.93	17.656	47.42	34.625
7.69	0.481	14.95	4.992	28.47	18.205	47.96	35.034
7.86	0.532	15.20	5.215	29.01	18.741	48.51	35.392
8.01	0.612	15.46	5.425	29.55	19.282	49.05	35.763
8.16	0.687	15.72	5.277	30.09	19.833	49.60	36.149
8.32	0.764	15.96	5.928	30.62	20.365	50.14	36.492
8.47	0.813	16.21	6.088	31.16	20.902	50.69	36.892

Таблица 27 Экспериментальные данные по теплоёмкости для 2-фурфуриламина в гелиевой области

8.62	0.891	16.47	6.306	31.70	21.436	51.23	37.336
8.77	0.940	16.72	6.541	32.24	21.931	51.78	37.689
8.91	1.020	16.98	6.778	32.78	22.436	52.32	38.091
9.06	1.094	17.23	6.998	33.32	22.970	52.87	38.495
9.20	1.149	17.49	7.594	33.86	23.481	53.41	39.092
9.35	1.239	17.75	7.687	34.40	24.005	53.96	39.402
9.50	1.309	18.01	7.749	34.94	24.575	54.50	39.658
9.64	1.360	18.28	8.009	35.48	24.996	55.05	40.027
9.78	1.398	18.53	8.264	36.02	25.426	55.59	40.427
9.92	1.471	18.79	8.493	36.56	25.898	56.14	40.884
10.06	1.599	19.05	8.742	37.10	26.373	56.68	41.253
10.25	1.685	19.31	9.018	37.64	26.838	57.23	41.645
10.49	1.842	19.57	9.245	38.18	27.308	57.77	41.964
10.74	1.923	19.83	9.524	38.73	27.778	58.32	42.234

Таблица 27 (продолжение)

T / K	<i>С</i> ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} ∕(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{р,m} /(Дж·К⁻¹·моль⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
58.87	42.438	66.51	46.228	75.95	50.721	86.96	55.622
59.41	42.649	67.05	46.597	76.74	51.062	87.74	56.037
59.96	42.821	67.60	47.098	77.53	51.405	88.53	56.377
60.51	43.028	68.15	47.184	78.31	51.769	89.32	56.779
61.05	43.145	68.69	47.405	79.10	52.112	90.11	57.185
61.60	43.566	69.24	47.614	79.89	52.461	90.90	57.621
62.14	44.293	69.79	47.940	80.67	52.797	91.69	57.990
62.69	44.678	70.45	48.235	81.45	53.113	92.47	58.366
63.23	44.803	71.24	48.592	82.24	53.499	93.26	58.830

63.78	44.998	72.02	48.946	83.02	53.845	94.05	59.250
64.32	45.167	72.81	49.348	83.81	54.225	94.84	59.692
64.87	45.453	73.59	49.703	84.60	54.532		
65.42	45.690	74.38	50.033	85.39	54.886		
65.96	45.923	75.17	50.358	86.17	55.274		

Таблица 28 Экспериментальные данные по теплоёмкости для 2-фурфуриламина в азотной области.

T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К⁻¹·моль⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
N ₂	Кристалл I	107.84	63.540	136.00	74.535	164.07	89.373
80.38	52.694	108.62	63.750	136.78	75.027	164.85	89.522
81.16	53.099	109.40	63.957	137.56	75.261	165.63	90.188
81.94	53.376	110.18	64.311	138.34	75.669	166.41	90.168
82.73	53.761	110.97	64.603	139.12	75.884	167.20	90.533
83.51	54.029	111.75	64.717	139.90	76.214	167.98	90.927
84.30	54.753	112.53	65.140	140.68	76.834	168.76	91.070
85.09	54.864	113.31	65.395	141.46	76.782	169.54	91.739
85.87	55.145	114.09	65.802	142.24	77.310	170.32	92.784
86.66	55.582	114.88	66.192	143.02	77.482	171.11	92.595
87.45	55.844	115.66	66.426	143.80	77.831	171.90	92.585
88.23	55.961	116.44	67.069	144.58	77.757	172.68	92.944
89.02	56.152	117.22	67.998	145.36	77.841	173.47	93.022
89.81	56.202	118.01	67.731	146.14	78.528	174.25	93.325
90.59	56.467	118.80	67.511	146.92	79.219	175.04	93.817
91.37	57.304	119.58	67.929	147.70	79.506	175.83	94.071
92.16	57.462	120.36	68.556	148.49	79.738	176.62	94.803
92.94	57.808	121.15	68.726	149.27	80.022	177.42	95.769
93.73	58.243	121.93	69.128	150.05	80.318	178.23	98.543
--------	--------	--------	--------	--------	--------	------------	---------
94.52	58.548	122.71	69.434	150.83	80.744	179.17	108.015
95.30	58.968	123.50	69.191	151.61	81.161	180.22	138.282
96.09	59.214	124.28	69.334	152.39	81.646	181.60	497.991
96.88	59.419	125.06	69.920	153.17	82.054	КристаллII	
97.67	59.844	125.84	70.174	153.95	82.651	192.85	98.004
98.45	59.964	126.62	70.554	154.73	83.319	194.01	98.773
99.24	60.173	127.41	70.741	155.50	84.182	194.80	99.557
100.03	60.652	128.19	71.185	156.28	84.894	195.59	100.468
100.81	60.896	128.97	71.567	157.05	85.755	196.38	101.235
101.59	61.094	129.75	71.968	157.83	86.344	197.17	101.490
102.37	61.385	130.53	72.167	158.61	86.983	197.96	102.254
103.15	62.002	131.31	72.539	159.39	87.395	198.75	103.257
103.93	61.776	132.09	72.840	160.17	87.721	199.54	103.913
104.71	62.288	132.87	73.322	160.95	88.202	200.33	104.958
105.49	62.705	133.66	73.652	161.73	88.457	201.31	106.873
106.28	62.911	134.44	74.179	162.51	88.717	202.49	109.345
107.06	63.112	135.22	74.368	163.29	89.168	203.66	113.443

Таблица 28(продолжение)

T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	$\mathcal{C}^{0}_{p,m}$ /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)
204.80	114.003	255.73	183.759	299.51	190.234	353.42	199.232
205.95	114.766	256.92	183.844	300.87	190.901	354.76	199.411
207.15	115.458	258.11	184.055	302.41	191.109	356.10	199.846
208.34	117.745	259.30	184.347	303.95	191.415	357.42	201.508
209.51	120.594	260.49	184.591	305.48	191.731		

210.68	123.822	261.68	184.691	307.01	193.680	
211.84	127.644	262.86	186.939	308.53	192.201	
213.01	132.365	264.05	184.964	310.06	192.385	
214.17	138.293	265.24	185.166	311.58	192.949	
215.32	145.499	266.43	185.450	313.10	192.907	
216.47	155.179	267.62	185.615	314.61	193.984	
217.61	167.944	268.81	185.888	316.12	193.346	
218.74	185.481	269.99	186.099	317.63	194.234	
219.85	210.321	271.19	186.349	319.13	194.067	
220.94	245.353	272.37	186.608	320.63	194.377	
222.00	296.174	273.56	189.223	322.13	194.924	
K	Кидкость	274.75	186.207	323.62	195.313	
231.80	180.357	275.93	186.985	325.04	194.667	
233.17	180.907	277.12	186.667	326.52	194.971	
234.35	180.763	278.31	186.857	328.00	195.178	
235.54	181.117	279.49	186.836	329.48	195.411	
236.72	180.763	280.67	187.274	330.95	195.505	
237.91	180.914	281.86	190.044	332.42	196.159	
239.09	181.254	283.04	187.738	333.88	196.935	
240.28	181.464	284.22	188.099	335.34	196.307	
241.46	181.508	285.41	188.175	336.79	198.466	
242.65	181.581	286.59	188.455	338.23	196.686	
243.84	181.895	287.77	188.476	339.68	196.180	
245.02	182.426	288.91	188.539	341.11	196.405	
246.21	182.542	290.09	190.947	342.52	197.008	
247.40	182.519	291.26	189.011	343.93	197.479	
248.59	184.241	292.45	188.945	345.34	198.307	

