МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

На правах рукописи

Скутин Александр Андреевич Некоторые вопросы теории алгебр Ли и p-групп

1.1.5. Математическая логика, алгебра, теория чисел и дискретная математика

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена на кафедре высшей алгебры механико-математического факультета ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова».

Научный руководитель: Клячко Антон Александрович,

кандидат физико-математических наук, $\Phi \Gamma BOY$ BO «Московский государственный университет имени М.В.

Ломоносова», кафедра высшей алгебры, доцент.

Официальные оппоненты: Васильев Андрей Викторович,

доктор физико-математических наук, профессор, ФБ-ГУН «Институт математики имени С. Л. Соболева» Сибирского отделения РАН, главный научный сотрудник.

Михалев Александр Александрович,

доктор физико-математических наук, профессор, ФГ-БОУ ВО «Московский государственный университет имени М.В. Ломоносова», кафедра математического анализа, профессор.

Петухов Алексей Владимирович,

кандидат физико-математических наук, ФБГУН «Институт проблем передачи информации имени А.А. Харкевича» РАН, и.о. старшего научного сотрудника.

Защита диссертации состоится 2023 года в 16 часов 45 минут на заседании диссертационного совета МГУ.011.4 ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова» по адресу 119234, Москва, ГСП-1, Ленинские горы, д. 1., ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», механикоматематический факультет, аудитория 14-08.

E-mail: sbqashkov@qmail.com

С диссертацией можно ознакомиться в отделе диссертаций Фундаментальной библиотеки Московского государственного университета имени М. В. Ломоносова (Москва, Ломоносовский проспект, д. 27) и на сайте ИСА «ИСТИНА»:

Автореферат разослан

2023 года.

Ученый секретарь диссертационного совета доктор физико-математических наук, профессор

С. Б. Гашков

Общая характеристика работы

Актуальность темы исследования и степень её разработанности

Определение. Шириной b(x) элемента x конечной p-группы G называется число удовлетворяющее равенству $|G:C_G(x)|=p^{b(x)}$, где $C_G(x)$ является централизатором x в G. Ширина группы G определяется как максимум ширин её элементов и обозначается b(G).

В 1957 году Джеймс Уайголд¹ сформулировал следующие гипотезы.

Гипотеза 1. Для каждой группы G, для которой известно, что размер каждой орбиты действия сопряжениями ограничен некоторым числом n, выполнено $|G'| \leq n^{(1+\lambda(n))/2}$, где $\lambda(n)$ – число (необязательно различных) простых делителей n.

В случае, когда G – конечная p-группа, получаем следующий частный случай гипотезы 1.

 Γ ипотеза 2. Для каждой конечной p-группы G выполнено неравенство

$$|G'| \le p^{b(G)(b(G)+1)/2}.$$

И. М. Брайд 2 доказал гипотезу 2 для p-групп класса нильпотентности 2. П. Нейман 3 доказал, что $|G'| \leq p^{b(G)^2}$ для каждой конечной p-группы G. Позже М. Р. Вон-Ли 4 доказал гипотезу 2 для метабелевых p-групп. В 1974 году Вон-Ли 5 доказал гипотезу 2 и, более того доказал, что равенство достигается лишь в случаях, когда G имеет класс нильпотентности 2, или когда b(G)=2 и G имеет класс нильпотентности 3.

В 1973 году Дж. Уайголдом в «Коуровской тетради» ⁶ была сформулирована следующая более сильная гипотеза.

¹J. Wiegold. Groups with boundedly finite classes of conjugate elements, *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences*, **238(1214)**, 389–401 (1957).

²I. M. Bride. Second nilpotent BFC groups, Journal of the Australian Mathematical Society, **11(1)**, 9–18 (1970).

³P. M. Neumann. An improved bound for BFCp-groups, *Journal of the Australian Mathematical Society*, **11(1)**, 19-27 (1970).

⁴M. R. Vaughan-Lee. Metabelian BFC p-groups, Journal of the London Mathematical Society, **2(4)**, 673–680 (1972).

⁵M. R. Vaughan-Lee. Breadth and commutator subgroups of p-groups, *Journal of Algebra*, **32(2)**, 278–285 (1974).

 $^{^6\}mathrm{V}.$ D. Mazurov and E. I. Khukhro. Unsolved problems in group theory. The Kourovka Notebook. no. 20, arXiv:1401.0300v25 (2022).

Гипотеза 3. Пусть G – конечная p-группа, для которой известно, что $G' > p^{n(n-1)/2}$, для некоторого целого n. Тогда G порождается элементами ширины не менее n.

Дж. Уайголд и М.Р. Вон-Ли⁷ доказали гипотезу 3 в случаях, когда G имеет класс нильпотентности 2 и в случае $b(G) \leq p$. Также, для каждого $n \geq 1$ привели пример группы, для которой выполняется $|G'| > p^{(n^2-5n+12)/2}$, b(G) = n, но группа G не порождается элементами ширины n.

В настоящей диссертации автором доказывется гипотеза 3.

Определение. Пусть \mathcal{A} – произвольная алгебра Ли. Шириной b(x) элемента x алгебры Ли \mathcal{A} называется число удовлетворяющее равенству

$$b(x) = \dim \mathcal{A} - \dim C_{\mathcal{A}}(x),$$

где $C_{\mathcal{A}}(x)$ является централизатором x в \mathcal{A} .

