МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА

На правах рукописи

DA

Алиев Рамиз Автандилович

Новые методы получения медицинских радиоизотопов редкоземельных элементов

1.4.13. Радиохимия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

доктора химических наук

Москва – 2024

Работа выполнена в Лаборатории радионуклидов и радиофармпрепаратов Курчатовского комплекса нано-, био-, информационных, когнитивных и социогуманитарных природоподобных технологий (КК НБИКС-пт) Научно-исследовательского центра «Курчатовский институт».

Официальные оппоненты Баулин Владимир Евгеньевич, доктор химических наук, Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук, Институт физиологически активных веществ, заведующий лабораторией фосфорорганических соединений, главный научный сотрудник Станжевский Андрей Алексеевич, доктор медицинских наук, доцент, Федеральное государственное бюджетное учреждение «Российский научный центр радиологии и хирургических технологий имени академика А. М. Гранова» Министерства здравоохранения Российской Федерации, заместитель директора по научной работе Эпштейн Наталья Борисовна, доктор фармацевтических наук, доцент, Фармацевтический центр практического обучения и компетенций Обнинского института атомной энергетики — филиала федерального государственного автономного образовательного учреждения высшего

Защита диссертации состоится «18» декабря 2024 г. в 15 часов на заседании диссертационного совета МГУ.014.6 Московского государственного университета имени М. В. Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 10, ауд. 308.

университет «МИФИ», начальник центра

образования «Национальный исследовательский ядерный

E-mail: severin@radio.chem.msu.ru (А. В. Северин, учёный секретарь диссертационного совета МГУ.014.6), aliev_ra@nrcki.ru (Р. А. Алиев, соискатель).

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М. В. Ломоносова (Ломоносовский просп., д. 27) и на портале: <u>https://dissovet.msu.ru/dissertation/3128</u>

Автореферат разослан «____» октября 2024 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Cut

А. В. Северин

Общая характеристика работы

Актуальность темы исследования. В мире ежегодно проводится около 40 млн. медицинских процедур с использованием радиофармпрепаратов (РФЛП). Радионуклид, как правило, связанный с биологически активной молекулой, играет роль радиоактивной метки (если речь идет о диагностике заболеваний), либо поражающего фактора (терапия). Диагностические РФЛП применяют во многих областях медицины – в кардиологии, онкологии, неврологии. Терапевтические чаще всего используют для уничтожения раковых опухолей, отдельных клеток и их конгломератов. Но, несмотря на почти вековую историю, ядерная медицина базируется на узком круге радионуклидов, ядро которого составляют ¹¹С, ¹⁸F, ⁶⁸Ga, ^{99m}Tc, ¹²³I, ¹³¹I, ¹⁷⁷Lu и ²²³Ra. За последние десятилетия были значительно усовершенствованы средства адресной доставки лекарств, шагнули вперед ядерные технологии, и были открыты новые химические реакции (в частности, "click-chemistry"), значительно расширившие возможности ядерной медицины. А значит, пришло время дополнить круг медицинских радионуклидов с учетом открывшихся горизонтов.

Тенденцией развития ядерной медицины является широкое применение таргетных РФЛП, содержащих радиоактивные металлы. Все чаще происходит совмещение диагностической и терапевтической функций в одном препарате. Этот подход называют тераностикой. Для этого используют радионуклиды, сочетающие корпускулярное и электромагнитное излучение (⁶⁴Cu, ^{117m}Sn), либо пары изотопов (¹²⁴I/¹³¹I) или близких по химическим свойствам радионуклидов (^{99m}Tc/¹⁸⁸Re, ⁶⁸Ga/²²⁵Ac). Для применения в необходимы РФЛП радионуклиды с высокой удельной таргетных без носителя, активностью, по возможности поскольку количество рецепторов на поверхности клеток ограничено.

По мере совершенствования адресной доставки растет роль локально действующих агентов, в том числе альфа-излучателей и излучателей Ожеэлектронов, наравне с уже используемыми бета-излучателями. Широкое применение в терапии радионуклидов, распадающихся путем электронного захвата, приводит к повышению роли ускорительных путей получения. На пике интереса находятся радиоизотопы РЗЭ – лютеция, скандия, тербия. Это связано как с благоприятными ядерными свойствами, так и со способностью этих элементов образовывать устойчивые комплексы с распространенными хелаторов. Однако применение новых типами перспективных радионуклидов во многом сдерживается сложностями, связанными с их производством. Настоящее исследование направлено на разработку новых

3

методов получения медицинских радиоизотопов РЗЭ, что создаст условия для более широкого их применения.

Степень разработанности темы исследования. Исследования, связанные новыми медицинскими изотопами РЗЭ, ведутся во многих ведущих научных центрах. В частности, в Институте Пауля Шеррера в Швейцарии совместно с университетской клиникой Берна проводятся работы по получению изотопов тербия для медицины. В работе используются пучки протонов низкой (¹⁵⁵Tb) и высокой энергии (^{149,152}Tb), а также реакции под действием нейтронов (¹⁶¹Tb). Эксперименты на пучках протонов высокой энергии проводятся на синхротроне Юлихского исследовательского центра в Германии и в рамках проекта CERN MEDICS. Этот проект предусматривает получение целого ряда радиоизотопов РЗЭ без носителя - ¹⁴⁹Tb, ¹⁵⁵Tb, ¹⁶⁵Tm, ¹⁶⁹Er, ¹⁷⁵Yb. Для получения нейтронодефицитных изотопов тербия хорошо разработаны методы, связанные с облучением тяжелых мишеней (Ta, U) высокоэнергетическими протонами с последующей онлайн масс-сепарацией продуктов реакции (CERN, Швейцария, TRIUMF, Канада). Однако существуют лишь единичные установки, на которых они могут быть реализованы. Метод получения ¹⁶¹Tb путем облучения ¹⁶⁰Gd в реакторе хорошо разработан, и реализуется, в частности, на реакторах FRM-II (Мюнхен, Германия), BER II (Берлин, Германия), RHF (Гренобль, Франция), SAFARI-1, (ЮАР), TRIGA 2000 (Индонезия) и на спалляционном источнике нейтронов SINQ (Швейцария). Работы по получению медицинских фотоядерному радиоизотопов в Национальном научном центре проводятся «Харьковский физико-(Украина), Ереванском технический институт» Физическом институте (Армения), университете Айдахо, Аргоннской национальной лаборатории (США), Университете Киото (Япония) и других. Анализ имеющихся ядерных данных показывает, что реакции под действием ионов гелия исследованы недостаточно, особенно в области средних энергий (в частности, 40-100 МэВ). Также наблюдается нехватка данных по фотоядерным экспериментам.

Разделение соседних РЗЭ реализовано с середины прошлого века, но оно по-прежнему сопряжено с рядом сложностей, и является предметом многих современных исследований. Особенно это касается выделения радионуклидов из облученных мишеней, когда один элемент находится в макроколичествах, а другой – в лучшем случае, в количестве микрограммов. При получении радионуклидов для ядерной медицины требуются высокие коэффициенты очистки от материала мишени (на уровне 10⁵-10⁶), низкое содержание посторонних примесей, как металлов, так и органических соединений, отсутствие в системе анионов, мешающих

4

комплексобразованию (например, оксалатов) или неподходящих для применения в физиологических средах (например, нитратов). Кроме того, разделение должно проведено с минимальным количеством потерь из-за высокой стоимости облученных материалов, и в кратчайшие сроки, чтобы минимизировать потери из-за радиоактивного распада. Это означает, что методы выделения РЗЭ из облученных мишеней нуждаются в дальнейшем развитии.

Цели и задачи исследования. Цель работы состояла в создании новых методов получения перспективных медицинских радиоизотопов РЗЭ (⁴⁷Sc, ^{149,152,155,161}Tb, ¹⁶⁷Tm, ¹⁷⁷Lu), включающих облучение мишеней заряженными частицами, нейтронами, гамма-квантами и последующее радиохимическое выделение продуктов реакций. В рамках этой цели решались следующие задачи:

- измерение сечений ядерных реакций, протекающих под действием ионов гелия, выбор условий облучения, приводящих к оптимальному соотношению количества продукта и его чистоты;
- 2. измерение выходов фотоядерных реакций;
- 3. разработка радиохимических методик выделения радиоизотопов из облученных мишеней;
- 4. оценка наработанной активности, радиоизотопной и химической чистоты продуктов.

Научная новизна.

Впервые измерены сечения реакций $^{151}Eu(^{3}He,x)^{149,150,151,152}$ Tb в интервале энергий 70->12 МэB; $^{151}Eu(\alpha,x)^{149,150,151,152,153}$ Tb (60->19 МэB); $^{nat}Gd(\alpha,x)^{154g,154m1,154m2}$ Tb, $^{nat}Gd(\alpha,x)^{159}$ Gd (59-20 МэВ); $^{155}Gd(\alpha,x)^{153,155,156}$ Tb (54->33 МэВ). Полученные данные по сечениям реакций $^{nat}Gd(\alpha,x)^{153,155,156}$ Tb расширяют ранее исследованный диапазон энергий.

Реализован новый метод получения ¹⁴⁹Tb путем облучения мишеней из ¹⁵¹Eu ионами ³He, ускоренными до 70 МэВ по реакции ¹⁵¹Eu(³He,5n)¹⁴⁹Tb, и разработана радиохимическая методика выделения радиоизотопов тербия из облученных европиевых мишеней, основанная на осаждении EuSO₄ и очистке ¹⁴⁹Tb на сорбенте LN Resin.

Реализован новый метод получения 152 Tb облучением 151 Eu альфачастицами по реакции 151 Eu(α ,3n) 152 Tb.

Впервые реализован метод получения ¹⁵⁵Tb через промежуточное выделение ¹⁵⁵Dy по схеме ^{nat}Gd(α ,xn)¹⁵⁵Dy \rightarrow ¹⁵⁵Tb и ¹⁵⁵Gd(α ,4n)¹⁵⁵Dy \rightarrow ¹⁵⁵Tb.

Реализовано одновременное получение ¹⁵²Tb и ¹⁵⁵Tb на тандемной мишени, состоящей из последовательно размещенных слоев ¹⁵¹Eu и ¹⁵⁵Gd.

Разработан метод фотоядерного получения ⁴⁷Sc облучением титана 55 MэB экстракционнофотонами энергией С последующим хроматографическим выделением на сорбенте DGA Resin. Разработан метод ¹⁶⁷Tm получения облучением иттербия. фотоядерного Реализован фотоядерный метод получения ¹⁷⁷Lu облучением гафния фотонами, с последующим экстракционно-хроматографическим выделением на сорбенте LN Resin во фторидно-нитратных средах. Реализован фотоядерный метод получения ^{155,161} Тb облучением диспрозия. Измерены выходы исследованных фотоядерных реакций при 55 МэВ.

Разработан способ получения ¹⁶¹Tb облучением ¹⁶⁰Gd в реакторе с последующим экстракционно-хроматографическим выделением на сорбентах DGA Resin, LN Resin и Prefilter.

Теоретическая и практическая значимость работы. Полученные в работе новые ядерные данные являются фундаментальной основой для создания технологий производства медицинских радионуклидов ¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb ⁴⁷Sc. Экспериментально измеренные сечения являются необходимыми данными для совершенствования моделей ядра. Измеренные в настоящей работе величины внесены в базу данных EXFOR. Разработанные методы получения и выделения радионуклидов из облученных мишеней могут быть наработки в использованы для ИХ количествах достаточных ДЛЯ доклинических исследований, а в перспективе масштабированы для медицинского применения. Разработанные подходы повышают доступность важных для тераностики радионуклидов. Так, предложенные методы получения ¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb по соотношению нарабатываемого количества, чистоты продукта и простоты реализации имеют преимущество в сравнении с большинством существующих. Это открывает путь к созданию нового поколения тераностических препаратов, превышающих по возможностям применяемы сегодня таргетные препараты на основе бета-излучателей.

Разработан лабораторный технологический регламент получения ¹⁶¹Тb в НИЦ «Курчатовский институт» в количествах до 1 ГБк, выделенные препараты были использованы для экспериментов на животных в НИЦ «Курчатовский институт» - ПИЯФ им. Б.П. Константинова.