249.78	182.936	293.62	189.077	346.71	200.542	
250.97	182.987	294.80	190.280	347.95	198.835	
252.16	183.455	295.98	190.336	349.33	198.680	
253.35	183.630	297.16	190.525	350.70	198.842	
254.54	185.551	298.34	192.370	352.06	199.299	

Таблица 29 Дробное плавление 2-фурфуриламина

		Ι					Π					III		
T _i /K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$	T _i /K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$	T_i/K	Q _{input} /Дж	Q _{fus} /J	Fi	$1/F_i$
206.91	4.993				204.635	9.089			204.635	204.632	9.621			204.632
209.134	9.985				208.711	18.177			208.711	208.936	19.240			208.936
213.409	19.970				212.636	27.264			212.636	213.071	28.859			213.071
215.427	24.962				216.294	36.351			216.294	216.889	38.477			216.889
217.331	29.954				219.515	45.438			219.515	220.178	48.095			220.178
219.085	34.946				222.086	54.525	9.087	0.067	222.086	222.685	57.714	0.071	14.001	222.685
220.649	39.938	4.992	0.036	28.000	223.896	63.612	18.174	0.133	223.896	224.358	67.333	0.143	7.000	224.358
221.991	44.930	9.983	0.071	14.000	225.054	72.700	27.262	0.200	225.054	225.390	76.952	0.214	4.667	225.390
223.105	49.921	14.975	0.107	9.333	225.791	81.787	36.349	0.267	225.791	226.039	86.571	0.286	3.500	226.039
224.003	54.913	19.966	0.143	7.000	226.277	90.875	45.437	0.333	226.277	226.465	96.190	0.357	2.800	226.465
224.714	59.904	24.958	0.179	5.600	226.611	99.963	54.525	0.400	226.611	226.759	105.809	0.429	2.333	226.759
225.264	64.896	29.950	0.214	4.667	226.85	109.051	63.613	0.467	226.85	226.959	115.428	0.500	2.000	226.959
225.687	69.888	34.941	0.250	4.000	227.031	118.138	72.701	0.533	227.031	227.128	125.047	0.571	1.750	227.128
226.03	74.879	39.933	0.286	3.500	227.175	127.226	81.788	0.600	227.175	227.257	134.666	0.643	1.556	227.257
226.298	79.871	44.925	0.321	3.111	227.29	136.314	90.876	0.667	227.29	227.364	144.285	0.714	1.400	227.364
226.478	84.863	49.916	0.357	2.800	227.388	145.402	99.964	0.733	227.388	227.452	153.904	0.786	1.273	227.452
226.669	89.854	54.908	0.393	2.545	227.469	154.489	109.052	0.800	227.469	227.524	163.524	0.857	1.167	227.524
226.825	94.846	59.900	0.429	2.333	227.528	163.577	118.139	0.867	227.528	227.591	173.143	0.929	1.077	227.591
226.955	99.838	64.892	0.464	2.154	227.598	172.664	127.226	0.933	227.598	227.688	182.762	1.000	1.000	227.688
227.06	104.830	69.884	0.500	2.000	227.689	181.750	136.312	1.000	227.689	229.955	192.379			229.955
227.153	109.822	74.875	0.536	1.867						233.283	201.995			233.283

227.23	114.814	79.867	0.571	1.750			236.605	211.611		236.605
227.297	119.805	84.859	0.607	1.647			239.918	221.226		239.918
227.357	124.797	89.851	0.643	1.556						
227.411	129.789	94.843	0.679	1.474						
227.462	134.781	99.834	0.714	1.400						
227.504	139.772	104.826	0.750	1.333						
227.539	144.764	109.818	0.786	1.273						
227.569	149.756	114.810	0.821	1.217						
227.615	154.748	119.801	0.857	1.167						
227.648	159.740	124.793	0.893	1.120						
227.648	164.731	129.785	0.929	1.077						
227.68	169.723	134.776	0.964	1.037						
227.71	174.714	139.767	1.000	1.000						
228.948	179.704									
230.682	184.695									
232.407	189.685									
234.135	194.674									
235.859	199.664									
237.582	204.654									

Таблица 30 Твердофазный переход 2-фурфуриламина

	Ι		II		III	IV		
$q_{\rm i} = 1.4152$ J	Įж	$q_{ m i} = 1.2312$ Дж		$q_{\rm i} = 1.0588$ [Ц ж	<i>q</i> i = 1.0596 Дж		
T / K	$Q_{\scriptscriptstyle \mathrm{BBeg}}$ / J	T / K	$Q_{\scriptscriptstyle \mathrm{BBeg}}$ / J	T / K	$Q_{ m введ}$ / Ј	T / K	$Q_{\scriptscriptstyle \mathrm{BBeg}}$ / J	
173.176	1.4152	174.241	1.2312	178.460	1.0588	173.943	1.0596	
173.907	2.8304	174.875	2.4624	179.019	2.1176	174.489	2.1190	
174.636	4.2455	175.510	3.6936	179.709	3.1764	175.034	3.1784	
175.366	5.6605	176.146	4.9249	181.062	4.2350	175.579	4.2376	
176.096	7.0754	176.787	6.1560	185.131	5.2934	176.130	5.2969	
176.832	8.4902	177.453	7.3871	189.228	6.3516	176.690	6.3561	
177.581	9.9050	178.180	8.6180	190.009	7.4099	177.285	7.4154	
178.381	11.3198	179.072	9.8489	190.543	8.4682	177.958	8.4747	

179.313	12.7345	180.421	11.0797	191.071	9.5264	178.819	9.5340
180.597	14.1490	183.040	12.3103	191.594	10.5847	180.130	10.5932
184.019	15.5633	187.750	13.5407	192.115	11.6429	182.303	11.6523
188.964	16.9775	189.438	14.7712	192.632	12.7011	185.559	12.7112
190.106	18.3916	190.072	16.0017	192.890	13.7593	188.372	13.7700
190.819	19.8057	190.688	17.2321			189.239	14.8288
191.520	21.2196	191.300	18.4626			189.781	15.8876
192.216	22.6335	191.907	19.6930			190.307	16.9464
192.909	24.0475	192.506	20.9234			190.831	18.0051
193.599	25.4614	193.107	22.1539			191.353	19.0638
194.285	26.8752	193.705	23.3843			191.872	20.1226
194.969	28.2890	194.301	24.6146			192.389	21.1813
195.651	29.7028	194.895	25.8449			192.904	22.2400

Таблица 31 Коэффициенты уравнения (12), аппроксимирующих экспериментальную кривую теплоемкости 2-фурфуриламина

	Ι	II	III	IV
Температурный интервал / К	5.35-10.49	10.25-39.27	38.73-53.96	53.41-94.84
A0	2.66748986705526E-02	2.72606967039271E+00	1.15769493806621E+02	-5.07993233624141E+02
A1	3.114478889	-1.01626421588477E+00	-5.08537150950607E+00	3.52457787927034E+01
A2		1.20208950756907E-01	-9.42660168123950E-02	-9.27041595247339E-01
A3		-3.52681189715139E-03	1.04880740580683E-02	1.23848841991296E-02
A4		5.33146602342428E-05	-2.12678441508720E-04	-8.28781259090791E-05
A5		-3.55612554878025E-07	1.37223333756629E-06	2.22029131257570E-07
RMS	0.026674899	0.021980715	0.021903845	0.072968852
RMS,%	3.11	0.18	0.07	0.15