В настоящей диссертации автором доказывается следующий аналог гипотезы 3 для нильпотентных алгебр Ли.

Теорема 1. Пусть \mathcal{A} – нильпотентная алгебра Ли, для которой известно, что $\dim \mathcal{A}' > n(n-1)/2$ для некоторого целого n. Тогда \mathcal{A} порождается элементами ширины не менее n.

Второй решаемой задачей настоящей диссертации является вопрос описания максимальных подалгебр Ли среди локально нильпотентных дифференцирований коммутативной алгебры.

Рассмотрим произвольную коммутативную алгебру с единицей, конечной степени трансцендентности, без делителей нуля B над полем k нулевой характеристики.

Определение. Подалгебра Ли \mathcal{A} алгебры Ли $\mathrm{Der}_k(B)$ дифференцирований называется максимальной по вложению алгеброй Ли среди локально нильпотентных дифференцирований алгебры B, если \mathcal{A} состоит из локально нильпотентных дифференцирований алгебры B и каждая подалгебра Ли алгебры Ли $\mathrm{Der}_k(B)$, состоящая из локально нильпотентных дифференцирований алгебры B и содержащая \mathcal{A} , совпадает с \mathcal{A} .

⁷M. R. Vaughan-Lee and J. Wiegold, Breadth, class and commutator subgroups of p-groups, *Journal of Algebra*, **32(2)**, 268–277 (1974).

В монографии⁸ Дж. Фройденбургом были поставлены следующие гипотезы о строении всех максимальных по вложению алгебр Ли среди локально нильпотентных дифференцирований.

Гипотеза 4. Треугольная алгебра Ли дифференцирований

$$\mathcal{T} = k\partial_{x_1} \oplus k[x_1]\partial_{x_2} \oplus \ldots \oplus k[x_1,\ldots,x_{n-1}]\partial_{x_n}$$

алгебры многочленов $k[x_1,\ldots,x_n]$ является максимальной по вложению алгеброй Ли среди локально нильпотентных дифференцирований этой алгебры.

Гипотеза 5. Все максимальные по вложению алгебры Ли среди локально нильпотентных дифференцирований алгебры многочленов $k[x_1, \ldots, x_n]$ являются сопряженными к треугольной алгебре Ли дифференцирований

$$\mathcal{T} = k\partial_{x_1} \oplus k[x_1]\partial_{x_2} \oplus \ldots \oplus k[x_1, \ldots, x_{n-1}]\partial_{x_n}.$$

В настоящей диссертации автором доказывется гипотеза 4 и строится контрпример к гипотезе 5 в случае n=3. Более того, автором доказывается следующая теорема, являющаяся уточнением гипотезы 5.

Теорема 1. Пусть \mathcal{A} – максимальная по вложению алгеброй Ли среди локально нильпотентных дифференцирований алгебры B такая, что $\ker \mathcal{A} = \mathbb{K}$. Тогда найдутся элементы $x_i \in B$ такие, что $B = \mathbb{K}[x_1, \dots, x_n]$ и

$$\mathcal{A} = \mathbb{K}\partial_{x_1} \oplus \ldots \oplus \mathbb{K}[x_1, \ldots, x_{n-1}]\partial_{x_n}.$$

Цели и задачи работы

Основной целью работы является доказательство некоторых нерешенных гипотез в теории алгебр Π и и p-групп.

Положения, выносимые на защиту

Основными результатами, полученными в настоящей диссертации, являются:

• доказательство гипотезы Уайголда для *p*-групп;

 $^{^8}$ G. Freudenburg. Algebraic theory of locally nilpotent derivations, *Encyclopaedia of Mathematical Sciences*, *Springer-Verlag*, **136** (2006).

- доказательство аналога гипотезы Уайголда для нильпотентных алгебр Ли;
- формулировка и доказательство усиленной версии гипотезы Уайголда для конечномерных нильпотентных алгебр Ли;
- доказательство первой части гипотезы 11.7, поставленной Дж.Фройденбургом⁹;
- опровержение второй части гипотезы 11.7, поставленной Дж.Фройденбургом⁹;
- доказательство уточнённой версии гипотезы 11.7, поставленной Дж.Фройденбургом⁹.

Объект и предмет исследования

Объектом исследования являются конечные p-группы и их коммутанты, нильпотентные алгебры Ли, алгебры Ли дифференцирований и их подалгебры Ли.

Предметом исследования являются конечные p-группы, нильпотентные алгебры Ли, подалгебры Ли среди локально нильпотентных дифференцирований произвольных коммутативных алгебр и их свойства.

Научная новизна

Полученные в диссертации результаты являются новыми. Среди них:

- 1. Доказательство гипотезы Уайголда о конечных p-группах.
- 2. Формулировки и доказательства усиленных версий гипотезы Уайголда в случае конечных p-групп.
- 3. Формулировка и доказательство аналога гипотезы Уайголда для нильпотентных алгебр Ли.
- 4. Формулировки и доказательства усиленных версий гипотезы Уайголда в случае нильпотентных алгебр Ли.
- 5. Доказательство максимальности треугольной алгебры Ли локально нильпотентных дифференцирований алгебры многочленов.