Методология и методы исследования. Исследования ядерных реакций под действием заряженных частиц проводили на изохронном циклотроне У-150 (НИЦ «Курчатовский институт»), позволяющем получать пучки альфа-

6

частиц энергией до 63 МэВ и ³Не энергией до 70 МэВ. Сечения определяли активационным методом, используя стандартную методику стопок фольг. Она заключается в одновременном облучении серии тонких мишеней и фольг-мониторов (Al, Ti, Cu), при этом на каждой мишени энергия взаимодействующих частиц задается толщиной дегрейдера. Для уточнения использовали параметров облучения мониторные реакции, рекомендованные МАГАТЭ 27 Al(3 He,x) 24 Na; nat Ti(3 He,x) 48 V; nat Cu(3 He,x) 65 Zn и ^{nat}Ti(α ,x)⁵¹Cr, 27 Al(α ,x) 22 Na, ^{nat}Cu(³He,x)⁶⁶Ga; $^{27}Al(\alpha,x)^{24}Na,$ ^{nat}Cu(α ,x)⁶⁵Zn, $^{nat}Cu(\alpha, x)^{66}Ga$ и $^{nat}Cu(\alpha, x)^{67}Ga$. Расчет энергетических потерь проводили с помощью программного обеспечения SRIM. Эксперименты по определению продуктов фотоядерных реакций проводили на разрезном выходов микротроне НИИЯФ МГУ с использованием мониторов Си и Со. Облучение мишеней ¹⁶⁰Gd нейтронами для получения ¹⁶¹Tb проводили на реакторе ИР-8 НИЦ «Курчатовский институт». Мониторинг нейтронного поля проводили с помощью нейтронно-активационных индикаторов (НАИ), используя реакции ⁹³Nb(n,n')^{93m}Nb, 197 Au(n,y) 198 Au, 59 Co(n,y) 60 Co. ⁵⁸Ni(n,p)⁵⁸Co, 54 Fe(n,p) 54 Mn, Измерение активности проводили гамма-спектрометрическим методом, в ¹⁴⁹Tb и ¹⁵¹Tb активности отдельных экспериментах для измерения использовали альфа-спектрометрию. Для анализа спектров использовали стандартное программное обеспечение (Genie 2000, SpectraLine). Калибровку детекторов по эффективности проводили с помощью сертифицированных образцовых спектрометрических источников гамма-излучения. Радиохимическое выделение целевых продуктов ядерных реакций в большинстве экспериментов проводили методом экстракционной хроматографии. Для определения коэффициентов распределения проводили сорбционные эксперименты в статических условиях.

Положения, выносимые на защиту

- Экспериментально измерены сечения образования продуктов реакций ¹⁵¹Eu(³He,x), ¹⁵¹Eu(α,x), ^{nat}Gd(α,x), ¹⁵⁵Gd(α,x), которые являются необходимыми ядерными данными для оптимизации условий наработки медицинских радиоизотопов тербия ^{149,152,155}Tb.
- Метод получения ¹⁴⁹Tb, основанный на реакции ¹⁵¹Eu(³He,5n), и последующем быстром двухстадийном экстракционнохроматографическом выделении из мишени, обеспечивает получение активности, достаточной для медицинского применения.
- 3. Метод получения ¹⁵²Tb по реакции ¹⁵¹Eu(α,3n) позволяет получить ПЭТрадионуклид ¹⁵²Tb, диагностическую пару к ¹⁷⁷Lu и ¹⁶¹Tb, в достаточном для клинического использования количестве.

- 4. Метод получения ¹⁵⁵Tb через промежуточное экстракционнохроматографическое выделение ¹⁵⁵Dy по схеме ^{nat}Gd(α,x)¹⁵⁵Dy→¹⁵⁵Tb или ¹⁵⁵Gd(α,4n)¹⁵⁵Dy→¹⁵⁵Tb позволяет получить продукт с высокой радионуклидной чистотой и в количестве достаточном для медицинского применения.
- 5. Различие в положении максимумов функций возбуждения реакций ¹⁵¹Eu(α,3n) и ¹⁵⁵Gd(α,4n) позволяет одновременно производить ¹⁵²Tb и ¹⁵⁵Tb на ускорителе альфа-частиц, используя тандемную мишень ¹⁵¹Eu/¹⁵⁵Gd.
- Измеренные выходы фотоядерных реакций свидетельствуют о пригодности фотоядерного метода для получения медицинских радиоизотопов РЗЭ в количестве, достаточном для медицинского применения (⁴⁷Sc) либо доклинических исследований (^{155,161}Tb, ¹⁶⁷Tm, ¹⁷⁷Lu).
- 7. Метод производства ¹⁶¹Tb облучением ¹⁶⁰Gd в реакторе с последующим экстракционно-хроматографическим выделением позволяет получить целевой продукт высокой чистоты в достаточном для медицинского применения количестве.

Степень достоверности и апробация результатов. Достоверность результатов обеспечена использованием высокоточных методов измерений с использованием современной аппаратуры (гамма- и альфа-спектрометрия с полупроводниковыми детекторами), применением аттестованных стандартных образцов, специализированного программного обеспечения для обработки спектров. Результаты были представлены в виде докладов на ряде российских и международных конференций, в том числе на II Всероссийском конгрессе с международным участием Ядерная медицина (Санкт-Петербург, 2023), Всероссийской конференции «Радиохимия» (2015, 2022), на конгрессе «Онкорадиология, лучевая диагностика и терапия» (2022, 2023), Всероссийском конгрессе «Новые технологии в лучевой терапии и ядерной медицине - перспективы развития» (2017), «Актуальные вопросы гематологии и трансфузиологии» (2019), международной конференции Ядерная медицина (Nuclear Medicine, Бухара 2023), Международных конференциях по применению радиотрассеров и энергетических пучков в науке (International Conference on Application of RadiotraCers and Energetic Beams in Sciences, ARCEBS, Калькутта, 2010, 2014, 2018), Международных конференциях по ядерной химии и радиохимии (International Conference on Nuclear and Radiochemistry NRC-9, Хельсинки 2016, NRC-8, Комо 2012, NRC-7, Будапешт 2008), Российско-финском симпозиуме по радиохимии (Finnish-Russian Symposium on Radiochemistry, Турку, 2009).

Публикации. По теме диссертации были опубликованы 26 публикаций, из них 21 статья в журналах, индексируемых в базах Web of Science и Scopus, авторское право защищено 5 патентами.

Соответствие паспорту специальности: 1.4.13. Радиохимия (химические науки):

п. 5 Методы выделения, разделения и очистки радиоактивных элементов и изотопов.
Экстракционные, сорбционные, электрохимические, хроматографические процессы разделения в радиохимии.
Ядернофизические методы в радиохимии;

п. 10 Метод радиоактивных индикаторов. Химические аспекты использования радионуклидов в биологии и медицине.

Личный вклад автора. В работах, лежащих в основе диссертации, личный вклад автора был определяющим. Он заключался в постановке целей и задач исследования, выборе путей их решения. Автор принимал непосредственное участие в экспериментах и обработке их результатов, анализе литературы, подготовке к публикации материалов исследований. Часть работ была выполнена В рамках кандидатских диссертаций Моисеевой А.Н. «Новые методы получения медицинских радионуклидов ¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb и пептидов, меченных ¹⁵⁵Tb», Фуркиной Е.Б. «Получение радионуклидов медицинского назначения ¹⁸⁶Re и ¹⁶¹Tb», Казакова А.Г. «Новые способы получения ^{149,152,155}Tb, ⁸⁹Zr и ¹⁷⁷Lu для ядерной медицины» и дипломной работы Фуркиной Е.Б. «Получение перспективных медицинских радионуклидов ⁴⁷Sc и ⁴⁴Sc». Автор был научным руководителем всех перечисленных работ. Фотоядерные эксперименты выполнены в тесном Кузнецовым А.А., Белышевым С.С., Ханкиным В.В.. сотрудничестве С Приселковой А.Б. (НИИЯФ МГУ), Федотовой А.О. (Химический факультет МГУ).

Структура и объем диссертации. Диссертация изложена на 327 страницах, состоит из введения, шести глав, выводов и списка литературы. Диссертация содержит 175 рисунков, 46 таблиц и 344 библиографических ссылки.

9

Основное содержание работы

В главе 1 сформулированы общие требования к радионуклидам, применяемым для медицины, кратко описаны методы их получения и современные тренды, рассмотрено применение радиоизотопов РЗЭ в медицине, проведен краткий обзор методов выделения радиоизотопов РЗЭ из облученных мишеней.

В главе 2 описаны использованные материалы и оборудование, приведены характеристики ядерно-физических установок, описаны общие экспериментальные подходы, в том числе изготовление и облучение мишеней, измерение активности, радиохимические методики.

В главе 3 обсуждаются экспериментальные исследования реакций под действием альфа-частиц и ионов ³Не на ядрах ¹⁵¹Eu, приводящих к медицинским радионуклидам ¹⁴⁹Tb и ¹⁵²Tb, описана методика выделения радиоизотопов тербия из облученных европиевых мишеней.

В главе 4 обсуждаются экспериментальные исследования реакций под действием альфа-частиц на ядрах ^{nat}Gd и ¹⁵⁵Gd, приводящих к медицинскому радионуклиду ¹⁵⁵Tb, описана методика получения ¹⁵⁵Tb через промежуточное выделение ¹⁵⁵Dy, описана одновременная наработка ¹⁵²Tb и ¹⁵⁵Tb на тандемной мишени.

В главе 5 описаны экспериментальные исследования фотоядерного получения ⁴⁷Sc облучением ^{nat}Ti фотонами энергией 55 МэВ, получения ¹⁶⁷Tm облучением ^{nat}Er, получения ^{155,161}Tb облучением ^{nat}Dy, получения ¹⁷⁷Lu облучением ^{nat}Hf, приведены соответствующие выходы фотоядерных реакций и радиохимические методики выделения из облученных мишеней.

В главе 6 описан способ получения ¹⁶¹Тb путем облучения в реакторе мишеней ¹⁶⁰Gd и их радиохимической переработки.

Получение ¹⁴⁹Тb и ¹⁵²Tb в реакциях ¹⁵¹Eu(³He,xn) и ¹⁵¹Eu(α,xn)

¹⁴⁹Тb является единственным альфа-излучателем среди P3Э, имеющим подходящий период полураспада ($T_{1/2}$ =4,12 ч) для медицинского применения (E_{α} =3970 кэв; 16,7%). Также он распадается путем электронного захвата и испускания позитрона ($E_{\beta+av}$ = 730 кэв; 7,1%), что дает возможность проводить одновременную визуализацию методом ПЭТ/КТ. В отличие от ²²⁵Ac, ¹⁴⁹Tb не имеет в схеме распада дочерних альфа-излучателей, а значит эффект отдачи при радиоактивном распаде не должен приводить к избыточной дозовой нагрузке. Интерес к ¹⁵²Tb ($T_{1/2}$ =17,5 ч) обусловлен его позитронным излучением (Е_{в+ау} = 1140 кэВ; 20,3%), что позволяет использовать его в качестве диагностической пары к ¹⁷⁷Lu и ¹⁶¹Tb. В настоящее время ни ¹⁴⁹Tb, ни ¹⁵²Tb в медицине не применяется, однако перспективность ИХ подтверждается рядом доклинических исследований таргетных препаратов [¹⁴⁹Tb]Tb-DOTANOC, [¹⁴⁹Tb]Tb-PSMA-617, [¹⁴⁹Tb]Tb-ритуксимаб, [¹⁴⁹Tb]Tb-сm09, а исследованиями на пациентах ¹⁵²Tb-DOTATOC. Возможности применения ¹⁴⁹Тb и ¹⁵²Tb ограничиваются трудностями, связанными с их производством. Оба эти радионуклида нейтронодефицитные и находятся на нуклидной карте далеко от линии стабильности. Поэтому получение их возможно только на ускорителях, причем с использованием реакций, сопровождающихся отщеплением нескольких частиц. Другая сложность, связанная с получением ¹⁴⁹Tb и ¹⁵²Tb, заключается в большом количестве соседних радиоактивных изотопов и их метастабильных состоянии с периодами полураспада в интервале от часа до нескольких суток. Поэтому результатом облучения мишеней на ускорителе, как правило, является сложная смесь изотопов.