Таблица 31 (продолжение)

Температур	Кристал	лический	Жидн	кость
ный	Ι	II	III	IV

интервал/ К	79.42-128.33	124.26-174.60	191.58-207.92	231.37-350.84
A0	-2.09443401723984E+02	-2.75794276391740E+04	-1.82992105319118E+05	2.52792200361523E+03
A1	1.07620414289242E+01	0.00000000000000E+00	3.67673226170717E+03	-3.93252438818908E+01
A2	-1.88530434741108E-01	2.63591736962857E+01	-2.76717248118395E+01	2.59660997908757E-01
A3	1.74422198701109E-03	-5.90276490786710E-01	9.24849785075922E-02	-8.46773461830891E-04
A4	-8.23198782423831E-06	5.92762028554752E-03	-1.15789424862890E-04	1.36795547225733E-06
A5	1.58375525441651E-08	-3.16386737271035E-05		-8.74885610963156E-10
A6		8.76540866219785E-08		
A7		-9.95733854302414E-11		
RMS	0.057985336	0.092874825	0.103517494	0.148340752
RMS.%	0.09	0.12	0.10	0.08

Таблица 32 Сглаженные термодинамические функции 2-фурфуриламина^а

T / K	$C_{p,m}^0(T)/R$	$\Delta \big\{ C_{p,m}^0(T)/R \big\}$	$\frac{H_m^0(T) - H_m^0(0)}{RT}$	$\Delta\left\{\frac{H_m^0(T)-H_m^0(0)}{RT}\right\}$	$S_m^0(T)/R$	$\Delta\{S_m^0(T)/R\}$	$-\frac{\left(G_m^0(T)-H_m^0(0)\right)}{RT}$	$\Delta\left\{\frac{G_m^0(T) - H_m^0(0)}{RT}\right\}$
				Кристал	л І			
5	0.0158	0.00963	0.00346	0.00211	0.00443	0.00271	0.00097	0.00343
10	0.1855	0.0103	0.0407	0.0024	0.0522	0.0038	0.01145	0.00449
15	0.608	0.015	0.1547	0.0031	0.2017	0.0049	0.0469	0.0058
20	1.162	0.025	0.3356	0.0052	0.4504	0.0072	0.1149	0.0088
25	1.768	0.019	0.5610	0.0052	0.774	0.008	0.2133	0.0096
30	2.375	0.025	0.813	0.006	1.151	0.009	0.338	0.011
35	2.950	0.031	1.078	0.006	1.560	0.010	0.483	0.012
40	3.467	0.016	1.345	0.007	1.989	0.011	0.644	0.012
45	3.953	0.018	1.608	0.006	2.426	0.011	0.818	0.012
50	4.381	0.019	1.864	0.006	2.865	0.011	1.000	0.012
55	4.825	0.033	2.113	0.005	3.303	0.011	1.190	0.012
60	5.182	0.034	2.354	0.006	3.739	0.011	1.384	0.013
65	5.487	0.034	2.584	0.006	4.166	0.012	1.582	0.013

70	5.771	0.035	2.801	0.006	4.583	0.012	1.781	0.013
75	6.047	0.036	3.009	0.006	4.990	0.012	1.982	0.014
80	6.317	0.032	3.207	0.006	5.389	0.012	2.182	0.014
90	6.856	0.029	3.584	0.006	6.166	0.013	2.582	0.014
100	7.319	0.030	3.935	0.006	6.913	0.013	2.978	0.015
110	7.763	0.031	4.263	0.006	7.631	0.014	3.369	0.015
120	8.213	0.032	4.573	0.006	8.326	0.014	3.753	0.015
130	8.697	0.060	4.871	0.006	9.002	0.014	4.131	0.015
140	9.225	0.060	5.164	0.007	9.666	0.015	4.502	0.016
150	9.721	0.061	5.451	0.008	10.319	0.015	4.869	0.017
160	10.341	0.062	5.737	0.008	10.966	0.016	5.229	0.018
170	10.915	0.063	6.025	0.009	11.572	0.016	5.547	0.018
180	11.013	0.063	5.920	0.008	11.795	0.016	5.875	0.018
183.75	11.036	0.063	6.178	0.008	12.172	0.016	5.994	0.018
				Кристалл II				
183.75	11.120	0.123	6.188	0.008	12.182	0.016	5.994	0.018
190	11.204	0.063	6.433	0.008	12.479	0.016	6.045	0.018
200	12.280	0.065	6.701	0.009	13.083	0.017	6.382	0.019
210	13.658	0.067	6.999	0.009	13.715	0.017	6.716	0.019
220	13.698	0.067	7.315	0.009	14.364	0.017	7.049	0.019
228.3	15.879	0.072	7.484	0.009	14.807	0.017	7.323	0.020
				Жидкость				
228.3	21.773	0.084	14.576	0.029	21.899	0.033	7.323	0.044
230	21.799	0.224	14.529	0.029	21.961	0.033	7.431	0.043
240	21.944	0.223	14.836	0.029	22.892	0.034	8.056	0.045
250	22.104	0.224	15.123	0.029	23.791	0.035	8.668	0.046
260	22.286	0.226	15.395	0.029	24.661	0.036	9.266	0.047
270	22.474	0.228	15.654	0.030	25.506	0.037	9.852	0.048
280	22.661	0.230	15.901	0.030	26.326	0.038	10.426	0.048
290	22.844	0.231	16.137	0.030	27.125	0.039	10.988	0.049

298.15	22.990	0.233	16.322	0.030	27.760	0.039	11.438	0.049
300	23.023	0.233	16.363	0.029	27.902	0.040	11.539	0.049
310	23.203	0.235	16.581	0.029	28.660	0.040	12.079	0.050
320	23.391	0.237	16.791	0.029	29.400	0.041	12.609	0.050
330	23.591	0.239	16.994	0.029	30.123	0.042	13.129	0.051
340	23.810	0.241	17.191	0.029	30.830	0.042	13.639	0.051
350	24.050	0.243	17.384	0.029	31.524	0.043	14.140	0.052
360	24.312	0.246	17.572	0.029	32.205	0.043	14.632	0.052
370	24.589	0.249	17.758	0.029	32.875	0.044	15.116	0.053

^a Стандартные неопределенности u(p_o) = 0.5 кПа и u(T) = 0.02 K; комбинированные расширенные неопределенности термодинамических функций $\Delta \{C_{p,m}^{0}(T)/R\}, \Delta \{H_{m}^{0}(T) - H_{m}^{0}(0)/RT\}, \Delta \{S_{m}^{0}(T)/R\}, \Delta \{\frac{G_{m}^{0}(T) - H_{m}^{0}(0)}{RT}\}$ (с доверительной вероятностью 0.95)

2П.3 Тетрагидрофурфурол

Т / К	С ⁰ /(Дж•К ⁻¹ •моль ⁻¹)	Т / К	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)	Т/К	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)	Т / К	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)
Не		11.72	4.486	21.89	14.879	41.26	34.407
5.49	0.79951	11.97	4.723	22.42	15.451	41.80	34.928
5.65	0.83934	12.22	4.927	22.95	16.059	42.34	35.377
5.79	0.9898	12.47	5.129	23.48	16.640	42.89	35.929
5.94	1.0388	12.72	5.352	24.02	17.228	43.43	36.193
6.13	1.0654	12.97	5.567	24.55	17.819	43.97	36.632
6.34	1.1568	13.22	5.799	25.08	18.432	44.51	37.163
6.54	1.3088	13.47	6.073	25.62	19.107	45.05	37.642
6.74	1.2709	13.72	6.314	26.15	19.518	45.59	38.019
6.93	1.2985	13.97	6.556	26.69	20.119	46.14	38.670
7.11	1.4336	14.23	6.716	27.22	20.710	46.68	38.930
7.29	1.4917	14.48	6.995	27.76	21.321	47.22	39.400
7.46	1.5729	14.73	7.290	28.30	21.871	47.77	39.664
7.63	1.5565	14.99	7.568	28.83	22.372	48.31	40.276
7.79	1.7616	15.25	7.830	29.37	22.948	48.85	40.612
7.96	1.806	15.50	8.006	29.91	23.611	49.40	40.767
8.11	1.946	15.76	8.308	30.45	24.249	49.94	41.636
8.28	1.999	16.02	8.487	30.99	24.697	50.48	41.919
8.44	2.104	16.27	8.787	31.52	25.323	51.03	42.183
8.59	2.192	16.53	9.081	32.06	25.902	51.57	42.612
8.74	2.277	16.78	9.328	32.60	26.442	52.11	43.063
8.89	2.361	17.04	9.609	33.14	26.957	52.65	43.496

