Диссертация
Сюй Сеюй
Кандидат наук
Статус диссертации
Член - корреспондент РАН Доктор наук Доцент
Капитанова Олеся Олеговна
Кандидат наук
Член - корреспондент РАН Доктор наук Доцент
Соколов Петр Сергеевич
Кандидат наук
Сорокин Павел Борисович
Доктор наук Доцент
химические науки
Фазы семейства Li1+xAlxTi2-x(PO4)3 (LATP) со структурой NASICON обладают высокой ионной проводимостью (до 10-3 См/см для монокристаллов) при комнатной температуре, низкой стоимостью ввиду отсутствия редких и рассеянных элементов в составе, химической стабильностью на воздухе, широким окном рабочих потенциалов (2,8-4,8 В отн. Li+/Li), высокой механической прочностью (модуль упругости до 150 ГПа), отсутствием токсичности, высокой термостабильностью вплоть до ~ 1300ºС. Способы получения твердых электролитов на основе LATP основаны на методах твердофазных взаимодействий, кристаллизации стекол, «мягкой химии» и химической гомогенизации. Керамические образцы обладают более низкой проводимостью по ионам лития в сравнении с монокристаллами за счет негативного вклада границ зерен и наличия дефектов типа трещин и пор. Более того, дефекты в керамическом электролите являются источниками механических микронапряжений, способствуя формированию литиевых протрузий в процессе электрохимического циклирования аккумулятора и риску короткого замыкания из-за механического разрушения электролита. Актуальность работы непосредственно связана с разработкой новых поколений материалов для литий - ионных аккумуляторов с твердофазными электролитами, отличающихся повышенными эксплуатационными характеристиками и безопасностью.
Целью работы является разработка эффективных подходов по получению керамических электролитов на основе фаз состава Li1+xAlxTi2-x(PO4)3 с заданными функциональными характеристиками для твердофазных вторичных источников тока.
Для достижения поставленной цели были решены следующие задачи:
1. Численное моделирование методом фазового поля, 2D и 3D визуализации процесса распространения дендритных структур металлического лития при заряде аккумулятора для оценки комплекса требуемых физико - химических и морфологических свойств твердого электролита;
2. Разработка новых методов синтеза порошкообразных предшественников для получения твердых электролитов состава Li1+xAlxTi2-x(PO4)3 с улучшенными характеристиками;
3. Анализ влияния предыстории получения предшественников, методик их формования, температурно - временных режимов обработки на особенности спекания и микроструктуры твердофазных образцов электролитов состава Li1+xAlxTi2-x(PO4)3;
4. Разработка эффективных методик получения высокоплотных керамических материалов состава Li1+xAlxTi2-x(PO4)3 с контролируемыми геометрическими размерами, гранулометрическим составом, особенностями поровой структуры для использования в качестве твердых электролитов;
5. Проведение электрохимического тестирования и анализ корреляций состав - структура - свойства для выбора наиболее эффективных приемов создания твердых электролитов для вторичных источников тока; сборка и тестирование прототипов твердотельных литиевых аккумуляторов.
| # | Название файла | Размер |
|---|---|---|
| 1 | Отзыв второго научного руководителя (консультанта) | 143 KB |
| 2 | Отзыв официального оппонента | 2 MB |
| 3 | Сведения об официальных оппонентах, включая публикации | 448 KB |
| 4 | Заключение по диссертации | 264 KB |
| 5 | Отзыв официального оппонента | 814 KB |
| 6 | Сведения о научных руководителях (консультантах) | 389 KB |
| 7 | Автореферат | 2 MB |
| 8 | Отзыв официального оппонента | 894 KB |
| 9 | Диссертация | 15 MB |
| 10 | Протокол приема диссертации к защите | 59 KB |
| 11 | Отзыв научного руководителя (консультанта) | 144 KB |