В настоящей работе были впервые измерены сечения ядерных реакций на ¹⁵¹Eu под действием ионов ³He и альфа-частиц, в том числе приводящие к целевым радионуклидам: ¹⁵¹Eu(³He,5n)¹⁴⁹Tb, ¹⁵¹Eu(³He,2n)¹⁵²Tb, ¹⁵¹Eu(α ,6n)¹⁴⁹Tb, ¹⁵¹Eu(α ,4n)¹⁵²Tb. Это исследование стало развитием исследования, ранее проведенного в НИЦ КИ [1].

При облучении мишеней из ¹⁵¹Eu частицами ³He начальной энергией 70 МэВ и альфа-частицами 60 МэВ образуются радиоизотопы тербия и гадолиния, показанные на фрагменте нуклидной карты (рисунок 1).

¹⁴⁷ Tb 1,38 мин 1,64 ч	¹⁴⁸ Тb 2,20 мин 60 мин	¹⁴⁹ Tb 4,17 мин 4,12 ч	¹⁵⁰ Тb 5,8 мин 3,48 ч	¹⁵¹ Тb 25 с 17,6 ч	¹⁵² Тb 4,2 мин 17,5 ч	¹⁵³ Тb 2,34 сут	¹⁵⁴ Тb 22,7 ч 9,4 ч 21,5 ч	¹⁵⁵ Тb 5,32 сут	¹⁵⁶ Тb 5,3 ч 24,4 ч 5,35 сут	¹⁵⁷ Тb 71 г
¹⁴⁶ Gd 48,27сут	¹⁴⁷ Gd 38,06 ч	¹⁴⁸ Gd 71,1 г	¹⁴⁹ Gd 9,28 сут	150 Gd 1,8 10 ⁶ -	¹⁵¹ Ga 123,9 сут	¹⁵² Gd 0,20%	¹⁵³ Gd 240,4 сут	¹⁵⁴ Gd 2,18%	¹⁵⁵ Gd 14,8%	¹⁵⁶ Gd 20,47%
¹⁴⁵ Eu 5,93 сут	¹⁴⁶ Eu 4,61 сут	¹⁴⁷ Eu 24,1 сут	¹⁴⁸ Eu 54,5 сут	¹⁴⁹ Eu 93,1 сут	¹⁵⁰ Eu 12,8 ч 36,9 г	¹⁵¹ Eu 47,81%	¹⁵² Еи ^{96 мин} 9,31 ч 13,52 г	¹⁵³ Eu 52,19%	¹⁵⁴ Еи 8,6 г	¹⁵⁵ Еи 4,75 г

Рисунок 1 – Фрагмент нуклидной карты, включающий радионуклиды, образующиеся по реакциям ¹⁵¹Eu(³He,x) и ¹⁵¹Eu(α,x), жирным контуром выделены целевые продукты

Активационным методом были измерены функции возбуждения исследуемых реакций. На их основании были рассчитаны выходы ¹⁴⁹Tb и

¹⁵²Tb, а также побочных продуктов. На рисунке 2 приведены экспериментальные функции возбуждения для реакций ¹⁵¹Eu(³He,xn), а на рисунке 3 – соответствующие выходы на толстой мишени.

Рисунок 2 – Функции возбуждения реакций ¹⁵¹Eu(³He,xn)^{154-x}Tb

Рисунок 3 – Зависимость выхода продуктов реакций ¹⁵¹Eu(³He,xn)^{154-x}Tb на толстой мишени от энергии пучка

Из рисунка 2 видно, что в любом энергетическом диапазоне одновременно с ¹⁴⁹Tb образуются также ^{150,151,152}Tb. При сужении диапазона энергии количество примесей будет снижаться, но одновременно будет уменьшаться и наработка ¹⁴⁹Tb.

Диапазон 70→40 МэВ выглядит как разумный компромисс между количеством и чистотой ¹⁴⁹Tb. При этом общее содержание примесей снижается более чем в два раза по сравнению с диапазоном 70→30 МэВ. Этот метод, как и другие, за исключением масс-сепарации, не позволяет получить ¹⁴⁹Tb свободным от примесей соседних радиоизотопов. Но все же, продукт полученный таким путем может быть использован. Терапевтические дозы альфа-излучателей как правило значительно, часто на порядки меньше, чем излучателей электронов. Это означает, что соизмеримая по активности примесь ¹⁵⁰Tb и ¹⁵¹Tb будет оказывать при адресной доставке значительно меньший поражающий биологический эффект. Следует также отметить, что полученный изотопный состав ¹⁴⁹Tb соответствует обогащению материала мишени, равному 97,5%. Повышение степени обогащения приведет к заметному повышению радиоизотопной чистоты, за счет уменьшения влияния реакций ¹⁵³Eu(³He,5n)¹⁵¹Tb и ¹⁵³Eu(³He,6n)¹⁵⁰Tb. К сожалению, отсутствие ядерных данных по этим процессам не позволяет оценить их вклад количественно, а имеющиеся теоретические данные из библиотеки TENDL-2021 для реакций под действием ³Не дают неверный результат.

Таким образом, реакция ¹⁵¹Eu(³He,5n)¹⁴⁹Tb позволяет наработать ~44,4 МБк·мкА⁻¹·ч⁻¹ ¹⁴⁹Tb или 264 МБк·мкА⁻¹ при насыщении в диапазоне энергий ³He 70 \rightarrow 0 МэВ. В оптимальном диапазоне 70 \rightarrow 40 МэВ может быть получено ~38,9 МБк·мкА⁻¹·ч⁻¹ или ~231 МБк·мкА⁻¹ при насыщении, что достаточно для терапевтических целей. Основными примесями при этом являются ¹⁵⁰Tb (~90% по активности при 8-часовом облучении) и ¹⁵¹Tb (~30%). Радиоизотопная чистота может быть несколько увеличена за счет повышения степени обогащения материала мишени.

Предложенный метод уступает применяемым в CERN реакциям скалывания на тантале под действием протонов высоких энергий (1,4 ГэВ) [2] и по производительности, и по радиоизотопной чистоте. В то же время он существенно проще в практической реализации, так как не требует высокоэнергетических ускорителей и онлайн масс-сепарации. Еще один рассматриваемый способ – облучение протонами средней энергии ¹⁵²Gd по реакции ¹⁵²Gd(p,4n)¹⁴⁹Tb дает большой выход (2600 МБк·мкА⁻¹·ч⁻¹ при 70 \rightarrow 30 МэВ) при сопоставимом количестве примесей [3]. Однако существенным недостатком такого подхода является крайне высокая стоимость обогащенного ¹⁵²Gd.

Что касается возможностей получения ¹⁵²Tb рассмотренным методом, то выходы являются невысокими, а количество примесей недопустимо большим. По реакции ¹⁵¹Eu(³He,2n)¹⁵²Tb можно наработать ~5 МБк·мкА⁻¹·ч⁻¹

13

¹⁵²Тb в диапазоне энергий ³He 70→10 MэB и ~3 в диапазоне 38→12 MэB. Выход ¹⁵²Tb при насыщении составляет 76 МБк·мкА⁻¹ и ~21 МБк·мкА^{-1 152}Tb при 8-часовом облучении (38→12 МэB).

Более перспективным путем получения ¹⁵²Tb является реакция под действием альфа-частиц. На рисунке 4 приведены функции возбуждения для реакций ¹⁵¹Eu(α ,xn), а на рисунке 5 — выходы на толстой мишени. Видно, что в случае альфа-частиц выход ¹⁵²Tb на порядок больше, чем для ³He.

Рисунок 5 – Зависимость выхода радиоизотопов тербия от энергии альфачастиц на толстой мишени ¹⁵¹Eu

Минимизировать количество примесей можно, подобрав оптимальную энергию налетающих частиц. При этом увеличение чистоты ¹⁵²Tb достигается за счет сокращения выхода (рисунок 6).

Рисунок 6 – Влияние энергетического диапазона налетающих альфа-частиц на выход (слева) и радиоизотопную чистоту (справа) ¹⁵²Tb, получаемого при облучении мишени ¹⁵¹Eu в течение 8 часов

Выход ¹⁵²Тb на толстой мишени в диапазоне 60→28 МэВ составляет ~ 65,7 МБк·мкА⁻¹·ч⁻¹. При использовании диапазона 42→34 МэВ выход ¹⁵²Тb на толстой мишени составит 30 МБк·мкА⁻¹·ч⁻¹ или ~220 МБк·мкА⁻¹ при 8мичасовом облучении. Таким образом можно легко наработать активность, клинического применения. При этом достаточную для суммарное содержание радиоизотопных примесей составит менее 20%. Предложенный метод несколько уступает по выходу реакции ¹⁵²Gd(p,n)¹⁵²Tb [4], однако этот путь трудно реализуем из-за низкой доступности обогащенного ¹⁵²Gd. Реакция ¹⁵⁵Gd(p,4n)¹⁵⁵Tb имеет значительно более высокий выход [3], однако приводит к большому количеству радиоизотопных примесей.

Для практической реализации методов получения ¹⁴⁹Tb и ¹⁵²Tb была разработана быстрая методика выделения радиоизотопов из облученных европиевых мишеней. Для отделения основной массы европия была использована его способность к восстановлению до двухвалентного состояния и образованию нерастворимого сульфата EuSO₄. Эксперименты, проведенные с разными восстановителями в разных условиях, показали, что оптимальным является восстановление металлическим цинком в 3-4 М HCl в присутствии $(NH_4)_2SO_4$. При этом цинк в виде пыли брался в 20-кратном избытке по отношению к европию, а сульфат – в 3-кратном. Эффективность осаждения Eu составила 98±1% при массе до 150 мг. Для дальнейшей Eu возможной очистки радиоизотопов Тb от следов И примеси радиоизотопов Gd использовали экстракционную хроматографию на сорбенте LN Resin. На рисунке 7 показан профиль элюирования Eu, Tb, Gd в азотнокислой среде. Оптимальные концентрации HNO₃ были установлены в серии предварительных экспериментов.

15

Рисунок 7 – Экстракционно-хроматографическое отделение Tb от Eu и Gd, колонка *d*=7 мм, *h*=7 см

На рисунке 8 показана схема процедуры выделения ^{149,152}Tb из облученных мишеней ¹⁵¹Eu.

Рисунок 8— Схематическое изображение процедуры выделения радиоизотопов тербия из облученной альфа-частицами европиевой мишени

Суммарный радиохимический выход Tb(III) за две стадии (осаждение сульфата европия и экстракционная хроматография) составил 90±1%. Коэффициент разделения Tb/Eu, определенный гамма-спектрометрически, составил ~5·10⁵. Вся процедура занимает не более 2 часов.

Получение ¹⁵⁵Tb в реакциях $^{nat}Gd(\alpha,x)$ и $^{155}Gd(\alpha,x)$

Благодаря испусканию Оже-электронов, ¹⁵⁵Tb ($T_{1/2}$ =5,32 сут) может рассматриваться как тераностический агент. Также он может быть применен в качестве ОФЭКТ-аналога терапевтических изотопов РЗЭ ¹⁷⁷Lu, ¹⁴⁹Tb, ¹⁶¹Tb, ¹⁶⁶Ho. Тербий-155 образуется в реакциях под действием протонов и дейтронов на изотопах гадолиния; альфа-частиц на изотопах европия. Однако эти пути приводят к смеси радиоизотопов тербия, поэтому был рассмотрен косвенный путь получения ¹⁵⁵Tb, через промежуточное образование ¹⁵⁵Dy. Для его реализации были исследованы реакции под действием альфа-частиц на ^{nat}Gd и ¹⁵⁵Gd, приводящие к образованию ¹⁵⁵Dy.

На рисунке 9 показан фрагмент нуклидной карты, иллюстрирующий основные процессы, протекающие при облучении ^{nat}Gd и ¹⁵⁵Gd альфачастицами энергией до 60 МэВ.