Таблица 33 Экспериментальные данные по теплоёмкости для тетрагидрофурфурилового спирта в гелиевой области

9.04	2.482	17.30	9.877	33.68	27.518	53.20	43.925
9.19	2.559	17.55	10.140	34.22	28.045	53.74	44.379
9.34	2.601	17.81	10.437	34.76	28.691	54.28	44.893
9.49	2.774	18.07	10.746	35.30	29.196	54.82	45.401
9.63	2.836	18.33	10.985	35.84	29.581	55.37	45.795
9.78	2.918	18.59	11.268	36.38	30.085	55.91	46.279
9.92	2.992	18.84	11.569	36.93	30.653	56.45	46.631
10.06	3.123	19.11	11.845	37.47	31.011	57.00	47.022
10.25	3.310	19.37	12.134	38.01	31.531	57.54	47.379
10.49	3.513	19.62	12.456	38.55	32.003	58.08	47.576
10.74	3.713	19.88	12.713	39.09	32.485	58.63	47.823
10.98	3.867	20.30	13.111	39.63	33.025	59.17	48.010
11.23	4.069	20.83	13.700	40.17	33.529	59.71	48.430
11.48	4.284	21.36	14.296	40.72	34.082	60.26	48.393

Таблица 33 (продолжение)

T / K	<i>С</i> ⁰ _{p.m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p.m</i>} ∕(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р.т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p.m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
60.80	48.744	65.68	52.426	70.70	54.949	77.74	58.629
61.34	49.060	66.23	52.674	71.48	55.365	78.51	59.041
61.89	49.790	66.77	52.964	72.26	55.794	80.07	59.767
62.43	50.694	67.32	53.157	73.04	56.207	80.86	60.138
62.97	51.018	67.86	53.371	73.82	56.594	81.64	60.538
63.51	51.306	68.40	53.683	74.61	56.992	82.43	60.951
64.05	51.587	68.95	54.009	75.39	57.409	83.21	61.338
64.60	51.873	69.49	54.270	76.17	57.816	83.99	61.660
65.14	52.160	70.04	54.491	76.95	58.207		

T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
N ₂		107.56	72.988	136.67	112.485	165.33	160.952
79.31	58.892	108.34	73.477	137.34	126.566	166.12	161.267
80.09	59.302	109.12	73.847	137.97	145.868	166.90	161.199
80.88	59.637	109.90	74.169	138.64	160.017	167.69	161.029
81.67	59.917	110.69	74.556	139.38	162.227	168.48	160.971
82.45	60.460	111.47	74.921	140.16	162.237	169.26	160.902
83.23	60.834	112.25	75.458	140.94	163.260	170.05	160.819
84.02	61.357	113.03	75.738	141.73	162.935	170.83	160.776
84.81	61.686	113.82	76.152	142.51	162.815	171.62	161.001
85.59	62.034	114.60	76.457	143.30	162.534	172.40	160.878
86.38	62.375	115.38	76.923	144.09	162.621	173.19	160.869
87.16	62.783	116.17	77.281	144.88	162.591	173.97	160.953
87.95	63.212	116.95	77.673	145.66	162.514	174.76	161.015
88.74	63.606	117.73	77.997	146.45	162.338	175.54	160.850
89.52	64.012	118.52	78.537	147.24	162.439	176.33	161.162
90.31	64.426	119.30	78.985	148.03	162.307	177.11	161.200
91.09	64.826	120.09	79.294	148.81	162.168	177.90	161.109
91.88	65.211	120.87	79.856	149.60	162.222	178.68	161.151
92.67	65.629	121.66	80.292	150.39	162.087	179.46	161.023
93.45	66.106	122.45	80.663	151.18	161.939	180.25	161.271
94.24	66.397	123.23	81.137	151.96	161.834	181.03	161.060
95.03	66.739	124.02	81.751	152.75	161.417	181.81	161.178
95.81	67.237	124.81	82.013	153.53	161.820	182.60	161.160
96.60	67.640	125.61	82.483	154.32	161.721	183.38	161.262

Таблица 34 Экспериментальные данные по теплоёмкости для тетрагидрофурфурилового спирта в азотной области

97.39	68.086	126.40	83.133	155.11	161.902	184.17	161.183
98.17	68.438	127.19	83.709	155.90	161.771	184.95	161.527
98.96	68.887	127.99	84.254	156.68	161.607	185.73	161.799
99.75	69.248	128.80	84.909	157.47	161.295	186.52	161.570
100.53	69.403	129.60	85.668	158.26	161.315	187.30	160.930
101.31	69.973	130.40	86.448	159.04	161.273	188.08	161.218
102.09	70.257	131.21	87.368	159.83	161.226	188.87	161.808
102.87	70.713	132.01	88.498	160.62	161.015	189.65	161.728
103.65	71.097	132.81	89.812	161.40	161.143	190.43	161.657
104.43	71.446	133.61	91.388	162.19	161.087	191.21	161.900
105.21	71.821	134.40	94.482	162.98	161.221	191.99	162.013
106.00	72.243	135.19	97.373	163.76	160.872	192.77	162.072

Таблица 34 (продолжение)

T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} ∕(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
194.34	162.189	223.17	167.442	252.14	176.095	281.19	187.594
195.12	162.326	223.95	167.589	252.92	176.303	281.97	187.897
195.90	162.606	224.73	167.781	253.71	176.504	282.76	188.500
196.69	162.464	225.52	167.942	254.49	176.958	283.54	188.775
197.47	162.635	226.30	168.102	255.27	177.412	284.32	189.050
198.25	162.841	227.08	168.159	256.06	177.731	285.11	189.178
199.03	162.902	227.86	168.444	256.85	177.749	285.90	189.916
199.81	163.080	228.64	168.668	257.63	177.807	286.68	190.378
200.59	163.097	229.42	168.919	258.41	178.317	287.46	190.261
201.37	163.254	230.20	169.108	259.20	178.594	288.20	191.055