⁹G. Freudenburg. Algebraic theory of locally nilpotent derivations, *Encyclopaedia of Mathematical Sciences*, Springer-Verlag, **136** (2006).

6. Описаны свойства максимальных по вложению подалгебр Ли среди локально нильпотентных дифференцирований произвольной коммутативной алгебры B с единицей, без делителей нуля, и имеющей конечную степень трансцендентности.

Методы исследования

В работе используются методы теории алгебр Π и, p-групп, а также известные теоремы коммутативной алгебры.

Теоретическая и практическая значимость

Работа имеет теоретический характер.

Результаты и методы, полученные в диссертации, представляют интерес для специалистов в абстрактной алгебре, могут найти применение в теории групп и алгебр Ли.

Степень достоверности и апробация результатов

Соискатель имеет 4 опубликованные работы, в том числе 4 статьи по теме диссертации [34, 35, 36, 37], из них 4 работы [34, 35, 36, 37] опубликованы в научных журналах из списка, рекомендованного ВАК.

Опубликованные статьи [34, 35, 36, 37] соответствуют пункту 2.3. положения о присуждении ученых степеней в Московском государственном университете имени М.В. Ломоносова.

Основные результаты диссертации докладывались на:

- на семинаре «Теория групп» под руководством профессора А.Ю. Ольшанского, доцента А.А. Клячко и доцента О.В. Куликовой (механико-математический факультет МГУ имени М.В. Ломоносова, 2013—2021, неоднократно)
- на конференции «Postgraduate Group Theory Conference» University of Southampton 11th 15th January 2021.

Структура и объём работы

Диссертация состоит из введения, трех глав, заключения и списка публикаций из 37 наименований. Общий объем диссертации составляет 65 страниц.

Содержание работы

Введение посвящено актуальности рассматриваемой темы, краткой истории вопроса, изложению цели работы и основных результатов.

Глава 1. В этой главе доказавыется гипотеза Уайголда для конечных p-групп и её усиления. Результаты этой главы опубликованы в статье [1]. Основными результатами главы являются:

- Доказательство теоремы о том, что в случае, когда p>2 и размер коммутанта p-группы G превышает $p^{\frac{n(n-1)}{2}}$, множество элементов группы G ширины не менее n не может быть покрыто p-1 собственными подгруппами группы G.
- Доказательство теоремы о том, что в случае, когда p=2 и размер коммутанта p-группы G превышает $2^{\frac{n(n-1)}{2}}$, множество элементов группы G ширины не менее n не может быть покрыто двумя собственными подгруппами группы G, одна из которых имеет индекс не менее 4 в G.

В разделе 1.1 предлагаются формулировки основных теорем.

Определение. Шириной b(x) элемента x конечной p-группы G называется число удовлетворяющее равенству

$$|G:C_G(x)|=p^{b(x)},$$

где $C_G(x)$ является ценрализатором x в G.

Доказывается следующая теорема.

Теорема. Пусть G — конечная p-группа, и пусть $|G'| > p^{\frac{n(n-1)}{2}}$ для некоторого целого неотрицательного n. Тогда группа G порождается элементами ширины не меньше n.

В случае $p \neq 2$ доказывается следующая более сильная теорема.

Теорема. Пусть $p \neq 2$ — простое число. Пусть G — конечная p-группа такая, что $|G'| > p^{\frac{n(n-1)}{2}}$ для некоторого целого неотрицательного n. Тогда множество элементов группы G ширины не меньше n не может быть покрыто p-1 собственными подгруппами группы G.

В случае p=2 получаем также более сильный результат.

Теорема. Пусть G – конечная 2-группа такая, что $|G'| > 2^{\frac{n(n-1)}{2}}$ для некоторого целого неотрицательного n. Тогда множество элементов группы G ширины не меньше n не может быть покрыто двумя собственными подгруппами группы G, одна из которых является подгруппой индекса не менее 4 в G.

В разделе 1.2 вводятся основные определения и вспомогательные утверждения, используемые на протяжении всего текста.

Определение. Шириной $b_H(g)$ элемента g конечной p-группы G относительно подгруппы $H\subseteq G$ будем называть число удовлетворяющее уравнению

$$|H:C_H(g)|=p^{b_H(g)},$$

где $C_H(g) = \{h \in H | hg = gh\}$ – централизатор элемента g в H.

Основным инструментом для доказательства гипотезы Уайголда для конечных p-групп является следующая лемма.

Лемма. Пусть G – конечная p-группа и пусть C её подгруппа индекса p. Тогда для каждого элемента g из множества $G\setminus C$ выполнено

$$\log_p |G'| \le b(g) + \log_p |C'|.$$

В разделах 1.3, 1.4 приводятся доказательства основных теорем главы.

Глава 2. посвящена формулировке и доказательству аналога гипотезы Уайголда для нильпотентных алгебр Ли. Результаты этой главы опубликованы в статье [2].