¹⁵³ Dy	¹⁵⁴ Dy	¹⁵⁵ Dy	¹⁵⁶ Dy	¹⁵⁷ Dy	¹⁵⁸ Dy	¹⁵⁹ Dy	¹⁶⁰ Dy	¹⁶¹ Dy	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy
6,4 ч	3,0 10 ⁶ г	9,9 ч	0,056%	8,14 ч	0,095%	144,4 сут	2,33%	18,89%	25,48%	24,90%	28,26%
¹⁵² Тb 4,2 мин 17,5 ч	¹⁵³ Тb 2,34 сут	¹⁵⁴ ТЬ 22,7 ч 9,4 ч 21,5 ч	¹⁵⁵ Тb 5,32 сут	¹⁵⁶ ТЬ _{5,3 ч} 24,4 ч 5,35 сут	¹⁵⁷ Тb 71 г	¹⁵⁸ ТЬ 180 г	¹⁵⁹ Tb 100%	¹⁶⁰ Тb 72,3 сут	¹⁶¹ Тb 6,89 сут	¹⁶² Tb 7,6 мин	¹⁶³ Tb 19,5 мин
¹⁵¹ Gd	¹⁵² Gd	¹⁵³ Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁵⁹ Gd	¹⁶⁰ Gd	¹⁶¹ Gd	¹⁶² Gd
123,9 сут	0,20%	240,4 сут	2,18%	14,80%	20,47%	15,65%	24,84%	18,48 ч	21,86%	3,66 мин	8,4 мин

Рисунок 9 — Фрагмент нуклидной карты, включающий радионуклиды, образующиеся при облучении ^{nat}Gd и ¹⁵⁵Gd альфа-частицами энергией до 60 МэВ, жирным контуром выделены целевые нуклиды

Измеренные в результате эксперимента функции возбуждения реакций ^{nat}Gd(α,x) приведены на рисунке 10.

Экспериментальные сечения в целом согласуются с полученными ранее, а также с результатами моделирования TENDL-2021. На рисунке 11 приведено сравнение полученных сечений для ¹⁵⁵Tb с имеющимися экспериментальными данными и результатами расчетов.

Рисунок 10 – Сечения образования изотопов (а) тербия и (б) диспрозия при облучении альфа-частицами гадолиния естественного изотопного состава. В качестве приближения сечения образования ¹⁵³Dy для взята величина ¹⁵³Tb (верхняя оценка)

Таким образом, ¹⁵⁵Tb преимущественно образуется косвенным путем с промежуточным образованием ¹⁵⁵Dy. Прямым путем его образуется примерно на порядок меньше. Основной вклад в образование ¹⁵⁵Dy вносят реакции ¹⁵⁵Gd(α ,4n)¹⁵⁵Dy (максимальное сечение при 45 MэB) и ¹⁵⁶Gd(α ,5n)¹⁵⁵Dy (максимальное сечение при 60 MэB). Последняя отвечает за рост функции возбуждения после 45 MэB.

Рисунок 11 – Сечения ядерной реакции ^{nat}Gd(α,x)¹⁵⁵Tb, полученные в настоящей работе и их сравнение с предыдущими исследованиями [5] и [6] и с результатами моделирования

Вклад в образование ¹⁵⁷Dy вносит в основном четыре реакции: ¹⁵⁵Gd(α ,2n), ¹⁵⁶Gd(α ,3n), ¹⁵⁷Gd(α ,4n), ¹⁵⁸Gd(α ,5n). Моделирование приводит к функции возбуждения с тремя максимумами - 24, 38 и 55 МэВ, соответствующим преобладанию процессов с отщеплением 2, 3 и 5 нейтронов. Полученные в настоящей работе результаты в целом хорошо согласуются с результатами моделирования (рисунок 12) и несколько ниже полученных ранее.

Рисунок 12 – Сечения ядерной реакции ^{nat}Gd(α,xn)¹⁵⁷Dy, полученные в настоящей работе и их сравнение с результатами моделирования и с литературными данными

На основании рассчитанных сечений реакций на гадолинии естественного изотопного состава были рассчитаны выходы радионуклидов на толстой мишени, результаты представлены на рисунке 13.

Рисунок 13 — Выход изотопов (а) диспрозия и (б) тербия на толстой мишени из гадолиния естественного изотопного состава

Выход ¹⁵⁵Dy и кумулятивный выход ¹⁵⁵Tb растет с ростом энергии пучка альфа-частиц во всем исследованном диапазоне энергий. Одновременно растет и содержание других примесей. Важной примесью является ¹⁵⁶Tb, которого образуется до 12% по активности. Присутствие этого радионуклида нежелательно, так как он имеет период полураспада, соизмеримый с ¹⁵⁵Tb, и в то же время испускает жесткое гамма-излучение.

Существенно сократить примесей количество можно, если ¹⁵⁵Dv. использовать промежуточное радиохимическое выделение Максимальное накопление ¹⁵⁵Tb в препарате ¹⁵⁵Dy наблюдается через выделением ¹⁵⁵ Dy можно избавиться от Промежуточным ~40 часов. примесей ¹⁵⁶Tb и изомеров ^{154,154m1,154m2}Tb. Но, к сожалению, это не избавляет от присутствия нечетных изотопов тербия – ¹⁵³Tb и ¹⁵⁷Tb, которые образуются при распаде ¹⁵³ Dy и ¹⁵⁷ Dy, соответственно. Однако доля ¹⁵³ Tb невелика (около 5% по активности) и с течением времени уменьшается из-за более короткого периода полураспада ¹⁵³Tb в сравнении с ¹⁵⁵Tb.

Активность образующегося ¹⁵⁷Tb ($T_{1/2}$ =71 г.) крайне невелика из-за большого периода полураспада, и не будет вносить заметного вклада в дозовую нагрузку при медицинском применении ¹⁵⁵Tb. В то же время, примесь, выраженная в количестве ядер, составляет ~280% от ¹⁵⁵Tb при 60 МэВ. Это почти в 4 раза снижает удельную активность, и как следствие, может понизить эффективность таргетных РФЛП.

На основании полученных выходов были оценены практические возможности метода. Выход ¹⁵⁵Dy на толстой мишени из природного гадолиния при 59 МэВ составляет 35,1 МБк·мкА⁻¹·ч⁻¹, что дает 500 МБк·мкА⁻¹ при насыщении. При максимальном накоплении (через 40 ч) из этого количества можно выделить 31,3 МБк ¹⁵⁵Tb. Единственной существенной радиоактивной примесью является ¹⁵³Tb ($T_{1/2}$ =2,34 сут.) в количестве 5,4%. Таких количеств вполне достаточно для проведения и доклинических, и клинических исследований.

Однако с целью дальнейшего увеличения выхода и радиоизотопной чистоты были проведены исследования ядерных реакций на 155 Gd. Был использован обогащенный материал следующего изотопного состава (в %): 152 Gd<0,01; 154 Gd 0,18; 155 Gd 90,40±0,40; 156 Gd 7,43; 157 Gd 0,95; 158 Gd 0,69; 160 Gd 0,35. Измеренные функции возбуждения приведены на рисунке 14.

Как видно из рисунка 14, прямое образование ¹⁵⁵Tb играет несущественную роль в сравнении с образованием через ¹⁵⁵Dy.

¹⁵⁷Dy может образовываться как на основном изотопе ¹⁵⁵Gd, так и на более тяжелых примесях ^{156,157,158}Gd. Экспериментальные данные и результаты расчетов сечений образования ¹⁵⁷Dy представлены на рисунке 15. Экспериментально измеренные сечения значительно отличаются от результатов моделирования.

21

Рисунок 15 — Сечения ядерной реакции ^{155-enr}Gd(α,x)¹⁵⁷Dy, полученные в настоящей работе, и их сравнение с результатами моделирования

Образование ¹⁵⁷Dy может влиять на радиоизотопную чистоту конечного продукта. Этот радионуклид имеет период полураспада 8,14 ч, и распадается в ¹⁵⁷Tb. К сожалению, данные TENDL-2021 не позволяют корректно оценить вклад отдельных реакций в образование ¹⁵⁷Dy. Однако можно предположить, что повышение степени обогащения и снижение доли ¹⁵⁶Tb увеличит чистоту продукта.

На основании измеренных сечений реакций на обогащенном материале были также рассчитаны выходы на толстой мишени целевого продукта и радиоизотопных примесей, результаты представлены на рисунке 16.

Рисунок 16 – Выход на толстой мишени ^{155-enr}Gd радионуклидов (а) диспрозия и (б) тербия в области энергий от 33 МэВ

Сравнение рисунков 16 (а) и 13 (а) показывает, что выход ¹⁵⁵Dy на обогащенной мишени существенно выше (118 МБк·мкА⁻¹·ч⁻¹ при 54 МэВ

против 35 МБк·мкА⁻¹·ч⁻¹ при 59 МэВ). При этом выход принципиально важной примеси ¹⁵⁷Dy значительно сокращается (39 против 103 в тех же условиях). Другая важная примесь – ¹⁵³Tb при использовании обогащенной мишени в значимых количествах не образуется. Метод имеет преимущество перед другими реакциями, как по выходу, так и по радиоизотопной чистоте. Реакция ¹⁵⁵Gd(p,n) также выглядит привлекательно, однако выход ее несколько меньше [7] и для практической реализации требуется материал со степенью обогащения не менее 98% [8].

Предложенная концепция получения ¹⁵⁵Tb по реакции $^{nat}Gd(\alpha,x)^{155}Dy \rightarrow ^{155}Tb$ с выделением промежуточного продукта ¹⁵⁵Dy была реализована практически. Для этого гадолиний, диспрозий и тербий были разделены хроматографически на колонке с сорбентом LN Resin. Процедура хроматографического разделения приведена на рисунке 17.

Рисунок 17 — Схема выделения ¹⁵⁵Tb через промежуточное образование ¹⁵⁵Dy из облученной гадолиниевой мишени

При массе Gd до 20 мг/г сорбента наблюдается эффективное разделение Gd, Tb, Dy на колонке h=7 см, d=7 мм. Выход диспрозия при загрузках до 20 мг/г составляет 97±2%, при 40 мг/г он уменьшается до 93±2%. Радиоизотопов Gd и Tb в диспрозиевой фракции обнаружено не было, за исключением ^{153,155}Tb, образующихся при распаде ^{153,155}Dy. Для содержания тербия в диспрозиевой фракции была получена верхняя оценка <0,1% от исходного количества. Содержание гадолиния должно быть при этом еще ниже, так как он выходит первым по мере увеличения концентрации кислоты.

На рисунке 18 приведены спектры гамма-излучения облученной мишени, диспрозиевой фракции после первого хроматографического разделения, и тербиевой фракции после второго разделения.

Рисунок 18 – Фрагменты гамма-спектров (а) образца облученной мишени (энергия альфа-частиц 49,3 МэВ); (б) диспрозиевой фракции; и (в) препарата ¹⁵⁵Tb. Время измерения ~ 400 с, 700 с и 3600 с, соответственно. Спектр образца облученной мишени и диспрозиевой фракции получен через 6 ч после EOB, спектр препарата ¹⁵⁵Tb через 2 суток после EOB

Видно, промежуточное выделение ¹⁵⁵Dy значительно уменьшает количество радиоизотопных примесей, в первую очередь, ¹⁵⁶Tb. Гамма-линии

этого радионуклида хорошо видны в исходном спектре облученной мишени, в спектре конечного продукта их нет.

Процедура растворения мишени и хроматографического разделения занимает около 1,5 ч, что позволяет выделить ~ 90% от максимально возможной активности ¹⁵⁵Dy.

Одновременное получение ¹⁵²Tb и ¹⁵⁵Tb

Максимум функции возбуждения реакции ¹⁵⁵Gd(α ,x)¹⁵⁵Dy находится в области энергий ~49 МэВ, большая часть функции возбуждения находится в области >40 МэВ, что позволяет дополнительно использовать область с меньшей энергией. Поскольку ¹⁵²Tb является тераностической парой к ¹⁵⁵Tb и другим изотопом тербия, была исследована возможность одновременной наработки ¹⁵²Tb и ¹⁵⁵Tb. Для получения ¹⁵²Tb была выбрана ранее исследованная реакция ¹⁵¹Eu(α ,3n)¹⁵²Tb с максимумом сечения при ~38 МэВ.

Для практической реализации концепции было изготовлено две мишени толщиной 21,4 мг/см² для ¹⁵⁵Gd₂O₃ и 21,7 мг/см² для ¹⁵¹Eu₂O₃. Между ними был установлен алюминиевый дегрейдер, так, чтобы энергия пучка в каждой из мишеней примерно соответствовала максимумам функций возбуждения соответствующих ядерных реакций (рисунок 19).