202.15	163.262	230.98	169.449	259.98	178.949	288.98	191.212
202.93	163.460	231.76	169.792	260.77	179.585	289.77	191.470
203.70	163.427	232.55	169.774	261.56	179.709	290.55	191.613
204.47	163.538	233.33	170.090	262.34	179.857	291.34	192.187
205.25	163.740	234.11	170.842	263.13	180.051	292.12	192.756
206.03	163.902	234.89	170.515	263.92	180.526	292.92	192.990
206.81	163.993	235.67	170.674	264.70	180.846	293.67	193.211
207.59	164.063	236.46	170.781	265.48	181.167	294.45	193.438
208.37	164.148	237.24	171.156	266.27	181.191	295.23	193.952
209.14	164.580	238.02	171.650	267.05	181.580	296.01	194.173
209.92	164.897	238.81	171.652	267.84	182.015	296.79	194.625
210.70	165.215	239.59	171.991	268.62	182.389	297.57	195.282
211.48	165.125	240.37	172.045	269.41	182.837	298.35	195.451
212.26	165.662	241.16	172.390	270.19	183.272	299.14	195.568
213.04	165.537	241.94	172.761	270.98	183.530	299.92	196.170
213.82	165.379	242.72	172.769	271.77	183.849	301.08	196.284
214.60	165.407	243.51	172.913	272.55	183.891	302.63	196.434
215.38	165.702	244.29	173.207	273.34	184.210	304.15	196.651
216.15	165.689	245.07	173.503	274.13	184.623	305.69	197.862
216.93	165.794	245.86	174.101	274.91	184.830	307.21	198.727
217.71	165.972	246.64	174.277	275.69	185.039	308.74	199.309
218.49	166.167	247.43	174.389	276.48	185.644	310.26	200.090
219.27	166.417	248.21	174.230	277.27	186.071	311.78	200.662
220.05	166.562	249.00	175.269	278.05	186.438	313.29	201.439
220.83	166.708	249.78	175.541	278.83	186.715	314.79	202.212
221.61	166.875	250.57	175.292	279.62	186.632	316.29	202.930

T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
319.2805	204.1586	329.4997	208.8186	339.4691	214.5914	348.7996	217.2884
320.7663	204.7999	330.9452	209.4839	340.8599	214.0322	350.123	219.4671
322.2473	205.4399	332.3852	209.8756	342.2244	216.3726	351.3982	218.2943
323.7242	206.2042	333.8172	210.7155	343.5966	214.5531	352.7048	219.1728
325.1302	206.8607	335.2398	211.3348	344.9629	216.5474		
326.5904	207.5425	336.6544	211.9506	346.2811	215.8514		
328.0501	208.0385	338.0689	212.3519	347.4658	216.6961		

Таблица 35 Коэффициенты уравнения (12), аппроксимирующие экспериментальную кривую теплоемкости тетрагидрофурфурилового спирта

	Ι	II	III	IV
Температурный интервал/ К	5.49-10.98	10.49-40.17	39.09-65.68	64.6-131.21
A0	5.47190485405190E-02	2.32905623006133E+00	-1.13285821368255E+03	-5.16224315874770E+02
A1	2.61861164020070E+00	-8.64996732297403E-01	1.13829294943796E+02	3.02249309791005E+01
A2		1.31038814158100E-01	-4.48057015795699E+00	-6.51078375053250E-01
A3		-4.31515589477367E-03	8.82738597960216E-02	7.04290803044573E-03
A4		7.19344737805811E-05	-8.63662817624234E-04	-3.76619618356344E-05
A5		-5.08602639570486E-07	3.35363793557724E-06	7.97110028377414E-08
A6		0.0000000000000E+00	0.0000000000000E+00	0.0000000000000E+00
A7		0.0000000000000E+00	0.0000000000000E+00	0.0000000000000E+00
RMS ^a	0.054719049	0.045940242	0.211874651	0.112932438
RMS,%	2.62	0.29	0.49	0.17
	V	VI	VII	
Температурный интервал/ К	127.99-154.32	152.75-229.42	227.08-352.7	
A0	-3.26502533846140E+05	-1.56077938126068E+01	-1.94294476415245E+04	

A1	0.000000000000E+00	5.39540036454752E+00	4.14005135969538E+02	
A2	0.000000000000E+00	-5.87155268741678E-02	-3.62012693007466E+00	
A3	3.63509840040934E+00	2.91500714808485E-04	1.67536159715831E-02	
A4	-7.40492984580429E-02	-6.68673513643732E-07	-4.32683359697223E-05	
A5	6.01762980137569E-04	5.81321926724576E-10	5.91623513094884E-08	
A6	-2.25799774398176E-06	0.0000000000000E+00	-3.34752015379691E-11	
A7	3.25938920184096E-09	0.0000000000000E+00	0.0000000000000E+00	
RMS ^a	7.695904864	0.152113418	0.210042124	
RMS,%	5.63	0.09	0.11	

^а RMS — среднеквадратичные отклонения между значениями, рассчитанными с помощью уравнения (5) и экспериментальными значениями

Таблица 36 Сглаженные значения основных термодинамических функций тетрагидрофурфурилового спирта в конденсированном состоянии ($p_0 = 102 \ \kappa \Pi a; R = 8.314462618 \ Дж \cdot K^{-1} \cdot Monb^{-1}$)

T / K	$C_{p,m}^0(T)/R$	$\Delta \left\{ C_{p,m}^0(T)/R \right\}$	$H_m^0(T) - H_m^0(0)/RT$	$\Delta \{H_m^0(T) - H_m^0(0)/RT\}$	$S_m^0(T)/R$	$\Delta\{S_m^0(T)/R\}$	$-\left(G_m^0(T)-H_m^0(0)\right)/RT$	$\Delta\left\{\frac{G_m^0(T) - H_m^0(0)}{RT}\right\}$
	-	•		Кристалл				
5	0.0803	0.01981	0.02506	0.00618	0.39477	0.00899	0.01137	0.01091
10	0.3699	0.0211	0.1155	0.0066	0.5262	0.0117	0.05240	0.01345
15	0.906	0.025	0.2849	0.0065	0.7717	0.0130	0.1285	0.0145
20	1.540	0.035	0.5182	0.0085	1.1178	0.0152	0.2412	0.0174
25	2.202	0.028	0.7888	0.0082	1.533	0.016	0.3854	0.0180
30	2.852	0.033	1.079	0.008	1.992	0.017	0.555	0.019
35	3.464	0.038	1.376	0.009	2.478	0.018	0.743	0.020
40	4.013	0.078	1.672	0.009	2.977	0.018	0.946	0.020
45	4.516	0.079	1.961	0.011	3.479	0.020	1.160	0.023
50	4.995	0.079	2.240	0.013	3.980	0.022	1.381	0.025
55	5.457	0.080	2.512	0.013	4.478	0.023	1.608	0.027
60	5.860	0.080	2.775	0.014	4.971	0.024	1.838	0.028
65	6.248	0.048	3.027	0.014	5.455	0.025	2.070	0.028
70	6.574	0.048	3.269	0.013	5.930	0.025	2.303	0.028
75	6.864	0.049	3.499	0.013	6.394	0.025	2.536	0.028
80	7.144	0.046	3.718	0.012	6.846	0.025	2.769	0.028
90	7.727	0.047	4.131	0.012	7.720	0.026	3.231	0.029
100	8.336	0.048	4.521	0.012	8.566	0.026	3.687	0.029
110	8.930	0.049	4.895	0.012	9.389	0.027	4.135	0.029
120	9.533	0.050	5.256	0.011	10.191	0.027	4.577	0.029
130	9.466	0.081	5.612	0.011	10.982	0.027	5.012	0.029
140	18.360	0.094	6.159	0.011	11.961	0.028	5.443	0.030
150	19.244	0.095	7.059	0.012	13.316	0.028	5.900	0.031
160	19.395	0.096	7.827	0.013	14.565	0.029	6.380	0.031
170	19.356	0.095	8.506	0.013	15.740	0.029	6.875	0.032