Основными результатами главы являются:

- Доказательство теоремы о том, что в случае, когда $2 < |\mathbb{F}| < \infty$ и размерность коммутанта \mathbb{F} -алгебры Ли \mathcal{A} превышает $\frac{n(n-1)}{2}$, множество элементов алгебры Ли \mathcal{A} ширины не менее n не может быть покрыто $|\mathbb{F}| 1$ собственными подалгебрами Ли алгебры Ли \mathcal{A} .
- Доказательство теоремы о том, что в случае, когда $|\mathbb{F}| = 2$ и размерность коммутанта \mathbb{F} -алгебры Ли \mathcal{A} превышает $\frac{n(n-1)}{2}$, множество элементов алгебры Ли \mathcal{A} ширины не менее n не может быть покрыто двумя

собственными подалгебрами Ли алгебры Ли \mathcal{A} , одна из которых имеет коразмерность не менее 2 в \mathcal{A} .

• Доказательство теоремы о том, что в случае, когда $|\mathbb{F}| = \infty$ и размерность коммутанта \mathbb{F} -алгебры Ли \mathcal{A} превышает $\frac{n(n-1)}{2}$, множество элементов алгебры Ли \mathcal{A} ширины не менее n не может быть покрыто конечным числом собственных подалгебр Ли алгебры Ли \mathcal{A} .

В разделе 2.1 излагается краткая история вопроса, а также формулировки основных теорем.

Определение. Шириной b(x) элемента x алгебры Ли $\mathfrak g$ над полем $\mathbb F$ называется число удовлетворяющее уравнению

$$\dim \mathfrak{g} - \dim C_{\mathfrak{g}}(x) = b(x),$$

где $C_{\mathfrak{g}}(x)$ является централизатором элемента x в \mathfrak{g} .

Доказывается следующая теорема.

Теорема. Пусть \mathfrak{g} — нильпотентная алгебра Ли над полем \mathbb{F} и пусть размерность её коммутанта больше n(n-1)/2 для некоторого неотрицательного целого n. Тогда \mathfrak{g} порождается элементами ширины не меньше n.

В случае $|\mathbb{F}|=\infty$ доказываем следующую более сильную теорему.

Теорема. Пусть \mathfrak{g} — нильпотентная алгебра Ли над бесконечным полем \mathbb{F} и пусть размерность её коммутанта больше n(n-1)/2 для некоторого неотрицательного целого n. Тогда множество элементов алгебры Ли \mathfrak{g} ширины не менее чем n не может быть покрыто конечным числом собственных подалгебр алгебры Ли \mathfrak{g} .

В случае $2<|\mathbb{F}|<\infty$ получаем следующий более сильный результат.

Теорема. Пусть \mathfrak{g} — нильпотентная алгебра Ли над конечным полем $\mathbb{F} \neq \mathbb{F}_2$ и пусть размерность её коммутанта больше n(n-1)/2 для некоторого неотрицательного целого n. Тогда множество элементов алгебры Ли \mathfrak{g} ширины не менее чем n не покрывается $|\mathbb{F}|-1$ собственными подалгебрами алгебры Ли \mathfrak{g} .

В случае $\mathbb{F} = \mathbb{F}_2$ получаем также более сильный результат.

Теорема. Пусть \mathfrak{g} — нильпотентная алгебра Ли над полем \mathbb{F}_2 и пусть размерность её коммутанта больше n(n-1)/2 для некоторого неотрицательного целого n. Тогда множество элементов алгебры Ли \mathfrak{g} ширины не менее чем n не может быть покрыто двумя собственными подалгебрами алгебры Ли \mathfrak{g} , одна из которых имеет коразмерность не менее 2 в \mathfrak{g} .

В разделе 2.2 вводятся основные определения и вспомогательные утверждения, используемые далее в тексте.

Определение. Шириной $b_{\mathfrak{h}}(x)$ элемента x конечномерной алгебры Ли \mathfrak{g} относительно её собственной подалгебры $\mathfrak{h} \subseteq \mathfrak{g}$ называется число удовлетворяющее равенству

$$\dim \mathfrak{h} - \dim C_{\mathfrak{h}}(x) = b_{\mathfrak{h}}(x),$$

где $C_{\mathfrak{h}}(x) = \{h \in \mathfrak{h} | [x,h] = 0\}$ является централизатором x в \mathfrak{h} . Из этого определения следует, что $b(x) = b_{\mathfrak{g}}(x)$.

Основным инструментом для доказательства аналога гипотезы Уайголда для нильпотентных алгебр Ли является следующая лемма.

Лемма. Пусть \mathfrak{g} является конечномерной алгеброй Ли, тогда для каждого её идеала \mathfrak{h} коразмерности 1 и для каждого элемента x, лежащего в множестве $\mathfrak{g} \setminus \mathfrak{h}$, имеем $\dim \mathfrak{g}' \leq b(x) + \dim \mathfrak{h}'$.

В разделах 2.3, 2.4, 2.5 приводятся доказательства основных теорем главы.

Глава 3. В этой главе формулируется и доказывается усиленная версия гипотезы Уайголда в случае конечномерных нильпотентных алгебр Ли над бесконечным полем. Результаты этой главы опубликованы в статье [3].

Основными результатами главы являются:

- Введено понятие итерированных конструкций подалгебр Ли и элементов, связанных с произвольной конечномерной нильпотентной алгеброй Ли.
- Доказана теорема о том, что для произвольной конечномерной алгебры Π и \mathfrak{g} выполнятся $\dim \mathfrak{g}' \leq n(n+1)/2$, в случае существования некоторой итерированной конструкции подалгебр Π и и элементов определённого вида.