Рисунок 19— Диапазоны энергии пучка, соответствующие энергии альфачастиц в мишенях из ¹⁵¹Eu₂O₃ и ¹⁵⁵Gd₂O₃. Также на рисунке показаны функции возбуждения соответствующих ядерных реакций

Выделение радионуклидов из мишеней проводилось по ранее описанным методикам. Поскольку масса материала мишени была невелика

(~15 мг в пересчете на металл), то предварительное отделение основной массы европия путем восстановления-осаждения не проводилось, и разделение вели в одну стадию путем экстракционной хроматографии на LN Resin. Характеристики выделенных препаратов сведены в таблице 1. Химическая чистота проверялась методом ICP-AES.

Таблица 1 — Результат переработки тандемной мишени (время облучения 2,5 ч, ток 0,15 мкА)

Продукт	¹⁵⁵ Tb	¹⁵² Tb
Энергия пучка, МэВ	50,2→48,5	37,6→35,5
А (EOS), кБк	70,1±2,2	774±16
Примеси, % на EOS	¹⁵⁶ Tb<0,26	¹⁵¹ Tb 4,2
	¹⁵⁷ Tb<0,0015	¹⁵³ Tb 7
Химические примеси, ppm	Gd 0,22±0,017	Eu 0,339±0,025
	Dy 0,082±0,06	Gd 0,227±0,017
Выход, %	95	90

Фотоядерное получение радиоизотопов редкоземельных элементов

Фотоядерные реакции исследуются на протяжении десятилетий, однако до недавнего времени они не применялись для производства медицинских радионуклидов. В то же время сложности с получением таких важных радионуклидов как ²²⁵Ac, ⁶⁷Cu, ⁴⁷Sc и потенциальные риски, связанные с перебоями в поставках ⁹⁹Mo, заставили искать альтернативные способы. Сейчас созданы коммерческие ускорители электронов, специально предназначенные для производства радионуклидов, и уже проводится наработка ⁶⁷Cu фотоядерным способом.

Экспериментальное измерение сечений фотоядерных реакций проводить в экспериментах на пучке тормозного излучения затруднительно В из-за непрерывного спектра фотонов. качестве интегральной характеристики для оценки наработки можно использовать непосредственно измеряемую величину — выход радионуклида У (Бк·мкА⁻¹·ч⁻¹·г⁻¹·см²). Выход будет представлять собой свертку тормозного спектра Ny(E,E_) и функции возбуждения $\sigma(E)$.

$$Y = \lambda \frac{1}{Q_e} \frac{N_a}{M} \eta \int_0^{E_e} \sigma(E) \cdot N_{\gamma}(E, E_e) dE$$
(1)

здесь λ — постоянная распада, с⁻¹, Q_e — заряд электрона, мкА·ч, N_A =6,02·10²³ моль⁻¹ — число Авогадро, M — молярная масса материала мишени, г/моль, η — доля соответствующего изотопа в материале мишени.

Определенный таким образом выход зависит от характеристик облучаемой мишени и конвертора, так как они определяют спектр фотонного излучения в конкретной точке мишени. Значит, приводя выход, следует также указывать условия, в которых он был измерен.

Получение ⁴⁷Sc. Для исследования возможности фотоядерного получения ⁴⁷Sc была облучена титановая фольга на разрезном микротроне НИИЯФ МГУ тормозным пучком фотонов с границей спектра 55 МэВ. В гаммаспектре облученной мишени наблюдаются линии радиоактивных изотопов титана и скандия (рисунок 20), выход продуктов приведен в таблице 2.

Рисунок 20 – Гамма-спектр мишени из ^{nat}Ti, облученной тормозными фотонами энергией до 55 МэВ, измеренный вскоре после ЕОВ

Нуклид	T _{1/2}	Гамма-линия,	Основные каналы	Выход,
		кэВ (%)		Бк·мкА ⁻¹ ·ч ⁻¹ ·г ⁻¹ ·см ²
⁴³ Sc	2,89 ч	372,9 (22,5)	⁴⁶ Ti(γ,2np)	(2,10±0,25)·10 ⁴
⁴⁴ Sc	3 <i>,</i> 93 ч	1157,0 (99,9)	⁴⁶ Ti(γ,np)	$(1,88\pm0,11)\cdot10^{5}$
^{44m} Sc	58,6 ч	271,3 (86,7)	⁴⁶ Ti(γ,np)	$(0,89\pm0,05)\cdot10^{3}$
⁴⁶ Sc	83,8	889,3 (100)	⁴⁷ Ti(γ,p)	$(3,59\pm0,20)\cdot10^{3}$
	сут	1120,5 (100)	⁴⁸ Ti(γ,np)	
⁴⁷ Sc	3,35	159,4 (68,3)	⁴⁸ Τi(γ,p)	$(2,97\pm0,17)\cdot10^{5}$
	сут			
⁴⁸ Sc	43,7	983,5 (100)	⁴⁹ Ti(γ,p)	$(2,79\pm0,19)\cdot10^4$
	сут	1037,5 (97,5)	⁵⁰ Ti(γ,np)	
		1312,1 (100)		
⁴⁵ Ti	3,08 ч	719,6 (0,154)	⁴⁶ Ti(γ,n)	$(2,12\pm0,31)\cdot10^4$
			⁴⁷ Ti(γ,2n)	

Таблица 2— Экспериментально измеренные выходы и сечения фотоядерных реакций на титане естественного изотопного состава

Мишень растворяли в концентрированной соляной кислоте, затем добавляли азотную кислоту для окисления титана до Ti(IV). Большая часть Ti TiO₂·xH₂O при отделялась осаждением В виде разбавлении концентрированного азотнокислого раствора. Потери скандия на этой стадии составляли менее 3%. Для дальнейшего разделения Ті и Sc была использована смола DGA Resin. Коэффициент распределения Sc растет с ростом концентрации кислоты, превышая 10² уже в 0,5 М HCl и 0,1 М HNO₃, в то время как Ті не удерживается ни в соляной, ни в азотной кислотах. Для определения ⁴⁷Sc использовали гамма-спектрометрию. Титан определяли спектрофотометрически в виде пероксидного комплекса следующим образом. Профили элюирования титана (IV) и скандия (III) представлены на рисунке 21.

Рисунок 21 – Профили элюирования титана и скандия на сорбенте DGA Resin (100-150 мкм), колонка 8 см, объем 2,8 мл

Радиохимический выход Sc составил 97%, коэффициент разделения Ti и $Sc > 10^6$. Наработка ⁴⁷Sc может быть увеличена по сравнению с величинами, приведенными в таблице 2, путем использования обогащенной мишени ⁴⁸Ті, а также увеличения толщины конвертора до оптимальной (2 мм). В этом случае на относительно небольшой мишени (1 см³) при токе пучка 0,1 мА и энергии 45 МэВ может быть получено 11 МБк·мкА⁻¹·ч⁻¹. Это соответствует наработке 23 ГБк при суточном облучении, то есть нескольким терапевтическим дозам. Фотоядерный метод дает более чистый продукт, чем облучение титана и, тем более кальция протонами. Облучение ванадия протонами или ⁴⁷Ті быстрыми нейтронами может дать продукт сравнимой чистоты. Таким образом, фотоядерный метод является конкурентоспособным при производстве ⁴⁷Sc для медицины.

Получение ¹⁷⁷Lu. Для фотоядерного получения ¹⁷⁷Lu и измерения выходов фотоядерных реакций была облучена тонкая цилиндрическая мишень из ^{nat}HfO₂ фотонами, образующимися при торможении электронного пучка энергией 55 МэВ. В гамма-спектре облученной мишени (рисунок 22) видны пики, соответствующие распаду радиоактивных изотопов гафния и лютеция, выход продуктов приведен в таблице 3.

Рисунок 22 – Гамма-спектр мишени из ^{nat}HfO₂, облученной тормозными фотонами энергией до 55 МэВ, измеренный через 20 ч после ЕОВ. Время набора спектра – 20 минут

Таблица 3 — Экспериментально измеренные выходы фотоядерных реакций на оксиде гафния естественного изотопного состава.

Нукл	T _{1/2}	Гамма-линии,	Основные	Порог реакции,	Выход,
ид		кэВ (%)	каналы	МэВ	Бк·мкА ⁻¹ ·ч ⁻¹ ·г ⁻¹ ·см ²
¹⁷⁵ Hf	70 сут	343,4 (84);	¹⁷⁶ Hf(γ,n)	8,16	(1,21±0,07)·10 ⁴
		89,4 (2,4);	¹⁷⁷ Hf(γ,2n)	14,55	
		433,0 (1,44)	¹⁷⁸ Hf(γ,3n)	22,17	
¹⁷³ Hf	23,6 ч	123,7 (83)	¹⁷⁴ Hf(γ,n)	14,9	(5,06±0,03)·10 ⁴
		297,0 (33,9)	¹⁷⁶ Hf(γ,3n)	23,38	
		139,6 (12,7)	¹⁷⁷ Hf(γ,4n)	29,76	
			¹⁷⁸ Hf(γ,5n)	37,39	
¹⁷⁹ Lu	4,59 ч	214,3 (12)	¹⁸⁰ Hf(γ,p)	8,0	(2,28±0,02)·10 ⁵
¹⁷⁸ Lu	28,4 мин	93,2 (6);	¹⁷⁹ Hf(γ,p)	7,42	(2,27±0,08)·10 ⁵
		1340,8 (3,4);	¹⁸⁰ Hf(γ,pn)	12,6	
		1309,9 (1,1)			
^{178m} Lu	23,1 мин	426,4 (97,0);	¹⁷⁹ Hf(γ,p)	7,54	(8,6±0,1)·10 ⁴
		325,6 (94,1);	¹⁸⁰ Hf(γ,pn)	12,7	
		213,4 (81,4)			
¹⁷⁷ Lu	6,647 сут	208,4 (10,4);	¹⁷⁸ Hf(γ,p)	7,34	(3,54±0,01)·10 ³
		112,9 (6,23)	¹⁷⁹ Hf(γ,pn)	11,2	
			¹⁸⁰ Hf(γ,p2n)	12,3	
^{176m} Lu	3,664 ч	88,4 (8,9)	¹⁷⁷ Hf(γ,p)	6,79	(1,22±0,01)·10 ⁵
			¹⁷⁸ Hf(γ,pn)	14,42	
			¹⁷⁹ Hf(γ,p2n)	20,52	
¹⁷² Lu	6,7 сут	1093,6 (63)	¹⁷⁴ Hf(γ,pn)	14,47	$(1,74\pm0,01)\cdot10^{3}$
		900,7 (29,8)			
		181,5 (20,6)			
¹⁷¹ Lu	8,247 сут	739,8 (48,3)	¹⁷⁴ Hf(γ,p2n)	21,45	$(3,71\pm0,02)\cdot10^2$
		667,4 (11,2)			
		75,9 (6,19)			

Путем длительного измерения гамма-спектра (2 месяца экспозиции) была проведена верхняя оценка содержания долгоживущего изомера ^{177m}Lu (T_{1/2} = 160,4 сут, β⁻77,3%, IT 22,7%), являющегося основной мешающей получении ¹⁷⁷Lu, она составила примесью при для отношения ^{177m}Lu/¹⁷⁷Lu <1,3·10⁻²%. Моделирование, проведенное с использованием полученных в настоящей работе выходов показало [9], что при облучении цилиндрической мишени из ^{nat}HfO₂ объемом 1 см³ (~ 10 г) пучком тормозных фотонов энергией до 45 МэВ можно получить до 0,12±0,01 МБк·мкА⁻¹·ч⁻¹. Это означает, что при 10-дневном облучении током 100 мкА можно получить около 1,8 ГБк ¹⁷⁷Lu. Можно предположить, что при облучении обогащенной мишени выход вырастет пропорционально доле ¹⁷⁸ Нf в природной смеси изотопов, то есть примерно до 6 ГБк. Этого недостаточно для клинического применения. Таким образом фотоядерный метод получения ¹⁷⁷Lu можно

рассматривать как применимый в тех случаях, когда речь идет об относительно невысоких активностях, например, в опытах на животных.

