Диссертация
Шахманов Викентий Юрьевич
Кандидат наук
Статус диссертации
Кандидат наук
Профессор РАН Доктор наук
Катаев Андрей Львович
Доктор наук
Пославский Станислав Владимирович
Кандидат наук
физико-математические науки
В работе исследуется N=1 суперсимметричная теории Янга-Миллса, взаимодействующая с киральными суперполями материи. Целью работы является изучение вопроса о том, как в низших порядках теории возмущений получается соотношение Новикова, Шифмана, Вайнштейна и Захарова (NSVZ), связывающее β-функцию с аномальными размерностями. Для этого проводились вычисления одно-, двух- и трехпетлевых вкладов определенной структуры в ренормгрупповые функции рассматриваемой теории при использовании двух вариантов регуляризации высшими ковариантными производными: соответственно с сохранением и нарушением BRST-инвариантности. При этом формулировка теории и ее квантование проводились явно суперсимметричным образом с использованием суперполевого формализма. Результаты вычислений были использованы для проверки NSVZ соотношения, а также изучения схемной зависимости в рассматриваемых порядках по теории возмущении. Было показано, что выражения для рассматриваемых вкладов в β-функцию, определенной в терминах голых констант связи, являются интегралами от двойной полной производной, проверено выполнение NSVZ соотношения для полной двухпетлевой β-функции, определенной в голых константах связи и вычисленной при BRST-неинвариантной регуляризации, и для трехпетлевых вкладов в β-функцию, пропорциональных четвертой степени юкавских констант. Для слагаемых, пропорциональных четвертой степени юкавских констант, в трехпетлевом приближении было проверено предписание, определяющее NSVZ схему в случае, когда ренормгрупповые функции определяются в терминах перенормированных величин.
# | Название | Размер |
---|