В разделе 3.1 излагается краткая история вопроса, а также формулировки основных теорем.

Определение. Шириной b(x) элемента x алгебры Ли $\mathfrak g$ над полем $\mathbb F$ называется число удовлетворяющее уравнению

$$\dim \mathfrak{g} - \dim C_{\mathfrak{g}}(x) = b(x),$$

где $C_{\mathfrak{g}}(x)$ является централизатором элемента x в \mathfrak{g} .

Рассмотрим некоторую конечномерную нильпотентную алгебру Ли \mathfrak{g} над бесконечным полем \mathbb{F} и произвольную последовательность натуральных чисел $n_1, n_2, \ldots, n_{\dim \mathfrak{g}-1}$. Обозначим $\mathcal{A} = \mathcal{A}_{\varnothing} := \mathfrak{g}$ и пусть $a = a_{\varnothing}$ – произвольный элемент, лежащий в $\mathcal{A} \setminus \mathcal{A}'$. Для каждого набора индексов

$$i_0 = \varnothing, i_1 \in [1, n_1], \dots, i_k \in [1, n_k],$$

 $k \in [0, \dim \mathfrak{g} - 1]$ определим подалгебры Ли $\mathcal{A}_{i_1, \dots, i_k} \subseteq \mathfrak{g}$ и элементы

$$a_{i_1,\ldots,i_k} \in \mathcal{A}_{i_1,\ldots,i_k} \setminus (\mathcal{A}_{i_1,\ldots,i_k})'$$

индуктивно по k. Пусть для некоторого $k \in [0, \dim \mathfrak{g} - 2]$ уже построены подалгебры Ли $\mathcal{A}_{i_1,\dots,i_t} \subseteq \mathfrak{g}$ и элементы a_{i_1,\dots,i_t} , где

$$i_0 = \emptyset, i_1 \in [1, n_1], \dots, i_t \in [1, n_t], t \in [0, k].$$

Для каждой алгебры Ли $\mathcal{A}_{i_1,...,i_k}$ рассмотрим произвольное множество попарно различных максимальных идеальных подалгебр Ли

$$A_{i_1,...,i_k,1}, A_{i_1,...,i_k,2}, \ldots, A_{i_1,...,i_k,n_{k+1}}$$

алгебры Ли $\mathcal{A}_{i_1,\dots,i_k}$, не содержащих элемент a_{i_1,\dots,i_k} (такие алгебры Ли всегда найдутся, так как $|\mathbb{F}| = \infty$ и $a_{i_1,\dots,i_k} \notin (\mathcal{A}_{i_1,\dots,i_k})'$). В качестве элемента $a_{i_1,\dots,i_{k+1}}$ рассмотрим произвольный элемент, содержащийся в

$$\mathcal{A}_{i_1,\dots,i_{k+1}} \setminus (\mathcal{A}_{i_1,\dots,i_{k+1}})', i_1 \in [1,n_1],\dots,i_{k+1} \in [1,n_{k+1}].$$

Продолжая данное построение по индукции, получаем семейство подалгебр Ли

 $\mathcal{A}_{i_1,\dots,i_k}\subseteq\mathfrak{g}$ и элементов $a_{i_1,\dots,i_k}\in\mathcal{A}_{i_1,\dots,i_k}$, где

$$i_0 = \emptyset, i_1 \in [1, n_1], \dots, i_k \in [1, n_k], k \in [0, \dim \mathfrak{g} - 1].$$

Определение. Семейство подалгебр Ли

$$\{A_{i_1,\ldots,i_k} \subseteq \mathfrak{g} \mid i_0 = \emptyset, i_1 \in [1, n_1], \ldots, i_k \in [1, n_k], k \in [0, \dim \mathfrak{g} - 1]\},$$

а также множество элементов

$$\{a_{i_1,\dots,i_k} \in \mathcal{A}_{i_1,\dots,i_k} \mid i_0 = \emptyset, i_1 \in [1,n_1],\dots,i_k \in [1,n_k], k \in [0,\dim\mathfrak{g}-1]\},\$$

построенные описанным выше способом, будем называть итерированной конструкцией подалгебр Ли и элементов нильпотентной алгебры Ли \mathfrak{g} типа $(n_1, n_2, \ldots, n_{\dim \mathfrak{g}-1}).$

Доказываем следующую теорему.

Теорема. Пусть \mathfrak{g} – конечномерная нильпотентная алгебра Ли над бесконечным полем \mathbb{F} . Предположим, что для некоторого натурального числа n нашлась итерированная конструкция подалгебр Ли $\{A_{i_1,\ldots,i_k}\subseteq\mathfrak{g}\}$ и элементов $\{a_{i_1,\ldots,i_k}\in\mathcal{A}_{i_1,\ldots,i_k}\}$ алгебры Ли \mathfrak{g} имеющая тип $(n_1,n_2,\ldots,n_{\dim\mathfrak{g}-1})$, где $n_i\geq \min(i,n)$. Пусть также выполнено $b_{\mathfrak{g}}(a_{i_1,\ldots,i_k})\leq n$ для каждого из элементов a_{i_1,\ldots,i_k} . Тогда $\dim\mathfrak{g}'\leq n(n+1)/2$.