180	19.377	0.096	9.109	0.013	16.846	0.030	7.379	0.033
190	19.461	0.096	9.651	0.014	17.896	0.030	7.886	0.033
200	19.605	0.096	10.145	0.014	18.898	0.031	8.394	0.034
210	19.801	0.096	10.600	0.014	19.859	0.031	8.900	0.034
220	20.041	0.097	11.024	0.014	20.785	0.031	9.403	0.034
230	20.339	0.082	11.422	0.014	21.682	0.032	9.902	0.034
240	20.693	0.083	11.801	0.014	22.555	0.032	10.40	0.03
250	21.08	0.22	12.164	0.016	23.408	0.033	10.89	0.04
260	21.52	0.22	12.515	0.017	24.243	0.034	11.37	0.04
270	22.01	0.23	12.858	0.019	25.064	0.035	11.85	0.04
280	22.52	0.23	13.193	0.020	25.874	0.036	12.32	0.04
290	23.04	0.24	13.524	0.021	26.673	0.037	12.79	0.04
298.15	23.46	0.24	13.790	0.021	27.32	0.04	13.17	0.04
300	23.56	0.24	13.850	0.021	27.46	0.04	13.25	0.04
310	24.08	0.25	14.171	0.022	28.24	0.04	13.71	0.04
320	24.59	0.25	14.489	0.023	29.02	0.04	14.17	0.05
330	25.12	0.26	14.803	0.023	29.78	0.04	14.62	0.05
340	25.67	0.26	15.114	0.024	30.54	0.04	15.07	0.05
350	26.23	0.27	15.424	0.024	31.29	0.04	15.51	0.05
360	26.78	0.27	15.732	0.025	32.04	0.04	15.95	0.05
370	27.26	0.28	16.037	0.025	32.78	0.04	16.38	0.05

^a Стандартные неопределенности u(p_o) = 0.5 кПа и u(T) = 0.02 К; комбинированные расширенные неопределенности термодинамических функций $\Delta \{C_{p,m}^{0}(T)/R\}, \Delta \{H_{m}^{0}(T) - H_{m}^{0}(0)/RT\}, \Delta \{S_{m}^{0}(T)/R\}, \Delta \{S_{m}^{0}(T)-H_{m}^{0}(0)\}$ (с доверительной вероятностью 0.95)

2П.4 2-Метилтетрагидрофуран

T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С ⁰ _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	$\mathcal{C}^{0}_{p,m}$ /(Дж·К ⁻¹ ·моль ⁻¹)
	Кристалл	40.87	34.040	63.80	50.565	84.34	61.820
7.52	0.83264	41.76	34.837	64.29	50.876	84.89	62.219
7.67	0.88411	42.62	35.569	64.78	51.071	85.44	62.451
9.92	1.8872	43.46	36.286	65.27	51.298	85.98	62.775
10.62	2.3824	44.27	36.987	65.75	51.536	86.52	63.082
11.51	3.0011	45.06	37.656	66.23	51.772	87.06	63.261
12.43	3.7666	45.83	38.224	66.70	52.096	87.60	63.589
12.75	4.0348	46.59	38.787	67.17	52.427	88.13	63.909
13.72	4.9383	47.32	39.349	67.64	52.646	88.66	64.210
14.77	5.9598	48.04	39.915	68.10	52.825	89.19	64.526
15.66	6.8720	48.75	40.425	68.56	53.085	89.71	64.705
16.44	7.7170	49.45	40.917	69.02	53.393	79.25	58.997
17.15	8.5047	50.13	41.400	69.47	53.625	80.06	59.464
17.79	9.2327	50.80	41.887	69.92	53.825	80.87	59.969
18.39	9.9026	51.45	42.403	70.47	54.117	81.68	60.361
18.95	10.563	52.10	42.880	71.13	54.419	82.49	60.821
19.47	11.191	52.73	43.433	71.79	54.838	83.30	61.294
19.97	11.775	53.36	43.968	72.44	55.230	84.11	61.701
20.17	12.024	53.97	44.421	73.08	55.508	84.92	62.154
21.48	13.552	54.57	45.000	73.72	55.928	85.73	62.555
21.60	13.680	55.17	45.411	74.35	56.249	86.54	63.043
23.52	15.926	55.75	45.890	74.97	56.628	87.35	63.488

Таблица 37 Экспериментальные значения теплоёмкости кристаллической и жидкой фазы для 2-метилтетрагидрофуран

24.07	16.564	56.33	46.223	75.59	56.959	88.16	63.883
25.26	18.007	56.90	46.552	76.21	57.348	88.97	64.321
26.12	18.989	57.47	46.876	76.82	57.697	89.78	64.732
27.91	20.981	58.02	47.197	77.42	58.044	90.59	65.158
29.51	22.809	58.57	47.515	78.02	58.464	91.40	65.592
30.98	24.437	59.12	47.829	78.62	58.782	92.21	66.094
32.33	25.905	59.66	48.141	79.21	59.047	93.03	66.522
33.60	27.225	60.20	48.450	79.79	59.395	93.84	66.874
34.79	28.475	60.73	48.756	80.37	59.711	94.65	67.308
35.91	29.511	61.26	49.060	80.95	60.005	95.46	67.780
36.99	30.528	61.78	49.360	81.52	60.392	96.27	68.204
38.02	31.473	62.29	49.766	82.66	61.043	97.08	68.652
39.00	32.354	62.80	50.125	83.22	61.291	97.90	69.054
39.96	33.240	63.30	50.333	83.78	61.537	98.71	69.507

Таблица 37 (продолжение)

T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С _{р,т} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	<i>С</i> ⁰ _{<i>p,m</i>} /(Дж·К ⁻¹ ·моль ⁻¹)
99.52	69.911	129.46	86.377	171.35	131.724	202.09	134.041
100.33	70.333	130.26	86.520	172.17	131.782	203.31	134.113
101.15	70.754	131.07	87.648	172.98	131.738	204.54	134.222
101.95	71.182	131.86	89.322	173.79	131.770	205.76	134.434
102.76	71.655	132.66	91.398	174.61	131.830	206.99	134.669
103.57	72.048	133.46	93.599	175.42	131.821	208.21	134.700
104.38	72.511	134.27	95.102	176.24	131.937	209.44	134.912
105.19	72.951	136.10	122.636	177.05	132.022	210.67	136.397
105.99	73.444	Ж	идкость	177.87	132.003	211.89	135.228

106.80	73.907	148.50	132.340	178.69	131.837	213.12	135.312
107.61	74.351	149.32	132.296	179.50	132.014	214.35	135.574
108.42	74.808	150.13	132.220	180.31	132.073	215.58	135.798
109.23	75.273	150.95	132.237	181.13	132.110	216.81	135.970
110.04	75.732	151.76	132.172	181.94	132.151	218.03	136.100
110.85	76.229	152.58	132.020	182.76	132.217	219.26	136.320
111.66	76.689	153.40	131.980	183.57	132.233	220.49	136.499
112.47	77.249	154.21	131.917	184.39	132.278	221.72	136.726
113.28	77.735	155.03	131.822	185.20	132.311	222.95	136.956
114.09	78.265	155.85	131.798	186.02	132.396	224.18	138.722
114.90	78.764	156.66	131.654	186.83	132.430	225.41	137.411
115.71	79.268	157.48	131.584	187.64	132.441	226.64	137.680
116.52	79.825	158.30	131.661	188.46	132.568	227.87	137.964
117.32	80.300	159.11	131.653	189.27	132.667	229.10	138.171
118.13	80.878	159.93	131.657	190.08	132.729	230.33	138.372
118.94	81.391	160.74	131.656	190.90	132.858	231.56	138.978
119.75	81.873	161.56	131.587	191.71	132.858	232.79	138.817
120.56	82.423	162.38	131.651	192.52	132.895	234.03	139.039
121.37	82.910	163.19	131.535	193.34	133.044	235.26	139.382
122.18	83.450	164.01	131.613	194.15	133.105	236.49	139.598
122.99	83.950	164.82	131.625	194.97	133.174	237.73	139.863
123.80	84.422	165.64	131.581	195.78	133.276	238.96	140.098
124.61	84.867	166.46	131.638	196.59	133.390	240.20	140.308
125.42	85.176	167.27	131.667	197.41	133.426	241.43	140.552
126.23	85.466	168.09	131.613	198.22	133.492	242.67	140.841
127.04	85.691	168.90	131.717	199.03	133.584	243.90	143.013
127.85	85.881	169.72	131.638	199.84	133.717	245.13	141.337