Также была разработана методика выделения 177 Lu из облученных HfO₂ мишеней. Для этого HfO₂ растворяли в 28 М HF при кипячении, затем добавляли 15-кратный объем 1 М HNO₃ и пропускали раствор через колонку с сорбентом LN Resin. При этом Lu задерживался на колонке, а Hf элюировался во фторидной среде (рисунок 23).

Рисунок 23 — Профили элюирования Hf(IV) и Lu(III) на сорбенте Ln Resin Объём колонки 3 мл, диаметр 0,8 см, масса Hf 1,1 г

Было получено значение коэффициента разделения Lu/Hf >10⁵, выход составил более 95%.

Получение ¹⁶⁷**Tm.** Для определения выхода фотоядерных реакций тонкая мишень из ^{nat}Yb₂O₃ была облучена на тормозном пучке разрезного микротрона НИИЯФ МГУ тормозными гамма-квантами с границей спектра 55 МэВ. В гамма-спектре облученной мишени видны пики, соответствующие изотопам иттербия и тулия (рисунок 24), выходы продуктов приведены в таблице 4.

Рисунок 24 – Гамма-спектр облученной мишени. Получен через ~6000 с после ЕОВ. Длительность измерения ~1500 с, расстояние от источника до детектора 6 см. Относительная эффективность детектора 12,8%

таелліца і т	адлопу	опден, идент	пфлапрованные в мише	
Радионуклид	T _{1/2}	Пути	Гамма-линии, кэВ (%)	Выход,
		образования		Бк·мкА ⁻¹ ·ч ⁻¹ ·см ² ·г _{Yb} ⁻¹
¹⁶⁷ Yb	17,5	¹⁶⁸ Yb(γ,n)	106,2 (22,4)	(1,55±0,16)·10 ⁷
	мин	¹⁷⁰ Yb(γ,3n)		
		¹⁷¹ Yb(γ,4n)		
¹⁶⁹ Yb	32,0	¹⁷⁰ Yb(γ,n)	109,8 (17,4); 118.2 (1,87);	(5,88±0,80)·10 ⁴
	сут	¹⁷¹ Yb(γ,2n)	130,5 (11,4); 177,2 (22,3);	
		¹⁷² Yb(γ,3n)	198,0 (35,9); 307,7 (10,1)	
		¹⁷³ Yb(γ,4n)		
¹⁷⁵ Yb	4,19	¹⁷⁶ Yb(γ,n)	137,7 (0,235); 144,9	(6,71±0,25)·10 ⁵
	сут		(0,672); 282,5 (6,13); 396,3	
			(13,2)	
¹⁶⁷ Tm	9,25	¹⁶⁸ Yb(γ,p)	207,8 (42)	(8,92±1,26)·10 ³
	сут	¹⁶⁷ Yb(ε)		
¹⁶⁸ Tm	93,1	¹⁷⁰ Yb(γ,pn)	184,3 (18,2); 198,3 (54,5);	(6,93±1,00)·10 ¹
	сут	¹⁷¹ Yb(γ,p2n)	447,5 (24,0); 631,7 (9,26);	
			720,4 (12,2); 741,3 (12,8);	
			816,0 (51,0); 821,2 (12,0)	
¹⁷² Tm	63 <i>,</i> 6 ч	¹⁷³ Yb(γ,p)	181,5 (2,8); 912,1 (1,42);	(1,04±0,15)·10 ⁴
		¹⁷⁴ Yb(γ, pn)	1093,6 (6,0); 1387,1 (5,6);	
			1465,9 (4,5); 1470,3 (1,87)	
¹⁷³ Tm	8,24 ч	¹⁷⁴ Yb(γ,p)	398,9 (87,9); 461,4 (6,9)	(1,79±0,15)·10 ⁵

Таблица 4 – Радионуклиды, идентифицированные в мишени

Сравнительно небольшой выход ¹⁶⁷Tm связан с тем, что он образуется в основном по реакции ¹⁶⁸Yb(γ ,n)¹⁶⁷Yb \rightarrow ¹⁶⁷Tm, а доля ¹⁶⁸Yb в природной смеси составляет лишь 0,13%. Можно ожидать, что при использовании изотопно обогащенного материала выход увеличится пропорционально, и составит ~6 МБк·мкA⁻¹·ч⁻¹·см²·г⁻¹. При облучении токами в сотни мкА в течение нескольких суток этого будет достаточно для наработки терапевтических количеств ¹⁶⁷Tm.

Для выделения тулия из облученной иттербиевой мишени использовали сорбент LN Resin. Было установлено, что эффективность разделения сильно зависит от массы иттербия (рисунок 25).

Рисунок 25 — Профиль элюирования Yb и Tm при массе Yb 2,8 мг (а) и 16,9 мг (б). Серым прямоугольником показана фракция Tm, использованная для дальнейшей очистки

Для разделения использовали мишень массой 16,9 мг в пересчете на металл. Добиться разделения за одну стадию при такой массе мишени на небольшой колонке не удается. Поэтому на первой стадии была собрана фракция, содержащая 68% тулия и 9% иттербия (1,5 мг) и разделение было повторено. По гамма-спектрам был оценен верхний предел содержания ¹⁶⁹Yb в 0,12% от активности ¹⁶⁷Tm. Это соответствует фактору разделения не меньше, чем 5,6·10³. Основной долгоживущей радиоизотопной примесью является ¹⁶⁸Tm в количестве ~ 0,8% на ЕОВ.

Получение ¹⁶¹**Tb и** ¹⁵⁵**Tb.** Для фотоядерного получения ¹⁶¹Tb была облучена тонкая мишень ^{nat}Dy₂O₃ пучком тормозных фотонов с максимальной энергией 55 МэВ на разрезном микротроне RTM-55 в НИИЯФ МГУ. В гамма-спектре облученной мишени идентифицированы пики, соответствующие радионуклидам диспрозия и тербия (рисунок 26), выход продуктов приведен в таблице 5.

Рисунок 26 – Гамма-спектр облученной мишени. Звездочками обозначены пики суммирования гамма и рентгеновских квантов: 326,3 кэВ (¹⁵⁷Dy)+ ~44 кэВ (TbKα) и 326,3 кэВ (¹⁵⁷Dy)+~50 кэВ (TbKβ). Время после EOB – 1,5 ч. Длительность измерения – 1500 с

	55 14150 10			ды
Радионуклид	T _{1/2}	Пути	Гамма-линии, кэВ (%)	Выход,
		образования		кБк∙мкА ⁻¹ ·ч ⁻
				¹ ·CM ² ·F _{Dy2O3} ⁻¹
¹⁵⁵ Dy	9,9 ч	¹⁵⁶ Dy(γ,n)	226,9 (68,7); 184,6 (3,39);	25±4
		¹⁵⁸ Dy(γ,3n)	905,8 (2,46); 999,7 (2,45);	
			664,2 (2,25); 1155,5	
			(2,10); 498,6 (1,76);	
			1166,2 (1,70)	
¹⁵⁷ Dy	8,14 ч	¹⁵⁸ Dy(γ,n)	326,3 (93); 182,4 (1,33);	249±15
		¹⁶⁰ Dy(γ,3n)	265,5 (0,17)	
¹⁵⁵ Tb	5,32 сут	¹⁵⁵ Dy→ ¹⁵⁵ Tb	105,3 (25,1)	1,6±0,3*
		¹⁵⁶ Dy(γ,p)		
		¹⁵⁸ Dy(γ,p2n)		
¹⁶⁰ Tb	72,3 сут	¹⁶¹ Dy(γ,p)	879,4 (30,1); 298,6 (26,1);	1,0±0,1
		¹⁶² Dy(γ,pn)	966,2 (25,1)	
		¹⁶³ Dy(γ,p2n)		
¹⁶¹ Tb	6,89 сут	¹⁶² Dy(γ,p)	25,7 (23,2); 74,6 (10,2)	14,4±0.3
		¹⁶³ Dy(γ,pn)		
		¹⁶⁴ Dy(γ,p2n)		
¹⁶³ Tb	19,5	¹⁶⁴ Dy(γ,p)	351,2 (26); 389,8 (24);	2200±300
	мин		494,5 (22,5); 421,9 (11,5);	
			533,0 (9,5); 316,4 (8,3);	
			250,8 (6,7); 347,8 (6,2);	
			338.5 (4.5)	

Таблица 5 — Радионуклиды, идентифицированные в мишени ^{nat}Dy₂O₃, облученной 55 МэВ гамма-квантами, их активности и выходы

* Активность ¹⁵⁵Tb рассчитана на 40 часов после EOB, когда накопление ¹⁵⁵Tb из ¹⁵⁵Dy проходит через максимум, исходя из выхода ¹⁵⁵Dy

В настоящей работе показана принципиальная возможность получения ¹⁶¹Tb и ¹⁵⁵Tb фотоядерным методом. Выход (γ,р)-реакций на тяжелых ядрах невысокий из-за кулоновского барьера, и ¹⁶²Dy(γ,р) не является исключением. В условиях эксперимента (тонкая мишень и тонкий конвертер) он составил для ¹⁶¹Tb 14,4 кБк·мкА⁻¹·ч⁻¹·см²·г_{Dy2O3}⁻¹. Использование мишени естественного изотопного состава не позволяет добиться высокой изотопной чистоты. Содержание долгоживущей примеси ¹⁶⁰Tb составило 7,3% по активности от ¹⁶¹Tb на ЕОВ, что несколько меньше, чем при использовании дейтронов. Можно ожидать, что использование обогащенной по ¹⁶²Dy мишени и оптимизация энергии пучка позволит увеличить радиоизотопную чистоту, поскольку (γ,р)-реакции, как правило, имеют значительно более высокие сечения, чем (γ,пр). Настоящий метод вряд ли может быть перспективен для наработки ¹⁶¹Tb в медицинских количествах, однако может быть полезен для

получения небольших количеств для опытов *in vitro* и клинических испытаний в тех случаях, когда реакторный ¹⁶¹Tb не доступен.

Выход ¹⁵⁵ Dy составил 25 кБк·мкА⁻¹·ч⁻¹·см²·г_{Dv2O3}⁻¹, что при распаде дает 1,6 кБк·мкА⁻¹·ч⁻¹·см²· r_{Dy2O3} ^{-1 155}Tb на момент максимального накопления (40 ч после ЕОВ). В случае с ¹⁵⁵Tb переход к изотопно обогащенной мишени (¹⁵⁶Dy) может дать значительный положительный эффект, так как образование этого радионуклида идет по каналу (ү,n) через промежуточное образование ¹⁵⁵Dy. Причем период полураспада ¹⁵⁵ Dy позволяет провести радиохимическое промежуточного продукта, и тем самым избавиться от выделение примесей, образующихся изотопных (y,pxn)-каналам. возможных по Проблемой, ограничивающей практическое использование предлагаемого метода, является низкое содержание ¹⁵⁶Dy (0,056%) в природной смеси изотопов.

Выделение радиоизотопов тербия из диспрозиевой мишени проводили методом экстракционной хроматографии на сорбенте LN Resin. Возможность разделения проверяли при двух разных массах, загружаемых на колонку: 2 и 20 мг в пересчете на металлический диспрозий. В первом разделении использовали раствор, содержащий 2 мг диспрозия (рисунок 27).

Рисунок 27 – Хроматограмма выделения ¹⁶¹Тb при загрузке 2 мг диспрозия (в пересчете на металл)

Было показано, что при загрузке 2 мг Dy разделение проходит успешно. С увеличением массы диспрозия до 20 мг хроматографическое поведение как макро-, так и микрокомпонентов резко меняется и разделение диспрозия и тербия ухудшается, что может быть связанно с превышением максимальной емкости смолы.

Получение ¹⁶¹Tb облучением в реакторе ¹⁶⁰Gd

В настоящей работе был использован реакторный метод получения ¹⁶¹Tb из гадолиния, обогащенного по изотопу ¹⁶⁰Gd, впервые описанный Лехенбергер с коллегами [10] (рисунок 28). Тербий-161 рассматривается как аналог ¹⁷⁷Lu, и получается в реакторе без носителя по аналогичной схеме. Затраты на производство ¹⁶¹Tb не превышают соответствующие для ¹⁷⁷Lu, получаемого из ¹⁷⁶Yb. Выход обоих радионуклидов в реакторе соизмерим, стоимость исходного сырья в случае тербия даже ниже. При этом благодаря наличию Оже- и конверсионных электронов в спектре, ¹⁶¹Tb более эффективно поражает раковые клетки.