В разделе 3.2 вводятся основные определения и вспомогательные утверждения, используемые далее в тексте.

Определение. Шириной $b_{\mathfrak{h}}(x)$ элемента x конечномерной алгебры Ли \mathfrak{g} относительно её собственной подалгебры $\mathfrak{h} \subseteq \mathfrak{g}$ называется число, удовлетворяющее равенству

$$\dim \mathfrak{h} - \dim C_{\mathfrak{h}}(x) = b_{\mathfrak{h}}(x),$$

где

$$C_{\mathfrak{h}}(x) = \{ h \in \mathfrak{h} | [x, h] = 0 \}$$

является централизатором x в \mathfrak{h} . Из этого определения следует, что $b(x)=b_{\mathfrak{g}}(x)$.

Основными инструментами для доказательства усиленной гипотезы Уайголда для конечномерных нильпотентных алгебр Ли являются следующие леммы.

Лемма. Рассмотрим произвольную максимальную идеальную подалгебру Ли \mathfrak{h} конечномерной нильпотентной алгебры Ли \mathfrak{g} . Обозначим за \mathfrak{f} идеал алгебры Ли \mathfrak{g} , порожденный элементами $x \in \mathfrak{h}$ такими, что $b_{\mathfrak{h}}(x) = b(x)$. Тогда в случае $\mathfrak{f} = \mathfrak{h}$, имеем $\mathfrak{g}' = \mathfrak{h}'$.

Лемма. Пусть \mathfrak{g} является конечномерной нильпотентной алгеброй Ли, тогда для каждого её идеала \mathfrak{h} коразмерности 1 и для каждого элемента x, лежащего в множестве $\mathfrak{g} \setminus \mathfrak{h}$, имеем $\dim \mathfrak{g}' \leq b(x) + \dim \mathfrak{h}'$.

Лемма. Пусть \mathfrak{g} – конечномерная нильпотентная алгебра Ли над бесконечным полем \mathbb{F} . Рассмотрим некоторую итерированную конструкцию подалгебр Ли $\{\mathcal{A}_{i_1,\dots,i_k}\subseteq\mathfrak{g}\}$ и элементов $\{a_{i_1,\dots,i_k}\in\mathcal{A}_{i_1,\dots,i_k}\}$ алгебры Ли \mathfrak{g} типа $(n_1,n_2,\dots,n_{\dim\mathfrak{g}-1})$. Пусть $n=\min_i n_i$, тогда множество $\{a_{i_1,\dots,i_k}\in\mathfrak{g}\}$ не покрывается n собственными векторными подпространствами пространства \mathfrak{g} .

В разделах 3.3, 3.4 приводятся доказательства основных теорем главы.

Глава 4. посвящена решению вопроса 11.7, поставленного Дж. Фройденбургом в монографии 10 . Результаты этой главы опубликованы в статье [4].

Основными результатами главы являются:

- Введено понятие локально нильпотентного множества дифференцирований и доказаны некоторые свойства локально нильпотентных множеств дифференцирований.
- Построен контрпример ко второй части гипотезы 11.7, поставленной Дж.Фройденбургом¹⁰.
- Доказано, что треугольная алгебра Ли дифференцирований

$$\mathcal{T} = k\partial_{x_1} \oplus k[x_1]\partial_{x_2} \oplus \ldots \oplus k[x_1, \ldots, x_{n-1}]\partial_{x_n}$$

алгебры многочленов $k[x_1,\ldots,x_n]$ является максимальной по включению алгеброй Ли среди локально нильпотентных дифференцирований этой алгебры.

 $^{^{10}\}mathrm{G}.$ Freudenburg. Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, Springer-Verlag, 136 (2006).

• Доказана уточнённая версия второй части гипотезы 11.7, поставленной Дж.Фройденбургом¹⁰.

В разделе 4.1 даётся краткая история вопроса, а также формулировки основных теорем.

Доказываем следующую теорему.

Теорема. Пусть дана алгебра Ли \mathcal{A} , лежащая в LND(B) и известно, что $\ker \mathcal{A} = \mathbb{K}$. Тогда найдутся x_i такие, что $B = \mathbb{K}[x_1, \dots, x_n]$ и

$$\mathcal{A} \subseteq \mathbb{K}\partial_{x_1} \oplus \ldots \oplus \mathbb{K}[x_1, \ldots, x_{n-1}]\partial_{x_n}.$$

В разделе 4.2 вводятся основные определения и вспомогательные утверждения, используемые далее в тексте.

Рассмотрим произвольную коммутативную алгебру B с единицей, без делителей нуля, над полем нулевой характеристики \mathbb{K} . Пусть также известно, что B имеет конечную степень трансцендентности. Далее в работе всегда будем рассматривать только такие алгебры.