128.66	86.112	170.53	131.657	200.86	133.850	246.37	141.616
--------	--------	--------	---------	--------	---------	--------	---------

Таблица 37 (продолжение)

T / K	С ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	$C^0_{p,m}$ /(Дж·К ⁻¹ ·моль ⁻¹)	T / K	С ⁰ _{p,m} /(Дж·К ⁻¹ ·моль ⁻¹)
247.61	141.965	293.65	154.191	349.78	170.39
248.84	142.217	294.90	154.511	351.12	170.98
250.08	142.522	296.15	154.893	352.57	171.44
251.32	142.776	297.41	155.341	354.02	171.96
252.55	143.073	298.66	155.667		
253.79	143.395	299.92	156.004		
255.03	143.697	301.40	155.726		
256.27	144.003	303.04	156.088		
257.51	144.305	304.68	156.570		
258.76	144.583	306.32	157.941		
259.99	147.086	307.95	157.562		
261.23	145.319	309.58	157.996		
262.48	145.519	311.20	159.235		
263.72	145.822	312.82	159.000		
264.96	146.116	314.44	159.502		
266.20	146.446	316.05	161.417		
267.44	146.806	317.65	160.373		
268.69	147.120	319.26	160.833		
269.93	147.443	320.85	161.350		
271.18	147.728	322.45	161.810		
272.42	148.062	324.04	162.267		
273.67	148.414	325.62	162.710		

274.91	148.702	327.17	163.493	
276.16	151.445	328.75	163.888	
277.40	149.540	330.32	164.410	
278.66	149.852	331.90	160.282	
279.91	150.207	333.41	164.116	
281.16	150.576	334.95	165.406	
282.41	150.930	336.41	166.012	
283.65	151.217	337.93	166.648	
284.91	151.584	339.45	167.084	
286.16	151.910	340.96	167.290	
287.41	152.257	342.46	168.701	
288.64	152.665	343.95	168.456	
289.89	153.034	345.45	165.982	
291.14	155.726	346.86	169.116	
292.39	153.770	348.32	170.036	

Таблица 38 Экспериментальные значения теплоёмкости метастабильной фазы для 2-метилтетрагидрофурана

Т / К	С ⁰ _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	Т / К	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)	Т / К	С ⁰ _{р,m} /(Дж·К ⁻¹ ·моль ⁻¹)	Т / К	С ⁰ /(Дж·К ⁻¹ ·моль ⁻¹)
79.15	62.315	85.62	67.391	91.64	141.068	98.17	139.808
79.95	62.875	86.43	68.260	92.43	141.591	98.99	139.609
80.76	63.530	87.24	69.452	93.25	141.261	99.81	139.337
81.57	64.127	88.06	71.013	94.07	141.063	100.63	139.123
82.38	64.805	88.87	73.494	94.89	140.729	101.45	139.427
83.19	65.354	89.66	78.394	95.71	140.543		
84.00	65.975	90.38	94.906	96.53	140.306		
84.81	66.689	90.96	128.898	97.35	140.075		

,		Ι		1			II					III		
Ti/K	Qinput/Дж	Q _{fus} /J	Fi	1/Fi	T _i /K	Qinput/Дж	Q _{fus} /J	Fi	1/Fi	Ti/K	Qinput/Дж	Q _{fus} /J	Fi	1/Fi
122.55	3.075				127.761	3.075				127.623	4.820			
124.45	6.150				129.566	6.149				130.549	9.640			
126.326	9.225				131.346	9.224				133.628	14.459			
128.18	12.299				133.094	12.298				136.902	19.280	4.821	0.091	11.000
130.008	15.373				134.784	15.372				137.019	24.101	9.642	0.182	5.500
131.803	18.447				136.383	18.447	3.075	0.056	18.000	137.069	28.922	14.463	0.273	3.667
133.566	21.521				136.869	21.522	6.150	0.111	9.000	137.097	33.743	19.284	0.364	2.750
135.352	24.595				136.974	24.597	9.225	0.167	6.000	137.116	38.564	24.105	0.455	2.200
136.859	27.670	3.075	0.059	17.000	137.027	27.673	12.300	0.222	4.500	137.131	43.385	28.926	0.545	1.833
136.98	30.744	6.149	0.118	8.500	137.061	30.748	15.376	0.278	3.600	137.146	48.206	33.747	0.636	1.571
137.033	33.819	9.224	0.176	5.667	137.084	33.823	18.451	0.333	3.000	137.16	53.027	38.568	0.727	1.375
137.064	36.893	12.298	0.235	4.250	137.102	36.898	21.526	0.389	2.571	137.174	57.848	43.389	0.818	1.222
137.086	39.968	15.373	0.294	3.400	137.115	39.973	24.601	0.444	2.250	137.186	62.668	48.210	0.909	1.100b
137.102	43.042	18.447	0.353	2.833	137.131	43.048	27.676	0.500	2.000	137.195	67.488	53.029	1.000	1.000b
137.115	46.117	21.522	0.412	2.429	137.139	46.123	30.751	0.556	1.800	138.802	72.307			
137.125	49.192	24.597	0.471	2.125	137.148	49.198	33.826	0.611	1.636	141.073	77.126			
137.137	52.266	27.671	0.529	1.889	137.157	52.273	36.901	0.667	1.500	143.332	81.943			
137.145	55.341	30.746	0.588	1.700	137.165	55.348	39.976	0.722	1.385	145.583	86.761			
137.152	58.416	33.821	0.647	1.545	137.174	58.423	43.051	0.778	1.286					
137.16	61.490	36.895	0.706	1.417	137.183	61.498	46.126	0.833	1.200					
137.168	64.565	39.970	0.765	1.308	137.192	64.573	49.201	0.889	1.125b					
137.175	67.640	43.045	0.824	1.214	137.201	67.648	52.276	0.944	1.059b					
137.183	70.714	46.119	0.882	1.133b	137.21	70.722	55.350	1.000	1.000b					
137.19	73.789	49.194	0.941	1.062b	137.768	73.796								
137.196	76.863	52.268	1.000	1.000b	139.217	76.870								
137.907	79.936				140.664	79.944								
139.356	83.009				142.107	83.017								
140.802	86.082													
142.244	89.155													

Таблииа 39 Дробное плавление 2-метилтетрагиорофура.	аблииа 3	39 Дробное плавлени	ие 2-метилтетрага	ідрофуран
---	----------	---------------------	-------------------	-----------

	Кристалл						
Температурный интервал / К	Ι	II		III	IV		
	11.51-48.75	45.06-65.27		62.29-122.99	122.18-131.07		
A0	3.89725333077217E+00	-1.62757605224256E+03		3.43724395363671E+0	2 -3.29087271542297E+01		
A1	-1.36588820011171E+00	1.64700592500753E+02		-1.78103645849477E+0	01 -4.15346394959524E-01		
A2	1.55386207614214E-01	-6.51942455403247E+00		4.03235628570565E-0	1		
A3	-4.40308474541435E-03	1.28236965673044E-01		-4.34226515175575E-0	03		
A4	5.76529958912840E-05	-1.24770662801790E-03		2.29021588730433E-0	5		
A5	-2.96566172813736E-07	4.80319036420137E-06		-4.72849263583557E-0	08		
RMSa	0.030772029	0.071015286		0.042114827	0.209397217		
RMS,%	0.14	0.1	0.16 0.07		0.24		
	Жидкость						
Температурный интервал / К	V		VI		VII		
	148.5-159.11		150.13-232.79		222.95-354.02		
A0	1.43652244180467E+02		-2.85856282119621E+02		-7.88414706460763E+02		
A1	-7.60596543084794E-02		1.28628706218326E+01		1.84817447614847E+01		
A2				95617217667E-01	-1.47157230843916E-01		
A3				34182800276E-04	5.76746974287415E-04		
A4			-2.38691166056473E-06		-1.10516346087730E-06		
A5			2.612	56124085452E-09	8.32681566722261E-10		
RMSa	0.057037987		0.057778228		0.172360925		
RMS,%	0.04		0.04		0.11		