Рисунок 28 – Фрагмент нуклидной карты, иллюстрирующие получение ¹⁶¹Tb в реакторе без носителя

Для получения ¹⁶¹Tb облучали ¹⁶⁰Gd₂O₃ в кварцевой ампуле, масса материала составляла ~10 мг в пересчете на металл. Для контроля параметров облучения в алюминиевое ампульное устройство сверху и снизу ампулы помещали мониторы нейтронного потока Nb, Co(Al), Fe, Ni, Au(Al). На основании наведенной активности были рассчитаны характеристики нейтронного поля в месте облучения ампулы (таблица 6).

Таблица 6— Характеристики поля нейтронов, воздействовавших на образец при облучении

Энергетический диапазон	Плотность потока, н·см ⁻² ·с ⁻¹ ·МВт ⁻¹
От 10 ⁻⁵ до 0,625 эВ	1,7·10 ¹³
от 0,625 эВ до 5,5 кэВ	9,3·10 ¹²
От 5,5 кэВ до 3,0 МэВ	4,5·10 ¹²
От 3,0 МэВ до 17 МэВ	6,8·10 ¹¹

Облученную ампулу вскрывали, 160 Gd₂O₃ растворяли при небольшом нагревании в 4 М HNO₃. Для отделения Tb от Gd раствор последовательно пропускали через четыре хроматографические колонки, заполненные соответственно DGA Resin, LN Resin, DGA и Resin Prefilter, меняя среду раствора, как это показано на рисунке 29.

Рисунок 29 – Схема выделения ¹⁶¹Tb из облученной нейтронами ¹⁶⁰Gd мишени

Первая колонка, заполненная DGA Resin, предназначалась для смены среды с 4 M HNO₃ на 0,05 HCl, в которой можно осуществить сорбцию на LN Resin. В крепкой азотной кислоте оба металла прочно сорбируются на DGA Resin. В 0,05 M HCl оба смываются, но Gd чуть легче, что позволяет на этой

стадии сбросить около 30% Gd, потеряв не более 3% Tb (рисунок 30). Уменьшение массы Gd в системе улучшает дальнейшее разделение Gd и Tb на LN Resin.

Рисунок 30 – Профиль элюирования Gd и ¹⁶¹Tb на DGA Resin, длина колонки 24 см, масса сорбента 1 г. Прямоугольником отмечена собранная фракция тербия

Основной этап разделения Tb и Gd происходит на следующей стадии на колонке LN Resin. Эффективность разделения существенно зависят от массы Gd, загруженного на колонку. Было проведено дополнительное исследование коэффициентов распределения Tb и Gd в зависимости от введенной массы гадолиния (рисунок 31).

Рисунок 31 – Коэффициенты распределения Gd и Tb в присутствии макроколичеств Gd в среде HNO₃ на LN Resin

На основании полученных значений D_w было решено смывать Gd 0,3 M HNO₃, поскольку в этой области наблюдается наибольшее различие между Gd и Tb. Для элюирования тербия использовали 0,7 M HNO₃, более крепкие растворы смывают тербий быстрее, но одновременно будут смывать и диспрозий, который может присутствовать в виде примеси, а также образуется при радиоактивном распаде ¹⁶¹Tb. Профиль элюирования приведен на рисунке 32.

Рисунок 32 – Профиль элюирования Gd и ¹⁶¹Tb на колонке LN Resin массой 1 г, масса ¹⁶⁰Gd 11,7 мг

На следующем этапе ¹⁶¹Tb снова концентрировали на небольшой колонке DGA Resin, и переводили в солянокислую форму, подходящую для получения меченых соединений. Чтобы избежать загрязнения продукта органическими примесями с колонки, проводили дополнительную очистку на смоле Prefilter. Радионуклидную чистоту продукта определяли гаммаспектрометрически. Доля ¹⁶⁰Tb составила 8,3·10⁻⁵% на момент отправки. Содержание Gd в продукте, определенное методом ICP-AES составило 0,5-50 ppb.

Заключение

На основании измеренных в работе сечений показано, что ядерные реакции под действием альфа-частиц и ³Не являются эффективным способом ^{149,152,155}Tb в количествах, достаточных для медицинского получения применения и с приемлемой радиоизотопной чистотой. Измеренные выходы фотоядерных реакций позволяют сделать вывод, что фотоядерный метод получения эффективен для ⁴⁷Sc, тогда как (у,р)-реакции на тяжелых ядрах имеют невысокие выходы, и могут быть использованы лишь для получения небольших количеств ¹⁷⁷Lu, ¹⁶⁷Tm, ¹⁶¹Tb. Экстракционная хроматография позволяет эффективно выделить радиоактивные изотопы РЗЭ из облученных мишеней. Партии ¹⁶¹Тb активностью в сотни МБк были произведены на реакторе ИР-8 путем облучения ¹⁶⁰Gd и последующего экстракционнохроматографического разделения. Процесс может быть масштабирован по меньшей мере на порядок без существенных изменений технологии. Полученные в работе экспериментальные результаты и разработанные подходы могут стать научной базой для промышленного получения медицинских радиоизотопов.

Выводы

- Экспериментально измерены сечения реакций на ядрах ¹⁵¹Eu, ^{nat}Gd, ¹⁵⁵Gd под действием альфа-частиц в диапазоне энергий до ~60 МэВ и на ¹⁵¹Eu под действием ³He в диапазоне энергий до ~70 МэВ. Большая часть этих данных получена впервые.
- Разработан новый метод получения ¹⁴⁹Tb, включающий облучение мишени ¹⁵¹Eu частицами ³He и двухстадийное радиохимическое выделение ¹⁴⁹Tb. В оптимальном диапазоне 70→40 МэВ может быть получено ~38,9 МБк·мкА⁻¹·ч⁻¹ или ~231 МБк·мкА⁻¹ при насыщении, что достаточно для терапевтических целей.

- 3. Разработан метод получения ¹⁵²Tb, включающий облучение мишени ¹⁵¹Eu альфа-частицами и радиохимическое выделение ¹⁵²Tb. В оптимальном диапазоне 42→34 МэВ выход составит 30 МБк·мкА⁻¹·ч⁻¹ или ~220 МБк·мкА⁻¹ при 8-часовом облучении. Этой активности достаточно для применения в медицине.
- 4. Разработан новый метод получения ¹⁵⁵Tb через промежуточное выделение ¹⁵⁵Dy, основанный на облучении ^{nat}Gd или ¹⁵⁵Gd альфа-частицами. Метод позволяет получить 118 МБк·мкА⁻¹·ч⁻¹ ¹⁵⁵Dy при 54 МэВ на обогащенной до 90% мишени с высокой радиоизотопной чистотой, что приводит к получению 105 МБк·мкА⁻¹ ¹⁵⁵Tb при длительном облучении мишени и переработке через 40 ч после ЕОВ. Этой активности достаточно для применения в медицине.
- 5. Предложен способ одновременной наработки ¹⁵⁵Tb и ¹⁵²Tb на пучке альфа-частиц энергией 60 МэВ с использованием тандемной мишени ¹⁵⁵Gd/¹⁵¹Eu, что позволяет более эффективно использовать пучок.
- 6. Реализовано фотоядерное получение ⁴⁷Sc из ^{nat}Ti, ^{155,161}Tb из ^{nat}Dy, ¹⁷⁷Lu из ^{nat}Hf, ¹⁶⁷Tm из ^{nat}Yb. Измерены выходы реакций, разработаны радиохимические методики выделения. Показана перспективность фотоядерного метода для получения ⁴⁷Sc.
- 7. Реализован способ получения ¹⁶¹Tb, включающий облучение мишени ¹⁶⁰Gd на реакторе ИР-8 и экстракционно-хроматографическое выделение продукта. Получены и охарактеризованы пробные партии продукта активностью до 300 МБк. Обоснована возможность получения терапевтических доз ¹⁶¹Tb.

Список сокращений, использованных в тексте

РФЛП – радиофармацевтические лекарственные препараты

РЗЭ – редкоземельные элементы

ПЭТ/КТ – позитронно-эмиссионная томография / компьютерная томография

- EOS Время окончания разделения (End of separation)
- EOB Время окончания облучения (End of bombardment)

ICP-AES — Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой

TTY – Выход на толстой мишени (thick target yield)

Статьи, опубликованные в рецензируемых научных изданиях, индексируемых в базах данных Web of Science и Scopus, и входящих в ядро РИНЦ

1. Moiseeva A.N. Co-production of ¹⁵⁵Tb and ¹⁵²Tb irradiating ¹⁵⁵Gd/¹⁵¹Eu tandem target with a medium energy α-particle beam / A.N. Moiseeva K.A. Makoveeva, E.B. Furkina, E.V. Artyushova, M.N. German, I.A. Khomenko, A.L. Konevega, E.S. Kormazeva, V.I. Novikov, N.V. Aksenov, N.S. Gustova, **R.A. Aliev** // Nuclear Medicine and Biology. – 2023. – V. 126–127 – P. 108389. (WoS, JIF 3,6; 1 п.л./50%)

2. Moiseeva A.N. New method for production of ¹⁵⁵Tb via ¹⁵⁵Dy by irradiation of ^{nat}Gd by medium energy alpha particles / A.N. Moiseeva, **R.A. Aliev**, E.B. Furkina, V.I. Novikov, V.N. Unezhev // Nuclear Medicine and Biology. – 2022. – V. 106–107. – P. 52–61. (WoS, JIF 3,6; 1 п.л./50%)

3. Moiseeva A.N. Cross section measurements of ${}^{151}Eu({}^{3}He,5n)$ reaction: new opportunities for medical alpha emitter 149 Tb production / A.N. Moiseeva, **R.A. Aliev**, V.N. Unezhev, V.A. Zagryadskiy, S.T. Latushkin, N.V. Aksenov, N.S. Gustova, M.G. Voronuk, G.Y. Starodub, A.A. Ogloblin // Scientific Reports. – 2020. – V. 10. – P. 508. (WoS, JIF 3,8; 0,5 п.л./50%)

4. Kazakov A.G. Separation of radioisotopes of terbium from a europium target irradiated by 27 MeV α-particles / A.G. Kazakov, **R.A. Aliev**, A.Y. Bodrov, A.B. Priselkova, S.N. Kalmykov // Radiochimica Acta. – 2018. – V. 106, №2. – P. 135–140. (WoS, JIF 1,4; 0,7 п.л./50%)

5. **Aliev R.A.** Production of medical radioisotope ¹⁶⁷Tm by photonuclear reactions on natural ytterbium / **R.A. Aliev**, A.B. Priselkova, V.V. Khankin, V.G. Petrov, S.S. Belyshev, A.A. Kuznetsov // Nuclear Instruments Methods in Physics Research Section B – Beam Interaction with Materials and Atoms. – 2021. – V. 508. – P. 19–23. (WoS, JIF 1,4; 0,6 п.л./75%)

6. **Aliev R.A.** Photonuclear production of medically relevant radionuclide ⁴⁷Sc / **R.A. Aliev**, S.S. Belyshev, E.B. Furkina, V.V. Khankin, A.A. Kuznetsov, L.Z. Dzhilavyan, A.B. Priselkova, B.S. Ishkhanov // Journal of Radioanalytical and Nuclear Chemistry. – 2020. – V. 326. – P. 1099–1106. (WoS, JIF 1,5; 0,7 п.л./60%)

7. Алиев Р.А. Использование ускоренных ионов гелия для производства радионуклидов: нужны ли нам пучки альфа-частиц? / Р.А. Алиев, А.Н. Моисеева, К.А. Сергунова, Е.С. Кормазева // Российские нанотехнологии. – 2023. – Т. 18, № 4. – С. 520-527. (РИНЦ ИФ 0,661) (Aliev R.A. On the Use of Accelerated Helium Ions for Radionuclide Production: are Beams of Alpha Particles Needed? / R.A. Aliev, A.N. Moiseeva, K.A. Sergunova, E.S. Kormazeva //