Используем следующие обозначения:

- Для произвольного конечного числа элементов x_1, \ldots, x_n , лежащих в алгебре B, пишем $A = \mathbb{K}[x_1, \ldots, x_n]$ в том случае, когда элементы x_i алгебраически независимы и алгебра $A \subseteq B$ порождается этими элементами;
- Для каждой алгебры Ли \mathcal{A} , определим $d(\mathcal{A})$ как её ступень разрешимости. Также, обозначим через $\mathcal{A}^{(i)}$ i-ый коммутант алгебры Ли \mathcal{A} ;
- Для произвольного семейства линейных операторов S векторного пространства V, ядром $\ker S$ этого семейства назовём пересечение ядер всех операторов, лежащих в множестве S;
- Для произвольной пары семейств линейных операторов S_1, S_2 векторного пространства V, обозначим через $[S_1, S_2]$ множество всевозможных коммутаторов вида [A, B] = AB BA, где $A \in S_1, B \in S_2$;
- Для произвольного семейства линейных операторов S векторного пространства V и произвольного элемента $v \in V$, обозначим через S(v) множество элементов вида A(v), где A-всевозможные операторы из S;
 - Для произвольного семейства линейных операторов S векторного про-

странства V, обозначим через $\mathrm{ad}S$ множество присоединённых эндоморфизмов

$$\{adA: X \to [A, X] | A \in S, X \in End(V)\}$$

векторного пространства End(V).

Определение. Линейный оператор A на векторном пространстве V называется локально нильпотентным, если для каждого вектора v из V найдётся натуральное число k=k(v)>0 такое, что $A^k(v)=0$.

Определение. Множество линейных операторов T на векторном пространстве V назовём локально нильпотентным, если для любой бесконечной последовательности операторов A_1, A_2, \ldots , лежащих в T, и любого вектора $v \in V$, существует такое $k = k(v, \{A_i\}) > 0$, что выполнено равенство $A_k \ldots A_1(v) = 0$.

Лемма. Пусть T — локально нильпотентное множество линейных операторов на векторном пространстве V. Тогда для произвольного собственного векторного подпространства $U \subset V$ найдётся элемент $v \in V \setminus U$, для которого $T(v) \subseteq U$.

Каждое локально нильпотентное дифференцирование алгебры B также является локально нильпотентным линейным оператором на векторном пространстве $B_{\mathbb{K}}$. Поэтому все предыдущие леммы о локально нильпотентных операторах применимы к случаю локально нильпотентных дифференцирований. Причем, в случае с дифференцированиями алгебры B, локально нильпотентным множеством дифференцирований алгебры B называется произвольное множество дифференцирований алгебры B, являющееся локально нильпотентным множеством линейных операторов на векторном пространстве $B_{\mathbb{K}}$.

Лемма. Множество

$$\mathbb{K}\partial_{x_1} \oplus \ldots \oplus \mathbb{K}[x_1,\ldots,x_{n-1}]\partial_{x_n}$$

является локально нильпотентным множеством дифференцирований алгебры $\mathbb{K}[x_1,\ldots,x_n].$

Лемма. Рассмотрим произвольное локально нильпотентное множество дифференцирований S алгебры B. Тогда для любого конечного множества локально нильпотентных дифференцирований D_1, D_2, \ldots, D_k такого, что

$$[S \cup \{D_1, D_2, \dots, D_k\}, S \cup \{D_1, D_2, \dots, D_k\}] \subseteq S,$$

имеем $S \cup \{D_1, D_2, \dots, D_k\}$ – локально нильпотентное подмножество дифференцирований алгебры B.

Лемма. Рассмотрим произвольное подмножество S, лежащее в Der(B). Тогда для некоторого конечного числа элементов $D_1, \ldots, D_k \in S$, $\ker S = \bigcap_{i=1}^k \ker D_i$. Более того, k можно выбрать равным $\operatorname{tr.deg.}_{\mathbb{K}}(B) - \operatorname{tr.deg.}_{\mathbb{K}}(\ker S)$.

Лемма. Любая абелева алгебра Ли \mathcal{A} , лежащая в LND(B) такая, что ker $\mathcal{A} = \mathbb{K}$ является конечномерной алгеброй Ли размерности не более чем tr.deg. $\mathbb{K}(B)$.

Лемма. Рассмотрим произвольное локально нильпотентное множество линейных операторов T на векторном пространстве V. Тогда для любого локально нильпотентного оператора A на векторном пространстве V такого, что $[A,T]\subseteq T$, имеем $T\cup\{A\}$ – локально нильпотентное множество линейных операторов на V.

В разделе 4.3 приводится контрпример ко второй части гипотезы 11.7, поставленной Дж. Фройденбургом 11 .

В разделе 4.4 формулируются и доказываются основные свойства локально нильпотентных множеств дифференцирований.

Теорема. Пусть S – произвольное локально нильпотентное множество дифференцирований алгебры B, для которого $\ker S = \mathbb{K}$. Тогда найдутся x_i такие, что $B = \mathbb{K}[x_1, \dots, x_n]$ и

$$S \subseteq \mathbb{K}\partial_{x_1} \oplus \ldots \oplus \mathbb{K}[x_1, \ldots, x_{n-1}]\partial_{x_n}$$
.

Теорема. Множество дифференцирований S алгебры B является локально нильпотентным тогда и только тогда, когда каждое его конечное подмножество $S' \subseteq S$ является локально нильпотентным множеством дифференцирований алгебры B.

Теорема. Пусть S – произвольное локально нильпотентное множество дифференцирований алгебры B. Тогда множество ad(S) является локально нильпотентным множеством линейных операторов на векторном пространсве Der(B).