Таблица 40 Коэффициенты уравнения (12), аппроксимирующие экспериментальную кривую теплоемкости 2-метилтетрагидрофурана

^а RMS — среднеквадратичные отклонения между значениями, рассчитанными с помощью уравнения (5) и экспериментальными значениями

0.	.514402010 д.	к к моло)	1					
T / K	$C_{p,m}^0(T)/R$	$\Delta\left\{C^{0}_{p,m}(T)/R\right\}$	$H_m^0(T) - H_m^0(0)/RT$	$\Delta\{H_m^0(T) - H_m^0(0)/RT\}$	$S_m^0(T)/R$	$\Delta\{S^0_m(T)/R\}$	$-\left(G_m^0(T)-H_m^0(0)\right)/RT$	$\Delta\left\{\frac{G_m^0(T) - H_m^0(0)}{RT}\right\}$
	Кристалл							
5	0.0310	0.0016	0.00770	0.00038	0.01007	0.00050	0.00241	0.00012
10	0.234	0.012	0.0598	0.0030	0.0794	0.0040	0.01960	0.00098
15	0.746	0.015	0.1954	0.0068	0.261	0.010	0.0661	0.0033
20	1.417	0.029	0.415	0.010	0.566	0.016	0.1508	0.0075
25	2.128	0.022	0.687	0.012	0.959	0.020	0.272	0.014
30	2.812	0.028	0.985	0.014	1.408	0.024	0.423	0.021
35	3.439	0.035	1.291	0.017	1.889	0.029	0.598	0.030
40	4.006	0.040	1.596	0.019	2.386	0.034	0.790	0.040
45	4.516	0.018	1.892	0.019	2.888	0.036	0.995	0.050
50	4.972	0.022	2.178	0.019	3.387	0.039	1.210	0.058
55	5.436	0.023	2.453	0.019	3.883	0.041	1.430	0.060
60	5.821	0.025	2.718	0.020	4.373	0.043	1.655	0.063
65	6.156	0.025	2.972	0.020	4.854	0.045	1.883	0.065
70	6.479	0.026	3.210	0.021	5.322	0.047	2.112	0.067
75	6.817	0.028	3.440	0.021	5.781	0.048	2.341	0.070
80	7.155	0.022	3.661	0.021	6.232	0.050	2.570	0.071
90	7.804	0.024	4.086	0.021	7.112	0.053	3.026	0.074
100	8.437	0.026	4.489	0.022	7.967	0.055	3.478	0.077
110	9.111	0.028	4.878	0.022	8.802	0.058	3.924	0.080
120	9.866	0.030	5.262	0.023	9.627	0.060	4.365	0.083
130	10.452	0.038	5.641	0.024	10.442	0.063	4.801	0.087
137.2	10.812	0.038	5.903	0.024	11.015	0.065	5.112	0.090
Жидкость								
137.2	16.030	0.052	11.340	0.042	16.453	0.272	5.11	0.31
140	15.996	0.052	11.434	0.042	16.776	0.274	5.34	0.32

Таблица 41 Сглаженные значения основных термодинамических функций 2-MeTHF в конденсированном состоянии ($p_0 = 102 \ \kappa \Pi a; R = 8.314462618 \ \Pi ж K^{-1} \ Monter Monter$)

150	15.896	0.052	11.734	0.043	17.876	0.277	6.14	0.32
160	15.840	0.052	11.993	0.044	18.900	0.280	6.91	0.32
170	15.835	0.052	12.219	0.044	19.860	0.284	7.64	0.33
180	15.878	0.052	12.420	0.044	20.766	0.287	8.35	0.33
190	15.964	0.052	12.605	0.045	21.627	0.289	9.02	0.33
200	16.084	0.053	12.775	0.045	22.448	0.292	9.67	0.34
210	16.233	0.053	12.936	0.046	23.237	0.295	10.30	0.34
220	16.412	0.053	13.090	0.046	23.996	0.297	10.91	0.34
230	16.633	0.050	13.239	0.046	24.730	0.299	11.49	0.35
240	16.87	0.17	13.386	0.051	25.443	0.307	12.06	0.36
250	17.14	0.17	13.530	0.056	26.137	0.313	12.61	0.37
260	17.43	0.17	13.675	0.060	26.815	0.320	13.14	0.38
270	17.74	0.18	13.819	0.065	27.478	0.327	13.66	0.39
280	18.07	0.18	13.965	0.069	28.130	0.333	14.16	0.40
290	18.40	0.18	14.112	0.073	28.77	0.34	14.66	0.41
298.15	18.67	0.19	14.233	0.076	29.28	0.34	15.05	0.42
300	18.73	0.19	14.261	0.077	29.40	0.35	15.14	0.42
310	19.06	0.19	14.410	0.080	30.02	0.35	15.61	0.43
320	19.39	0.19	14.561	0.084	30.63	0.36	16.07	0.44
330	19.73	0.20	14.712	0.087	31.23	0.36	16.52	0.45
340	20.10	0.20	14.865	0.090	31.82	0.37	16.96	0.46
350	20.51	0.21	15.020	0.094	32.41	0.38	17.39	0.47

^a Стандартные неопределенности $u(p_0) = 0.5 \text{ кПа и } u(T) = 0.02 \text{ K}$; комбинированные расширенные неопределенности термодинамических функций $\Delta \{C_{p,m}^0(T)/R\}, \Delta \{H_m^0(T) - H_m^0(0)/RT\}, \Delta \{S_m^0(T)/R\}, \Delta \{S_m$

3П Калориметрия сгорания

Таблица 42. Зависимость $\Delta_f H^{\circ}_{HNO_3:nH_2O_{(soln)}}$ от числа сольватных молекул воды (n), погрешность величин равна ± 0.502 кДж моль⁻¹.

n	$\Delta_{f} H^{\circ}_{HNO_{3} \cdot nH_{2}O_{(soln)}}$. кДж моль ⁻¹
0	-174.138
1	-187.673
2	-194.598
3	-198.610
4	-201.146
5	-202.807
7	-204.635
10	-205.861
15	-206.552
25	-206.857
50	-206.895
100	-206.899
500	-207.016
1000	-207.083
2000	-207.154
5000	-207.225
10000	-207.271
50000	-207.338
8	-207.401

Группа	$\Delta_{\!f} H_m^0 rac{\kappa \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			
$0 - (C_d)_2$	-137.32			
$C_d - (H)(O)$	-31.05			
$C_d - (H)(C_d)$	22.18			
$C_d - (0)(C)$	39.08			
$N - (H)_2(C)$	0.33			
Результат расчета				
$C - (H)_2(N)(C_d)$	-82.3 ± 6.0			

Таблица 43 Литературные значения групповых вкладов [109]

 $\Delta_f H^0_m \big(\mathbf{C} - (\mathbf{H})_2(\mathbf{N})(\mathbf{C}_d) \big) = \Delta_f H^0_m(FAm) -$

 $-\{\Delta_{f}H_{m}^{0}(0-(C_{d})_{2})+\Delta_{f}H_{m}^{0}(C_{d}-(H)(O))+\Delta_{f}H_{m}^{0}(C_{d}-(H)(C_{d}))+\Delta_{f}H_{m}^{0}(C_{d}-(O)(C))+\Delta_{f}H_{m}^{0}(N-(H)_{2}(C))\}$