Nanobiotechnology Reports. – 2023. – V. 18. – P. 598–605. (WoS, JIF 0,5; 1,1 п.л./70%))

 Моисеева А.Н. Получение короткого аналога соматостатина, меченного
¹⁵⁵Tb / А.Н. Моисеева, Р.А. Алиев, В.Н. Осипов, Д.С. Хачатрян // Известия Академии наук. Серия химическая. – 2023. – Т. 72, № 9. – С. 2249-2253. (РИНЦ ИФ 1,406) (Moiseeva A.N. Preparation of ¹⁵⁵Tb-labeled short somatostatin analog / A.N. Moiseeva, **R.A. Aliev**, V.N. Osipov, D.S. Khachatryan // Russian Chemical Bulletin. – 2023. – V. 72 – P. 2249-2254. (WoS, JIF 1,7; 0,8 п.л./30%))

9. Fedotova A.O. Photonuclear production of medical radioisotopes ¹⁶¹Tb and ¹⁵⁵Tb / A.O. Fedotova, **R.A. Aliev**, B.V. Egorova, E.S. Kormazeva, A.L. Konevega, S.S. Belyshev, V.V. Khankin, A.A. Kuznetsov, S.N. Kalmykov // Applied Radiation and Isotopes. – 2023. – V. 198. – P. 110840. (WoS, JIF 1,6; 0,8 п.л./50%)

[¹⁶¹Tb]Tb-Thz-Phe-D-Trp-Lys-Thr-DOTA: 10. Fedotova A.O. potential Α radiopharmaceutical for the treatment of neuroendocrine tumors / A.O. Fedotova, B.V. Egorova, G.Yu. Aleshin, L.S. Zamurueva, R.A. Aliev. G.A. Posypanova, A.B. Priselkova, A.V. Kolotaev, D.S. Khachatryan, V.N. Osipov, S.N. Kalmykov // Mendeleev Communications. – 2023. – V. 33 – P. 469-471. (WoS, JIF 1,8; 0,8 п.л./30%)

11. Алиев Р.А. Получение короткоживущего терапевтического α-эмиттера ¹⁴⁹ Тb облучением европия α-частицами энергией 63 МэВ. / Р.А. Алиев, В.А. Загрядский, С.Т. Латушкин, А.Н. Моисеева, В.И. Новиков, В.Н. Унежев, А.Г. Казаков // Атомная энергия. – 2020. – Т. 129, № 6. – С. 326-328. (РИНЦ ИФ 0,434) (Aliev R.A. Production of a Short-Lived Therapeutic α-Emitter ¹⁴⁹ Tb by Irradiation of Europium by 63 MeV α-Particles / R.A. Aliev, V.A. Zagryadskiy, S.T. Latushkin, A.N. Moiseeva, V.I. Novikov, V.N. Unezhev, A.G. Kazakov // Atomic Energy. – 2021. – V. 129 – Р. 337–340. (WoS, JIF 0,4; 0,2 п.л./60%)

12. Moiseeva A.N. Alpha particle induced reactions on ¹⁵¹Eu: Possibility of production of ¹⁵²Tb radioisotope for PET imaging / A.N. Moiseeva, **R.A. Aliev**, V.N. Unezhev, N.S. Gustova, A.S. Madumarov, N.V. Aksenov, V.A. Zagryadskiy // Nuclear Instruments Methods in Physics Research Section B – Beam Interaction with Materials and Atoms. – 2021. – V. 497. – P. 59–64. (WoS, JIF 1,4; 0,7 п.л./50%)

13. Aliev R.A. Separation of ¹⁶⁷Tm, ¹⁶⁵Er and ¹⁶⁹Yb from erbium targets irradiated by 60 MeV alpha particles / R.A. Aliev, I.A. Khomenko, E.S. Kormazeva // Journal of Radioanalytical and Nuclear Chemistry. – 2021. – V. 329. – P. 983– 989. (WoS, JIF 1,5; 0,8 п.л./70%)

14. Kazakov A.G. Production of ¹⁷⁷Lu by hafnium irradiation using 55-MeV bremsstrahlung photons / A.G. Kazakov, S.S. Belyshev, T.Y. Ekatova, V.V. Khankin,

A.A. Kuznetsov, **R.A. Aliev** // Journal of Radioanalytical and Nuclear Chemistry. – 2018. – V. 317. – P. 1469–1476. (WoS, JIF 1,5; 0,7 п.л./50%)

15. Соболев А.С. Радионуклиды, испускающие частицы с коротким пробегом, и модульные нанотранспортеры для их доставки в раковые клетки-мишени. / А.С. Соболев, **Р.А. Алиев**, С.Н. Калмыков // Успехи химии. – 2016. – Т. 85, № 9. – С. 901-1032. (РИНЦ ИФ 4,394) (Sobolev A.S. Radionuclides emitting short-range particles and modular nanotransporters for their delivery to target cancer cells / A.S. Sobolev, **R.A. Aliev**, S.N. Kalmykov // Russian Chemical Review. – 2016. – V. 85. Р. 1011–1032. (WoS, JIF 7; 3 п.л./40%))

16. Krasikova R.N. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides / R.N. Krasikova, **R.A. Aliev**, S.N. Kalmykov // Mendeleev Communications. – 2016. V. 26 – P. 85–94. (WoS, JIF 1,8; 2 п.л./40%)

17. Ostapenko V.S. Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions / V.S. Ostapenko, A.N. Vasiliev, E.V. Lapshina, S.V. Ermolaev, **R.A. Aliev**, Y. Totskiy, B.L. Zhuikov, S.N. Kalmykov // Journal of Radioanalytical and Nuclear Chemistry. – 2015. – V. 306. – P. 707–711. (WoS, JIF 1,5; 0,7 п.л./30%)

18. Aliev R.A. Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons / R.A. Aliev, S.V. Ermolaev, A.N. Vasiliev, V.S. Ostapenko, E.V. Lapshina, B.L. Zhuikov, N.V. Zakharov, V.V. Pozdeev, V.M. Kokhanyuk, B.F. Myasoedov, S.N. Kalmykov // Solvent Extraction and Ion Exchange. – 2014. – V. 32. – P. 468–477. (WoS, JIF 1,8; 0,7 п.л./50%)

19. Ermolaev S.V. Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV / S.V. Ermolaev, B.L. Zhuikov, V.M. Kokhanyuk, V.L. Matushko, S.N. Kalmykov, **R.A. Aliev**, I.G. Tananaev, B.F. Myasoedov // Radiochimica Acta. – 2012. – V. 100. – P. 223–229. (WoS, JIF 1,4; 0,8 п.л./30%)

20. Жуйков Б.Л. Получение актиния-225 и радия 223 при облучении тория ускоренными протонами / Б.Л. Жуйков, С.Н. Калмыков, С.В. Ермолаев, **Р.А. Алиев**, В.М. Коханюк, В.Л. Матушко, И.Г. Тананаев, Б.Ф. Мясоедов // Радиохимия. – 2011. – Т. 53, № 1. – С. 66-72. (РИНЦ ИФ 0,909) (Zhuikov B.L. Production of ²²⁵Ac and ²²³Ra by irradiation of Th with accelerated protons / B.L. Zhuikov, S.N. Kalmykov, S.V. Ermolaev, **R.A. Aliev**, V.M. Kokhanyuk, V.L. Matushko, I.G. Tananaev, B.F. Myasoedov // Radiochemistry. – 2011. – V. 53. – Р. 73–80. (WoS, JIF 0,9; 0,8 п.л./20%)

21. Ковальчук М.В. Распределенный центр ядерной медицины НИЦ "Курчатовский институт": история, современное состояние и перспективы

развития / М.В. Ковальчук, О.С. Нарайкин, К.А. Сергунова, Ю.А. Дьякова, Р.А. Алиев. В.И. Максимов, С.В. Иванов, Н.Е. Тюрин. А.Н. Черных. А.П. Солдатов, Г.И. Кленов, В.С. Хорошков // Кристаллография. – 2022. – Т. 67, № 5. – С. 801-817. (РИНЦ ИФ 0,839) (Kovalchuk M.V. Distributed Center for Nuclear Medicine of the NRC "Kurchatov Institute": Historical Background, Current Status, and Evolution Outlook / M.V. Kovalchuk, O.S. Naraikin, K.A. Sergunova, Y.A. Dyakova, A.N. Chernykh, **R.A. Aliyev**, V.I. Maksimov, N.E. Tyurin, A.P. Soldatov, G.I. Klenov, V.S. Khoroshkov S.V. Ivanov, Crystallography Reports. – 2022. – V. 67. – Р. 745-759. (WoS, JIF 0,6; 1 п.л./10%))

Прочие публикации и патенты

22. Способ получения радиоизотопа Тербий-161. **Алиев Р.А.**, Загрядский В.А., Коневега А.Л., Курочкин А.В., Маковеева К.А., Моисеева А.Н., Фуркина Е.Б. Патент РФ #RU 2 803 641 C1, 19 сентября 2023 (50%)

23. Способ получения радиоизотопов тербий-154 и тербий-155. Загрядский В.А., **Алиев Р.А.**, Коневега А.Л., Моисеева А.Н., Скобелин И.И. Патент РФ #RU 2793294, 31 марта 2023 (20%)

24. Способ получения актиния-225 и изотопов радия и мишень для его осуществления (варианты). Жуйков Б.Л., Калмыков С.Н., **Алиев Р.А.**, Ермолаев С.В., Коханюк В.М., Коняхин Н.А., Тананаев И.Г., Мясоедов Б.Ф. Патент РФ #RU 2373589 С1, 20 ноября 2009 (30%)

25. Method for producing actinium-225 and isotopes of radium and target for implementing same. Zhuikov B.L., Kalmykov S.N., **Aliev R.A.**, Ermolaev S.V., Kokhanyuk V.M., Koniakhin N.A., Tananaev I.G., Myasoedov B.F. US Patent #US9058908 B2, 16 June 2015 (30%)

26. Method for producing actinium-225 and isotopes of radium and target for implementing same. Zhuikov B.L., Kalmykov S.N., **Aliev R.A.**, Ermolaev S.V., Kokhanyuk V.M., Koniakhin N.A., Tananaev I.G., Myasoedov B.F. Canadian Patent #CA 2,738,308, 18 March 2014 (30%)

Список литературы

- 1. Zagryadskii V.A. et al. Measurement of Terbium Isotopes Yield in Irradiation of 151Eu Targets by 3He Nuclei // At. Energy. 2017. Vol. 123, № 1. P. 55–58.
- 2. Beyer G.J. et al. Production routes of the alpha emitting 149Tb for medical application // Radiochim. Acta. 2002. Vol. 90, № 5. P. 247–252.
- 3. Steyn G.F. et al. Cross sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb

radionuclides // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Elsevier B.V., 2014. Vol. 319. P. 128–140.

- Challan M.B. et al. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets // Proc. 6th Conf. of Nuclear and Particle Physics / ed. Comsan M.N.H. Luxor, 2007. P. 159–168.
- 5. Gayoso R.E., Sonzogni A.A., Nassiff S.J. (α,pxn) Reactions on Natural Gadolinium // ract. 1996. Vol. 72, № 2. P. 55–60.
- Ichinkhorloo D. et al. Production cross sections of dysprosium, terbium and gadolinium radioisotopes from the alpha-particle-induced reactions on natural gadolinium up to 50 MeV // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Elsevier B.V., 2021. Vol. 499, № May. P. 46–52.
- Vermeulen C. et al. Cross sections of proton-induced reactions on natGd with special emphasis on the production possibilities of 152Tb and 155Tb // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Elsevier B.V., 2012. Vol. 275. P. 24–32.
- Barbaro F. et al. 155Tb production by cyclotrons: what level of 155Gd enrichment allows clinical applications? // EJNMMI Phys. 2024. Vol. 11, № 1. P. 26.
- 9. Kazakov A.G. et al. Production of 177Lu by hafnium irradiation using 55-MeV bremsstrahlung photons // J. Radioanal. Nucl. Chem. Springer International Publishing, 2018. Vol. 317, № 3. P. 1469–1476.
- Lehenberger S. et al. The low-energy β and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy // Nucl. Med. Biol. Elsevier Inc., 2011. Vol. 38, № 6. P. 917–924.