В разделах 4.5, 4.6 приводятся доказательства основных теорем главы.

 $^{^{11}\}mathrm{G}.$ Freudenburg. Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, Springer-Verlag, 136 (2006).

Заключение

В диссертации исследовались различные аспекты теорий алгебр Ли и *р*-групп. Была доказана гипотеза Уайголда в теории *p*-групп и её аналаг в теории нильпотентных алгебр Ли, а также получены ответы на некоторые из вопросов Дж. Фройденбурга.

Результаты диссертации могут быть применимы в задачах коммутативной алгебры, теории p-групп, теории алгебр Ли.

Получены следующие результаты:

- Доказательство гипотезы Уайголда (Вопрос 4.69 из «Коуровской тетради» 12).
- Доказательство аналога гипотезы Уайголда для нильпотентных алгебр Ли.
- Введено понятие итерированных конструкций подалгебр Ли и элементов, связанных с произвольной конечномерной нильпотентной алгеброй Ли, и доказана теорема о том, что для произвольной конечномерной алгебры Ли \mathfrak{g} выполнено $\dim \mathfrak{g}' \leq n(n+1)/2$ в случае, если для некоторого натурального числа n существует итерированная конструкция подалгебр Ли и элементов $\{a_{i_1,\dots,i_k} \in \mathcal{A}_{i_1,\dots,i_k} \subseteq \mathfrak{g}\}$ типа $(n_1,\dots,n_{\dim \mathfrak{g}-1})$ такая, что $n_i \geq \min(i,n)$ и ширина каждого из элементов a_{i_1,\dots,i_k} не превосходит n.
- Доказано, что треугольная алгебра Ли дифференцирований

$$\mathcal{T} = k\partial_{x_1} \oplus k[x_1]\partial_{x_2} \oplus \ldots \oplus k[x_1, \ldots, x_{n-1}]\partial_{x_n}$$

алгебры многочленов $k[x_1, \ldots, x_n]$ является максимальной по включению алгеброй Ли среди локально нильпотентных дифференцирований этой алгебры.

• Для произвольной области целостности B конечной степени трансцендентности над полем k нулевой характеристики, доказано, что в случае, если пересечение ядер всех дифференцирований максимальной по вложению алгебры Ли $\mathcal A$ среди локально нильпотентных дифференцирований

 $^{^{12}\}mathrm{V}.$ D. Mazurov and E. I. Khukhro. Unsolved problems in group theory. The Kourovka Notebook. no. 20, arXiv:1401.0300v25 (2022).

алгебры B совпадает с полем k, тогда для некоторых элемнетов x_1, \ldots, x_n , $B = k[x_1, \ldots, x_n]$ и алгебра Ли $\mathcal A$ является сопряженной к треугольной алгебре Ли

$$\mathcal{T} = k \partial_{x_1} \oplus k[x_1] \partial_{x_2} \oplus \ldots \oplus k[x_1, \ldots, x_{n-1}] \partial_{x_n}.$$

Благодарность

Автор выражает глубокую благодарность своему научному руководителю кандидату физико-математических наук Антону Александровичу Клячко за помощь, неоценимую поддержку и постоянное внимание к работе. Также, автор выражает благодарность доктору физико-математических наук Ивану Владимировичу Аржанцеву за постановку задачи четвёртой главы диссертации.

Публикаций автора по теме диссертации

Научные статьи, опубликованные в рецензируемых научных изданиях, рекомендованных для защиты в диссертационном совете МГУ по специальности 1.1.5. Математическая логика, алгебра, теория чисел и дискретная математика и входящих в базы цитирования Scopus, Web of Science и RSCI

1. A. A. Skutin. Proof of a conjecture of Wiegold, *Journal of Algebra*, **526**, 1–5 (2019).

DOI: 10.1016/j.jalgebra.2019.02.002

Журнал индексируется в **WoS**, **Scopus**. IF: SJR 1.046.

2. А. А. Скутин. Доказательство гипотезы Уайголда для нильпотентных алгебр Ли, *Матем. сб.*, **211(12)**, 143–148 (2020);

English transl.: A. A. Skutin. Proof of a conjecture of Wiegold for nilpotent Lie algebras, Sb. Math., 211(12), 1795–1800 (2020).

DOI: 10.1070/SM9350

Журнал индексируется в Scopus, RSCI. IF: SJR 0.843.

3. А. А. Скутин. Максимальные алгебры Ли среди локально нильпотентных дифференцирований, *Матем. сб.*, **212(2)**, 138–146 (2021);

English transl.: A. A. Skutin. Maximal Lie subalgebras among locally nilpotent derivations, Sb. Math., 212(2), 265–271 (2021).

DOI: 10.1070/SM9360

Журнал индексируется в Scopus, RSCI. IF: SJR 0.843.

4. А. А. Скутин. Усиленная гипотеза Уайголда в теории нильпотентных алгебр Ли, *Матем. заметки*, **111(5)**, 738–745 (2022);

English transl.: A. A. Skutin. Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras, *Math. Notes*, **111(5)**, 747–753 (2022).

DOI: 10.1134/S000143462205008X

Журнал индексируется в **Scopus**, **RSCI**. IF: SJR 0.580.